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Time- and frequency-gated spontaneous emission as a tool for studying vibrational dynamics
in the excited state
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The theory of time- and frequency-gated~TFG! spontaneous emission~SE! spectra is elaborated. The
present formulation generalizes previous derivations, clarifies the interrelations between different existing
expressions, and establishes the validity of certain commonly assumed approximations. We obtain various
explicit expressions for TFG SE spectra, which are suitable for performing actual calculations for nontrivial
systems and which allow us to establish generic~that is, model-independent! properties of TFG spectra. The
doorway-window picture of temporally and spectrally resolved spectra is further developed. It is shown that, to
the leading order in the pump and probe pulses, the TFG SE signal is equivalent to the stimulated-emission
contribution to the integral pump-probe spectrum in the case of nonoverlapping pulses. The theory is illustrated
for the example of an electronic two-level system with a single Condon-active harmonic vibrational mode that
is coupled to a thermal bath. The effect of imperfect time and frequency resolution is studied. It is pointed out
that the TFG SE spectrum carries information not only on the strength of the system-bath coupling, but also on
the relative magnitude of the bath correlation time.
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I. INTRODUCTION

Spectroscopic measurements are conventionally
formed either in the time or in the frequency domain. T
two kinds of experiments can, however, be successfully c
bined, thereby allowing us to follow the time evolution
spectra@1–3#. Provided that sufficient temporal and spect
resolution has been achieved, these techniques make it
sible to monitor the relaxation to equilibrium of a mater
system that has been excited by a short laser pulse. W
interpreting such experiments, a fundamental question ar
how can one extract quantitative information on the dyna
ics of a material system from the measured signals?

The present paper is devoted to the consideration of
time- and frequency-gated~TFG! spontaneous emissio
~SE!. We restrict ourselves to the simplest~but important!
case when the excitation and emission processes are
separated temporally. Under these conditions, the SE con
primarily of the fluorescence component; the Raman con
bution can be neglected due to fast optical dephasing@1–3#.

The first experimental observation of coherent wa
packet dynamics via the TFG SE technique was reporte
Ref. @4# for the sodium dimer~see also Refs.@5–7#!. Later
on, coherent effects in TFG SE responses have been m
sured for diverse systems, ranging from diatomic molecu
to polyatomic donor-acceptor complexes@1–10#. By moni-
toring the SE, one gets the opportunity to keep track of
brational wave-packet dynamics in the electronically exci
state as well as decay of the excited state. Therefore the
SE spectroscopy is a promising tool for the elucidation
ultrafast excited-state relaxation in systems with pronoun
nonadiabatic couplings@2,11–17#.

There exist two major approaches to the description of
TFG SE. In the first approach, the TFG SE spectrum is
fined as the rate of emission of photons of a certain
1050-2947/2002/65~6!/062507~14!/$20.00 65 0625
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quency within a definite time interval. The influence of th
measuring device is not taken into account in this formu
tion @1,12,14–22#. Starting from this definition, one obtain
an ideal~bare! TFG SE spectrum, which is not guaranteed
be positive, however. For instance, for certain parameter
the Brownian oscillator model, the spectrum can attain ne
tive values@1,3#. Moreover, the time and frequency resol
tion of this ideal spectrum are not limited by the fundamen
time-frequency uncertainty principle. This underlines the n
cessity to develop a more comprehensive theory, in wh
both a spectrometer and a time-gating device enter the
scription from the outset.

This is the characteristic feature of the second group
approaches, in which the TFG SE is taken to be proportio
to the integrated intensity of the total emitted field that h
passed through a spectrometer and a temporal gating de
@23,24#. Following the guidelines developed in Ref.@23#,
the TFG SE has been investigated by a number of auth
@2,5–7,13,25,26#. The explicit consideration of the TFG pro
cess adds, however, additional complexity to the proble
and it is therefore not surprising that the papers@5–7,25,26#
deal with one-dimensional dissipation-free systems, wh
allows the description of the material dynamics in terms
the eigenvalues and eigenfunctions of the Hamiltonian. C
and coworkers have formulated a theory that is intermed
between the two approaches@3,27,28#. These authors have
investigated the influence of the time gate on the inten
@3,27# and anisotropy@28# of the SE, while the frequency
resolution was tacitly assumed to be perfect. Mukamel a
coworkers have developed a general description, which
sures a correct inclusion of the TFG process for any mate
system under study@29–31#. The passage to an ideal ga
also has been briefly discussed by these authors.

The formulations developed in Refs.@29–31# provide
deep insight into the problem of the TFG SE. However, th
implementation for the calculation of the TFG SE is difficu
©2002 The American Physical Society07-1
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for complex material systems, due to the necessity to
form numerous time integrations and Fourier transforms
volving multitime response functions. Moreover, seve
other questions deserve further clarification and invest
tion. The papers@29–31#, as well as the pivotal paper@23#,
are based on the assumption that the emitted field is pro
tional to the transition dipole moment. This is a good a
proximation for spectrally narrow bands, but, in a more g
eral context, it may be necessary to go beyond t
approximation @13#. In addition, the excitation pulse i
treated perturbatively in Refs.@29–31#, which may not be
appropriate for typical experiments that employ a short,
not necessarily, weak laser pulse.

Explicit calculations of the TFG SE for dissipative sy
tems have so far been performed only for the classical o
damped Brownian oscillator@29,30# and, very recently, for
molecular aggregates within the Redfield theory@32,33#. Im-
portant questions concerning the manifestation of differ
regimes of the bath-induced vibrational relaxation in t
TFG SE have not yet been addressed. An important issu
to clearly separate the contributions due to the material
tem dynamics from those of the measuring device in the T
SE signal. The two groups of approaches to the TFG
@1,12,14–21# and @2,5–7,13,25,26,29–33#, have so far been
developed separately from each other, so that their interr
tionship is not obvious. It is also of importance to establ
more rigorously the interconnection between the TFG
signal and other spectroscopic signals, in particular trans
absorption pump-probe signals.

This state of affairs indicates the necessity to cast the T
spectrum in a form that is computationally convenient, b
not limited to a particular or simple material-system dyna
ics. To achieve this goal, it seams promising to further
velop the doorway-window~DW! picture of the TFG SE.
This has partially been done already in papers@3,27# ~for
perfect spectral filters! and in Refs.@29–33# ~for ‘‘bare’’
spectra, which are connected with ‘‘real’’ TFG SE spec
through the convolution with the joint time-frequency ga
function!. The aim of the present paper is to directly devel
the DW description for ‘‘real’’ TFG SE spectra. This formu
lation reduces the computational effort considerably, si
some of the integrals can be performed analytically. C
comitantly, this formulation allows us to make the interre
tions between the approaches mentioned above more t
parent and to obtain various forms of the expressions
can be useful in actual calculations. It is hoped that the p
posed theory will simplify the computation of the TFG S
for nontrivial multidimensional systems, in particular, tho
exhibiting pronounced nonadiabatic couplings and there
ultrafast decay dynamics.

