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Time- and frequency-gated spontaneous emission as a tool for studying vibrational dynamics
in the excited state
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The theory of time- and frequency-gat€@iFG) spontaneous emissiofSE) spectra is elaborated. The
present formulation generalizes previous derivations, clarifies the interrelations between different existing
expressions, and establishes the validity of certain commonly assumed approximations. We obtain various
explicit expressions for TFG SE spectra, which are suitable for performing actual calculations for nontrivial
systems and which allow us to establish genétiat is, model-independenproperties of TFG spectra. The
doorway-window picture of temporally and spectrally resolved spectra is further developed. It is shown that, to
the leading order in the pump and probe pulses, the TFG SE signal is equivalent to the stimulated-emission
contribution to the integral pump-probe spectrum in the case of nonoverlapping pulses. The theory is illustrated
for the example of an electronic two-level system with a single Condon-active harmonic vibrational mode that
is coupled to a thermal bath. The effect of imperfect time and frequency resolution is studied. It is pointed out
that the TFG SE spectrum carries information not only on the strength of the system-bath coupling, but also on
the relative magnitude of the bath correlation time.
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[. INTRODUCTION guency within a definite time interval. The influence of the
measuring device is not taken into account in this formula-
Spectroscopic measurements are conventionally peiion [1,12,14-22 Starting from this definition, one obtains
formed either in the time or in the frequency domain. Thean ideal(barg TFG SE spectrum, which is not guaranteed to
two kinds of experiments can, however, be successfully comPe positive, however. For instance, for certain parameters of
bined, thereby allowing us to follow the time evolution of the Brownian oscillator model, the spectrum can attain nega-
spectra[1-3]. Provided that sufficient temporal and spectraltive values[1,3]. Moreover, the time and frequency resolu-
resolution has been achieved, these techniques make it pdien of this ideal spectrum are not limited by the fundamental
sible to monitor the relaxation to equilibrium of a material ime-frequency uncertainty principle. This underlines the ne-
system that has been excited by a short laser pulse. WheifSSity to develop a more comprehensive theory, in which

interpreting such experiments, a fundamental question arise .Ot.h a spectrometer and a time-gating device enter the de-
how can one extract quantitative information on the d nam-Scrlptlon from the outset.
q y This is the characteristic feature of the second group of

i i i ?

'CSTOJ a maten;il SVSter_“ f(;om tthg tmetasured s_g;nalts_. f thapproache:s, in which the TFG SE is taken to be proportional

. € pr(;as?n paper is devoted to the consideration ot Ihg, y,o integrated intensity of the total emitted field that has
time- and frequency-gatedTFG) spontaneous emission ,qseq through a spectrometer and a temporal gating device

(SB). We restrict ourselves to the simpleut important 53 54 Following the guidelines developed in Rd23],
case when the excitation and emission processes are Wel{e TEG SE has been investigated by a number of authors
separated temporally. Under these conditions, the SE consiqt§’5_7,13,25,2}3 The explicit consideration of the TFG pro-
primarily of the fluorescence component; the Raman contricess adds, however, additional complexity to the problem,
bution can be neglected due to fast optical dephasir@l.  and it is therefore not surprising that the papérs7,25,26

The first experimental observation of coherent wave-deal with one-dimensional dissipation-free systems, which
packet dynamics via the TFG SE technique was reported iallows the description of the material dynamics in terms of
Ref. [4] for the sodium dimeKsee also Refd5-7]). Later  the eigenvalues and eigenfunctions of the Hamiltonian. Cina
on, coherent effects in TFG SE responses have been meand coworkers have formulated a theory that is intermediate
sured for diverse systems, ranging from diatomic moleculebetween the two approachg3,27,2§. These authors have
to polyatomic donor-acceptor complexgls-10. By moni-  investigated the influence of the time gate on the intensity
toring the SE, one gets the opportunity to keep track of vi{3,27] and anisotropy{28] of the SE, while the frequency
brational wave-packet dynamics in the electronically excitedesolution was tacitly assumed to be perfect. Mukamel and
state as well as decay of the excited state. Therefore the TF@workers have developed a general description, which en-
SE spectroscopy is a promising tool for the elucidation ofsures a correct inclusion of the TFG process for any material
ultrafast excited-state relaxation in systems with pronouncedystem under studj29-31]. The passage to an ideal gate
nonadiabatic couplinge2,11-17. also has been briefly discussed by these authors.

There exist two major approaches to the description of the The formulations developed in Ref§29-31 provide
TFG SE. In the first approach, the TFG SE spectrum is deedeep insight into the problem of the TFG SE. However, their
fined as the rate of emission of photons of a certain freimplementation for the calculation of the TFG SE is difficult
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for complex material systems, due to the necessity to pemtransient terms on the TFG SE. Section V contains the results
form numerous time integrations and Fourier transforms inof calculations of TFG spectra for the Drude oscillator
volving multitime response functions. Moreover, severalmodel. The analysis focusses both on the strength of the
other questions deserve further clarification and investigasystem-bath coupling, as well as on the effect of the bath
tion. The paper$29-31], as well as the pivotal papé23], relaxation time. The latter issue can be of importance for the
are based on the assumption that the emitted field is propofdterpretation of ultrafast time-domain experime(sse, e.g.,
tional to the transition dipole moment. This is a good ap-Ref.[34] and references cited thergirBy considering dif-

proximation for spectrally narrow bands, but, in a more genférent regimes of temporal gating and frequency filtering, we
eral context, it may be necessary to go beyond thishow to what extent the measurable signals reflect the intrin-

approximation[13]. In addition, the excitation pulse is SIC Wave packet motion. Concluding remarks are contained

treated perturbatively in Ref$29—31, which may not be N Sec. V. , o
appropriate for typical experiments that employ a short, but FOr notational convenience, we use units in which 1.
not necessarily, weak laser pulse.

Explicit calculations of the TFG SE for dissipative sys- II. DEFINITION OF TFG SPECTRA
tems have so far been performed only for the classical over- . .
damped Brownian oscillatdi29,30 and, very recently, for The total intensity of th(z: temporally gated and spectrally
molecular aggregates within the Redfield thel8§,33. Im-  filtered field at the positiom in the far-field region is given
portant questions concerning the manifestation of differenpy the general expressi¢a3]
regimes of the bath-induced vibrational relaxation in the
TFG SE have not yet been addressed. An important issue is * R . -
to clearly separate the contributions due to the material sys- Ssilto, @o)~ f_xdtf_xdt f_mdt Bt 1) Bt (1% t0)
tem dynamics from those of the measuring device in the TFG

SE signal. The two groups of approaches to the TFG SE, XFg(t—t",wo)F& (t—1",wo)
[1,12,14-2] and[2,5-7,13,25,26,29—33have so far been e g
developed separately from each other, so that their interrela- X(E(r t)E(rt")*). 1)

tionship is not obvious. It is also of importance to establish
more rigorously the interconnection between the TFG SEHere Ei(t;tg) is the time-gate function that is strongly
signal and other spectroscopic signals, in particular transiefitéaked near the gating timé~ty, the function F(t
absorption pump-probe signals. —t',wg) is responsible for the spectral filtering near the cen-

