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Statistical properties of hollow atoms
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We investigate the statistical properties of a prototype of a “hollow atom,” i.e., an atom having a large
number of empty inner shells. In particular, we have carriedadwtnitio calculations of the positions and
widths of the ¥24/° states of nitrogen. These states give rise to a dense spectrum of strongly overlapping
resonances. Due to the large number of open channels, the statistical description of the system simplifies
considerably. We find that the distribution of the nearest-neighbor energy-level spacings follows a Wigner
distribution, while the widths of the states are narrowly distributed about the average perturbative width.
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[. INTRODUCTION exhibit the same universal spectral fluctuations. It has also
been realized that RMT provides a general framework for
“Hollow atoms” have all or nearly all electrons in excited studying quantum manifestations of chaotic dynamics in
shells. Such atomic states can be created by electron transfémple systems having few degrees of freeddmh,22—24.
in a variety of collision processes involving highly chargedIn particular, Rydberg states of atomic hydrogen in micro-
ions. For example, when highly charged ions collide with awave, electric, and magnetic fields have been studied in de-
metallic surface, hollow atoms are formed in front of andtail [25—-28.
below the surface by resonant electron transfér3]. These developments have led to a renewed interest in ex-
Closely related experiments have been carried out using eited multielectron atomic systems. The Coulomb repulsion
thin metal foil target with straight microcapillariep4]. between electrons in such systems gives rise to complex
Highly charged ions passing through the capillary are neuspectra of strongly interacting statgk7,18. For example,
tralized by electrons captured in highly excited shells. Thedoubly excited states of helium up to tiN=9 ionization
atoms, which are expected to have preserved at least partialtiireshold have been investigated experimentally and theo-
their hollow charge distribution as they exit the capillary, areretically [29—31]. As the double-ionization threshold is ap-
extracted in vacuum and x-ray emission is observed. Multiproached, the density of doubly excited Rydberg states as
electron capture can also occur during collisions involvingwell as the interaction between the resonances increases sig-
highly charged ions and neutral atoms or molecules, resultificantly. For the Rydberg states converging to thie9
ing in the formation of hollow atomfs,6]. For example, in  threshold, an RMT analysis of the nearest-neighbor level
collisions between X&' and neutral Xe, up to 15 electrons spacing distribution displays a transition to a Wigner distri-
are captured from the target in excited states of the projectilbution [32]. Flambaum and co-workei83-37 have pre-
[7]. More recently, collisions between highly charged ionssented detailed theoretical studies of the excited states of the
and cluster targets, in particular, fullerenes, have been th€e atom, Conneradet al. [38] have performed a multicon-
subject of experimental and theoretical investigatig®®].  figuration Dirac-Fock study of Srstates arising from the
When X&' ions interact with Gy, as many as 60 electrons excitation of the 4 core shell and O’Sullivaret al. [39]
can be involved in the charge-transfer mechan(isfi. have investigated the lowestf4-5d and 5—5d transi-
Hollow atoms decay principally by Auger emission, andtions for Smx. In these works, a configuration-interaction
theoretical calculations of the positions and lifetimes of mul-(Cl) approach was used, and the statistical properties of the
tiply excited states often constitute the only informationsystem investigated, in particular, the nearest-neighbor
available for assistance in interpreting the complex spectranergy-level spacing.
that are measured. With the exception of investigations of In this paper, we analyze a prototype of a highly excited
triply excited states of lithium, the number of theoretical system having a dense spectrum of autoionizing states. Spe-
studies of multiply excited states is limited: calculations arecifically, we consider the quintuply exciteds¥/® 2p°
difficult and time consuming since the number of states instates in neutral nitrogen and determine the distribution of
creases dramatically with the number of excited electronshe position and widths of the resonant states. The paper is
and the principal quantum number of the occupied orbital®organized as follows. In the following section we describe
[11]. In addition, the density of states becomes very largehe theoretical methods used to calculate the properties of
and is characterized by irregular spectra of strongly interacthollow nitrogen. A summary of the Feshbach projection op-
ing resonances. This makes such spectra amenable to a staator formalism is given first. We then describe the Hartree-
tistical description based on the random matrix theoryFock-Cl approach used to calculate the positions and the
(RMT) [12-14. Originally developed to describe complex widths of the states. The high energy-level density and large
nuclear spectrgl2,15,16, RMT has been applied to analyze autoionization widths give rise to overlapping resonances
a wide range of quantum systems, including atqis18  [40], so that a simple perturbative description of the decay
and polyatomic moleculgsl9-21]. All have been shown to process is not priori valid. The calculated positions and
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widths are then used to construct an effective non-Hermitiatdere P refers to the “principal value distribution.” The spec-
Hamiltonian matrix, which is diagonalized, thereby yielding trum of Hq is purely discrete with the eigenstates having
the complex energies characterizing the resonant states. Ocomplex eigenvalues§; . In atomic units(a.u), these eigen-
results are then discussed and compared to predictions @hlues are written as