The paper is organized as follows. The definitions of
TFG SE signals are introduced in Sec. II. Several gen
properties of the TFG SE are established in Sec. III. T
analysis provides insight into the information content of TF
SE spectra. In Sec. IV the DW picture of TFG SE is dev
oped, in the limit when excitation and gating pulses do
overlap. If, moreover, the pump pulse can be regarded
truly instantaneous, the DW description is generalized
yond this limit, which allows the study of the influence
06250
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transient terms on the TFG SE. Section V contains the res
of calculations of TFG spectra for the Drude oscillat
model. The analysis focusses both on the strength of
system-bath coupling, as well as on the effect of the b
relaxation time. The latter issue can be of importance for
interpretation of ultrafast time-domain experiments~see, e.g.,
Ref. @34# and references cited therein!. By considering dif-
ferent regimes of temporal gating and frequency filtering,
show to what extent the measurable signals reflect the in
sic wave packet motion. Concluding remarks are contai
in Sec. VI.

For notational convenience, we use units in which\51.

II. DEFINITION OF TFG SPECTRA

The total intensity of the temporally gated and spectra
filtered field at the positionrW in the far-field region is given
by the general expression@23#

Sst~ t0 ,v0!;E
2`

`

dtE
2`

`

dt8E
2`

`

dt9Et~ t8;t0!Et* ~ t9;t0!

3Fs~ t2t8,v0!Fs* ~ t2t9,v0!

3^E~rW,t8!E~rW,t9!* &. ~1!

Here Et(t;t0) is the time-gate function that is strongl
peaked near the gating timet;t0, the function F(t
2t8,v0) is responsible for the spectral filtering near the ce
tral frequencyv0, and ^E(rW,t8)E(rW,t9)* & is the correlation
function ~CF! of the emitted field. It is clear from this defi
nition that the TFG SE spectrum is always positive, in co
trast to its bare counterpart@1,3#. We shall further use the
standard approximations@5,6,13,23–26,29–31#

Et~ t;t0!5exp$2@G~ t2t0!#2% ~2!

or

Et~ t;t0!5exp~2Gut2t0u! ~3!

for the time-gate function and

Fs~ t,v0!5q~ t !
g

2
exp$2~g1 iv0!t%,

Fs~v,v0!5
g2

g21~v02v!2
~4!

for the frequency filter~which is a good approximation fo
the Fabry-Perot filter@23#!. The constantsG andg determine
the widths of the corresponding filters,q(t) is the Heaviside
step function that ensures causality, and Fourier transfo
are denoted as

f ~v![E
2`

`

dt f~ t !eivt ; f ~ t !.
7-2



c-
ug

ed
on
in-

al
-

is

m

i

he

ve

t
t.
g
fo

ion
o
dy-
re-

we

om

n
ate

ome
uct
e
the
-

em
y of

one

ion

TIME- AND FREQUENCY-GATED SPONTANEOUS . . . PHYSICAL REVIEW A 65 062507
Following Ref. @23#, we normalize the TFG spectrum a
cording to the condition that the total energy passed thro
the TFG filter is equal to the emitted energy, namely,

CE
2`

` dt0 dv0

2p
Sst~ t0 ,v0!5E

2`

`

dt^uE~rW,t !u2&. ~5!

The normalization constantC is readily obtainable for the
TFG functions~2!–~4!. One gets

C58jG/g, ~6!

with j5A2/p for Gaussian~2! andj51 for the exponential
~3! time gate.

It is straightforward to demonstrate that the light emitt
by a collection of independent dipoles in the far-field regi
is proportional to the second derivative of the optically
duced polarization@13,30,35#

EW ~rW,t !52
2p

c2r

d2

dt2
PW ~rW,t2t r !. ~7!

Here c is the speed of light, andt r[r /c is the retardation
time. Integrating the CF of the emitted light over a sm
solid angle on the sphere of radiusr, one arrives at the ex
pression

^E~rW,t8!E~rW,t9!* &;
d2

dt82

d2

dt92
^P~ t82t r !P~ t92t r !&.

~8!

In order to derive the TFG SE signal from this definition, it
a standard practice in the literature~a! to neglect by the re-
tardation effects (t r[0) and~b! to invoke the slowly vary-
ing envelope approximation, i.e.,] t

2PW (t)'2v2PW (t), where
v is the carrier frequency. That is tantamount to the assu
tion

^E~rW,t8!E~rW,t9!* &;^P~ t8!P~ t9!&. ~9!

Here we would like to analyze the above assumptions
some detail.

~a! Starting from the definition~1!, it is elementary to
demonstrate that one obtains the signalSst(t02t r ,v0) from
the retarded CF̂P(t82t r)P(t92t r)&, if the unretarded CF
^P(t8)P(t9)& gives the signalSst(t0 ,v0). @In the derivation
of this result, it has been assumed thatEt(t;t0)5Et(t02t),
which is a natural approximation for a time gate.# The retar-
dation thus merely gives rise to a shifted time origin of t
TFG spectrum. Keeping this in mind, we putt r[0 in all
subsequent calculations. It should be pointed out, howe
that for r 51 cm, for example, one getst r5100 ps, so that
it is necessary to decide in a particular ultrafast experimen
the consideration of retardation effects is important or no

~b! By expressing the frequency-gate functions throu
their Fourier transforms and inserting the corresponding
mulas into Eq.~1!, one gets
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Sst~ t0 ,v0!5E
2`

`

dv1uFs~v1 ,v0!u2 St~ t0 ,v1!, ~10!

where

St~ t0 ,v1!;E
2`

`

dt8E
2`

`

dt9 exp@2 iv1~ t82t9!#Et~ t8;t0!

3Et* ~ t9;t0!
d2

dt82

d2

dt92
^P~ t8!P~ t9!& ~11!

is the TFG spectrum obtained with ideal spectral resolut
@ uFs(v,v0)u25d(v2v0)#. The spectral filtering is seen t
be independent of the time gating and material system
namics, so that its effect on the TFG SE can always be
moved by deconvolution@29–31#. Proceeding in the spirit of
papers@29–31#, one can use Eq.~11! to develop generalized
Wigner spectrograms for the description of the TFG SE~see
Appendix!. For the purpose of the further presentation,
prefer to stay in the time domain. Integrating Eq.~11! by
parts, one transfers the action of the time derivatives fr
the polarization CF to the time-gate functions, so that

St~ t0 ,v0!;E
2`

`

dtE
2`

`

dt8 Ēt~ t;t0!Ēt* ~ t8;t0!

3exp@2 iv0~ t2t8!#^P~ t !P~ t8!&, ~12!

where

Ēt~ t;t0!5S d2

dt2
22iv0

d

dt
2v0

2D Et~ t;t0!. ~13!

The explicit inclusion of the time derivatives in the definitio
of the TFG SE results in a redetermination of the time-g
functions. For instance, starting from Eq.~2!, one gets

Ēt~ t;t0!5$@G2~ t2t0!1 iv0#22G2%Et~ t;t0!. ~14!

Formally speaking, these generalized gate functions bec
complex and frequency dependent, but the prod
Ēt(t;t0)Ēt* (t8;t0) is of course real. The inspection of th
above equations allows one to estimate a criterion for
validity of Eq. ~9!. In an experiment with ultrafast time reso
lution, one normally hasG@g ~a good filter!, G being the
inverse of the gating-pulse duration. If the material syst
under study possesses a narrow spectrum in the vicinit
the relatively well defined frequencyveg@G of an electronic
transition, thenĒt(t;t0)'2v0

2Et(t;t0). When the system
under study exhibits a broad or multipeaked spectrum,
should use the more general expressions~12! and~13!. Keep-
ing in mind the above restrictions, we shall use formula~9!
as the basic equation for the analysis of the TFG SE.

