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Statistical properties of hollow atoms
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We investigate the statistical properties of a prototype of a ‘‘hollow atom,’’ i.e., an atom having a large
number of empty inner shells. In particular, we have carried outab initio calculations of the positions and
widths of the 1s24l 5 states of nitrogen. These states give rise to a dense spectrum of strongly overlapping
resonances. Due to the large number of open channels, the statistical description of the system simplifies
considerably. We find that the distribution of the nearest-neighbor energy-level spacings follows a Wigner
distribution, while the widths of the states are narrowly distributed about the average perturbative width.
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I. INTRODUCTION

‘‘Hollow atoms’’ have all or nearly all electrons in excite
shells. Such atomic states can be created by electron tra
in a variety of collision processes involving highly charg
ions. For example, when highly charged ions collide with
metallic surface, hollow atoms are formed in front of a
below the surface by resonant electron transfer@1–3#.
Closely related experiments have been carried out usin
thin metal foil target with straight microcapillaries@4#.
Highly charged ions passing through the capillary are n
tralized by electrons captured in highly excited shells. T
atoms, which are expected to have preserved at least par
their hollow charge distribution as they exit the capillary, a
extracted in vacuum and x-ray emission is observed. Mu
electron capture can also occur during collisions involv
highly charged ions and neutral atoms or molecules, res
ing in the formation of hollow atoms@5,6#. For example, in
collisions between Xe271 and neutral Xe, up to 15 electron
are captured from the target in excited states of the proje
@7#. More recently, collisions between highly charged io
and cluster targets, in particular, fullerenes, have been
subject of experimental and theoretical investigations@8,9#.
When Xe251 ions interact with C60, as many as 60 electron
can be involved in the charge-transfer mechanism@10#.

Hollow atoms decay principally by Auger emission, a
theoretical calculations of the positions and lifetimes of m
tiply excited states often constitute the only informati
available for assistance in interpreting the complex spe
that are measured. With the exception of investigations
triply excited states of lithium, the number of theoretic
studies of multiply excited states is limited: calculations a
difficult and time consuming since the number of states
creases dramatically with the number of excited electr
and the principal quantum number of the occupied orbi
@11#. In addition, the density of states becomes very la
and is characterized by irregular spectra of strongly inter
ing resonances. This makes such spectra amenable to a
tistical description based on the random matrix the
~RMT! @12–14#. Originally developed to describe comple
nuclear spectra@12,15,16#, RMT has been applied to analyz
a wide range of quantum systems, including atoms@17,18#
and polyatomic molecules@19–21#. All have been shown to
1050-2947/2002/65~6!/062502~8!/$20.00 65 0625
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exhibit the same universal spectral fluctuations. It has a
been realized that RMT provides a general framework
studying quantum manifestations of chaotic dynamics
simple systems having few degrees of freedom@14,22–24#.
In particular, Rydberg states of atomic hydrogen in mic
wave, electric, and magnetic fields have been studied in
tail @25–28#.

These developments have led to a renewed interest in
cited multielectron atomic systems. The Coulomb repuls
between electrons in such systems gives rise to com
spectra of strongly interacting states@17,18#. For example,
doubly excited states of helium up to theN59 ionization
threshold have been investigated experimentally and th
retically @29–31#. As the double-ionization threshold is ap
proached, the density of doubly excited Rydberg states
well as the interaction between the resonances increases
nificantly. For the Rydberg states converging to theN59
threshold, an RMT analysis of the nearest-neighbor le
spacing distribution displays a transition to a Wigner dis
bution @32#. Flambaum and co-workers@33–37# have pre-
sented detailed theoretical studies of the excited states o
Ce atom, Conneradeet al. @38# have performed a multicon
figuration Dirac-Fock study of SrI states arising from the
excitation of the 4p core shell and O’Sullivanet al. @39#
have investigated the lowest 4f→5d and 5p→5d transi-
tions for SmIX. In these works, a configuration-interactio
~CI! approach was used, and the statistical properties of
system investigated, in particular, the nearest-neigh
energy-level spacing.