RMT.

£—E - 2.6

Il. OVERLAPPING RESONANCES =R 2.8
Our starting point is the nonrelativistic Hamiltonian of the

. . . with the imaginary part being equal to the negative of one-
atomic system, which we write as ginary p g €9 g

half of the rate that characterizes the exponential decay of the

B states.
H=Ho+V, 2.9) In order to obtain a solution of Eq2.4), the following

with H, and V being the one- and two-body terms, respec:_appro.ximations are madg. First, the secqnd term in the ex-
tively. Calculating properties of the resonant states by diPression forh(E) above is neglected. This amounts to as-
rectly solving the time-independent Sctioger equation is  SUMINg that the shifts induced by the coupling of the dlscre_te
not practical, and we, therefore, proceed as follows. Thstates to the open channel_s are small compart—;-d to the typical
1s%4,/5 2P° states are resonant or quasistationary states, $J'€r9y spacings of the eigenstates@fQ. This has the

first we obtain an effective Hamiltonian for the system em-consequence thai(E) is no longer energy dependent. Next,
ploying the Feshbach operator formalism. The operafors the energy dependence wf(E) is removed by fixing the
andQ=1— P are introduced, which satisfy the usual projec- €nergies of the channel stqtes in the narrow energy region of
tion operator relations, with the requirement that the actiori"terest. How these energies are chosen is discussed below.
of P on a channel state does not change this state. In oth&/oW, assuming that the channel stafésE) satisfy P(H
words, the operatoP projects onto the continuum states of — E)P|k,E)=0, we can write

the system while the complementary opera@rprojects

onto the discrete states. These operators can now be used to
partition the Hamiltonian(2.1) into two effective energy-
dependent Hamiltonians. In the discrete space, the required
effective Hamiltonian is

Ho(E)=QHQ+QVPGS(E)PVQ, (2.2

with the Green’s operator defined by

K
W(E)= wkgl QV|k,EXk,E|[VQ

K
=72 QVIkE)(KEJVQ, 2.7

with k=1, ... K labeling the decay channels. The problem
of determining the positions and widths of the resonant states
has now been reduced to an eigenvalue problem. In the fol-

(2.3 lowing section, we discuss the model space used in our cal-
culations.

By~
G (B = pE—HTioP

In our case, th&) subspace an& subspace are coupled by
the two_body Operatov and, thereforeQH P= QVP and I1l. CALCULATION OF DISCRETE AND CHANNEL
PHQ=PVQ. The first term of the effective Hamiltonian is WAVE FUNCTIONS

simply the Hamiltonian acting in the discrete subspace. The We follow the procedure of Vaeck and Handan], who

second term represents the coupling of the discrete states o, e stdied the autoionization of multiply excited states in

the open channels, the diagonal elements of which are t trogen ions using the suite of programs written by Cowan

'f?duced shifts and. widths in Fhe absence of thg rémaining, ). First a basis set of Hartree-Fock states for the discrete
discrete states, while the off-diagonal elements give the co

. . : ““states are calculated. For the quintuply excited4k’® 2P°
pling of the discrete levels through the continuum. Since d Py

bound diti h b ) donG ) states considered in Rdfl1], only a restricted number of
oundary conditions have been imposed on Green's operatql, i rations were retained. We have extended this calcula-

which co_rrespond to outgoing waves, _the seconq term in thﬁon to the 24 configurations of the Layzer complex, which
Hamiltonian of Eq.(2.2) is non-Hermitian. The eigenvalue are the main interacting configurations. This resultsNin

problem to be solved in the discrete subspace can then b§237 2po gtates in the 4245 manifold. Our basis states in
expressed as

the Q subspace are then expressed as a superposition of the
[h(E)—iw(E)]|Q¥)=&|QW)), 2.4 (orthogonalizeyl Hartree-Fock state$g(y;LS)),

. N
with H(LS)=, c1)|H(LS), (3.