III. GENERAL PROPERTIES OF TFG SPECTRA

Adopting the standard Fabry-Perot-like form~4! of the
frequency filter, one can immediately perform the integrat
over t in Eq. ~1! analytically. This yields
7-3
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Sst~ t0 ,v0!5C8E
2`

`

dtE
2`

t

dt8 Et~ t;t0!Et* ~ t8;t0!

3@exp$2~g1 iv0!~ t2t8!%

3^E~rW,t !E~rW,t8!* &1c.c.#. ~15!

Here a new normalization constant,C85Cg/4, has been in-
troduced. According to Eq.~6!, it is independent of the fre
quency filter resolutiong. We shall further accept the as
sumption~9!, so that

Sst~ t0 ,v0!;ReE
2`

`

dtE
2`

t

dt8Et~ t;t0!Et* ~ t8;t0!

3exp$2~g1 iv0!~ t2t8!%^P~ t !P~ t8!&.

~16!

By calculatingP(t) to first order in the pump, employing th
rotating-wave approximation@36#, retaining only sequentia
contributions ~excitation precedes gating!, and performing
some standard manipulations~see, e.g., Refs.@1,29–31#!,
one arrives at the result

Sst~ t0 ,v0!;ReE
2`

`

dtE
0

`

dt3E
0

`

dt2E
0

`

dt1Et~ t2t0!

3Et~ t2t32t0!EL~ t2t32t2!

3EL~ t2t32t22t1!e2(g2 iv0)t3

3$R1~ t3 ,t2 ,t1!eivLt11R2~ t3 ,t2 ,t1!e2 ivLt1%.

~17!

Here the frequencyvL and the envelopeEL(t) characterize
the excitation pulse, andRi(t3 ,t2 ,t1), i 51,2, are the third-
order nonlinear response functions@1#. Clearly, if there is no
time gating (G50,Et51), then the TFG spectrum reduces
the frequency-domain fluorescence spectrum@see Eq.
~9.10b! in Ref. @1##. On the other hand, by comparing E
~17! with Eq. ~11.8! in Ref. @1#, one immediately realizes tha
the TFG SE is nothing else than the excited-st
~stimulated-emission! contribution to the integrated pump
probe spectrum for nonoverlapping pulses. The filter th
defines an effective carrier frequencyv0 of the probe, and
the temporal gate function represents the probe enve
centered att0. The only difference stems from the imperfe
tion of the frequency filterg, which controls the spectra
resolution of the TFG SE. For an ideal filter (g50) the
analogy is complete, and one recovers the equations der
in Refs.@3,27#.

A close similarity between the TFG SE and pump-pro
spectra has repeatedly been emphasized in the litera
@1–3,14,15,22#. It should be noted, however, that the equiv
lence between the TFG SE signal and stimulated-emis
contribution to the sequential integral pump-probe sig
holds only in the leading~second! order in the pump and
probe pulses. In this case also the ‘‘bare’’ TFG SE spectr
coincides with the stimulated-emission contribution to t
dispersed pump-probe spectrum@14,15#. It is of importance
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that both stimulated emission~from the electronically excited
state! and stimulated Raman~from the ground state! pro-
cesses contribute to the overall pump-probe signal, eve
the case of sequential, nonoverlapping pump and pr
pulses. On the other hand, if the excitation and gate pulse
not overlap, the SE consists solely of the fluorescence~ex-
cited state! component. As a consequence, one cannot
perimentally separate the ground and excited state contr
tion to the pump-probe signal. The SE signal from t
excited state is, however, background free. So, in general
TFG SE is not simply related to the pump-probe signal.

For our further purposes it is convenient to develop
DW representation of the TFG spectrum. To simplify t
presentation, we confine ourselves to the case of a si
optical transition between electronic states. We write
Hamiltonian as

H5S Hg 0

0 He
D . ~18!

HereHa are the total~system plus bath! vibrational Hamil-
tonians in the ground state (a5g) and the excited electronic
state (a5e). While this form of the Hamiltonian exclude
intramolecular nonadiabatic coupling of the excited ele
tronic state with the ground state, it should be stressed
He may represent several nonadiabatically coupled e
tronic states. The ensuing formulation includes, in particu
the case of an optically bright excited state that is intram
lecularly coupled to one or several optically dark states.
though the form~18! of the molecular Hamiltonian repre
sents a restriction, the theory still applies to many of t
experimentally interesting systems@2#.

Keeping in mind the above-mentioned analogy betwe
TFG SE and stimulated emission, the desired DW repres
tation can directly be taken over from the corresponding r
resentation for the pump-probe spectrum~see, e.g., Refs
@1,3,30#!. The result reads

Sst~ t0 ,v0!;Tr@W~v0!G~ t0!D~vL!#. ~19!

Here

D~vL!5E
2`

`

dt8E
0

`

dt1 EL~ t8!EL~ t82t1!eivLt1eiH et8

3e2 iH et1VegrgeiH gt1Vgee
2 iH et81H.c. ~20!

is the doorway operator,

W~v0!5E
2`

`

dtE
0

`

dt3 Et~ t1t3!Et~ t !e( iv02g)t3eiH etVeg

3eiH gt3Vgee
2 iH et3e2 iH et1H.c. ~21!

is the window operator,

G~ t !X5e2 iH etXeiH et ; X ~22!

is the excited-state propagator,Veg andVge are the transition
dipole moments~these are constants in the Condon appro
mation!,
7-4
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ra[Za
21e2Ha /kT ~23!

are the equilibrium vibrational distributions in the groun
(a5g) and excited (a5e) states, andZa are the corre-
sponding partition functions.

We thus can think of the fluorescence emission as a s
wise process, which proceeds via optical creation of pop
tion in the excited state, its subsequent propagation and fl
rescence emission. Evidently, the entire information ab
the TFG process is contained in the window operator~21!.
Wheng50, one recovers the standard window operator
pump-probe spectroscopy@see, e.g., Eq.~13.4a! in Ref. @1##.
In the opposite limit,g→`, the frequency resolution disap
pears entirely,W0(v0)'1/g, so that the TFG SE reflects th
time-dependent excited-state population,

Sst~ t0 ,v0!;Tr@G~ t0!D~vL!#5^re~ t0!&.

Starting from the DW representation, we can immediat
establish several general properties of the TFR spectra
t050, the TFG spectrum is just the trace of the product
the doorway and window wave packets. Since the doorw
function represents the initial population of the electronica
excited state, the corresponding TFG spectrum can be in
preted as SE from that nonequilibrium excited state. In
opposite extreme case,t0→`, there are two possibilities
First, if our system is coupled to a dissipative bath, th
eventually

G~ t0→`!D~vL!→re .

If, in addition, the time-gate function is short enough at t
time scale of nuclear motion, but long enough compa
with the optical coherence dephasing time, one arrives at
so-called snapshot limit for the window function@1#, in
which

W0~v0!5E
0

`

dt3 e( iv02g)t3Vege
iH gt3Vgee

2 iH et31H.c.,

~24!

so that

Sst~ t0→`,v0!→Tr@W0~v0!re#.

This is nothing else than the relaxed fluorescence spect
in which g plays the role of the inverse fluorescence lifetim
To put it differently, the TFG SE spectrum tends to a cert
asymptotic spectrum, which reflects emission from
equilibrated excited-state distributionre .

