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The method for analytic evaluation of four-particle integrals, proposed by Fromm and Hill, is generalized to
include complex exponential parameters. An original procedure of numerical branch tracking for multiple
valued functions is developed. It allows high precision variational solution of the Coulomb four-body problem
in a basis of exponential-trigonometric functions of interparticle separations. Numerical results demonstrate
high efficiency and versatility of this method.
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[. INTRODUCTION very slow, and many hundreds of basis functions must be
used. A recent calculation of the positronium molecule by

The problem of four particles with the Coulomb interac- Usukuraet al.[1] involved 1600 Gaussian functions. It was
tion plays an important role in atomic and nuclear physics. Isuggested that further expansion of the basis was not practi-
forms a link between the three-body problem that can beal because of increasing computation time and low prob-
solved numerically with very high precision, and many-bodyability of finding good parameters. Thus, more efficient basis
problems, solutions of which are very approximate. Thusfunctions are clearly required.
profound studies of various four-particle systems can provide A method for analytic evaluation of four-particle inte-
valuable insights into physics of systems with greater numgrals, proposed by Fromm and Hi#], opened up possibili-
bers of particles. ties of variational calculation of four-particle systems in a

In addition to the methodological interest, the four-bodybasis of exponential functions of interparticle separations.
problem has unquestionable practical significance. PositroFhis method reduces computation of integrals, needed to de-
nium beams are extensively used in positronium-atom scatermine matrix elements of a four-particle Hamiltonian, to
tering experiments, but the positronium molecule,evaluation of the dilogarithmic functiofb] of various argu-
efe"e"e”, has not been observed experimentally yet. Allments. Application of this method, however, is a very diffi-
existing knowledge of its properties is based on numericatult problem. Because the dilogarithm is a multiple valued
studies[1]. Molecules and ions including meson have at- function, the entire algorithm cannot be used without an ef-
tracted much attention traditionally in connection with thefective procedure of branch and singularity trackings.
problem of the muon catalyzed fusion. Calculations suggest This problem was initially solved by the authors for the
[2] that muonic molecules such s u p* ™ have higher case of real exponential parameters. The first calculations of
nuclear reaction rates than the corresponding three-partickke positronium moleculg6], and several mesic molecules
ions. These examples show that high-precision numerical sg7] in the exponential basis, depending on all six interparticle
lution of the four-body problem is essential for proper under-separations, have demonstrated high efficiency and great po-
standing of various physical phenomena. tential of this method. To the best of our knowledge, nobody

The majority of four-particle systems are nonadiabatic,else has done this yg8].
and cannot be treated within the adiabatic approximation. Because one exponential function is as effective as eight
The only practical way to calculate their energy and properGaussians, a size of the basis can be reduced significantly.
ties is to use the variational approach, taking into account thelowever, an amount of time, needed to compute one matrix
correlated motion of all the particles. Basis functions of theelement, is much larger than for the Gaussian basis. Thus,
Gaussian type, depending on six interparticle separations araptimization of nonlinear parameters is the main difficulty.
several nonlinear parameters, have been extensively used fDeterministic optimizatiorigradient desceihgives excellent
such calculationg1-3]. An important advantage of the results for a relatively small number of exponential basis
Gaussian functions is that all integrals can be easily evalufunctions. Stochastic optimizatioftrial and erroy, used to
ated. The nonlinear parameters are optimized stochasticalgxpand the basis further, is inefficient due to a dramatic in-
[3]; at each step of basis expansion, many functions witltrease in computation time. This fact suggests that a possible
randomly generated parameters are examined, and the funalternative to an enormously large Gaussian basis is a rela-
tion, giving the largest decrease in energy, is added to th8vely short basis of the most efficient and versatile functions
basis. with carefully optimized parameters.

However, unlike real wave functions, the Gaussian func- A natural generalization of the exponential basis is the
tions do not decay exponentially, and do not satisfy the cuspxponential-trigpnometric basis, obtained by replacing real
condition. From this point of view, they are rather unphysi-exponential parameters with complex on¢8]. The
cal. As a result, convergence of the variational procedure igxponential-trigonometric functions have been successfully
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employed in variational calculations of three-particle adia- 4 4

batip systemg10]. They are much more e_fficient than thg dy=ex —E Djcrix|, P.=ex —E Cikljk | -
ordinary exponentials for two reasons. First, they contain i<k i<k

twice as many nonlinear parameters, thus allowing better ap- @

proximation of the wave function. Second, they exhibit Non-tpo<e functions depend on complex parameférg} and
. : . . . i
monotonic dependence on interparticle separations, bein i} In what follows, the notatiorix;, } will always refer to