P(E-H)P where y; denotes the coupling scheme and any other quan-
tum numbers necessary to define the state. The expansion

W(E)=7QVPS§ P(E-H)P]PVQ. (2.5 coefficientsc; ; are obtained by solving the eigensystem

h(E)=QHQ+ QVP[ P;} PVQ,
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hC|:€|C| . (3.2) g 80 ' j T ' T ) T
The matrix elements dfi areh; j=(¢(¥LS)|H|4(y,LS)), é 60 i 2 J
with the diagonal elements being the Hartree-Fock energies, @
hii= €. Thee are the eigenenergies of the basis statesin 5, | |
the Q subspace. The projection operator in the discrete sub-
space can then be expressed as <§ 2
N T
Q=2 [#(LS)Nwi(LS)]. (3.3 ~ 0 = ==
i=1 % 0 0.003 0.006 0.009 0.012
Due to the strong mixing, it is not possible to label the eigen- 15 ]
vectors of the system by a set of quantum numbers corre- 3 M b)
sponding to a dominant Hartree-Fock state. We note that the £ 29 |- T i
average energy of each of the?8/4/2 configurations lies =) -
below the 5%4/° manifold. This has the consequence that g
the configuration-averaged energy of every member of the & 1o | /[ | — ]
Rydberg series £3/4/3n/ is located below the £4/° 2 '
configurations used here. Therefore, mixing between the §
Rydberg series and thes¥4/° states, encountered in other 0

n | 1 | I =
0 0.0025 0.005 0.0075 0.01

systemg42,43, does not significantly influence the system Level Spacing (a.u.)

considered here.
Z-I-he ]§24f/;5 ’P° states autoionize to 4980 possible  giG. 1. Level spacing distributions. In the upper figure, a histo-
1s°3/4/ ¢/ “P° channels via Coster-Kronig transitions. gram of the Hartree-Fock level spacings, i.e., the spacing of the
These transitions are by far the dominant decay channelgjagonal matrix elements of the Hamiltonian matfixis shown.
For the channel states, we again calculate a basis of Hartreghe solid curve is a Poisson distribution, with mean spading
Fock states, |xi(vdLcSclew/LS)), with k=1,...K =0.002 27 a.u. The lower figure shows histograms of the spacing
=4980 andy[L.S.] denoting the coupling scheme and the distribution of the eigenvalues tf (solid lineg and the real part of
total symmetry of the target core. We next assume that théhe eigenvalues gH (broken lineg. The mean spacing is the same

Hartree-Fock channel states approximately diagon&lze, for both distributions. A Wigner distributiofsolid curve with D
ie., =0.00408 a.u. is also plotted.

(xxIH|xk)= 8¢k Ex. (3.9 K

=V = Ky Tk .
While the interaction between some of the configurations of (W) =m(VIV), WI(Zl (V)'Vy, S

the channel states is sufficiently large to call into question

this approximation, it greatly simplifies the calculations. Theyhere

energy of the ejected electren has been chosen so tHat

corresponds to the average of the energy differences between N N

each of tht_e $24/5 configurations and thg corresponding. V:(=<Xk|V|</fi>=z Ci,j(Xk|V|¢j>:_E Ci,jVJ(O)k.

target configuration. The energy of the ejected electron is j=1 j=1

determined principally by the angular momentum of thé 3 (3.9
electron. Depending on the configuration, the energy is

~0.47 a.u. for a 8 electron, 0.36 a.u. for aBelectron, and In the following section we investigate some of the statistical

0.32 a.u. for a & electron. properties of the system. We begin by determining the
In this Hartree-Fock approximation, the operatonow  nearest-neighbor level spacing distributions of the diagonal
takes the form elements and eigenvalues tof
K
w=m2 QVixdrlLeScle/L9)) V- RESULTS
N A. Eigenvalues in the discrete subspace
X (X(veLeScle/LS)VQ. (3.5 In Fig. 1 histograms of the level spacing distribution of

g]e Hartree-Fock energieéo) and the eigenvalues of the
matrix h are shown. The distributions have been obtained by
following the usual “unfolding” procedurgsee, e.g., Ref.