If one considers nondissipative system dynamics, then
limit G(t0→`)D(vL) does not exist, and the TFG spectru
mirrors the oscillatory motion of the wave packet in the e
cited state. Generally, if the dissipation is not very strong,
processes of fluorescence and intramolecular dissipation
in competition, resulting in a time-dependent fluoresce
shift and an oscillatory approach to the asymptotic rela
fluorescence spectrum~see Sec. V!. Note also that the door
way function ~20! is nothing else than the asymptotic~at
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times much greater than the excitation-pulse duration! value
of the density matrix, evaluated to the leading~second-order!
contribution in the perturbation expansion. Alternatively~and
more accurately!, it can be computed nonperturbatively
the pump field, by including the field-matter interaction du
ing the excitation in the system Hamiltonian@22,37#. The
same applies for the evaluation of the window function.

IV. TFG SPONTANEOUS EMISSION:
COMPUTATIONAL ASPECTS

Equations~19!–~21! open the way for the implementatio
of several approximations, which are valid provided t
pulse duration is much shorter than the time scale of vib
tional relaxation or much longer than the electronic deph
ing time @1,3#. Here we would like to emphasize quite di
ferent aspects. Up to this moment, the precise meaning o
HamiltoniansHg andHe in Eq. ~18! has not been specifie
yet. If one wishes to study the relaxation behavior of m
ecules, it is natural to consider a system~the chromophore!
that is coupled to an environment. The vibrational Hamil
nians are written as

Hg5Hg
S1Hg

B1Hg
SB, He5He

S1He
B1He

SB, ~25!

where the superscripts ‘‘S’’ and ‘‘ B’’ denote the system and
the bath, respectively. In a typical application, the syst
part HS of the Hamiltonian represents the few active vibr
tional modes that are directly coupled to the electronic tr
sition, while the bath represents the manifold of inactive
brational modes of the molecule and/or the degrees
freedom of the solvent.

If the excitation and the gate pulses are short enoug
the time scale of the system-bath relaxation, one can sa
substitute the corresponding total Hamiltonian operators
their system parts in the doorway~20! and window~21! op-
erators, i.e.,

Hg→Hg
S , He→He

S . ~26!

This justifies the evaluation of the DW functions in terms
the eigenvalues and eigenfunctions of these system Ham
nians,

Hg
Sun&5Enun&, He

Sua&5Eaua& ~27!

~hereafter, the eigenvalues and eigenfunctions ofHg
S andHe

S

are denoted by Latin and Greek letters, respectively!. The
corresponding frequencies read

van5Ea2En , vab5Ea2Eb . ~28!

It is important to remark that such an eigenvalue represe
tion is computationally feasible for system Hamiltonia
containing up to three vibrational modes with electronic
terstate couplings@2,38,39#, so that the use of Eqs.~27! is not
very restrictive. One can additionally assume that the tim
gate functions and the excitation pulses are exponential
7-5
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described by equations like Eq.~3!. It may seem somewha
unrealistic to model the envelopes of laser pulses by ex
nentials, but, at the qualitative level at least, it is justified
has been shown that the substitution of ’’actual’’ Gauss
pulse envelopes by their exponential counterparts does
give rise to substantial quantitative differences in the pum
probe signals@13,25#. This approximation makes it possib
th
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to analytically perform all the time integrations in Eqs.~20!
and ~21!, with the result:

Sst~ t0 ,v0!; (
a,b,a1 ,b1

Wab~v0!Ga1b1

ab ~ t0!Da1b1
~vL!,

~29!

where
Dab~vL!5(
n

VanVnbrg~n!H 1

GL2 i ~vL2van!

1

GL2 i ~vL2vbn!

1
1

2GL2 ivab

1

GL2 i ~vL2vbn!
1

1

2GL1 ivab

1

GL2 i ~vL2van!J 1c.c., ~30!

Wab~v0!5(
n

VanVnbH 1

G1g2 i ~v02van!

1

G1g2 i ~v02vbn!

1
1

2G2 ivab

1

G1g2 i ~v02vbn!
1

1

2G1 ivab

1

G1g2 i ~v02van!J 1c.c. ~31!
f
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If one wishes to develop the DW description beyond
slowly varying envelope approximation, it is possible to st
from the definition~21! for the window function, but with
the gate functionEt(t;t0) substituted by its generalize
counterpartĒt(t;t0) ~13!. One can then analytically obtai
the analog of Eq.~31!, but we avoid doing that here in orde
not to overburden the paper with technical details.

If one considers a bath-free material system, then

Ga1b1

ab ~ t0!5e2 ivabt0daa1
dbb1

~32!

so that

Sst~ t0 ,v0!;(
a,b

Wab~v0!e2 ivabt0Dab~vL!. ~33!

This is nothing else than a compact form of the formu
obtained by Kowalczyket al. @Ref. @25#, Eq. ~17!# and sub-
sequently rederived by Santoroet al. @Ref. @13#, Eq. ~11!#.
The formula in Ref.@13# additionally contains contribution
due to the time derivatives of the dipole moments~cf. the
discussion in Sec. II!. If the frequency filter is good enoug
(G@g) and if 1/G is much shorter than the characteris
vibrational relaxation time and much longer than the opti
coherence dephasing time, one arrives at an ideal~snapshot!
TFG spectrum@31#. In that case

Wab~v0!'
1

2G (
n

VanVnbH 1

G2 i ~v02vbn!

1
1

G2 i ~v02van!J 1c.c. ~34!
e
t

l

As has been explained above@see Eqs.~12!–~14!#, the ideal
spectrumS0(t0 ,v0);v0

4. Therefore, to find the number o
photons passed through the detector, one must div
S0(t0 ,v0) by v0, which gives rise to av0

3 dependence of the
signal. Keeping this in mind, one immediately notes that E
~29! with the window function~34! recovers the result by
Jean@12# and Lin et al. @18,19# obtained for an ideal time
and frequency resolved SE spectrum. The present ana
therefore bridges the gap between the different form
lations of the TFG SE signal@1,12,14,16,18,19–21#,
@2,5,6,13,25,26,29–31#, and@3,27#, and also provides the cri
terion of the validity of passing from ‘‘real’’ to ‘‘bare’’ SE
spectra.

In order to propagateD(vL) for a timet0, we can switch
from the entire~system plus bath! phase space to that of th
system only. This is a standard procedure in problems of
kind @1#. It is believed that, in doing so, we do not introduc
significant errors into the description. One thus can reg
D(vL) as the initial value of the reduced~system! density
matrix in the excited state, which subsequently evolves
cording to the appropriate kinetic equation of motion. O
can invoke, e.g., certain phenomenological dissipative eq
tions @2,3,11,14#, or the Redfield formalism in various ap
proximations @2,12,27,32,33,38–41#, or the semiclassica
and quantum Fokker-Planck equations@22,42,43#. For in-
stance, if one adopts the optical dephasing model, in wh
the electronic population and alignment possess the de
times T1 and T2, respectively~see papers@2,11,14# for the
necessary details!, Eqs.~29!–~32! are still correct if one sub-
stitutesg→g11/T2 in Eq. ~31!, adopts a very similar equa
tion for the doorway function~30! and multiplies Eq.~32! by
exp(2t0 /T1). If, on the other hand, the Redfield equation
the secular approximation is a correct description~it is not
7-6
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infrequently so in the problems dealing with nonadiaba
coupling @38,39#!, the situation simplifies considerably. I
this case the density-matrix evolutionG(t)D(vL)[r(t) is
described via

d

dt
raa~ t !5 (

bÞa
Jabrbb~ t !2Jaraa~ t !,

raa~0!5Daa~vL! ~35!

rab~ t !5exp$2~ ivab1Jab!t%Dab~vL!, aÞb.
~36!