2,2 2
Fik T rji—ria

able to imitate sharp p_eak§ in wave functions of agi_abati ix quantities, X, with j.k=1,...,4 andj<k, ie.,
systems. The computation time increases onl)_/ insignificantl 12:X13, K14, X253, K24, X34, ASSUMING thakj=X;
in comparison with the case of real exponential parameters. In order to compute matrix elements of the operator of
In order to use the exponential-trigonometric basis in thekinetic energy in Eq(1), one has to evaluate the following
four-body problem, one has to evaluate the four-particle in'quantities: '
tegrals with complex parameters. The problem of branch
tracking in a general complex case is formidable. Every
branch change for every multiple valued function has to be (Pp|cosO | D)= < Dy, (I)C>, (3
taken into account if correct values of the integrals are to be 21 kT ji
ob(tjamed.fAn orlgm?l(snd, Lnewtibly, ;]/erybnontrtljvalplro- d bwherej #Kk, k#1, j#1. The integrands in the last formula
cedure of numerical branch tracking has been develope é(isplay linear and even quadratic dependences on certain in-
the authors. The first variational calculations of four-particle icl i Therefore. in order to obtain matrix
tems in the exponential-trigonometric basis proved ex’gerpartlce separations. Therefore, in order to obta a
tsr)(/esmel romising 11]. They showed that one exponential- elements of the Hamiltonian, E@l), one has to calculate a
trigongmpetric functionI canyreplace seven expongntial funcEOtaI of 43.integralls: one overlgp integral, §ix integrals of the
tions in calculation ofe"e"e*e”, and several dozens of Coulomb interactions, and 36_|ntegrals_, given by .5;'
o . L It turns out, however, that it is possible to avoid compu-
exponentials in studies of adiabatic systdr#|. Therefore, tion of the integrals in Eq(3). It has been shown by one of
it pres_ents a_real aI_ternative to both the exponential an e authors that the matrix .elements of the above Hamil-
Gaé\sltsefrt]hzisglﬁ ];légflﬂgnc?f the calculations involving the ex_tqnian can be_ expressed in terms of the overlap.integral and
: i ' . six Coulomb integrals only12]. Thus, one can write:
ponential and exponential-trigonometric functions have been
published[6,7,11], details of this method have not been re- (Dp|H|®)=H;—Hy—Hs. (4)
ported yet. The purpose of the present paper is to fill this gap.
We present a description of our algorithm that will enable aThe individual terms in Eq(4) are given by the following

reader to implement it as a computer program. expression$12]:

The paper is organized as follows. Section Il A discusses
what integrals are needed to compute matrix elements of a 4 (m;+m,) 1
four-particle Hamiltonian, and how a number of them can be Hi=2> ij—_majﬁql'QkK@a —® > 5
reduced. In Sec. Il B, principles of the original method by I<k 1k Ik
Fromm and Hill are outlined. Section Il C provides informa- 4
tion about multiple valued functions used in the analysis. In H= (m;+my) (D, D) ©®)
Sec. Il D, a simplified procedure of branch tracking in the 2 <k 2mymy jkd Fal=as
case of real parameters is described. Section Il E gives a

ajkSjkt &} Sjl — &jnSjn)

detailed exposition of the method of branch tracking in the 4

most general case, when all the parameters are complex. In H3=E

Sec. Il F, a practical implementation of the branch tracking =1

algorithm is described. The last section presents our conclu-

sions. In these formulas®, is a new function with parameters
{aji}, defined asaj = (bj +cj)/2:

ijajka“ djkdll ' (7)

4
s !
k<l
K,I#]

Il. DESCRIPTION OF THE METHOD 4
A. Matrix elements of four-particle Hamiltonian q)a:ex% _].Zk aikrjk) ' ®
Let us consider a Hamiltonian of a four-particle system i
with the Coulomb interactions: The parametergd;} are defined aslj = (c; —bj.)/2, and
the quantitiegs;} are given by
ﬁz 4 A 4 )
He- o> 205 G (1) 1
2 = mj  j<k Tk Sik= ®, a d, _ajk<q)a|q)a>- 9
i
Herem; andq;, j=1,...,4, aremasses and charges, and The additional index in Eq. (7) is fixed by a conditiom
rix=|r;—ry| are interparticle separations. Our purpose is to#,k,l.
evaluate matrix elements &f with exponential basis func- Therefore, only seven integrals—the overlap integral and
tions six Coulomb integrals, calculated with the functidp—are
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needed to determine the matrix elements of the Hamiltonian, ij)ZZalmamakm.
Eqg. (1). The above formulas are indispensable for any appli-
cation of this method. with the same restrictions on valuesjof k, I, andm.
The functiono is a square root of a sixth-order polyno-
B. Evaluation of four-particle integrals mial in a’s: o= /s, +5S,. The quantitys; in this expression

In this paper, we generalize the method of analytic evalu!® given by

ation of four-particle integrals, proposed by Fromm and Hill 4
[4], to include complex exponential parameters. First, we o _ a2 a2 (a2t — a2 — a2 — a2 — o
would like to recall basic ideas of this method. The following ! j§=:2 1 @im( @) F im ™ @)~ X~ @)~ )
family of integrals is considered: (19