Using the truncated expansions for the discrete and chann
state spaces, the eigenvalues of Eq4) are determined by

solving [23]), whereby energy spacings are determined from fluctua-
de(H—&)=dele—iw—&)=0, (3.6)  tions about a mean cumulative energy distribution. If the
energy levels of a system are not correlated, the level spac-
with ings follow a Poisson distribution
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P(S)=D ‘lexp—S/D). (4.1
In Fig. 1(a), a histogram of the Hartree-Fock spacing and a 200
Poisson distribution(solid curve with a mean spacind
=2.3x10"2 a.u. are shown. Good agreement between the
two distributions is observed. Figuréh) shows a histogram
of the level spacing distribution of the eigenvaluggsolid
lines) and the real part of the eigenvalués(broken lines.
We discuss the latter results in greater detail below; however,
for now we note only that the mean level spacing-4.1
X102 a.u. is the same for both distributions. 50

The level spacing distribution for a strongly interacting,

or highly correlated, system can be derived by considering a
Gaussian orthogonal ensemhbl€OE) of matrices. For a 0
two-state system, one obtains the Wigner distribution

150

0o 50 100 150 200
5 FIG. 2. The nonzero matrix elementstafThe matrix elements
o T 5 are grouped by configuration and arranged according to the average
P(S)= ZDzseX 2 E ) (4.2 Hartree-Fock energy of the configuration. Note that 44% of the
matrix elements are nonzero.

This result also holds to a good approximation for systems

having more than two states. Good agreement is observeslgood approximation Gaussian. We note that separating the
between the calculated level spacing distribution and the&ondiagonal matrix elements of the Hamiltonian into two
Wigner distribution(solid curve. The distributions in Figs. sets has been proposed by Wilsetral. [44] in their theoret-

1(a) and 1b) correspond to limiting cases of, respectively, ical study of the $°3d*—3p®3d34f transitions in Fe.

level clustering and level repulsion. In particular, the intro-They showed that the distribution of the nondiagonal matrix
duction of electron-electron correlation leads a significanielements between states arising from a single configuration

overall spreading of the eigenvalue distribution. followed a bi-Gaussian distribution, with the larger matrix
elements involving basis states where the parent shell is of a
B. Matrix elements and eigenvectors common term. The system considered here has nearly no

We h that th t-neiahbor level . d.core structure, and hence the coupling scheme of #i@ 4
€ have seen Ihat the nearest-neignoor 1evel spacing Aijacrons s rather arbitrary as is the choice of the parent

ihti 24 /5 ; i i
trllbut|on of the 54/™ states of mtrogen. IS N agreemen@ term. For these reasons, the partition proposed in R,
with the spectrum expected from a GOE, in which the matriXyoes not apply
elements are normally and independently distributed. How- Investigations of the distribution of the eigenvector coef-

ever, in practice the distribution of matrix elements will de- ficients have demonstrated “localization,” whereby basis
pend on the basis used. The two-body nature of the eleCtro'%'tates having energi&&fo) within an inteth’;ﬂFloc centered

electron interaction leads to a relatively sparse Hamiltonian . - .
. . . . about the eigenstate energyhave coefficients that contrib-
matrix when a basis of Hartree-Fock states is used; all the

L . . e Gte most significantly to the eigenvector expansion. This has
off-diagonal elements involving states differing by two or been discussed in, for example, R3], In particular, for a

more electrons or by their grand parent coupling term a"S0E, the distribution should be Lorentzian. For banded ma-
zero. For the system considered here, 44% of the matrix ' '

elements ofh are nonzero. The structure of this matrix is
shown in Fig. 2, with each point on the graph representing
the location of a nonzero element. The Hartree-Fock states
have been ordered by the average energy of the configura-
tions. Figure 2 clearly demonstrates the lack of interactions
between distant configurations. However, due to the large
spread in the energy of the states originating from the same
configuration, this structure nearly disappears when the
Hartree-Fock states are ordered by their enea{&/, as is
illustrated in Fig. 3.