Here Jab are the damping constants due to the coupl
with the bath andJa[(bÞaJba . So, the TFG SE is given
by the explicit formula

Sst~ t0 ,v0!; (
a,n,m

Waa~v0!Oane2lntOnmDmm~vL!

1 (
aÞb

Wab~v0!exp$2~ ivab

1Jab!t%Dab~vL!. ~37!

HeredabJa1Jab[(nOanlnOnb .
Up to now, the theory relied significantly upon the a

sumption that the excitation pulse and the temporal ga
E
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e,
e.
at
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-
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w

c
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c
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were well separated, so that all transient effects can be
glected. These effects manifest themselves through expo
tially small contributions to the TFG SE spectra, which a
proportional to the terms like exp(2Gt0) and disappear for
t0@1/G. There exists, however, an important particular ca
which allows one to explicitly incorporate the transient term
into the DW picture. Namely, let us consider the so-cal
impulsive excitation, when the pump pulse can be regar
as truly instantaneous on the time scale of both nuclear
namics and electronic dephasing. By inserting the expres
EL(t)5d(t) into Eq.~17! and making no further approxima
tions, one also arrives at the DW formula~19!, but with
modified doorwayDimp(vL) and windowWimp(v0) opera-
tors. Evidently, Eq.~20! simplifies toDimp(vL)5rg . On the
other hand,Wimp(v0) is also given by Eq.~21! in which,
however, the lower limit of integration overt changes from
2` to 2t0. Clearly, for t0@1/G ~that is tantamount to say
ing that the pump and gating processes are well separa!
Wimp(v0)→W(v0). Moreover, following the argumentatio
outlined above for the standard DW operators, it is natura
invoke the eigenvalue representation~27!,~28! for obtaining
the explicit form ofWimp(v0). The result reads

Wab
imp~v0!5Wab~v0!2Wab

tr ~v0!, ~38!

whereWab(v0) is given by Eq.~31! and
Wab
tr ~v0!5(

n
VanVnbH exp$2~2G1 ivab!t0%

2G1 ivab

1

G1g1 i ~v02vbn!

1
exp$2@G1g2 i ~v02van!#t0%

G1g2 i ~v02van! F 1

G1g2 i ~v02vbn!
1

1

G1g1 i ~v02vbn!G J 1c.c. ~39!
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As is expected, the transient terms influence the TFG S
times t0;1/G ~see also Sec. V! but vanish fort0@1/G. The
above results show that, if one intends to extract informat
about the system dynamics from the TFG SE spectra, the
no intrinsic limitation to the duration of the pump puls
since its variation just modifies the doorway function, i.
the initial vibrational distribution in the excited state. In th
sense, thed-excitation pulse creates the most natural dis
bution, by merely transferringrg into the excited state with
out distortions. On the other hand, if one wishes to mon
the SE with time and frequency resolution, the gating ti
should not be too small. Otherwise (G@1), the spectral reso
lution is completely lost.

V. TFG SPONTANEOUS EMISSION: SPECIFIC
EXAMPLES AND DISCUSSION

To illustrate the material of the preceding sections,
invoke the Condon approximation (Veg5Vge51) and con-
sider the standard benchmark system, consisting of displa
at

n
is

,

-

r
e

e

ed

harmonic oscillators in the ground and excited states, wh
are bilinearly coupled to a harmonic bath. In this case,
third-order response functionsRi(t3 ,t2 ,t1) are uniquely de-
termined by the line shape function

g~ t !5E
0

t

dt8E
0

t8
dt9 C~ t9![E

0

t

dt8~ t2t8!C~ t8!, ~40!

where C(t)5^eiH gtUe2 iH gtUrg& is the energy-gap CF@1#
(U[He2Hg).

To investigate the influence of the dissipative environm
on the TFG SE, we perform explicit calculations of TF
spectra by invoking the so-called Drude model forC(t)
@1,20,44–47#, i.e., we consider a thermal bath with expone
tial memory kernel.Inter alia, this allows us to explore the
influence of non-Markovian effects on the vibrational rela
ation. The conventional~Markovian! description is valid pro-
vided that the bath relaxation time is much shorter than
other relevant times of the problem. If one studies ultraf
relaxation dynamics, the Markovian assumption should
7-7
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implemented with a certain caution, since it could be an
justified oversimplification~see, e.g., recent references@48–
54#!. There exist also experimental evidences that n
Markovian effects could be important, e.g., for describi
vibrational relaxation in hydrogen-bonded liquids~see Ref.
@34# and references therein!. These effects manifest them
selves through the multiexponentiality of the energy-gap
It is an additional advantage of the Drude model that it is
limited to weak system-bath coupling. This allows one
continuously follow the transformation of the TFG spec
from the bath free to the overdamped limit.

The Drude model leads to the following expressions
the line shape functions@46,47#

g~ t !5g8~ t !1 ig9~ t !, C~ t !5C8~ t !1 iC9~ t !, ~41!

C8~ t !5l@C18e
2z1t1C28e

2z2t1C38e
2z3t2G~ t !#, ~42!

C9~ t !5l~C19e
2z1t1C29e

2z2t1C39e
2z3t!. ~43!

Herel is the Stokes shift,

z15a1 ih, z25a2 ih, z35d ~44!

are the roots of the cubic equation

z32vDz21~11LvD!z2vD50, ~45!

and the other parameters are given by the expressions

C1952
i

2h

a2 ih1d

a1 ih2d
, C295

i

2h

a1 ih1d

a2 ih2d
, ~46!

C395
2a

~a2 ih2d!~a1 ih2d!
, Ci85Ci9 cot~e!,

e5
\V

2kT
, ~47!

G~ t !5
2LvD

2

e (
n51

`
nne2nnt

~z1
22nn

2!~z2
22nn

2!~z3
22nn

2!
,

nn5pn/e. ~48!

V is the unperturbed oscillator frequency. Hereafter, we
dimensionless variables, in which time is measured in u
of V21. L controls the strength of the system-bath couplin
When L50, one recovers the case of free oscillators,L
@1 corresponds to the overdamped oscillator limit.e @see
Eq. ~47!# is the ratio of zero-point energy and thermal ener
of the oscillator.vD is responsible for the memory effect
and 1/vD can be regarded as the bath relaxation time, so
vD exp(2vDt) is the memory kernel in the correspondin
semiclassical generalized Langevin equation for the ene
gap coordinate~see@1,20,44–47#!. When vD→`, one re-
covers the standard Markovian description.

To render the presentation more transparent and to v
alize the dynamic and transient effects, we restrict ourse
06250
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to the case of impulsive excitation~cf. the discussion above!.
In that case, Eqs.~17! and ~19! reduce to

Sst~ t0 ,v0!;ReE
0

`

dtE
0

`

dt3 Et~ t2t0!Et~ t2t32t0!

3$e2g(t3)* 22i [g9(t)2g9(t2t3)]e[ 2g1 i (v02veg)] t3%.

~49!

Hereveg[^He2Hg&[veg
0 1l, andveg

0 is the frequency of
the 0-0 transition. The formula~49! allows us to calculate
TFG spectra for different values of the parameters of
model and for various qualities of the time and frequen
filters ~see Figs. 1–4!. Note that the frequency origin is cho
sen asveg in these figures.