In this paper, we analyze a prototype of a highly excit
system having a dense spectrum of autoionizing states.
cifically, we consider the quintuply excited 1s24l 5 2Po

states in neutral nitrogen and determine the distribution
the position and widths of the resonant states. The pape
organized as follows. In the following section we descri
the theoretical methods used to calculate the propertie
hollow nitrogen. A summary of the Feshbach projection o
erator formalism is given first. We then describe the Hartr
Fock-CI approach used to calculate the positions and
widths of the states. The high energy-level density and la
autoionization widths give rise to overlapping resonan
@40#, so that a simple perturbative description of the dec
process is nota priori valid. The calculated positions an
©2002 The American Physical Society02-1
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NATHALIE VAECK AND NIELS J. KYLSTRA PHYSICAL REVIEW A 65 062502
widths are then used to construct an effective non-Hermi
Hamiltonian matrix, which is diagonalized, thereby yieldin
the complex energies characterizing the resonant states.
results are then discussed and compared to prediction
RMT.

II. OVERLAPPING RESONANCES

Our starting point is the nonrelativistic Hamiltonian of th
atomic system, which we write as

H5H01V, ~2.1!

with H0 and V being the one- and two-body terms, respe
tively. Calculating properties of the resonant states by
rectly solving the time-independent Schro¨dinger equation is
not practical, and we, therefore, proceed as follows. T
1s24l 5 2Po states are resonant or quasistationary states
first we obtain an effective Hamiltonian for the system e
ploying the Feshbach operator formalism. The operatorP
andQ512P are introduced, which satisfy the usual proje
tion operator relations, with the requirement that the act
of P on a channel state does not change this state. In o
words, the operatorP projects onto the continuum states
the system while the complementary operatorQ projects
onto the discrete states. These operators can now be us
partition the Hamiltonian~2.1! into two effective energy-
dependent Hamiltonians. In the discrete space, the requ
effective Hamiltonian is

HQ~E!5QHQ1QVPGP
(1)~E!PVQ, ~2.2!

with the Green’s operator defined by

GP
(1)~E!5

1

P~E2H1 ie!P
. ~2.3!

In our case, theQ subspace andP subspace are coupled b
the two-body operatorV and, therefore,QHP5QVP and
PHQ5PVQ. The first term of the effective Hamiltonian i
simply the Hamiltonian acting in the discrete subspace. T
second term represents the coupling of the discrete stat
the open channels, the diagonal elements of which are
induced shifts and widths in the absence of the remain
discrete states, while the off-diagonal elements give the c
pling of the discrete levels through the continuum. Sin
boundary conditions have been imposed on Green’s oper
which correspond to outgoing waves, the second term in
Hamiltonian of Eq.~2.2! is non-Hermitian. The eigenvalu
problem to be solved in the discrete subspace can the
expressed as

@h~Ei !2 iw~Ei !#uQC i&5Ei uQC i&, ~2.4!

with

h~E!5QHQ1QVPFP
1

P~E2H !PGPVQ,

w~E!5pQVPd@P~E2H !P#PVQ. ~2.5!
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Here P refers to the ‘‘principal value distribution.’’ The spe
trum of HQ is purely discrete with the eigenstates havi
complex eigenvaluesEi . In atomic units~a.u.!, these eigen-
values are written as

Ei5Ei2 i
G i

2
, ~2.6!

with the imaginary part being equal to the negative of on
half of the rate that characterizes the exponential decay of
states.

In order to obtain a solution of Eq.~2.4!, the following
approximations are made. First, the second term in the
pression forh(E) above is neglected. This amounts to a
suming that the shifts induced by the coupling of the discr
states to the open channels are small compared to the ty
energy spacings of the eigenstates ofQHQ. This has the
consequence thath(E) is no longer energy dependent. Nex
the energy dependence ofw(E) is removed by fixing the
energies of the channel states in the narrow energy regio
interest. How these energies are chosen is discussed b
Now, assuming that the channel statesuk,E& satisfy P(H
2E)Puk,E&50, we can write

w~E!5p(
k51

K

QVuk,E&^k,EuVQ

.p(
k51

K

QVuk,Ek&^k,EkuVQ, ~2.7!

with k51, . . . ,K labeling the decay channels. The proble
of determining the positions and widths of the resonant sta
has now been reduced to an eigenvalue problem. In the
lowing section, we discuss the model space used in our
culations.