This state of affairs indicates the necessity to cast the TFGral frequencyw, and(E(F,t’)E(F,t”)*) is the correlation
spectrum in a form that is computationally convenient, butfunction (CF) of the emitted field. It is clear from this defi-
not limited to a particular or simple material-system dynam-nition that the TFG SE spectrum is always positive, in con-
ics. To achieve this goal, it seams promising to further detrast to its bare counterpal,3]. We shall further use the
velop the doorway-windowDW) picture of the TFG SE. standard approximation$,6,13,23—-26,29-31
This has partially been done already in pape27| (for
perfect spectral filte)sand in Refs.[29-33 (for “bare” E(t;to)=exp{—[[(t—tg)]1%} 2
spectra, which are connected with “real” TFG SE spectra
through the convolution with the joint time-frequency gate or
function). The aim of the present paper is to directly develop
the DW description for “real” TFG SE spectra. This formu- Ei(t;tg)=exp(—T|t—to|) 3
lation reduces the computational effort considerably, since
some of the integrals can be performed analytically. Confor the time-gate function and
comitantly, this formulation allows us to make the interrela-
tions between the approaches mentioned above more trans- y
parent and to obtain various forms of the expressions that Fs(t,wo)zﬁ(t)zexp{—(wiwo)t},
can be useful in actual calculations. It is hoped that the pro-
posed theory will simplify the computation of the TFG SE
for nontrivial multidimensional systems, in particular, those v
exhibiting pronounced nonadiabatic couplings and therefore Fo(o,wg)=———— )
ultrafast deca: i Y (@~ w)

y dynamics.

The paper is organized as follows. The definitions of th}:r the frequency filtefwhich is a good approximation for

TFG SE signals are introduced in Sec. Il. Several generi : .
properties of the TFG SE are established in Sec. Ill. Thi e Fabry-Perot filter23)). The constantf andy determine

analysis provides insight into the information content of TFGthe W'dths. of the corresponding f||t_er6(t) is the _HeaV|S|de

SE spectra. In Sec. IV the DW picture of TFG SE is deveI-Step function that ensures causality, and Fourier transforms
oped, in the limit when excitation and gating pulses do not*'® denoted as

overlap. If, moreover, the pump pulse can be regarded as .

truly ins_tan_ta_neous_, the DW description is ge.neralized be- f(“’)Ef dtf(Helet V().

yond this limit, which allows the study of the influence of —o

2
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Following Ref.[23], we normalize the TFG spectrum ac- )
cording to the condition that the total energy passed through Ssi(to, wo) = f_mdw1||:s(w1-wo)| Si(to,w1), (10
the TFG filter is equal to the emitted energy, namely,

* dto dwo 0 > 2
CJ > sst<to,wo>=J dW(|E(T,0[?). (5 o (e
- - S[(to,wl)~f dt’f dt” exd —iwq(t' —t")]Ey(t";to)
The normalization constar@ is readily obtainable for the
TFG functions(2)—(4). One gets

©

where

2 d2
XEF (1tg)—5 ——(P(t)P(t")) (11)
dt’“ dt
C=8¢Ily, (6)
is the TFG spectrum obtained with ideal spectral resolution
with é= 2/ for Gaussian(2) andé=1 for the exponential [|F4(w,wq)|?= 8(w— wy)]. The spectral filtering is seen to
(3) time gate. be independent of the time gating and material system dy-
It is straightforward to demonstrate that the light emittednamics, so that its effect on the TFG SE can always be re-
by a collection of independent dipoles in the far-field regionmoved by deconvolutiof29—-31]. Proceeding in the spirit of

is proportional to the second derivative of the optically in- paperd29-31], one can use Edq11) to develop generalized

duced polarizatiof13,30,33 Wigner spectrograms for the description of the TFG (S&e
Appendix. For the purpose of the further presentation, we
L 27 d? . . prefer to stay in the time domain. Integrating EGl) by
E(rit)=——-—P(rt—7). (7)  parts, one transfers the action of the time derivatives from
c’r dt the polarization CF to the time-gate functions, so that
Here c is the speed of light, and,=r/c is the retardation o S —
time. Integrating the CF of the emitted light over a small St(to’wo)”f_xdtf_wdt Eu(t;to) ET (tto)
solid angle on the sphere of radiusone arrives at the ex-
pression Xexd —iwo(t—t" ) (P(P(t")), (12
R R 2 g2 where
E(r,t")E(r,t")*)~—— ——(P(t'—7)P(t"—1,)).
< ( ( ) dt,z dt,,2< r ( r > o d2 . d ,
(8 Ei(tito)= F_Zm’oa_wo Ei(t;to). (13

In order to derive the TFG SE signal from this definition, it is
a standard practice in the literatuf@ to neglect by the re-
tardation effects £,=0) and(b) to invoke the slowly vary-
ing envelope approximation, i.e?,zls(t)~ —w2|5(t), where

w is the carrier frequency. That is tantamount to the assump- Ei(t;to) ={[T2(t—to) +iwo]2~TAE(t;tg).  (14)
tion

The explicit inclusion of the time derivatives in the definition
of the TFG SE results in a redetermination of the time-gate
functions. For instance, starting from E@), one gets

Formally speaking, these generalized gate functions become
(E(F,t’)E(F,t”)*)~<P(t’)P(t”)). 9) E)mplex_ and frequency dependent, but the product

E«(t;to) Ef (t';to) is of course real. The inspection of the
Here we would like to analyze the above assumptions irabove equations allows one to estimate a criterion for the
some detail. validity of Eq. (9). In an experiment with ultrafast time reso-

(a) Starting from the definition(1), it is elementary to |ution, one normally hag'>y (a good filtey, I' being the

demonstrate that one obtains the sigBa(t,— 7, ,wq) from inverse of the gating-pulse duration. If the material system
the retarded CEP(t' — 7,)P(t"— 7)), if the unretarded CF under study possesses a narrow spectrum in the vicinity of
(P(t")P(t")) gives the signaBs(to,wo). [In the derivation  the relatively well defined frequenay,,>T" of an electronic
of this result, it has been assumed tBaft;to) =E((to—1t),  transition, thenE(t;to)~ — w2E(t;t;). When the system
which is a natural approximation for a time gaféhe retar-  nder study exhibits a broad or multipeaked spectrum, one
dation thus merely gives rise to a shifted time origin of thegnoyid use the more general expressidi® and(13). Keep-
TFG spectrum. Keeping this in mind, we pat=0 in all  jyq jn mind the above restrictions, we shall use form@a

subsequent calculations. It should be pointed out, howeveps the basic equation for the analysis of the TFG SE.
that forr=1 cm, for example, one gets=100 ps, so that

it is necessary to decide in a particular ultrafast experiment if
the consideration of retardation effects is important or not.