To separate the influence of the quality of temporal a
spectral filtering from the dynamic effects, we start with t
consideration of the TFG SE of the dissipation-free osci
tors (L50). We consider the case of a large Stokes s
(l55) and low temperature («510). Fig. 1~a! corresponds
to the case of good spectral resolution (g50.3) but poor
temporal resolution (G50.2). The TFG spectrum change
only slightly with time. It looks almost static, since the fun
damental vibrational periodtV ~which equals 2p in our di-
mensionless units! is of the order of the characteristic gatin
time 1/G. The spectrum exhibits a double ridge structu
which reflects the locations of the wave packet on
excited-state potential surface in the vicinity of the classi
turning points. That is why the local maxima of the rig
~left! ridge occur att050,2p,4p, . . . (t05p,3p, . . . ).
Since quantum effects are pronounced (e510) and the fre-
quency resolution is high, the spectrum possesses vibrati
structure.

If one improves the temporal resolution (G51), the fol-
lowing qualitatively new properties emerge@Fig. 1~b!#. First,
the formerly static spectrum acquires pronounced dyna
features and exhibits an oscillatory behavior, which mirro
the motion of the wave packet in the excited state. Eviden
the frequency of these oscillations coincides with the f
oscillator frequencyV51. Second, the vibrational structur
completely disappears, despite the fact that the freque
resolution is kept unchanged. The maxima of the TFG
signal correspond to the classical turning points of the w
packet in the excited state as discussed above. So, in
vicinity of these points (t05p,2p,3p, . . . ), the wave
packet rephases and becomes narrow. On the contrary, i
velop the maximal speed near the potential minimumt0
5p/2,3p/2,5p/2, . . . ) and, therefore, broadens. The sign
thus monitors not only the position of the wave packet, b
also the speed of the wave-packet motion. By comparing
1~b! with those from, e.g., the reviews@2,55#, one sees tha
the overall behavior of the TFG SE signal and t
stimulated-emission contribution to the integral pump-pro
signal is esentially the same. In general,Sst(t0 ,v0) can be
regarded as a progression of instantaneous~at a particulart0)
spectra, which exhibit a time-dependent shift. Since ther
no dissipation,Sst(t0 ,v0) is tV periodic, but the widths and
heights of the maxima of these instantaneous spectra at0
dependent.
7-8
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FIG. 1. Influence of temporal and spectral resolution on the SE spectrum of a bath-free (L50) displaced (l55) harmonic oscillator in
the low-temperature limit (e510) with ~a! g50.3 ~good spectral resolution! and G50.2 ~poor time resolution!; ~b! g50.3 andG51
~satisfactory time resolution!; ~c! g50.3 andG55 ~high time resolution!; ~d! g55 ~poor frequency resolution! and G51. The TFG SE
intensity is given in arbitrary units. All the other parameters are dimensionless, the free oscillator frequencyV is taken as the frequency un
and its inverse 1/V as the time unit.
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This kind of behavior should be contrasted with that d
picted in Fig. 1~c!, in whichSst(t0 ,v0) is shown for the case
of high temporal resolution (G55,1/G!tV), the other pa-
rameters being unchanged. This situation corresponds
fact, to the ideal~snapshot! TFG SE spectrum. As in the
previous figure,Sst(t0 ,v0) is tV periodic, but the widths and
heights of the maxima of the instantaneous spectra are
most t0 independent. The explanation of these qualitat
changes is provided by Eqs.~31!–~34!. To calculate the idea
TFG spectrum for a dissipation-free system, one may
Eqs.~33! and~34!. The inspection of these formulas revea
thatS0(t0 ,v0) consists of a sum of Lorentzians that are m
tiplied by time-dependent factorse2 ivabt0. Note that these
factors are determined by the transition frequencies in
excited state. For a particulart0, these factors just single ou
the maximal contributions toS0(t0 ,v0), corresponding to
vabt052pn (n50,1,2, . . . ). On theother hand, the widths
and heights of the Lorentzians are time independent
specified by thee→g transition frequenciesvan . If one con-
siders the TFG SE beyond the snapshot limit, one sho
employ the more general Eq.~31! for the window function. It
06250
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also can approximately be regarded as a sum of cer
‘‘spectral functions,’’ multiplied by the same time-depende
factorse2 ivabt0. In contrast to the snapshot case, the ‘‘spe
tral functions’’ are the products of two Lorentzians, whic
are bothvan andvab dependent. So, in general, the excite
state frequenciesvab affect the widths and maxima o
Sst(t0 ,v0) and, therefore, make theset0 dependent. WhenG
is further increased, the spectral features ofSst(t0 ,v0) are
smeared out. In principle, any frequency resolution dis
pears in the limitG@1, in which one merely measures th
time-dependent population in the excited state, sin
Sst(t0 ,v0)→ Tr@G(t0)D(vL)#. Similarly, if the spectral
resolution decreases (g55), the TFG SE broadens and ten
to become more featureless@Fig. 1~d!#. In this sense, poor
spectral resolution (g@1) is equivalent to high tempora
resolution (G@1).

By inspecting Figs. 1~a!–1~d!, as well as the subsequen
Figs. 2 and 3, one clearly observes the signature of the t
sient effects. These manifest themselves through the incr
of the area under the instantaneous spectraSst(t0 ,v0) at
short times. In other words, the TFG SE spectra ‘‘flare u
7-9
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FIG. 2. Manifestation of the dissipation strength in the TFG
spectrum in the case of satisfactory time and frequency resolu
(g5G51) for a classical (e50.1) displaced (l55) harmonic os-
cillator coupled to a Markovian bath.~a! L50.3 ~underdamped
oscillator!; ~b! L51 ~moderately damped oscillator!; ~c! L55
~overdamped oscillator!.
06250
on a time scale of 1/G. The origin of this phenomenon ha
been discussed at the end of Sec. IV@see Eqs.~38! and~39!#.
Here we present the corresponding quantitative estima
Integrating Eq.~49! over v0 one finds that, irrespective o
the particular form ofg(t),

E
2`

`

dv0 Sst~ t0 ,v0!;E
2t0

`

dt Et
2~ t !

5
1

2G HAp

2
@11F~ t0!# for Eq. ~2!

22e22Gt0 for Eq. ~3!,

~50!

n

FIG. 3. TFG SE spectrum in the case of satisfactory time a
frequency resolution (g5G51) for a classical (e50.1) displaced
(l55) harmonic oscillator moderately (L51) coupled to a highly
non-Markovian bath (vD51).

FIG. 4. Time evolution of the maxima of instantaneous TFG
spectra in the case of satisfactory time and frequency resolu
(g5G51) for a classical displaced harmonic oscillatore
50.1,l55) coupled to different baths.~1! L50 ~free oscillator!;
~2! L50.3 ~underdamped Markovian oscillator!; ~3! L51 ~moder-
ately damped Markovian oscillator!; ~4! L51, vD51 ~moderately
damped non-Markovian oscillator!.
7-10
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where F is the error function. This result shows that th
initial ( t050) area under the TFG SE spectrum is smaller
a factor of two than the asymptotic (t0→`) area. Evidently,
the better the temporal resolution, the less visible are
transient effects.