4 where for eaclj: | #1,j; m#1j; |#m. The quantitys, is
n-k—l .
; M ex —j<§k aj i |dV. determined as
(10)

4
j<

J

J({njk}v{ajk}):f (

IN

: . 5= 2, afabnak, (19
Here, {@j} denotes a set of six exponential parameters, = M

X110, (X13, (K14, K23, Apyg, (34, and {njk} iS the corre- )
sponding set of nonnegative integers. The integrand dependghere for each: |,m,k#j; | #m; m#k; | #k. Finally, ﬁ(k‘)
on six interparticle separatiofs;.}. The integration is per- is defined by the following expression:
formed over nine-dimensional space of relative coordinates _ _ _
of four particles:dV=d>r ;,dr 15d°r 1. BV =(a— YN (a+ D). (20)
An integral with alln; =0 is called “generating:”
. In all these formulas, indicesk,l,m change from 1 to 4,
4 and it is assumed that;, = ay; for eachj #Kk. If some indi-
|({“Jk}):f (.<k ik )ex;{ _Zk “J‘krik)dv- (1) ces are not defined uniquely, the formulas are symmetric
: : under their permutations.
All the integrals in Eq(10) can be obtained from the gener- ~ Equation(13) is the main result of this methogh]. It

ating integral, Eq(11), by differentiation: provides an analytic expression for the generating integral,
Eqg. (11). It was pointed ouf4] that there is no need to know
4 .
H ( (9 )njk

an analytic dependence of the generating integral on the pa-
j<k | daji

4

J{npt{aph) = I{ajd). (120 rameters{eyy} to compute the family of integrals, ELO).
According to Eq.(12), all these integrals are derivatives of
the generating integral. Special formulas can be (dédo
calculate numerical values of derivatives of functidgsand
4 4 _ 4 . h(g), if numerical values of derivatives of the functions
2 2 v(yf(’)/a)+2 u(ﬂ(ll),B(l”)}. f, g, andh have already been computed. For example, de-
=1 k=1 I=2 15 [fvatives of the termy (¥{"’/) in Eq.(13) can be obtained in
(13 the following way. First, derivatives af? and y{) with re-
The functionsv(z) and u(z) are expressed in terms of the Spect to{ai'k} are calculated. Then derivatives of a function
dilogarithmic function Li(2): h(z)=z ¢ are computed at= 0. After that, using a for-
mula for derivatives oh(g) with g=¢?, one finds deriva-
u(z)=Li,y(z)—Li,y(1/2), (14)  tives of 1br with respect td a;}. Then, using a formula for
derivatives offg with f=v{) andg=1/o-, one obtains de-
v(z)= 3 Lio[(1—2)/2]—- L Lio[(1+2)/2] (15 rivatives of y{) with respect to{a;}. After that, derivatives
of a functionh(z) =v(z) atz= y{/o are calculated. Finally,
— Inf(1-2)/2]+ L In?[(1+2)/2]. using a formula for derivatives df(g) with g= (/o one
_ can find the derivatives af(yfj)/ o) with respect tof a}.
In Eq. (13) for the generating integraly{’ are third-order ~ Within this approach, all the integrals of E(LO) can be

The generating integral is given by the following formula:

1672

g

|({ajd) =

polynomials ina’s, defined in the following way: evaluated by means of an efficient recursive procedure,
. . . . , working with numbers only.
7I(<J): —M,(')—M(kj)ﬂLMf')JfMﬁjq)v (16) At this point, we can appreciate importance of E@8—
) ) ) ) ) (9). In order to obtain the matrix elements of the Hamil-
7,(’)= +,u(1')+,u(2’)+,u§,')+,u2’), tonian, Eq.(1), we have to compute the mixed derivatives
_ _ . _given by Eq.(12) up to the sixth order only, i.e., fon;,
where for eaclj #k: 1#j,k; m#j,k; I#m. The polynomi-  =0,1, wherej,k=1, ... 4, andj<k. This means that, at
als u)) are defined as follows: each step of the recursive procedure, we calcul&te 62
0 ) ) ) derivatives. If we tried to evaluate the integrals of E8).
py’ = aym( = et @i+ i) 7 directly, it would be necessary to compute the mixed deriva-
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tives in Eq.(12) up to 18th order, i.e., fon; =0, ...,3. The a) b)
number of derivatives, calculated at each step, would in-
crease quadratically. An amount of time, required to carry
out the entire recursive procedure, would be enormous.
Therefore, the original method by Fromm and Hi#l, used

by itself, does not make high-precision calculations of four-
particle systems possible. Only in conjunction with the
method[12] for reducing the number of integrals, it can pro-
duce valuable results.

c) d)
C. The multiple valued functions

The main difficulty in using Eq(13) for the generating
integral is the fact that the functions in this formula are mul-
tiple valued. Indeed, the functiongz) andv(z), given by
Egs.(14) and(15), are expressed in terms of the dilogarith-

mic function Li(z). The dilogarithm is defined as follows
[5]: FIG. 1. Branch cuts in the compleplane, necessary to define

principal branches of the multiple valued functiofe:In(2), branch

) zIn(1-9) points at 0 ande; (b) Li,(z), branch points at 1 and; (c) u(z),

Lix(2)= —j Tdf- (21) branch points at 0, 1, and; and(d) v(z), branch points at I,1,
andoe.