(b) By expressing the frequency-gate functions through Adopting the standard Fabry-Perot-like for(#) of the
their Fourier transforms and inserting the corresponding forfrequency filter, one can immediately perform the integration
mulas into Eq(1), one gets overt in Eqg. (1) analytically. This yields

Ill. GENERAL PROPERTIES OF TFG SPECTRA
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o t that both stimulated emissidfrom the electronically excited
Sst(thwO):C,j dtJ dt’ Ei(t;to) EY (t';t0) staté and stimulated Ramatfrom the ground stajepro-
" cesses contribute to the overall pump-probe signal, even in
X[exp{—(y+iwo)(t—t")} the case of sequential, nonoverlapping pump and probe
R R pulses. On the other hand, if the excitation and gate pulses do
X (E(r,t)E(r,t")*)+c.c]. (15 not overlap, the SE consists solely of the fluoresceiese

cited stat® component. As a consequence, one cannot ex-
Here a new normalization consta@; =Cy/4, has been in- perimentally separate the ground and excited state contribu-
troduced. According to Ed6), it is independent of the fre- tion to the pump-probe signal. The SE signal from the
quency filter resolutiony. We shall further accept the as- excited state is, however, background free. So, in general, the

sumption(9), so that TFG SE is not simply related to the pump-probe signal.
. . For our further purposes it is convenient to develop the
Sst(to,wo)~Ref dtj dt’Ey(t;to) EX (t';t0) DW representation of the TFG spectrum. To simplify the
—o Jow presentation, we confine ourselves to the case of a single
_ , , optical transition between electronic states. We write the
Xexp— (y+iwg)(t—t")P)P(L")). Hamiltonian as
16
(16) Hgy O
. . . . H= : (18
By calculatingP(t) to first order in the pump, employing the 0 H,

rotating-wave approximatiof836], retaining only sequential
contributions (excitation precedes gatingand performing HereH, are the totasystem plus bathvibrational Hamil-
some standard manipulatiorisee, e.g., Refs[1,29-31), tonians in the ground staterg) and the excited electronic

one arrives at the result state @=e). While this form of the Hamiltonian excludes
intramolecular nonadiabatic coupling of the excited elec-
_ ” ” * ” _ tronic state with the ground state, it should be stressed that
Ssilto. o) Refﬁwdtfo dtsfo dtzfo dLE(t=to) H. may represent several nonadiabatically coupled elec-
tronic states. The ensuing formulation includes, in particular,
XE(t—t3—to) EL(t—t3—13) the case of an optically bright excited state that is intramo-
XE,(t—ta—t,—t;)e (7 ieots lecularly coupled to one or several optically_darl_< states. Al-
though the form(18) of the molecular Hamiltonian repre-
X{Ry(tg,ty,t;)€" i+ Ry(tg,t,,t,) e Ll sents a restriction, the theory still applies to many of the
17) experimentally interesting systerfig].

Keeping in mind the above-mentioned analogy between
the excitation pulse, anR;(ts,t,,t;), i=1,2, are the third- tation can directly be taken over from the corresponding rep-
order nonlinear response functidild. Clearly, if there is no ~ ésentation for the pump-probe spectrusee, e.g., Refs.
time gating C =0,E,= 1), then the TFG spectrum reduces to [1,3,30). The result reads
the frequency-domain fluorescence spectrisee Eq. _
(9.10h in Ref. [1]]. On the other hand, by comparing Eq. Ssi(to, @o) ~ T W(wo) G(to) D(wy)]. (19
(17) with Eq. (11.8 in Ref.[1], one immediately realizes that Here
the TFG SE is nothing else than the excited-state
(stimulated-emissioncontribution to the integrated pump- S , , ot it
probe spectrum for nonoverlapping pulses. The filter thus D(w)= _wdt 0 dty B () EL (1 —ty)eiee
defines an effective carrier frequenay, of the probe, and
the temporal gate function represents the probe envelope Xe_iHetlvegpgengtlvgee_iHet,+H_C_ (20)
centered aty. The only difference stems from the imperfec-
tion of the frequency filtery, which controls the spectral is the doorway operator,
resolution of the TFG SE. For an ideal filtey€0) the . .
%n?zlg?sy[ig 2c;)]mplete, and one recovers the equations derivedW(wO):f dtf dts E,(t+tg)E (t)eliwo y)t3eiHetVeg
.[3,27]. - Jo

A close similarity between the TFG SE and pump-probe
spectra has repeatedly been emphasized in the literature
[1-3,14,15,22 It should be noted, however, that the equiva-; .
lence between the TFG SE signal and stimulated-emissio'r‘? the window operator,
contribution_ to the sequential integral _pump-probe signal G(t)X=e HetxeHel v X (22)
holds only in the leadindsecond order in the pump and
probe pulses. In this case also the “bare” TFG SE spectrunis the excited-state propagatd,, andVe are the transition
coincides with the stimulated-emission contribution to thedipole momentgthese are constants in the Condon approxi-
dispersed pump-probe spectriii,15. It is of importance  mation),

x eHalav e HetsgHel 4 H c. (21)
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paEZ;le_Ha/kT (23 times much greater than the excitation-pulse durati@iue

of the density matrix, evaluated to the leadisgcond-order

are the equilibrium vibrational distributions in the ground contribution in the perturbation expansion. Alternativéipd
(e=g) and excited =€) states, andZ, are the corre- more accurately it can be computed nonperturbatively in
sponding partition functions. the pump field, by including the field-matter interaction dur-

We thus can think of the fluorescence emission as a stepag the excitation in the system Hamiltonig82,37. The

wise process, which proceeds via optical creation of populasame applies for the evaluation of the window function.

tion in the excited state, its subsequent propagation and fluo-

rescence emission. Evidently, the entire information about IV. TEG SPONTANEOUS EMISSION:

the TFG process is contained in the window opera&ai. COMPUTATIONAL ASPECTS

When y=0, one recovers the standard window operator for . ) .
pump-probe spectroscopgee, e.g., Eq.13.43 in Ref. [1]]. Equations(19)—(21) open the way for the implementation

In the opposite limit,y— o, the frequency resolution disap- Of several approximations, which are valid provided the
pears entirelyW,(wo) ~ 1/y, so that the TFG SE reflects the Pulse duration is much shorter than the time scale of vibra-

time-dependent excited-state popu'ation' tional relaxation or mUCh |Onger than the e|eCtr0niC dephaS-
ing time [1,3]. Here we would like to emphasize quite dif-
Su(to, o) ~ T G(te)D(w)]=(pe(to)). ferent aspects. Up to this moment, the precise meaning of the