Having established the influence of the quality of the TF
procedure on the SE, we turn to the investigation of
manifestation of dissipative effects in the TFG SE. To t
end, we consider different kinds of dissipation mechanis
The standard Markovian bath is studied first. Figures 2~a!–
2~c! show the TFG SE spectra obtained for increas
strength of the system-bath coupling. A large Stokes s
(l55) and high temperature («50.1) are assumed, as we
as good time and frequency resolution (g5G51). The evo-
lution of the TFG SE spectra reflects the strength of syst
bath coupling, as expected. The initial spectrum,Sst(0,v0),
eventually develops into the asymptotic one,Sst(`,v0),
which exhibits the Stokes shift of 2l. When the damping
effects are not strong, the system dynamics is underdam
and the signal exhibits weakly damped oscillations@Fig.
2~a!#. When the dissipation strength is further increased,
wave-packet oscillations are rapidly damped@Fig. 2~b!#. In
the overdamped limit,Sst(0,v0) tends toSst(`,v0) monoto-
nously @Fig. 2~c!#.

To get a better understanding of the TFG SE of the ov
damped oscillator, it is useful to calculate the spectrum a
lytically. Moreover, one can surmount the restriction of im
pulsive excitation and assume that the pump and gate pu
have a Gaussian shape@Eq. ~2!#. The spectral filter is as
sumed to be ‘‘ideal’’ (g50). To arrive at the desired resul
one can start either from the general Eq.~17!, or from the
DW description~19!–~21!. Let us assume, in addition, tha
the oscillator motion is much slower than the optical deph
ing time. This allows us to neglect the system dynamics d
ing t3 and t1, when the system is in the coherence state.
can thus retain only the leading contributions to theg func-
tions, up to quadratic terms int3 and t1. The corresponding
expression has been derived and discussed in R
@1,44,56,57# for the sequential pump-probe spectrum, but
can further generalize it by invoking the modified gate fun
tion ~14!. The result reads

St~ t0 ,v0!5
2p~3A216AB21B4!

A~D21GL
2!a2~ t0!

3expH 2
vL

2

2~D21GL
2!
J

3expH 2
@v̄02v̄~ t0!#2

2a2~ t0!
J . ~51!

Here

v̄L5vL2veg , v̄05v02veg ,

ṽ5v̄L

D2

D21GL
2

, D2[2lkT/\, ~52!
06250
y

e

e
s
s.

g
ft

-

ed

e

r-
a-

es

-
r-
e

fs.
e
-

v̄~ t !522l1e2Lt~ṽ12l!, ~53!

a2~ t !5D2F12
D2

D21GL
2

e22LtG1G2, ~54!

A5
G2D2~12e22Lt!

G21D2~12e22Lt!
,

B5
@v̄~ t !1veg#G

21v0D2~12e22Lt!

G21D2~12e22Lt!
. ~55!

Equation~53! allows us to visualize the origin of the time
dependent Stokes shift, which is seen to reflect the relaxa
of the system towards its equilibrium in the excited sta
One should also note the factor 3A216AB21B4, which en-
sures a correct description beyond the slowly varying en
lope approximation~see the pertinent discussion in Sec. I!.
Evidently, whenveg exceeds substantially all relevant fre
quencies of the problem, thenv0;veg , so that 3A2

16AB21B4'B4, where

B'
vegG

21v0D2~12e22Lt!

G21D2~12e22Lt!
.

Therefore,B'v0, and the standard approximation~9! is jus-
tified. When the temporal resolution is high compared to
time scale of the inhomogeneous broadening (G@D), the
additional term also reduces to a constant factor. If this is
the case, the additional contribution depends in a com
cated manner ont0 ,v0 and also on the parameters determ
ing the excitation, the system dynamics and temporal gat
It is important that Eq.~51! allows one to determine the
influence of the duration of the excitation pulse on the TF
SE signal~see also, Refs.@1,3,44,56,57#!. When the pulse is
short (GL@1), the spectral widtha2(t)'D21G2 is time
independent, so that the TFG SE spectrum experience
time-dependent broadening. In the opposite case (GL!1),
a2(0),a2(`), so that the spectrum broadens. To put it d
ferently, the finiteness of the pump duration results in a tim
dependent broadening ofSt(t0 ,v0), which is governed by
the parametera2(t). When the gate pulse is truly instanta
neous (G@1), thena2(t)→` and the TFG spectrum lose
any frequency resolution. This is an additional confirmati
of the fact that an ideal time gate should be ad function on
the time scale of the system relaxation, but a constant on
time scale of the optical coherence dephasing.

Now we turn to the study of the impact of memory effec
on the TFG spectra. To this end, let us compare Fig. 2~b! and
Fig. 3, in whichSst(t0 ,v0) is presented for the Markovian
(vD→`) and the non-Markovian (vD51) oscillator, re-
spectively, in the case of moderate coupling with the b
(L51). In both situations,Sst(t0 ,v0) eventually arrives at
the relaxed spectrum. However, the manner in which t
asymptotic spectrum is approached is very different in
Markovian and non-Markovian cases, respectively. Inde
after the elapse of a characteristic time of the order of 1L
~this time scale is determined by the strength of the syst
7-11
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bath coupling!, the ‘‘centers of gravity’’ of both Markovian
and non-Markovian TFG spectra exhibit the same Sto
shift. In the Markovian case, the subsequent relaxation of
spectrum occurs more or less monotonically@Fig. 2~b!#.
When memory effects come into play, the TFG SE sig
tends to the relaxed spectrum nonmonotonically, its ‘‘cen
of gravity’’ exhibiting pronounced oscillatory behavior~Fig.
3!. The TFG SE spectrum of the underdamped Markov
oscillator @Fig. 2~a!# looks qualitatively similar to the spec
trum of the moderately damped non-Markovian oscilla
~Fig. 3!. The question therefore arises: is it possible to d
tinguish between these two situations?

It is Eq. ~45! that allows one to answer this questio
Evidently, the two rootsz1 and z2 of this equation can be
either real and positive@if h in Eq. ~44! is imaginary#, or
complex conjugate to each other, with a positive real par~if
h is real!. The third rootz3 is always real and positive
Clearly, if all roots are positive, the system relaxes to
equilibrium distribution monotonically. This is so, e.g., in th
overdamped Markovian case@Fig. 2~c!#. If Eq. ~45! pos-
sesses two complex conjugated roots, it is the magnitud
h which determines the fundamental oscillation frequency
the problem. It is possible to derive an analytical express
for h, but it turns out to be cumbersome and difficult
analyze. For our purpose it is sufficient to realize that, in
Markovian limit (vD→`), the cubic equation~45! reduces
to a quadratic equation, yieldingh5A12L2/4 ~recall that
the unperturbed oscillator frequency isV51). On the other
hand, one gets a simple solution of Eq.~45! in the over-
damped (L@1), but strongly non-Markovian (vD;1) case:
h'ALvD. So, one arrives at the remarkable conclusion t
in the Markovian limit the oscillation frequencyh cannot
exceed the free oscillator frequencyV51, while in the non-
Markovian case it can. To put it differently, the period of t
wave-packet oscillations in the Markovian limit can be 2p
~free oscillator! or larger~underdamped oscillator!, while in
the non-Markovian case that period can be less thanp.
This observation allows one to distinguish between
damped non-Markovian and underdamped Markovian os
lators, if one knows the unperturbed oscillator frequencyV.

These qualitative considerations are confirmed by num
cal computations ofSst(t0 ,v0), as depicted in Fig. 4. It
shows the positions of the maxima of instantaneous TFG
spectra~with g5G51) as a function of the gating timet0
for a displaced oscillator (l55) in the high-temperature
limit ( «50.1). It is seen that the TFG spectra exhibit 6
~free oscillator!, 4.8 ~non-Markovian damped oscillator!, and
6.4 ~underdamped Markovian oscillator! periodic oscilla-
tions. The message is that the TFG SE signal of a sys
coupled to a non-Markovian bath can exhibit pronounc
oscillations with a period that is less than that of the ba
free system. This qualitative effect can be helpful for t
estimation of the importance of memory effects in dissipat
systems.