III. CALCULATION OF DISCRETE AND CHANNEL
WAVE FUNCTIONS

We follow the procedure of Vaeck and Hansen@11#, who
have studied the autoionization of multiply excited states
nitrogen ions using the suite of programs written by Cow
@41#. First a basis set of Hartree-Fock states for the disc
states are calculated. For the quintuply excited 1s24l 5 2Po

states considered in Ref.@11#, only a restricted number o
configurations were retained. We have extended this calc
tion to the 24 configurations of the Layzer complex, whi
are the main interacting configurations. This results inN
5237 2Po states in the 1s24l 5 manifold. Our basis states in
the Q subspace are then expressed as a superposition o
~orthogonalized! Hartree-Fock states,uf(g iLS)&,

uc i~LS!&5(
j 51

N

ci , j uf~g jLS!&, ~3.1!

whereg i denotes the coupling scheme and any other qu
tum numbers necessary to define the state. The expan
coefficientsci , j are obtained by solving the eigensystem
2-2
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STATISTICAL PROPERTIES OF HOLLOW ATOMS PHYSICAL REVIEW A65 062502
hci5e ici . ~3.2!

The matrix elements ofh arehi , j5^f(g iLS)uHuf(g jLS)&,
with the diagonal elements being the Hartree-Fock energ
hi ,i5e i

(0) . Thee i are the eigenenergies of the basis state
the Q subspace. The projection operator in the discrete s
space can then be expressed as

Q5(
i 51

N

uc i~LS!&^c i~LS!u. ~3.3!

Due to the strong mixing, it is not possible to label the eige
vectors of the system by a set of quantum numbers co
sponding to a dominant Hartree-Fock state. We note that
average energy of each of the 1s23l 4l 3 configurations lies
below the 1s24l 5 manifold. This has the consequence th
the configuration-averaged energy of every member of
Rydberg series 1s23l 4l 3nl is located below the 1s24l 5

configurations used here. Therefore, mixing between
Rydberg series and the 1s24l 5 states, encountered in othe
systems@42,43#, does not significantly influence the syste
considered here.

The 1s24l 5 2Po states autoionize to 4980 possib
1s23l 4l 3«l 2Po channels via Coster-Kronig transition
These transitions are by far the dominant decay chann
For the channel states, we again calculate a basis of Har
Fock states, uxk(gc@LcSc#«kl LS)&, with k51, . . . ,K
54980 andgc@LcSc# denoting the coupling scheme and t
total symmetry of the target core. We next assume that
Hartree-Fock channel states approximately diagonalizePHP,
i.e.,

^xkuHuxk8&.dk,k8Ek . ~3.4!

While the interaction between some of the configurations
the channel states is sufficiently large to call into quest
this approximation, it greatly simplifies the calculations. T
energy of the ejected electron«k has been chosen so thatEk
corresponds to the average of the energy differences betw
each of the 1s24l 5 configurations and the correspondin
target configuration. The energy of the ejected electron
determined principally by the angular momentum of the 3l
electron. Depending on the configuration, the energy
'0.47 a.u. for a 3s electron, 0.36 a.u. for a 3p electron, and
0.32 a.u. for a 3d electron.

In this Hartree-Fock approximation, the operatorw now
takes the form

w5p(
k51

K

QVuxk~gc@LcSc#«l LS!&

3^xk~gc@LcSc#«l LS!uVQ. ~3.5!

Using the truncated expansions for the discrete and cha
state spaces, the eigenvalues of Eq.~2.4! are determined by
solving

det~H2Ei !5det~e2 iw2Ei !50, ~3.6!

with
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~w! i , j5p~V†V! i , j5p(
k51

K

~Vi
k!†Vj

k , ~3.7!

where

Vi
k5^xkuVuc i&5(

j 51

N

ci , j^xkuVuf j&5(
j 51

N

ci , jVj
(0)k .

~3.8!

In the following section we investigate some of the statisti
properties of the system. We begin by determining
nearest-neighbor level spacing distributions of the diago
elements and eigenvalues ofh.