This function is analytic inside the unit circle in the complex

plane: v(z) has branch points at 11, and~; its branch cuts run

from e to ~1 along the negative real axis, and from 10
= n along the positive real axis.
Liy(z)= 2 - |z|<1. (22 Figure 1 exhibits the branch points and cuts for these
n=1n multiple valued functions.
) o i i It is important to note that the functioa, which is
Its values outside the unit circle can be determined using Bresent in Eq(13) and defined using Eq$18) and (19), is

relation[5]: also a multiple valued function. The complex square root has
2 4 branch points at 0 aneb. We choose its branch cut to run
Lix(z)=— T = In2(—2z) — Li,(1/z). (23  along the positive real axis and define the principal branch as
6 2 follows:

In the immediate vicinity of the unit circle, where conver- i
gence of the series in E€R2) is slow, the following relations Vz= \/ﬂex >argz
can be used to shift the argument of(4):

,  O<argz<2m. (27)

It can be seen from the definition of the generating inte-
gral, Eq.(11), that it is a continuous function of parameters
{aji} for all values of these parameters satisfying the follow-
ing conditions:

77_2
Li2(z):F—In(z)ln(l—z)—Liz(l—z), (29

i = L0 (72 =i (—
LIZ(Z)_ 2 IIZ(Z ) LIZ( Z)' (25) a12+ C(13+ a'14>0, a12+ a23+ (124>0, (28)

Presence of the logarithm in Eq®R3) and (24) clearly

. ) L ) 13t dogt @3>0,  aqqt agst ag>0.
indicates that the function k(z) is, in general, multiple val- 13 Tt e 147 Taa T

ued. In order to specify its principal branch we need to fix Qg g3t aggt azs>0,
the principal branch of the logarithm. The complex logarithm
has branch points at 0 and We choose its branch cut to run 1ot agt angt ag>0, (29
along the negative real axis and define the principal branch
as follows: a3t aat axst ax>0.
In(z)=In|z|+i argz, —w<argz<. (26)  These conditions mean, physically, that the wave function of

a system of four particles decreases exponentially when any
This choice determines branch cuts and fixes the principadf the interparticle separations become infinitely large. If the
branch for the dilogarithm, and the function&z) andv(z). parameter§a;} are complex, the above inequalities must be
The function Ly(z) has branch points at 1 ard; its  satisfied by their real parts.
branch cut runs from 1 te along the positive real axis. The The continuity of the generating integral, Ed1), implies
functionu(z) has branch points at 0, 1, ard its branch cut  that the right-hand side of E¢L3) is also a continuous func-
goes from 0 to= along the positive real axis. The function tion of {«j.}. This fact has two important consequences.
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First, the multiple valued functions(z), v(z), ando(2) will be computed correctly at the final point
in Eq. (13) remain continuous while their branches change.(ai,,a13,@14,a93,@24,a34). Therefore, continuity of this
As a point of interest moves in 12-dimensional space of sixntegral is a criterion of the correct branch tracking.
complex parameter$q;y}, the arguments of these functions  Let us define a functior§(p) as the sum in the square
move freely in the complex plane, and their branches changerackets of Eq(13) when the parametefsy;, (p)} are used
repeatedly. However, a computer can evaluate only the pririnstead of{ aj,}:
cipal branch of the logarithm, given by E¢(6), and the
principal branch of the square root, given by E2j/). There-
fore, only the principal branches of the functiong(2),
u(z), v(z), ando(z), defined in the complex plane with the
branch cuts, can be calculated directly. Thus, a special pradur purpose is to ensure that this function is continuous
cedure of branch tracking is necessary to restore continuitglong the path fronp=0 to p=1.

of these functions every time their arguments cross the First, we consider a case wherf(p)>0. The function

4 4 4
S(p)=2, 2 v(Wo)+ 2 u(BBY). (82

branch cuts.

Second, all singularities, which different terms in Etg3)
can have, cancel mutually. These singularities arise when
=0, and when any of the following equalities are satisfied:

—aj|+ajm+ ajn=0,

a“—ajm-i— ajn=0, (30)
aj|+ajm—ajn=0,
where for eachj=1,...,4:1,mn#j; |#m; m#n; |#n.