HamiltoniansHy andH, in Eq. (18) has not been specified
Starting from the DW representation, we can immediatelyyet. If one wishes to study the relaxation behavior of mol-
establish several general properties of the TFR spectra. fcules, it is natural to consider a systétime chromophone
t,=0, the TFG spectrum is just the trace of the product ofthat is couplt_ad to an environment. The vibrational Hamilto-
the doorway and window wave packets. Since the doorwajilans are written as
function represents the initial population of the electronically
excited state, the corresponding TFG spectrum can be inter- Hy= H§+ HE+ HgSB, Ho=H3+HE+H3B, (25
preted as SE from that nonequilibrium excited state. In the
opposite extreme casé,— =, there are two possibilities. where the superscriptsS® and “ B” denote the system and
First, if our system is coupled to a dissipative bath, thenthe bath, respectively. In a typical application, the system
eventually part HS of the Hamiltonian represents the few active vibra-
tional modes that are directly coupled to the electronic tran-
G(tg—>)D(w)—pe- sition, while the bath represents the manifold of inactive vi-
brational modes of the molecule and/or the degrees of
If, in addition, the time-gate function is short enough at thefreedom of the solvent.
time scale of nuclear motion, but long enough compared |f the excitation and the gate pulses are short enough at
with the optical coherence dephasing time, one arrives at thghe time scale of the system-bath relaxation, one can safely
so-called snapshot limit for the window functidi], in  substitute the corresponding total Hamiltonian operators by
which their system parts in the doorw#g0) and window(21) op-
erators, i.e.,

Wo(wo) = fo dtg elwo™Mtay, eMalsy e Melst H e,

Hy—HS, He—HS. (26)
(24)

g 7
This justifies the evaluation of the DW functions in terms of
the eigenvalues and eigenfunctions of these system Hamilto-
nians,

so that

Ssi(to— 2, wg) = T Wo(wo) pe]-

S _ S _
This is nothing else than the relaxed fluorescence spectrum, Hgln) =Exln),  Hela)=E,|a) 27)
in which vy plays the role of the inverse fluorescence lifetime. . ) . s
To put it differently, the TFG SE spectrum tends to a certainlereafter, the eigenvalues and eigenfunctions pandH;
asymptotic spectrum, which reflects emission from the2f® denoted by Latin and Greek letters, respectjvelie

equilibrated excited-state distributign . corresponding frequencies read
If one considers nondissipative system dynamics, then the
limit G(t,—=)D(w,) does not exist, and the TFG spectrum 0n=E,—En, 0.,=E,—Eg. (28)

mirrors the oscillatory motion of the wave packet in the ex-

cited state. Generally, if the dissipation is not very strong, thdt is important to remark that such an eigenvalue representa-
processes of fluorescence and intramolecular dissipation aten is computationally feasible for system Hamiltonians
in competition, resulting in a time-dependent fluorescenceontaining up to three vibrational modes with electronic in-
shift and an oscillatory approach to the asymptotic relaxederstate couplingg?,38,39, so that the use of Eq&7) is not
fluorescence spectrufsee Sec. Y. Note also that the door- very restrictive. One can additionally assume that the time-
way function (20) is nothing else than the asymptotiat  gate functions and the excitation pulses are exponential and
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described by equations like E(B). It may seem somewhat to analytically perform all the time integrations in EG20)
unrealistic to model the envelopes of laser pulses by expoand(21), with the result:

nentials, but, at the qualitative level at least, it is justified. It

has been shown that the substitution of "actual” Gaussian  Sy(ty,wq)~ 2 W, 5(0)Gy Bl(tO)Dalﬁl(“’L)'
pulse envelopes by their exponential counterparts does not BBy

give rise to substantial quantitative differences in the pump- (29)
probe signal$13,25. This approximation makes it possible where
|
Dap(@1)= 2 VanVnspg( >[ - -
= n . .
@B LT G Hen TPV T (0~ wan) T (00— wpy)

+ ! ! + ! ! + 30
T —Twus T~ (@ —wgn) 20 Fiwes T (0L — 0| " (30

1 1

Wap(0) = 2 VarVos| 53 Ty =w) T 7= T(0= )

+ ! ! + ! ! + 31
2T —Twap T+ y—1(wo—wpn) | 2T Fiwes L+ y—i(wo—wum)] (3Y)

If one wishes to develop the DW description beyond theAs has been explained abojsee Eqs(12)—(14)], the ideal
slowly varying envelope approximation, it is possible to Startspectrumso(to,w0)~wg. Therefore, to find the number of
from the definition(21) for the window function, but with  photons passed through the detector, one must divide
the gate functionE(t;to) substituted by its generalized So(to, wo) by we, which gives rise to a? dependence of the
counterpartE(t;tg) (13). One can then analytically obtain signal. Keeping this in mind, one immediately notes that Eq.
the analog of Eq(31), but we avoid doing that here in order (29) with the window function(34) recovers the result by

not to overburden the paper with technical details. Jean[12] and Lin et al. [18,19 obtained for an ideal time
If one considers a bath-free material system, then and frequency resolved SE spectrum. The present analysis
, therefore bridges the gap between the different formu-
GoPs (to)=e7'*ak08,, 84 (32 lations of the TFG SE signal[1,12,14,16,18,19-31
[2,5,6,13,25,26,29—31and[3,27], and also provides the cri-
so that terion of the validity of passing from “real” to “bare” SE
spectra.

_ In order to propagat® (w, ) for a timety, we can switch

Ss(to, o)~ >, W,g(wg)e asoD p(w ).  (33)  from the entire(system plus bathphase space to that of the

“p system only. This is a standard procedure in problems of this
kind [1]. It is believed that, in doing so, we do not introduce
significant errors into the description. One thus can regard
D(w.) as the initial value of the reducedystem density
matrix in the excited state, which subsequently evolves ac-
cording to the appropriate kinetic equation of motion. One
can invoke, e.g., certain phenomenological dissipative equa-

: : —.._tions[2,3,11,14, or the Redfield formalism in various ap-
(I'>v) and if 11" is much shorter than the characteristic L b i .
vibrational relaxation time and much longer than the opticalprox'maltIOnS [2,12,27,32,33,38—41 or the semiclassical

o ; e and guantum Fokker-Planck equatiof#2,42,43. For in-
gr?:fgrs;;;rﬂﬁ%)gamrngttrllr;eéssnee arrves atan| pshat stance, if one adopts the optical dephasing model, in which

the electronic population and alignment possess the decay
times T, and T,, respectively(see paper$2,11,14 for the