When the zero matrix elements are discarded, the distri-
bution of the nondiagonal Hamiltonian matrix elements is
well represented by a Poisson distribution. A similar expo-
nential decrease in the matrix element distribution was found
by Flambaumet al. [33] for the case of the excited states of 0
Ce. However, if we consider the matrix elements between
states arising from the same configuration, the situation is FIG. 3. The nonzero matrix elementstof The matrix elements
different: the distribution of these 2386 matrix elements is tohave been sorted by increasing value of their Hartree-Fock energy.

200 - %

200

062502-4



STATISTICAL PROPERTIES OF HOLLOW ATOMS PHYSICAL REVIEW &5 062502

0.06 - T - T y T y C. Resonance widths
A a) In the perturbative regime, the mean energy-level spacing
is assumed large compared to the diagonal elements of the
o 00 1 matrix w, ie., |€—e-1|>W;,Wi.q;.1. (Recall that
g Wi Wi 1j+1=|W; i 41]%) Under these conditions
0.02 . [
gizfi_iyi! 4.3
0 . where y;=2w; ; are the perturbative widths of the discrete
0.08 ' N ' states. For the system considered here, the ratio between the
Al b) mean widthy and the mean level spacing }#D ~ 10. This
0.06 [ HIIN 1 would, in general, indicate a strong coupling between the
S - | resonant states, thereby invalidating the approxima#c®.
T ooal ] However, the 237 424/ ?P° autoionizing states can decay
to 4980 continua. Therefore, we are in a situation whére
>N, and the statistical description of the system simplifies
0.02 1 considerably.
For a particular system the matrix eleme!'ff))k can be
005 " ozs 0 o o5 positive or negative with equal probability. Hence, figr

Energy (a.u.) large,

FIG. 4. Distribution of the magnitude squared of the eigenvector K (O)k
coefficients as a function of the energy difference betweerjtthe kz Vi7"=0, (4.9
Hartree-Fock basis state and ttie eigenstate oh. In (a) the dis- -1

t.”t.’uuon contains a." of the coefficients, Wr."le {b) only the coef- with the variance of the distribution of the mean decreasing
ficients corresponding to the 137 central eigenstates are shown. The ', —1» o :
K™%% Let us next assume that the transition amplitudes

solid curves are unnormalized Gaussian distributions with standaraS iated with two diff t Hart Fock stat i
deviations 0=0.083 a.u. andoe=0.116 a.u., respectively. Note associated with two drfierent Rartrée--ock states are not cor-

that the mean positions of the distributions are displaced slightly t({elated' W,h”e we k”QW of no general phySic_al argument to
the right of the origin. support this assumption, we point out that in our case the
K x N matrix V(© is very sparse: each Hartree-Fock state is

) ) ) 0) ) coupled, on average, t§=731 channelgwith a standard
trices, this result still holds whef¥j™ — &/ <I'oc, while @ gaviation of 344. This is due to the fact that is a two-body
modified exponential decay for large energy separations cagperator, so that the only nonzero transition matrix elements
be expected. However, the distribution of the eigenvectogre those involving Hartree-Fock discrete and channel states
coefficients, just as the distribution of the matrix elements othaving the same (4)® coupling scheme. It then follows
h, is basis dependent. In Fig. 4, the distribution of the magthat, forK large,
nitude squared of the eigenvector coefficients as a function
of the energy difference between th Hartree-Fock basis o
state and théth eigenstate oh is shown. In Fig. 4a), the gl VOV =0 for i#]. (4.9
distribution of all of the coefficients is given, while in Fig.

4(b) only the coefficients corresponding to the 137 centralwith this approximation

eigenstates are shown. We find that the latter distribution is

well approximated by a Gaussian distributigsolid curve, K 1

which is consistent with a Lorentzian distribution for small (W)i(f})=7rz Vfo)kvfo)kziyi(o)éi,j , (4.6
energy differences. The form of the wings of the distribution k=1

will depend on the “bandlike” structure of the Hamiltonian
matrix (see Fig. 2[33]. Note the negative skew of the dis-
tributions, which is possibly related to edge effects arisin