These singularities are unphysical, and should have no effe
on the value of the generating integral. As a point unde

consideration moves in the space of the paramétegg, the
arguments of the functionsa(z) and v(z) can frequently
appear in the vicinity of the singulgbranch points. As a

result, the values of these functions can exhibit considerabl

change, even if the parameters;} change only slightly.
Therefore, a special procedure for dealing with the singular

ties is needed in order to carry out explicit cancellation of all

singular terms.
This discussion demonstrates that the method of Rgf.

is impossible to use without an effective algorithm for nu-

merical branch and singularity trackings.

D. Branch tracking in the real case

Before discussing a general algorithm of branch tracking,

o(p) is real, and all the arguments of the functiar(g) and

v(z) in Eq.(32) are real as well. It will be shown in Sec. Il E
that only imaginary parts of these functions exhibit disconti-
nuities, when their arguments cross the branch cuts. Because
the generating integral is real, the imaginary parts of the
functionsu(z) andv(z) in Eqg. (32) must cancel anyway.
Therefore, discontinuities in the real part®(fp) may appear
near the singular points of the functionéz) andv(z) only.

The singularities of different terms in EB2) should cancel

one another. However, because of possible branch changes,
complete cancellation may not happen. The formulas of Sec.
Il E suggest that, near the singular pointsugk) andv(z),

r?|11e real part of the functio®(p) can undergo changes by

m?, wherem is some integer. Thus, the functi@{p) can
have finite discontinuities, which are integer multiplesnét
From now on, the branch tracking is only a technical
roblem. To solve it, it is necessary to find all values of the
arameteip between 0 and 1, which correspond to singular

i_points. They include zeros of the sixth-order polynomial

a?(p), and values of, at which the parametersy;(p) }
satisfy any of the conditions of E¢30). Let us denote the
resulting set of numbers 4g;}, j=1, ... n. The correction
function, needed to remove discontinuities of the function
S(p), is given by the following expression:

Cp)==72 2 Nl (S(p;+ €)= S(p;~€))/m°].
| (33

it is beneficial to consider a particular case, when all the

exponential parametefsy;; are real numbers. Let us intro-
duce the following parametrization:

<

aj(p)=(a)—1)p+1, OspsL (31)
As the real parametgrchanges from 0 to 1, the correspond-
ing point in six-dimensional space moves fr@¢in1,1,1,1,1

t0 (@12, @13, 014, @03, @04, 34). If the parameterga;,} sat-
isfy the conditions of Eqs(28) and (29), the parameters
{aj(p)} will satisfy these conditions for ang between 0
and 1. Therefore, the generating integral, given by &8§),

must be a continuous function pf It is known[4] that Eq.

Here, the functiorN;,[ x] returns an integer number, nearest
to the real numbek. The value ofe in actual calculations

was set to 102. The correct value of the generating integral

can now be determined from the formula:

4 4
2, 2 vORlo)+ 2 u(BBY)+ C(l)]
(34)

Therefore, in the case of the real parametgrg}, the
procedure of branch tracking can be implemented without a
detailed numerical analysis of behavior of the multiple val-

(13) with the functionsu(z), v(z), and o(z), represented ued functions. All we need to do is to calculate the function
by their principal branches, yields the correct value forS(p) twice for each singular poing;, encountered along the

the generating integral at the reference pdihtl,1,1,1,1 path fromp=0 top=1, and subtract discontinuities, propor-
If this value changes continuously, as the paramgter tional to 72. The time, needed to determine the correction
goes from 0 to 1, one can be sure that the generating integra@l(1) in Eq. (34), is shorter than the time required to carry
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a) point, p;, at which different terms in Eq13) exhibit singu-
0 1 lar behavior. The path is the same as before, except for a
small semicircle in the vicinity of this point. In case, there
b) are two singular pointgy; andp,, near the real axis between
0 Py 1 0 and 1. The path is more complicated, as shown in the
-/ figure. In general, only those singular points in fhelane,
which are close to the real interval between 0 and 1, are of
<) interest. The path should be carefully defined in the vicinity
Py of every such point to allow precise analysis of behavior of
0| ~ ’ all arguments of the multiple valued functions. The values of
P, p, at which singularities may arise, can be found from the
polynomial equations?(p)=0, and from 12 linear equa-

FIG. 2. Examples of paths in the complpxplane:(a) no sin- tions, contained in E¢(30).

gular points on or near the real axis between 0 andb];one In order to obtain correction functions for the function
singular pointp; on the real axis(c) two singular pointg, andp, u(2z), defined by Eq(14), we have to consider behavior of
near the real axis. The plots are not to scale. this function near its branch points 0, 1, and
out the recursive procedure for the family of integrals. It u(z—0)= 3 In*(—2)+u((2),
does not increase the overall computation time significantly.