IV. RESULTS

A. Eigenvalues in the discrete subspace

In Fig. 1 histograms of the level spacing distribution
the Hartree-Fock energiese i

(0) and the eigenvaluese i of the
matrix h are shown. The distributions have been obtained
following the usual ‘‘unfolding’’ procedure~see, e.g., Ref.
@23#!, whereby energy spacings are determined from fluct
tions about a mean cumulative energy distribution. If t
energy levels of a system are not correlated, the level sp
ings follow a Poisson distribution

FIG. 1. Level spacing distributions. In the upper figure, a his
gram of the Hartree-Fock level spacings, i.e., the spacing of
diagonal matrix elements of the Hamiltonian matrixh is shown.
The solid curve is a Poisson distribution, with mean spacingD
50.002 27 a.u. The lower figure shows histograms of the spac
distribution of the eigenvalues ofh ~solid lines! and the real part of
the eigenvalues ofH ~broken lines!. The mean spacing is the sam
for both distributions. A Wigner distribution~solid curve! with D
50.004 08 a.u. is also plotted.
2-3
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NATHALIE VAECK AND NIELS J. KYLSTRA PHYSICAL REVIEW A 65 062502
P~S!5D21exp~2S/D !. ~4.1!

In Fig. 1~a!, a histogram of the Hartree-Fock spacing and
Poisson distribution~solid curve! with a mean spacingD
52.331023 a.u. are shown. Good agreement between
two distributions is observed. Figure 1~b! shows a histogram
of the level spacing distribution of the eigenvaluese i ~solid
lines! and the real part of the eigenvaluesEi ~broken lines!.
We discuss the latter results in greater detail below; howe
for now we note only that the mean level spacingD54.1
31023 a.u. is the same for both distributions.

The level spacing distribution for a strongly interactin
or highly correlated, system can be derived by considerin
Gaussian orthogonal ensemble~GOE! of matrices. For a
two-state system, one obtains the Wigner distribution

P~S!5
p

2D2
SexpS 2

p

4

e2

D2D . ~4.2!

This result also holds to a good approximation for syste
having more than two states. Good agreement is obse
between the calculated level spacing distribution and
Wigner distribution~solid curve!. The distributions in Figs.
1~a! and 1~b! correspond to limiting cases of, respective
level clustering and level repulsion. In particular, the intr
duction of electron-electron correlation leads a signific
overall spreading of the eigenvalue distribution.

B. Matrix elements and eigenvectors

We have seen that the nearest-neighbor level spacing
tribution of the 1s24l 5 states of nitrogen is in agreeme
with the spectrum expected from a GOE, in which the ma
elements are normally and independently distributed. Ho
ever, in practice the distribution of matrix elements will d
pend on the basis used. The two-body nature of the elect
electron interaction leads to a relatively sparse Hamilton
matrix when a basis of Hartree-Fock states is used; all
off-diagonal elements involving states differing by two
more electrons or by their grand parent coupling term
zero. For the system considered here, 44% of the ma
elements ofh are nonzero. The structure of this matrix
shown in Fig. 2, with each point on the graph represent
the location of a nonzero element. The Hartree-Fock st
have been ordered by the average energy of the config
tions. Figure 2 clearly demonstrates the lack of interacti
between distant configurations. However, due to the la
spread in the energy of the states originating from the sa
configuration, this structure nearly disappears when
Hartree-Fock states are ordered by their energye i

(0) , as is
illustrated in Fig. 3.

When the zero matrix elements are discarded, the di
bution of the nondiagonal Hamiltonian matrix elements
well represented by a Poisson distribution. A similar exp
nential decrease in the matrix element distribution was fo
by Flambaumet al. @33# for the case of the excited states
Ce. However, if we consider the matrix elements betwe
states arising from the same configuration, the situation
different: the distribution of these 2386 matrix elements is
06250
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a good approximation Gaussian. We note that separating
nondiagonal matrix elements of the Hamiltonian into tw
sets has been proposed by Wilsonet al. @44# in their theoret-
ical study of the 3p53d4→3p53d34 f transitions in FeVI.
They showed that the distribution of the nondiagonal ma
elements between states arising from a single configura
followed a bi-Gaussian distribution, with the larger matr
elements involving basis states where the parent shell is
common term. The system considered here has nearly
core structure, and hence the coupling scheme of thel 5

electrons is rather arbitrary as is the choice of the par
term. For these reasons, the partition proposed in Ref.@44#
does not apply.