This is nothing else than a compact form of the formula
obtained by Kowalczylet al. [Ref.[25], Eq.(17)] and sub-
sequently rederived by Santoms al. [Ref. [13], Eq. (11)].
The formula in Ref[13] additionally contains contributions
due to the time derivatives of the dipole momefi§ the
discussion in Sec. )l If the frequency filter is good enough

aﬂ(wo)~ _ 2 Vanvnﬂ[-; necessary detajlsEqs.(29)—(32) are still correct if one sub-
I'—i(wo— wgn) stitutesy— y+ 1/T, in Eq. (31), adopts a very similar equa-
1 tion for the doorway functiori30) and multiplies Eq(32) by
—] +c.c. (34  exp(-to/Ty). If, on the other hand, the Redfield equation in
I'—i(wo— wan) the secular approximation is a correct descriptiitris not
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infrequently so in the problems dealing with nonadiabaticwere well separated, so that all transient effects can be ne-
coupling [38,39), the situation simplifies considerably. In glected. These effects manifest themselves through exponen-
this case the density-matrix evolutid®(t)D(w )=p(t) is tially small contributions to the TFG SE spectra, which are
described via proportional to the terms like exp(ty) and disappear for
to>1/T". There exists, however, an important particular case,

gp (t)= 2 S apas() — E upunlt) which allows one to explicitly incorporate the transient terms
dt aa - ~apBlF B —aPaa ’

f7a into the DW picture. Namely, let us consider the so-called
impulsive excitation, when the pump pulse can be regarded
Paa(0)=D (@) (35 as truly instantaneous on the time scale of both nuclear dy-

namics and electronic dephasing. By inserting the expression

. E.(t)=4(t) into Eq.(17) and making no further approxima-
(36)  tions, one also arrives at the DW formu(a9), but with
modified doorwayD'"P(w ) and windowW'™P(w,) opera-
%ors. Evidently, Eq(20) simplifies toD'"™P(w ) =pg. On the
other hand W'MP(w,) is also given by Eq(21) in which,
however, the lower limit of integration ovérchanges from
—oo to —tq. Clearly, forty>1/T" (that is tantamount to say-

paﬁ(t):exq_(iwaﬁ+EaB)t}Daﬂ(wL)! aF B

Here E,; are the damping constants due to the couplin
with the bath anE ,=2 4. ,E 4, . So, the TFG SE is given
by the explicit formula

Sai(tg,wg) ~ Z WM(wo)Oa,,e*MtOWDW(wL) ing that the pump and gating processes are well separated
P W'™P(wy) —W(wg). Moreover, following the argumentation
outlined above for the standard DW operators, it is natural to
+ Zﬁ W, g(wo)exp{ —(iw,g invoke the eigenvalue representati@Y),(28) for obtaining

the explicit form of W™P(w,). The result reads
+EaptiDyplwy). (37)
Here 5aBEa+ EQBEEVOQV)\VOVB .

Up to now, the theory relied significantly upon the as-
sumption that the excitation pulse and the temporal gatingvhereW,z(w,) is given by Eq.(31) and

WP w0) =W g w0) = W5 o), (39)

Wep(@0)= 2 VanVng M +iwy,  T+y+i(mo—op
expl— [T+ y—i (o= wan) It 1 1
Al i (@0~ @an) ol . + . +c.c. (39)
I'+y—i(wo= wan) [T +y—i(wo—wg))  T'+y+i(wg—wgn)

As is expected, the transient terms influence the TFG SE dtarmonic oscillators in the ground and excited states, which
timesty~1/I" (see also Sec. Mout vanish fortg>1/". The  are bilinearly coupled to a harmonic bath. In this case, the
above results show that, if one intends to extract informatiorthird-order response functiori®(ts,t,,t;) are uniquely de-
about the system dynamics from the TFG SE spectra, there termined by the line shape function

no intrinsic limitation to the duration of the pump pulse,

since its variation just modifies the doorway function, i.e., o e t, , ,

the initial vibrational distribution in the excited state. In that g(t)=f0dt fo dt" C(t )Efodt (t=t)HC(t’), (40
sense, thes-excitation pulse creates the most natural distri-

bution, by merely transferring, into the excited state with- iH At e iH At ! :

out distortions. On the other rg1and, if one wishes to monito \Evlzlirﬁf_(t& )('e dUe "dUpy) is the energy-gap CF1]

the SE with time and frequency resolution, the gating time To invesﬁgate the influence of the dissipative environment
should not be too small. OtherwisE¥ 1), the spectral reso- on the TFG SE, we perform explicit calculations of TFG

lution is completely lost. spectra by invoking the so-called Drude model f6(t)

[1,20,44-47, i.e., we consider a thermal bath with exponen-

V. TEG SPONTANEOUS EMISSION: SPECIEIC f[ial memory kernellnter glia, this allows us '_[o e>§plore the
EXAMPLES AND DISCUSSION influence of non-Markovian effects on the vibrational relax-

ation. The conventiongMarkovian description is valid pro-
To illustrate the material of the preceding sections, wevided that the bath relaxation time is much shorter than all
invoke the Condon approximatiorV{,=V,.=1) and con- other relevant times of the problem. If one studies ultrafast
sider the standard benchmark system, consisting of displacedlaxation dynamics, the Markovian assumption should be
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implemented with a certain caution, since it could be an unio the case of impulsive excitatidnof. the discussion aboye

justified oversimplificatior(see, e.g., recent referendd8—  In that case, Eq917) and(19) reduce to

54]). There exist also experimental evidences that non-

Markovian effects could be important, e.g., for describing _ ” ” _ o

vibrational relaxation in hydrogen-bonded liquitisee Ref. Ssilto. o) Refo dtfo At Bt~ to) Bt~ 3~ to)

[34] and references therginThese effects manifest them- o . ,

selves through the multiexponentiality of the energy-gap CF. x{e 9t ~2[g" (g (t-ta)] gl ~ ¥ Hi(wp~ weglts)

It is an additional advantage of the Drude model that it is not (49)

limited to weak system-bath coupling. This allows one to

continuously follow the transformation of the TFG spectraHere wey=(He— Hg>5wgg+>\, andwgg is the frequency of

from the bath free to the overdamped limit. the 0-0 transition. The formulé9) allows us to calculate
The Drude model leads to the following expressions forTFG spectra for different values of the parameters of the

the line shape functiong!6,47
gy =g'(H+ig"(t), C(=C'(t)+iC"(t), (41)
C'(t)=\[Cie &'+ Cle %'+ Cie  B'-T(1)], (42
C"(t)=\(Cje a'+Che %2'+Cle %"). (43

Here\ is the Stokes shift,

Zi=atin, Zy=a—in, 23=06 (44)
are the roots of the cubic equation
22— wpZ?+(1+ Awp)z— wp=0, (45)

and the other parameters are given by the expressions

o i a—ints o
17 2patin—o 2

i atint+s 46
2a

Ca = (amin—d)atin—p)' Ci=Cicole,

(19

€=

model and for various qualities of the time and frequency
filters (see Figs. 1-¥ Note that the frequency origin is cho-
Sen asweq in these figures.