The case o%(p)<0 is also straightforward. The quan- u(z—1)=—-21In(z)In(1-2)+u)(2), (36)
tity o is now imaginary. The functio®(p) is imaginary as
well, thus giving a real value of the generating integral. u(ZHoo)=—%Inz(—z)+u(x)(z).
IM[S(p)] can be expressed in terms of Clausen’s function
Cl,(6), which is a real function of a real argumefat,5]. In these formulas, the functions with subscrifg, (1), and

Equations(33) and(34) are valid also in this case, 8(p) is  (*) are functions, analytic in the vicinities of 0, 1, ard

replaced by ImS(p)], and o(p) is replaced by Ifo(p)]. respectively.

Therefore, in both casesrf>0 ando?<0) the entire algo- Let us introduce the following notations. A complex func-

rithm for analytic evaluation of the four-particle integrals cantion z(p) will represent any of the argument,é(&l),B(l” , of

be presented in the real form without any use of complexhe functionu(z) in Eq. (13). It depends orp through the

numbers. parameters aj(p), given by Eq. (35. Let {pj}, ]
The described method of branch tracking in the case of 1, ... N, denote values of the parametgr for which

real exponential parameters has been successfully employe(p;) are singular points 0, ¢, or any points, where(p)

in variational calculations of four-particle systeni§,7]. crosses the real axis. It is assumed thatRe(p;)<1 for

Therefore, it is both theoretically correct and practically re-eachj=1, ... N, and Rep;) <Re(p;. ). Each pointp; will
liable. be characterized by an index, and either integem;, or
real 5;. The indexn;=1, ... ,6specifies a type of singular
E. Branch tracking in the complex case behavior, as explained below. The numbgrprovides infor-

] ~_ mation about direction, in which the real axis is crossed by
general case, when the exponential parameterg,, are 1), andm,=—1, if it is crossed from abové.e., |). The
complex numbers. It is assumed that their real parts satisfypg) quantity; is equal to a change in d(p)—z(p;)],
Egs. (28 and (29). We use the same parametrization as be'vvhenz(p) moves in the vicinity of a singular poi(p;). If
fore, but with a complex parametpr z(p;) =, the quantitys; denotes a change in &afp)].

. o These notations will allow us to present the algorithm of
j(P)=(ap—1p+1,  O<Re(p)<1. B9 pranch tracking as a series of formulas.
Five correction functionsunj(z,j), are needed to restore
continuity of the computed function(z).

If z(p) crosses the branch cut He[ at z(p;), let n;
=1, and

As p moves in the complex plane from 0 to 1, the corre-
sponding point in 12-dimensional space of six complex
parameters moves from (1,1,1,1,1,1 to
(12,13, @14, @23, 024,34). The generating integral, Eq.
(13), must be a continuous function pf Moreover, its value,
computed at the final poin{«;y}, should not depend on a
choice of the path fronp=0 to p=1. However, an optimal If z(p) crosses the branch cut ]0,at z(p;), let n;=2,
choice of this path can facilitate branch tracking consideryng
ably.

Figure 2 exhibits three examples of paths in the complex Uy(z,j)=—2m>+ 2m;mi[In(—2)+U;]. (39
p plane. In casda), there are no singular points on or near
the real axis between 0 and 1. The path is simply a straight If z(p) moves near the singular poia(p;)=1, let n;
line segment between these points. In césethere is one =3, and

uy(z,j)=+2m?=2mjmi[In(—2z)+U;]. (37
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us(z,j)=2i8[In(z)+0;]. (39)

If z(p) moves near the singular poiz{p;)=0, let n;
=4, and
Ug(z,j)=— 82— 8[In(—2)+U;]. (40)

If z(p) moves near the singular poiafp;) =<, let n;
=5, and
Us(z,j)=+812+is[In(—2)+U;]. (42)

If z(p) crosses the branch cut-p=,0f of the function
In(2) atz(p;), letn;=6.

PHYSICAL REVIEW A 65 062501

In this formula,x>1 is real ande— +0. Imagine that the
branch cut is crossed from below ). Thenm;=+1, and
the value of the correction functiam(z,j), defined by Eq.
(37), at the poinz=x+ie€ is equal to

Ui(X+ie,j)=—2amiIn(x).

If the branch cut is crossed from abovg)( m;=—1, and
the value of this correction function at the pomtx—ie is
equal to

Uy(x—ie,j)=+2miIn(x).

Thus, the correction function,(z,j), added after the branch
cut is crossed, eliminates the finite discontinuity of the prin-

The logarithms in these formulas are multiple valuedSiP@l branch, Eq(45), of the functionu(z) along J1;+o[.
functions themselves. Their branches can also change, arld'€ correction functioniy(z,j), defined by Eq(38), acts in

they can exhibit singular behavior, while an argumefy)

moves further in the complex plane. Because only the prin-

a similar way at ]0,[L
Imagine now that the argument afz) goes around the

ciple branch of the logarithm is calculated by a computer, théingular point ate, starting fromz=x+ie, and coming back

additional termsyJ; andOJ , are included to correct the val-
ues of these functions. These terms are given by the follo

ing formulas:
N N
U=+ >, 2mmi— X, ié, (42)
k=] =i
nk=l,2 nk=4,5
N N
k>]j k>j
nk:6 nk:4,5

The conditionn,= 1,2 in these formulas means that we have

to sum up only those indicas,, which correspond to situ-
ations, wherg(p) crosses the branch cuts [ and ]0,1.
The conditionn,=4,5 limits the summation ob to those
cases wherz(p) moves near the singular points 0 and If
n,=6, we consider only situations whex{p) crosses the
real axes in the interval}«,q .