Investigations of the distribution of the eigenvector co
ficients have demonstrated ‘‘localization,’’ whereby bas
states having energiese j

(0) within an intervalG loc centered
about the eigenstate energye i have coefficients that contrib
ute most significantly to the eigenvector expansion. This
been discussed in, for example, Ref.@33#. In particular, for a
GOE, the distribution should be Lorentzian. For banded m

FIG. 2. The nonzero matrix elements ofh. The matrix elements
are grouped by configuration and arranged according to the ave
Hartree-Fock energy of the configuration. Note that 44% of
matrix elements are nonzero.

FIG. 3. The nonzero matrix elements ofh. The matrix elements
have been sorted by increasing value of their Hartree-Fock ene
2-4
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STATISTICAL PROPERTIES OF HOLLOW ATOMS PHYSICAL REVIEW A65 062502
trices, this result still holds whenue j
(0)2e i u&G loc , while a

modified exponential decay for large energy separations
be expected. However, the distribution of the eigenvec
coefficients, just as the distribution of the matrix elements
h, is basis dependent. In Fig. 4, the distribution of the m
nitude squared of the eigenvector coefficients as a func
of the energy difference between thej th Hartree-Fock basis
state and thei th eigenstate ofh is shown. In Fig. 4~a!, the
distribution of all of the coefficients is given, while in Fig
4~b! only the coefficients corresponding to the 137 cen
eigenstates are shown. We find that the latter distributio
well approximated by a Gaussian distribution~solid curve!,
which is consistent with a Lorentzian distribution for sm
energy differences. The form of the wings of the distributi
will depend on the ‘‘bandlike’’ structure of the Hamiltonia
matrix ~see Fig. 2! @33#. Note the negative skew of the dis
tributions, which is possibly related to edge effects aris
from the truncated basis.~The ‘‘unfolded’’ energy differences
were not used to obtain the distribution.!

Finally, it is worth mentioning that if it is assumed that th
eigenvectors are uniformly distributed on aN-dimensional
sphere, the eigenvector coefficients are expected to
Gaussian distributed with standard deviationAN @23#. For
the system considered here, the coefficientsci , j correspond-
ing to the central eigenstates, i.e.,i .N/2, are in fact distrib-
uted in this way.

FIG. 4. Distribution of the magnitude squared of the eigenvec
coefficients as a function of the energy difference between thej th
Hartree-Fock basis state and thei th eigenstate ofh. In ~a! the dis-
tribution contains all of the coefficients, while in~b! only the coef-
ficients corresponding to the 137 central eigenstates are shown
solid curves are unnormalized Gaussian distributions with stan
deviations s50.083 a.u. ands50.116 a.u., respectively. Not
that the mean positions of the distributions are displaced slightl
the right of the origin.
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C. Resonance widths

In the perturbative regime, the mean energy-level spac
is assumed large compared to the diagonal elements o
matrix w, i.e., ue i2e i 61u@wi ,i ,wi 61,i 61. ~Recall that
wi ,iwi 11,i 11>uwi ,i 11u2.! Under these conditions

Ei.e i2
i

2
g i , ~4.3!

whereg i52wi ,i are the perturbative widths of the discre
states. For the system considered here, the ratio betwee
mean widthḡ and the mean level spacing isḡ/D;10. This
would, in general, indicate a strong coupling between
resonant states, thereby invalidating the approximation~4.3!.
However, the 237 1s24l 5 2Po autoionizing states can deca
to 4980 continua. Therefore, we are in a situation whereK
@N, and the statistical description of the system simplifi
considerably.

For a particular system the matrix elementVi
(0)k can be

positive or negative with equal probability. Hence, forK
large,

(
k51

K

Vi
(0)k.0, ~4.4!

with the variance of the distribution of the mean decreas
as K21/2. Let us next assume that the transition amplitud
associated with two different Hartree-Fock states are not
related. While we know of no general physical argument
support this assumption, we point out that in our case
K3N matrix V(0) is very sparse: each Hartree-Fock state
coupled, on average, toK̄5731 channels~with a standard
deviation of 344!. This is due to the fact thatV is a two-body
operator, so that the only nonzero transition matrix eleme
are those involving Hartree-Fock discrete and channel st
having the same (4l )3 coupling scheme. It then follows
that, forK large,

(
k51

K

Vi
(0)kVj

(0)k.0 for iÞ j . ~4.5!