K

where they!?) are the Hartree-Fock rates. From this result
gand Eq.(3.7) we then obtain

from the truncated basiéThe “unfolded” energy differences K
were not used to obtain the distributipn. (W) (=72 |V¥2s :Ey. 5 . (4.7
Finally, it is worth mentioning that if it is assumed that the W& T 2

eigenvectors are uniformly distributed onNadimensional
sphere, the eigenvector coefficients are expected to beinally, Eq.(4.7) implies that the complex eigenvalues®f
Gaussian distributed with standard deviatigh [23]. For ~ are simply

the system considered here, the coefficientscorrespond-

ing to the central eigenstates, i.exN/2, are in fact distrib- E—E.—i 526__ i Yi 4.9
uted in this way. o2 2 '
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50 B T T T ] i T T T ]
> 2 10 A
2 40 | a) R g gl a) i
)]
=] | | a AR
2 30 S el i
820 o . B 4L |
S I 3
QL. 10 T 9 2+ A
0 b n o
50 [ ' L — 0
> -0.25 -0.125 0 0.125 0.25
% 40 - ] i Eigenvector Coefficients
[m)] T T T
> 30 B
= 2
<20 = ‘@ 600 [ }] b) 7
c
e @
> 10 E o
- > 400 - i
0 L =
50 - ' ' ] 5
= 8 200 .
2 40 - ] T o
=
- - 0
E‘ 30 -0.004 -0.002 0 0.002 0.004
S 2 . Transition Amplitude (a.u.)
Ko
[e]
g 10r 7 FIG. 6. Normalized distribution of the eigenvector coefficients
0 ) of the matrixh (a) and the elements of the transition matwx(b).
0 0.02 0.04 0. 06 0.08 The solid curve is the distributioR(x) = 1/(2D)exp(—|x//D), with

Rate (a.u.) 2D=0.096 and »=0.0016 a.u., respectively, fg¢a) and (b).

FIG. 5. Distribution of the autoionization rates. The Hartree- distribution with the number of degrees of freedom equal to
Fock ratesy; are shown in(@), y; in (b), andT in (c). The solid  the number of decay channels. For a large number of chan-
curves are Gaussian fits to the distributions. nels, the distribution of widths tends to a Gaussian. Clearly,

for the system investigated here, this equiprobable channel
so that for uncorrelated channels, in the limitkb&N, the  approximation is not applicable. However, we make two ob-
widths of the resonances can be obtained from perturbatioservations. First, the distribution of the ratei‘_ﬁ’) and v; is
theory, even if the resonances are strongly overlapping. Theell modeled by a Gaussian, as can be seen in Fig. 5. Sec-
large number of channels effectively averages out interferend, a direct consequence of the equiprobable channel model
ences between the channels, resulting in the essentially incis that the variance of the distribution of the rates is inversely
herent decay of the hollow atomic states. proportional to the number of channg#s]. The strong mix-

The mean and standard deviation of the off-diagonal maing between the Hartree-Fock levels results in the transition
trix elements of w(® are 85107 au. and 3.5 amplitude matrixV having practically no zero elements. In
X104 a.u., respectively. By comparison, the mean andact, the matrix element¥ are distributed in the same way
standard deV|at|on of the diagonal matrix elementsvéP as the eigenvector coefficients;, as shown in Fig. 6. This
are 2.3<10 2 a.u. and 5.%10 % a.u., respectively. This implies that each autoionization level can decay via all of the
indicates that the approximatioit4.7) and(4.8) should ap- open channels and that, on average, the number of accessible
ply. Before comparing the approximate complex eigenvalueshannels increases by a factor of 6.8 compared with the
with the eigenvalues obtained by solving the eigensysteraeroth-order approximation. From Table |, we see that the
(3.6), let us consider the distribution of the ratg$’ andy; . variance of the distribution ofy; is about a factor of 5.5
These are shown in Figs(& and Fig. %b), respectively. smaller than the variance of the distribution ﬂ(io) (if the
With the approximation that transitions to all the channelsvariances obtained from the Gaussian fit are us€dnsid-
are equiprobable, Porter and Thonjd§] have shown that ering the simplicity of the equiprobable channel model, this
the distributions of the resonance widths are given by’a agreement is noteworthy. However, many channels do not

TABLE |. Statistical parameters for the distributions of the rayé@, vi, andl;.