To separate the influence of the quality of temporal and
spectral filtering from the dynamic effects, we start with the
consideration of the TFG SE of the dissipation-free oscilla-
tors (A=0). We consider the case of a large Stokes shift
(A=5) and low temperatures= 10). Fig. Xa) corresponds
to the case of good spectral resolutiopn=0.3) but poor
temporal resolutionI{=0.2). The TFG spectrum changes
only slightly with time. It looks almost static, since the fun-
damental vibrational period,, (which equals 2r in our di-
mensionless unijss of the order of the characteristic gating
time 11". The spectrum exhibits a double ridge structure,
which reflects the locations of the wave packet on the
excited-state potential surface in the vicinity of the classical
turning points. That is why the local maxima of the right
(left) ridge occur atty=0,27,4m, ... (tg=m,3m, ...).
Since quantum effects are pronounced=(0) and the fre-
quency resolution is high, the spectrum possesses vibrational
structure.

If one improves the temporal resolutiolf € 1), the fol-
lowing qualitatively new properties emerféig. 1(b)]. First,
the formerly static spectrum acquires pronounced dynamic
features and exhibits an oscillatory behavior, which mirrors

2KT’ (47 the motion of the wave packet in the excited state. Evidently,

the frequency of these oscillations coincides with the free

t oscillator frequency)=1. Second, the vibrational structure
completely disappears, despite the fact that the frequency
resolution is kept unchanged. The maxima of the TFG SE
signal correspond to the classical turning points of the wave
packet in the excited state as discussed above. So, in the
vicinity of these points t{y=,27,3m, ...), the wave
Q is the unperturbed oscillator frequency. Hereafter, we us@acket rephases and becomes narrow. On the contrary, it de-
dimensionless variables, in which time is measured in unityelop the maximal speed near the potential minimum (
of Q1. A controls the strength of the system-bath coupling.= #/2,37/2,57/2, . . .) and, therefore, broadens. The signal
When A=0, one recovers the case of free oscillatoks, thus monitors not only the position of the wave packet, but
>1 corresponds to the overdamped oscillator lireifsee  also the speed of the wave-packet motion. By comparing Fig.
Eq. (47)] is the ratio of zero-point energy and thermal energyl(b) with those from, e.g., the reviewg,55, one sees that
of the oscillator.wp is responsible for the memory effects, the overall behavior of the TFG SE signal and the
and 1l can be regarded as the bath relaxation time, so thagtimulated-emission contribution to the integral pump-probe
wp exp(—wpt) is the memory kernel in the corresponding signal is esentially the same. In gener@li(ty,wg) can be
semiclassical generalized Langevin equation for the energyegarded as a progression of instantandatia particulat)
gap coordinategsee[1,20,44—-47). When wp—, one re-  spectra, which exhibit a time-dependent shift. Since there is
covers the standard Markovian description. no dissipationSs(tg,wq) is 7o periodic, but the widths and

To render the presentation more transparent and to vistheights of the maxima of these instantaneous spectré,are
alize the dynamic and transient effects, we restrict ourselvedependent.

v,e 'n

2 2 2 2 2y’
- Vn)(ZZ_ Vn)(z3_ Vn)

v,=7Nle. (48)
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FIG. 1. Influence of temporal and spectral resolution on the SE spectrum of a bathfre®) (displaced X =5) harmonic oscillator in
the low-temperature limit {=10) with (@) y=0.3 (good spectral resolutiorand I'=0.2 (poor time resolution (b) y=0.3 andI'=1
(satisfactory time resolution(c) y=0.3 and'=5 (high time resolutiojy (d) y=5 (poor frequency resolutiorandI"=1. The TFG SE
intensity is given in arbitrary units. All the other parameters are dimensionless, the free oscillator freQuisrieen as the frequency unit
and its inverse 1} as the time unit.

This kind of behavior should be contrasted with that de-also can approximately be regarded as a sum of certain
picted in Fig. 1c), in which S(tg,w) is shown for the case “spectral functions,” multiplied by the same time-dependent
of high temporal resolutionI{=5,11"<r,), the other pa- factorse '“=s'o, In contrast to the snapshot case, the “spec-
rameters being unchanged. This situation corresponds, imal functions” are the products of two Lorentzians, which
fact, to the ideal(snapshot TFG SE spectrum. As in the are bothw,, andw,; dependent. So, in general, the excited-
previous figureSg(to,wo) is 7 periodic, but the widths and  state frequenciesv,; affect the widths and maxima of
heights of the maxima of the instantaneous spectra are ab(tq,wp) and, therefore, make theggdependent. Wheh
most ty independent. The explanation of these qualitativeis further increased, the spectral featuresSg{t,,w,) are
changes is provided by Eq®1)—(34). To calculate the ideal smeared out. In principle, any frequency resolution disap-
TFG spectrum for a dissipation-free system, one may uspears in the limitl’>1, in which one merely measures the
Egs.(33) and(34). The inspection of these formulas revealstime-dependent population in the excited state, since
thatSy(ty,wo) consists of a sum of Lorentzians that are mul-Sg(ty, wo) — Tr[G(to)D(w )]. Similarly, if the spectral
tiplied by time-dependent factors '“=s'o, Note that these resolution decreases€5), the TFG SE broadens and tends
factors are determined by the transition frequencies in théo become more featurele§Big. 1(d)]. In this sense, poor
excited state. For a particulgy, these factors just single out spectral resolution ¥>1) is equivalent to high temporal
the maximal contributions t&y(ty,wo), corresponding to resolution '>1).
wqpto=2mn (n=0,1,2...). On theother hand, the widths By inspecting Figs. (8)—1(d), as well as the subsequent
and heights of the Lorentzians are time independent an#igs. 2 and 3, one clearly observes the signature of the tran-
specified by the— g transition frequencies,,,. If one con-  sient effects. These manifest themselves through the increase
siders the TFG SE beyond the snapshot limit, one shouldf the area under the instantaneous spe8ty,wo) at
employ the more general E@1) for the window function. It short times. In other words, the TFG SE spectra “flare up”
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where ® is the error function. This result shows that the o) =—20+e M(m+20), (53)
initial (to=0) area under the TFG SE spectrum is smaller by

a factor of two than the asymptotity(—) area. Evidently, 2
the better the temporal resolution, the less visible are the () =A% 1— 5 2e*ZAt +T2, (54)
transient effects. A+IE

Having established the influence of the quality of the TFG
procedure on the SE, we turn to the investigation of the I?A%(1—e2MY
manifestation of dissipative effects in the TFG SE. To this = T21A%(1—e 2\’
end, we consider different kinds of dissipation mechanisms.
The standard Markovian bath is studied first. Figurés-2 — 2 2 oAt
2(c) show the TFG SE spectra obtained for increasing B= [o(t) + wegl "+ woA™(1—e )_
strength of the system-bath coupling. A large Stokes shift 2+ A%(1—e 2AY
(A=5) and high temperatures&0.1) are assumed, as well ) _ ) o )
as good time and frequency resolutiopI"=1). The evo- ~ Equation(53) allows us to visualize the origin of the time-
lution of the TFG SE spectra reflects the strength of systemdependent Stokes shift, which is seen to reflect the relaxation
bath coupling, as expected. The initial spectr8y(0,w,), ©f the system towards its equilibrium in the excited state.