With this approximation

~w! i , j
(0)5p(

k51

K

Vi
(0)kVj

(0)k.
1

2
g i

(0)d i , j , ~4.6!

where theg i
(0) are the Hartree-Fock rates. From this res

and Eq.~3.7! we then obtain

~w! i , j.p(
k51

K

uVi
ku2d i , j5

1

2
g id i , j . ~4.7!

Finally, Eq.~4.7! implies that the complex eigenvalues ofH
are simply

Ei5Ei2 i
G i

2
.e i2 i

g i

2
, ~4.8!
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NATHALIE VAECK AND NIELS J. KYLSTRA PHYSICAL REVIEW A 65 062502
so that for uncorrelated channels, in the limit ofK@N, the
widths of the resonances can be obtained from perturba
theory, even if the resonances are strongly overlapping.
large number of channels effectively averages out inter
ences between the channels, resulting in the essentially i
herent decay of the hollow atomic states.

The mean and standard deviation of the off-diagonal m
trix elements of w(0) are 8.531027 a.u. and 3.5
31024 a.u., respectively. By comparison, the mean a
standard deviation of the diagonal matrix elements ofw(0)

are 2.331022 a.u. and 5.331023 a.u., respectively. This
indicates that the approximations~4.7! and ~4.8! should ap-
ply. Before comparing the approximate complex eigenval
with the eigenvalues obtained by solving the eigensys
~3.6!, let us consider the distribution of the ratesg i

(0) andg i .
These are shown in Figs. 5~a! and Fig. 5~b!, respectively.
With the approximation that transitions to all the chann
are equiprobable, Porter and Thomas@45# have shown that
the distributions of the resonance widths are given by ax2

FIG. 5. Distribution of the autoionization rates. The Hartre
Fock ratesg i

0 are shown in~a!, g i in ~b!, andG i in ~c!. The solid
curves are Gaussian fits to the distributions.
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distribution with the number of degrees of freedom equa
the number of decay channels. For a large number of ch
nels, the distribution of widths tends to a Gaussian. Clea
for the system investigated here, this equiprobable chan
approximation is not applicable. However, we make two o
servations. First, the distribution of the ratesg i

(0) and g i is
well modeled by a Gaussian, as can be seen in Fig. 5. S
ond, a direct consequence of the equiprobable channel m
is that the variance of the distribution of the rates is invers
proportional to the number of channels@46#. The strong mix-
ing between the Hartree-Fock levels results in the transi
amplitude matrixV having practically no zero elements. I
fact, the matrix elementsV are distributed in the same wa
as the eigenvector coefficientsci , j , as shown in Fig. 6. This
implies that each autoionization level can decay via all of
open channels and that, on average, the number of acces
channels increases by a factor of 6.8 compared with
zeroth-order approximation. From Table I, we see that
variance of the distribution ofg i is about a factor of 5.5
smaller than the variance of the distribution ofg i

(0) ~if the
variances obtained from the Gaussian fit are used!. Consid-
ering the simplicity of the equiprobable channel model, t
agreement is noteworthy. However, many channels do

-

FIG. 6. Normalized distribution of the eigenvector coefficien
of the matrixh ~a! and the elements of the transition matrixV ~b!.
The solid curve is the distributionP(x)51/(2D)exp(2uxu/D), with
2D50.096 and 2D50.0016 a.u., respectively, for~a! and ~b!.
TABLE I. Statistical parameters for the distributions of the ratesg i
(0) , g i , andG i .

Rate Mean~a.u.! Std. dev.~a.u.! Variance Variance~fit! K̄ K̄effective

g i
(0) 4.531022 1.131022 1.131024 6.031025 731 424

g i 4.531022 3.431023 1.231025 1.131025 4980 2082
G i 4.531022 3.631023 1.331025 1.331025
2-6
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contribute significantly to the rates. If we omit these cha
nels, under the constraint that the mean and standard d
tion remain the same up to two significant figures, we obt
an effective average number of channels,K̄effective, given in
Table I. Using these values for the effective number of ch
nels, the number of channels increases by a factor of
which is in somewhat better agreement with the ratio of
variances of the widthsg i

(0) andg i obtained from the Gauss
ian fits.