Rate Mean(a.u) Std. dev.(a.u) Variance Variancefit) K K effective
0 4.5x102 1.1x 102 1.1x10°4 6.0x10°° 731 424
Vi 4.5x10 2 3.4x10°3 1.2x10°° 1.1x10°° 4980 2082
T, 4.5x10 2 3.6x10°3 1.3x10°° 1.3x10°°
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contribute significantly to the rates. If we omit these chan-number of resonant states. In this case, trapped states appear,
nels, under the constraint that the mean and standard devieshich have been studied extensively within a number of con-
tion remain the same up to two significant figures, we obtairtexts[34,47-52. In addition, our results suggest that a fur-

an effective average number of chann@Sg..q.., given in the_r simplification can be made Whe_n determining the distri-
g Biective: J bution of level widths. The mean width of the states can be

Table I. Using these values for the effective number of chan= "~ : . .
nels, the number of channels increases by a factor of 4.§)btalned from the Hartree-Fock widths, which are approxi-

which is in somewhat better agreement with the ratio of th rhately Gaussian distributed, with the variance of the distri-

. : (0) : ) X “bution then corrected by a factor equal to the ratio of thg
variances of the widthg;™ and y; obtained from the Gauss- 57610 channels to the total number of channels. This

ian fits. _ o . simple approximation can be tested by considering other
The fact that the variance of the distribution of the widthsgirongly interacting systems that decay via a large number of
¥? is greater than the variance of the distribution of thegpen channels.
widths y; can be understood from Eqgl.6) and(4.7). Since Our results predict that lifetimes of the quintuply excited
N states $%4/°2P° range between %10 '® and 6
=S e 24 4.9 X 10 ' s. Previous theoretical calculations, performed in
Vi_j: A Cijl™7 : an average-of-configuration approximation without taking
into account correlation effects or the overlap between the
we see that the widthg; are simply a weighted average of resonances, predicted results of the same order of magnitude
the Hartree-Fock widths. but with a larger spread in the distribution of lifetimjeisl].
Finally, we discuss the distribution of the real and imagi- The effect of correlation was estimated and the conclusion

nary parts of the eigenvalues of . As a consequence of reached that it does not change the average autoionization
Eq. (4.6), the distributions are expected to be similar to thedecay rates, but only reduces the variation of the widths. The
distributions of ¢, and v;, respectively. We have already Present statistical analysis confirms this result. Vaeck and
noted that the mean level spacings of the enerjesnde; ~ Hanser{11] also showed that their results did not depend on
are the same. In Fig. 1, differences can be seen between tHz¢ number of core electrons in thse system and predicted
two distributions; however, they are not statistically signifi- imost the same lifetime for thes34/® configuration as for
cant. Table | gives the mean and standard deviation of théhe 154/ configuration in N. If this is true, in general, we

sets of parameters is very good, thereby confirming the valifetime, 5x 1071 s, obtained for collisions of ' with Au
lidity of Eq. (4.9). at 600 eV[53]. However, it should be emphasized that this

lifetime has been extracted from the measurement of the total
V. CONCLUSIONS number of electrons emitted while the ion and the metallic
target interact. On average, about 19 Auger processes occur,
We have investigated some of the statistical properties ofvith the exact distribution of the electrons in the excited
the 237 hollow 524/°2P° states of nitrogen. These reso- shells not being known and the effect of the proximity of the
nant states are strongly overlapping and the number of decagurface difficult to estimate.
channels is much larger than the number of states. We have Experimental studies of hollow atoms produced by elec-
shown that the latter fact results in a number of importantron transfer during collision processes cannot provide pre-
simplifications in the description of the system. Specifically,cise information concerning the Auger decay of these states.
the matrixw(®), and hence the matriw, is to a good ap- However, the development of new generation light sources
proximation diagonal. This has the consequence that, despiteill allow hollow atoms to be studied in more detail. Re-
the widths of the states being much larger than the meaoently, the hollow lithium 222p 2P° state was observed us-
energy separation, the widths can be calculated using pertuing synchrotron photoexcitatiofb4]. This work initiated a
bation theory. This, in turn, implies that the usual techniquedarge number of measurements of triply excited states up to
for describing the spectra of closed systems, in particular, ththe (3/)25/ Rydberg serie$55-59. The new X-ray Free
GOE, can be applied to study the properties of the position&lectron Laser[60] facility will provide light of unprec-
of the resonant states. This is in sharp contrast to the situadented frequencies and intensities, thereby creating new op-
tion in which the number of channels is smaller than theportunities for spectroscopy of hollow atoms.
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