. h 2 4 H

eventually develops into the asymptotic ory(,w), One should also note_th_e factoA3+ 6AB?+ B4, WhICh en-
which exhibits the Stokes shift of\2 When the damping Sures a correct description beyond the slowly varying enve-
effects are not strong, the system dynamics is underdampd@P€ approximatior{see the pertinent discussion in Seg. i
and the signal exhibits weakly damped oscillatidifsg. Ewdently, whenow.4 exceeds substantially all relevant fre-
2(a)]. When the dissipation strength is further increased, théluencies of the problem, them~weq, S0 that 3
wave-packet oscillations are rapidly damgédg. 2b)]. In  +6AB?+B*~B*, where
the overdamped limitS(0,0,) tends t ©, ) Monoto-
Koty ZFZC)]. S51(0,00) 0Ss(°, wg) o egl 2+ woA2(1— e 2N

To get a better understanding of the TFG SE of the over- [2+A%(1—-e 2MY
damped oscillator, it is useful to calculate the spectrum ana-
lytically. Moreover, one can surmount the restriction of im- Therefore B~ w,, and the standard approximati¢®) is jus-
pulsive excitation and assume that the pump and gate pulséfied. When the temporal resolution is high compared to the
have a Gaussian shapEqg. (2)]. The spectral filter is as- time scale of the inhomogeneous broadeniig>QA), the
sumed to be “ideal” ¢/=0). To arrive at the desired result, additional term also reduces to a constant factor. If this is not
one can start either from the general Efj7), or from the the case, the additional contribution depends in a compli-
DW description(19)—(21). Let us assume, in addition, that cated manner oty,w, and also on the parameters determin-
the oscillator motion is much slower than the optical dephasing the excitation, the system dynamics and temporal gating.
ing time. This allows us to neglect the system dynamics durt is important that Eq.(51) allows one to determine the
ing t3 andty, when the system is in the coherence state. Wénfluence of the duration of the excitation pulse on the TFG
can thus retain only the leading contributions to ¢hiunc-  SE signal(see also, Refg1,3,44,56,57). When the pulse is
tions, up to quadratic terms i3 andt,. The corresponding short [,>1), the spectral widtha?(t)~A?+T? is time
expression has been derived and discussed in Reftadependent, so that the TFG SE spectrum experiences no
[1,44,56,57 for the sequential pump-probe spectrum, but wetime-dependent broadening. In the opposite cdse<(1),
can further generalize it by invoking the modified gate func-a?(0)<a?(=), so that the spectrum broadens. To put it dif-

(59

tion (14). The result reads ferently, the finiteness of the pump duration results in a time-
dependent broadening &(ty,wg), which is governed by
2m(3A%+6AB%+B%) the parameter(t). When the gate pulse is truly instanta-
Si(to,wo) = JAZ1T7)a? neous [>1), thena?(t)—= and the TFG spectrum loses
(AT+TDa’(to) any frequency resolution. This is an additional confirmation
p{ w_Lz ] of the fact that an ideal time gate should bé &inction on
exp — ————— the time scale of the system relaxation, but a constant on the
2(A2+T7) time scale of the optical coherence dephasing.

- — ) Now we turn to the study of the impact of memory effects
Xexp{ _ [wo— w(to)] ] _ (51 On the TFG spectra. To this end, let us compare Fig). 2nd
2a2(ty) Fig. 3, in whichSg(tg,wq) is presented for the Markovian
(wp—) and the non-Markovian §p=1) oscillator, re-
Here spectively, in the case of moderate coupling with the bath
(A=1). In both situationsS¢(tg,wq) eventually arrives at
WOL= 0~ Weg, W= Wy~ Weg, the relaxed spectrum. However, the manner in which this
asymptotic spectrum is approached is very different in the
A2 Markovian and non-Markovian cases, respectively. Indeed,
=0 T A2=2\kT/#, (52 after the elapse of a characteristic time of the order of 1/
A“+T (this time scale is determined by the strength of the system-
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bath coupling, the “centers of gravity” of both Markovian VI. CONCLUSIONS
and non-Markovian TFG spectra exhibit the same Stokes

. . . The ultimate goal of the present work is the development
shift. In the Markovian case, the subsequent relaxation of the . . .
. . of a computationally oriented framework for the description
spectrum occurs more or less monotonicdlig. 2(b)].

When memory effects come into play, the TFG SE signaIOf TFG SE of nontrivial systems, that is, multimode systems

tends to the relaxed spectrum nonmonotonically, its “centewIth strong electronic interstate couplings, which interact

of gravity” exhibiting pronounced oscillatory behavigFig. with a thermal bath. The specific tasks are as follo@sto

._develop a universal, eigenstate free, description of the TFG
3. The TF(.B SE spectrum °f_th? unde_rd_amped MarkowarbE' (i) to clarify the influence of the spectral filtering and
oscillator[Fig. 2(a)] looks qualitatively similar to the spec-

trum of the moderately damped non-Markovian oscillatortemporal gating on the TFG SE s_,pectra,_amd to co_nnect
. . L . . the measured TFG SE spectra with the time evolution of the
(Fig. 3. The question therefore arises: is it possible to dis-

tinguish between these two situations? corresponding material systems,
gut ’ . . The material-system dynamics has been shown to enter
It is Eq. (45) that allows one to answer this question.

Evidently. the two roots. andz. of this equation can be the description in terms of the two-time CF of the second

. Y oo L2 - equatic derivatives of the transition dipole momeftgs. (1) and
either real af‘d positivéif » in Eq. (.44) IS 'm."’?g'”arﬂ' or (8)]. In the evaluation of the CF, retardation effects due to the
complex conjugatg to each o.ther, with a positive real .Qfart finiteness of the speed of light should be taken into account.
7 is rea). The third rootz; is always real and positive.

Clearlv. if all i i th tem relaxes t itSThe CF, convoluted appropriately with the corresponding
early, It all roots are posfive, the system re s to time-gate and filter functions, yields the experimentally mea-
equilibrium distribution monotonically. This is so, e.g., in the