The fact that the variance of the distribution of the widt
g i

(0) is greater than the variance of the distribution of t
widthsg i can be understood from Eqs.~4.6! and~4.7!. Since

g i5(
j 51

N

uci , j u2g j
(0) , ~4.9!

we see that the widthsg i are simply a weighted average o
the Hartree-Fock widths.

Finally, we discuss the distribution of the real and ima
nary parts of the eigenvaluesEi of H. As a consequence o
Eq. ~4.6!, the distributions are expected to be similar to t
distributions of e i and g i , respectively. We have alread
noted that the mean level spacings of the energiesEi ande i
are the same. In Fig. 1, differences can be seen betwee
two distributions; however, they are not statistically sign
cant. Table I gives the mean and standard deviation of
distributions ofg i andG i . The agreement between the tw
sets of parameters is very good, thereby confirming the
lidity of Eq. ~4.8!.

V. CONCLUSIONS

We have investigated some of the statistical propertie
the 237 hollow 1s24l 5 2Po states of nitrogen. These res
nant states are strongly overlapping and the number of de
channels is much larger than the number of states. We h
shown that the latter fact results in a number of import
simplifications in the description of the system. Specifica
the matrix w(0), and hence the matrixw, is to a good ap-
proximation diagonal. This has the consequence that, de
the widths of the states being much larger than the m
energy separation, the widths can be calculated using pe
bation theory. This, in turn, implies that the usual techniqu
for describing the spectra of closed systems, in particular,
GOE, can be applied to study the properties of the positi
of the resonant states. This is in sharp contrast to the s
tion in which the number of channels is smaller than
, R
ev

d,
R
in

06250
-
ia-
n

-
9,
e

-

the

e

a-

of

ay
ve
t
,

ite
n

ur-
s
e
s
a-
e

number of resonant states. In this case, trapped states ap
which have been studied extensively within a number of c
texts @34,47–52#. In addition, our results suggest that a fu
ther simplification can be made when determining the dis
bution of level widths. The mean width of the states can
obtained from the Hartree-Fock widths, which are appro
mately Gaussian distributed, with the variance of the dis
bution then corrected by a factor equal to the ratio of
nonzero channels to the total number of channels. T
simple approximation can be tested by considering ot
strongly interacting systems that decay via a large numbe
open channels.

Our results predict that lifetimes of the quintuply excite
states 1s24l 5 2Po range between 5310216 and 6
310216 s. Previous theoretical calculations, performed
an average-of-configuration approximation without taki
into account correlation effects or the overlap between
resonances, predicted results of the same order of magn
but with a larger spread in the distribution of lifetimes@11#.
The effect of correlation was estimated and the conclus
reached that it does not change the average autoioniza
decay rates, but only reduces the variation of the widths.
present statistical analysis confirms this result. Vaeck
Hansen@11# also showed that their results did not depend
the number of core electrons in the system and predic
almost the same lifetime for the 1s24l 5 configuration as for
the 1s4l 6 configuration in N. If this is true, in general, w
can compare our results with the only available experime
lifetime, 5310216 s, obtained for collisions of N61 with Au
at 600 eV@53#. However, it should be emphasized that th
lifetime has been extracted from the measurement of the t
number of electrons emitted while the ion and the meta
target interact. On average, about 19 Auger processes o
with the exact distribution of the electrons in the excit
shells not being known and the effect of the proximity of t
surface difficult to estimate.

Experimental studies of hollow atoms produced by el
tron transfer during collision processes cannot provide p
cise information concerning the Auger decay of these sta
However, the development of new generation light sour
will allow hollow atoms to be studied in more detail. Re
cently, the hollow lithium 2s22p 2Po state was observed us
ing synchrotron photoexcitation@54#. This work initiated a
large number of measurements of triply excited states u
the (3l )25l Rydberg series@55–59#. The new X-ray Free
Electron Laser@60# facility will provide light of unprec-
edented frequencies and intensities, thereby creating new
portunities for spectroscopy of hollow atoms.
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