Thus, each singular or crossing poifp;), encountered
by the argumeng(p) of the functionu(z), gives rise to a
correction functiorunj(z,j) required to makei(z) continu-

ous. However, the structure of this correction function at the

end of the patlp=1 will depend on behavior af(p) near
all the following singular and crossing poingp,), j<k

<N. The resulting correction function.(z), obtained after
passing all the pointz(p;), j=1,... N, is given by the
following expression:

N
Ue(D)= 2, Un,(2.)). (44)

to z=x—1ie€, without crossing the branch cut along the posi-

Wt_ive real axis. The value afi(z) exhibits a singular change

[from Eq.(45)] by
Au=—27i In(x).

In this caseg;= 2, and the value of the correction function
us(z,j), defined by Eq(41), at the poinz=x—i e is equal to

Us(X—ie€,j)=+2a7i In(X).

Thus, the correction functiomig(z,j), added afterz has
moved near the singular point &t eliminates the singular
contribution to the value of the functian(z). The correction
functionsus(z,j) anduu(z,j), given by Eqs(39) and (40),
produce similar results for the other singular points.

If, in the above examples, the argument wffz) first
crosses the branch cut, and then moves around the singular
point, the correction function,(z,j) has to be modified by
adding nonzerdJ; to the logarithm according to E¢37).

The same principles of branch tracking apply to the func-
tionv(z), defined by Eq(15). First, we consider behavior of
this function near its branch points-11, andw:

v(z—1)=— 7 IN’[(1-2)/(1+2)]+v)(2),

v(z——1)= 5 IN’[(1+2)/(1-2)]+v(_1)(2), (46)

v(z—®)= 3 In(—2%4)In[(z+ D/I(z=1D) ]+ vy (2).

In these formulas, the functions with subscripty, (—1),
and () are functions, analytic in the vicinities of 1, and
o, respectively.

Let us again consider a complex functipp), which can

In order to see, how these correction functions operaterepresent each of the argumenz{g%)/a of the functionv (2)

consider values of the principal branchuffz) at the edges
of the branch cut ] & o[ :

. w? . 1 .
u(x*ie)= ?—2L|2(1/x) - Elnz(x)i i7In(x). (45)

in Eq. (13). Let{p;}, j=1,... N, denote values of the pa-
rameterp, such thatz(p;) are singular points 1,1, %, or

z(p) crosses the real axis. It is assumed that their real parts
form an increasing set of numbers between 0 and 1. As be-
fore, each pointp; is characterized by an indew;, and
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eitherm; or &;. Values ofn; will be assigned below, and
meanings ofm; and §; remain the same.

Five correction functionsz,)nj(z,j), are used to make the
computed functiorv(z) continuous.

If z(p) crosses the branch cut H[ at z(p;), let
nj=1, and

v1(z,))=+ 72+ mm{In[(1+2)/(1-2)]+V}}. (47

If z(p) crosses the branch cut-po,—1[ at z(p;), let
n;=2, and

vo(z,])=—m?—mmi{In[(1+2)/(1-2)]+V,;}. (49

If z(p) moves near the singular poir#(p;)=1, let
n;=3, and

, 5 9
vy(z,j)=+ 2 g{ln[(1+ 2)[(1-2)]+V}. (49

If z(p) moves near the singular poia(p;)=—1, let
n;=4, and

2
; S
va(z)) == —i5{[(1+2)/(1-2)]+V;}. (50
If z(p) moves near the singular poir#(p;)=c°, let
n;=5, and
vs(z,))=—i8{In[(z+1)/(z—1)]+V,}. (51)
If z(p) crosses the branch cut-]1,1 of the function
In[(z+1)/(z—1)] atz(p;), let n;=6.
The additional termsy; ande , hecessary to correct be-
havior of the logarithms, are given by the following formu-
las:

N N N
Vi=— X 2mmi+ X i&— > i8, (52
k=) k>j k>]
ne=1.2 ng=3 n=4
N N N
Vi=+ X 2mymi+ X, i6— >, id. (53
k> k>j k>]
ng=6 ng=3 ng=4

As in the previous case, a correction functiqq(z,j) has

to be added to the function(z) every time its argument
z(p) passes a singular or crossing pai(p;). This way, the
calculated functiorv(z) can be made continuous. However,
the form of this correction function at the end of the path
depends on behavior @(p) near all the pointz(p,), fol-
lowing z(p;). The resulting correction function.(z) is the
following:

N

ve(2)= 21

(59

Unj(Z.j).
i=

PHYSICAL REVIEW A65 062501

v(Xtie)= %Li2[2/(1+x)]—%LiZ[Zl(l—x)]

1 1
+ §|n2[2/(1+x)]— Eln2[2/(x— 1)] (55)

o
tiEIn[(x—l)/(er 1]

Here,x>1 is real ande— + 0. Imagine that the branch cut is
crossed from belowT(). Thenm;=+1, and a value of the
correction functionv1(z,j) defined by Eq.47), at a point
z=X+ie is equal to

vi(Xt+ie,j)=—imIn[(x—1)/(x+1)].