. . sured TFG SE spectra. The convolution requires three con-
overdamped Markovian cad#ig. 2c)]. If Eq. (45 pos- secutive time integrations to be performed. It has been dem-

sesses two complex conjugated roots, it is the magnitude Qfyqrated that, by taking the standard Fabry-Perot-like
» which determines the fundamental oscillation frequency Ofrequency-filter functior4), one of these integrations can be
the problem. It is possible to derive an analytical €Xpressiofyerformed analyticallyEq. (15)], irrespective of a particular
for », but it turns out to be cumbersome and difficult o form of the CF(8) and the time-gate function. The validity of
analyze. For our purpose it is sufficient to realize that, in thgpe commonly employed approximatid®) has been dis-
Markovian limit (wp—), the cubic equatiori45) reduces  cyssed and generalized expressions have been derived for the
to a quadratic equation, yielding=\1—A%4 (recall that TFG SE in terms of Wigner spectrograms beyond this ap-
the unperturbed oscillator frequency(s=1). On the other  proximation. The retardation effects are demonstrated to give
hand, one gets a simple solution of Ed5) in the over-  rise to a redefinitionback shifi of the time origin of the
damped (\>1), but strongly non-Markoviandp~1) case: TFG SE spectrum.
n~+Awp. So, one arrives at the remarkable conclusion that We have further developed the DW picture of the TFG
in the Markovian limit the oscillation frequency cannot  SE, under the assumption that the excitation and gating pro-
exceed the free oscillator frequen@y=1, while in the non-  cesses are well temporally separated. This casts the descrip-
Markovian case it can. To put it differently, the period of thetion of the TFG SE into an intuitively appealing form in
wave-packet oscillations in the Markovian limit can be 2 terms of wave-packet dynamics in the excited state. This
(free oscillatoy or larger(underdamped oscillatprwhile in -~ method requires the doorway and window operators to be
the non-Markovian case that period can be less than 2 calculated only once, so that subsequent propagation of the
This observation allows one to distinguish between thedoorway operator over a time interve) and its averaging
damped non-Markovian and underdamped Markovian osciltogether with the window operator according to E9)
lators, if one knows the unperturbed oscillator frequeficy  yield the TFG SE spectrurB,(ty,wg). It has been shown
These qualitative considerations are confirmed by numerithat the TFG SE is equivalent to the stimulated-emission
cal computations ofS¢(ty,wg), as depicted in Fig. 4. It contribution to the integral pump-probe spectrum. In this
shows the positions of the maxima of instantaneous TFG SEase the time-gate function plays the role of the envelope of
spectra(with y=I'=1) as a function of the gating timg  the probe pulse, and the spectral filter function determines its
for a displaced oscillator N\=5) in the high-temperature carrier frequency. The only subtle difference stems from the
limit (¢=0.1). It is seen that the TFG spectra exhibit 6.3imperfection of the spectral filtery# 0), but this is negligi-
(free oscillatoy, 4.8 (non-Markovian damped oscillafgrand  bly small for good filters.
6.4 (underdamped Markovian oscillajoperiodic oscilla- It should be noted, however, that the equivalence between
tions. The message is that the TFG SE signal of a systertme TFG SE signal and stimulated-emission contribution to
coupled to a non-Markovian bath can exhibit pronouncedhe sequential integral pump-probe signal holds only in the
oscillations with a period that is less than that of the bathdeading(second order in the pump and probe pulses. In this
free system. This qualitative effect can be helpful for thecase also the “bare” TFG SE spectrum coincides with the
estimation of the importance of memory effects in dissipativestimulated-emission contribution to the dispersed pump-
systems. probe spectrunjl4,15. It is of importance that both stimu-
Summarizing, the interpretation of the TFG SE spectrdated emission(from the electronically excited statend
can provide us with a certain knowledge not only on thestimulated Ramaffrom the ground stajgorocesses contrib-
strength of the system-bath coupling, but also on the batlite to the overall pump-probe signal, even in the case of
correlation function. sequential, nonoverlapping pump and probe pulses. On the
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other hand, if the excitation and gate pulses do not overlapgnd the bare TFG spectral function
the SE consists solely of the fluorescenexcited state
component. As a consequence, one cannot experimentally -~ _ |- S0/ DT vl
separate the ground and excited state contribution to the SO(t'w)_f_mdSé (P(t+sP(t=s2)). (A2)
pump-probe signal. The SE signal from the excited state is,
however, background free. So, in general, the TFG SE is nohfter the insertion of Eq(A2) into Eg. (12) one arrives at
simply related to the pump-probe signal. Eq. (10) in which

If the DW operators are expanded over the complete set .
of eigenfunctions of thej bth-free Ham|lto.n|an and if one Sr(to,w1)=f dtde W(T,0,— o,t9)So(t,®), (A3)
assumes the exponential time-gate functi@, the DW —o
functions can be evaluated analytically beyond the snapshot
limit. The theory developed in the present wdik allows ~ With
one to establish some model-independent properties of TFG 1
spectra,(ii) bridges the gap between the different kinds of V_V(t_,w,to)z(_(ﬁJr 2
descriptions introduced previouslii ) helps in determining 4t
their limitations, and(iv) clarifies interconnections between

W(t,w,to), (A4)

“real” and “bare” spectra. = _ “ soE (7. . * 1T oo
The standard displaced oscillator model bilinearly W(t, @,t) J_wds SRt 8/2;t0) By (1= 8/23t).
coupled to a harmonic bath has been adopted to illustrate the (A5)

time-frequency evolution of the SE spectra for different re-
gimes of dissipation. The TFG SE spectra have been found tone sees that the explicit inclusion of the time derivatives of
be quite sensitive not only to the overall strength of thethe transition dipole moments resultiin an additional contri-
system-bath coupling, but also to finer features, such abution to the transformation functiow, which is given by
memory effects. The influence of the quality of the spectrathe term in parentheses in E¢A4). By using, e.g., the
and temporal filtering on the measured TFG SE spectra alsgayssian gating functiof2), one can evaluat®V analyti-
has been studied in some detail. cally,

One of the main findings of the present work is that the
specific features of the wave-packet dynamics in the excited _ P w2 _
state survive the TFG mapping procedure, and manifest W(t,w,t0)=Texp( ——2—2F2(t—t0)2 , (AB)
themselves in the SE spectra. Recent TFG SE measurements 2r
[8—10Q] have confirmed the persistence of pronounced vibra- _ _
tional coherence effects in the obtained spectra. This under-  W(t,w,to)={[T?(4I'*(t —tg)*~ 1)+ w?]?
lines that the TFG SE clearly reflects the wave-packet dy- drar2 e . 12 —
namics in the excited state, provided a good compromise is —2I7@I*(t—tg) "~ 1)}W(t, w,to).
found between temporal and spectral resolution. The infor- (A7)
mation about the material dynamics can be extracted from
the TFG SE spectra by the appropriate theoretical analysislf the material system under study possesses a narrow spec-

trum in the vicinity of the frequencyweq of the electron
ACKNOWLEDGMENTS transition, and ifl’>y (a good filtej, then W=~ wgw. Oth-
erwise, one should use the more general expregsidin
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the bare TFG spectruri(ty,wy) and the ideal frequency
filter spectrumS(ty,w;) can be extracted from Eq$10)
and (A3) by performing the appropriate inverse Fourier
Following Mukamel and co-workeri29-33, we adopt transforms. This opens the way for getting direct information
the Wigner spectrograms for the description of the TFG SEabout the material system from measured TFG spdstra

APPENDIX

Let us introduce the new variables also paper$5—-7,26). The procedure requires, of course, the
. TFG SE spectra to be available with a considerable accuracy,
t=(t"+t")/2, s=t'—-t" (A1) both with respect to time and frequency.
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