Summarizing, the interpretation of the TFG SE spec
can provide us with a certain knowledge not only on t
strength of the system-bath coupling, but also on the b
correlation function.
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VI. CONCLUSIONS

The ultimate goal of the present work is the developm
of a computationally oriented framework for the descripti
of TFG SE of nontrivial systems, that is, multimode syste
with strong electronic interstate couplings, which intera
with a thermal bath. The specific tasks are as follows:~i! to
develop a universal, eigenstate free, description of the T
SE, ~ii ! to clarify the influence of the spectral filtering an
temporal gating on the TFG SE spectra, and~iii ! to connect
the measured TFG SE spectra with the time evolution of
corresponding material systems.

The material-system dynamics has been shown to e
the description in terms of the two-time CF of the seco
derivatives of the transition dipole moment@Eqs. ~1! and
~8!#. In the evaluation of the CF, retardation effects due to
finiteness of the speed of light should be taken into acco
The CF, convoluted appropriately with the correspond
time-gate and filter functions, yields the experimentally me
sured TFG SE spectra. The convolution requires three c
secutive time integrations to be performed. It has been d
onstrated that, by taking the standard Fabry-Perot-
frequency-filter function~4!, one of these integrations can b
performed analytically@Eq. ~15!#, irrespective of a particular
form of the CF~8! and the time-gate function. The validity o
the commonly employed approximation~9! has been dis-
cussed and generalized expressions have been derived fo
TFG SE in terms of Wigner spectrograms beyond this
proximation. The retardation effects are demonstrated to g
rise to a redefinition~back shift! of the time origin of the
TFG SE spectrum.

We have further developed the DW picture of the TF
SE, under the assumption that the excitation and gating
cesses are well temporally separated. This casts the des
tion of the TFG SE into an intuitively appealing form i
terms of wave-packet dynamics in the excited state. T
method requires the doorway and window operators to
calculated only once, so that subsequent propagation of
doorway operator over a time intervalt0 and its averaging
together with the window operator according to Eq.~19!
yield the TFG SE spectrumSst(t0 ,v0). It has been shown
that the TFG SE is equivalent to the stimulated-emiss
contribution to the integral pump-probe spectrum. In th
case the time-gate function plays the role of the envelope
the probe pulse, and the spectral filter function determine
carrier frequency. The only subtle difference stems from
imperfection of the spectral filter (g5” 0), but this is negligi-
bly small for good filters.

It should be noted, however, that the equivalence betw
the TFG SE signal and stimulated-emission contribution
the sequential integral pump-probe signal holds only in
leading~second! order in the pump and probe pulses. In th
case also the ‘‘bare’’ TFG SE spectrum coincides with t
stimulated-emission contribution to the dispersed pum
probe spectrum@14,15#. It is of importance that both stimu
lated emission~from the electronically excited state! and
stimulated Raman~from the ground state! processes contrib
ute to the overall pump-probe signal, even in the case
sequential, nonoverlapping pump and probe pulses. On
7-12
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other hand, if the excitation and gate pulses do not over
the SE consists solely of the fluorescence~excited state!
component. As a consequence, one cannot experimen
separate the ground and excited state contribution to
pump-probe signal. The SE signal from the excited state
however, background free. So, in general, the TFG SE is
simply related to the pump-probe signal.

If the DW operators are expanded over the complete
of eigenfunctions of the bath-free Hamiltonian and if o
assumes the exponential time-gate function~3!, the DW
functions can be evaluated analytically beyond the snap
limit. The theory developed in the present work~i! allows
one to establish some model-independent properties of T
spectra,~ii ! bridges the gap between the different kinds
descriptions introduced previously,~iii ! helps in determining
their limitations, and~iv! clarifies interconnections betwee
‘‘real’’ and ‘‘bare’’ spectra.

The standard displaced oscillator model bilinea
coupled to a harmonic bath has been adopted to illustrate
time-frequency evolution of the SE spectra for different
gimes of dissipation. The TFG SE spectra have been foun
be quite sensitive not only to the overall strength of t
system-bath coupling, but also to finer features, such
memory effects. The influence of the quality of the spec
and temporal filtering on the measured TFG SE spectra
has been studied in some detail.

One of the main findings of the present work is that t
specific features of the wave-packet dynamics in the exc
state survive the TFG mapping procedure, and mani
themselves in the SE spectra. Recent TFG SE measurem
@8–10# have confirmed the persistence of pronounced vib
tional coherence effects in the obtained spectra. This un
lines that the TFG SE clearly reflects the wave-packet
namics in the excited state, provided a good compromis
found between temporal and spectral resolution. The in
mation about the material dynamics can be extracted f
the TFG SE spectra by the appropriate theoretical analy
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APPENDIX

Following Mukamel and co-workers@29–33#, we adopt
the Wigner spectrograms for the description of the TFG S
Let us introduce the new variables

t̄ 5~ t81t9!/2, s5t82t9 ~A1!
y
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and the bare TFG spectral function

S0~ t̄ ,v!5E
2`

`

ds eisv^P~ t̄ 1s/2!P~ t̄ 2s/2!&. ~A2!

After the insertion of Eq.~A2! into Eq. ~12! one arrives at
Eq. ~10! in which

St~ t0 ,v1!5E
2`

`

d t̄ dv W̄~ t̄ ,v12v,t0!S0~ t̄ ,v!, ~A3!

with

W̄~ t̄ ,v,t0![S 1

4
] t̄

2
1v2DW~ t̄ ,v,t0!, ~A4!

W~ t̄ ,v,t0!5E
2`

`

ds eisvEt~ t̄ 1s/2;t0!Et* ~ t̄ 2s/2;t0!.

~A5!

One sees that the explicit inclusion of the time derivatives
the transition dipole moments results in an additional con
bution to the transformation functionW̄, which is given by
the term in parentheses in Eq.~A4!. By using, e.g., the
Gaussian gating function~2!, one can evaluateW̄ analyti-
cally,

W~ t̄ ,v,t0!5
A2p

G
expS 2

v2

2G2
22G2~ t̄ 2t0!2D , ~A6!

W̄~ t̄ ,v,t0![$@G2
„4G2~ t̄ 2t0!221…1v2#2

22G4
„8G2~ t̄ 2t0!221…%W~ t̄ ,v,t0!.

~A7!

If the material system under study possesses a narrow s
trum in the vicinity of the frequencyveg of the electron
transition, and ifG@g ~a good filter!, thenW̄'v0

4W. Oth-
erwise, one should use the more general expression~A4!.

It is important that for the standard TFG functions~2!–~4!

the transformation functionW̄ simplifies toW̄( t̄ 2t0 ,v). So,
the bare TFG spectrumS(t0 ,v0) and the ideal frequency
filter spectrumSt(t0 ,v1) can be extracted from Eqs.~10!
and ~A3! by performing the appropriate inverse Fouri
transforms. This opens the way for getting direct informati
about the material system from measured TFG spectra~see
also papers@5–7,26#!. The procedure requires, of course, t
TFG SE spectra to be available with a considerable accur
both with respect to time and frequency.
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