If the branch cut is crossed from abovg)( thenm;=—1,
and a value of this correction functionat x—i € is equal to

vi(x—i€j)=+imIn[(x—1)/(x+1)].

Therefore, the functiow(z,j), added to the functiom(z)
after the branch cut is crossed, removes the discontinuity of
the principal branch along ]4,%¢[. The correction function
v,(z,j), given by Eg.(48), makeswv(z) continuous at
]—o,—1].

Imagine now that the argument ©{z) moves around the
singular point+1, starting fromz=x+ie and returning to
z=Xx—1 €, without crossing the branch cut. The valuevgf)
undergoes a chand&om Eq. (55)] by

Av=—imIn[(x—=1)/(x+1)].

Becauses;= 2, a value of the correction functian(z,j),
defined by Eq(49), atz=x—ie€ is equal to

va(X—ie,j)=+imIn[(x—1)/(x+1)].

Thus, by adding the correction functiary(z,j), it is pos-
sible to eliminate the singular contribution to the value of
v(z), whenz goes around the singular poirtl. The cor-
rection functionsv,(z,j) andvs(z,j), given by Egs.(50)
and(51), produce the same results for the other two singular
points.

If, in the above examples, the argument wfz) first
crosses the branch cut, and then moves around the singular
point, the correction function,(z,j) should be modified by
adding nonzerd/; according to Eq(47).

It is important to note that the functioar(z) is also a
multiple valued function. Its principal branch, defined by Eq.
(27), changes sign each time the argumentrosses the
branch cut along the positive real axis. If this happéhs
times while the parametgy changes from 0 to 1, the cor-
rected valuer.(z) of this function atp=1 is equal to

o(2)=(=1No(2), (56)

Let us now briefly discuss the effect of using these cor-

rection functions. Consider values®fz) at the edges of the
branch cut |13 o[ :

where g (z) is the value of the principal branch of the com-
plex square root.
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a) z(p1)=1, z(p3) =, andz(ps) = —1 are singular points of
0 ‘ff P ':’3 P ‘,’5 1 the functionv(z); z(p,) and z(p,) are points where the
~ argumentz(p) crosses the branch cuts. According to the cho-
sen classification:n;=3, §;=m; n,=1, my=+1; nj
k) =5, §3=m;, n,=2, my=—1; and ng=4, Ss=. Using
Egs. (47)—(53), one can easily obtain expressions for the
correction functions:

71_2
-1 1 va(z,1)= ——|—{In[ (1+2)/(1—2)]—im},
~ B|A

v1(z,2)=m?+im{In[(1+2)/(1-2)]+in},

FIG. 3. lllustration of branch tracking in the complex ca&®: v5(2,3)=0—im{In[(z+1)/(z—1)]—i=},
the path in the compleg plane, chosen to avoid singular poimts,
ps, andps; (b) the corresponding path in the compleglane from vo(z,8)=—m?+im{In[(1+2)/(1—2)]—in},
z(0)=A to z(1)=B, wherez(p) is an argument of the multiple
valued functiorw (z). 2
v4(2,5)=———i —{In[(1+z)/(l z)]+0}.

We are now in a position to write a corrected expression 4

for the generating integral: The resulting correction function.(z) is
2

4 4
2 2 (v (nWloc) vc(z)=—3T7T+i7rln[(1+z)/(l—z)]

(57) —imin[(z+1)/(z—1)].

4
+2, (utue) (8P |
: One can see that this function is different from zero, even if
In this formula, each of 16 terms with the functier{z) = A=B, i.e., the contour is closed. This is not surprising. Even
contains its own correction functian.(z), which is charac- thoughv(z) is represented by its principal branch, the sum
terized by its ownN and sets of number,}, {n;}, {m}, v(2) +v(2) is still a multiple valued function. Its value gen-
and{s,}. The same is true for each of the three terms witherally undergoes a finite change, if its argument traverses a
the functionu(z). closed loop, encircling branch points. Consider a value of
Equation (57) is profoundly different from the original v.(z) at z=x—ie, where —1<x<1 and e—+0. In this
formula, Eq.(13), for the generating integral. In E¢L3), the  case, the logarithms cancel, and
functionsu(z), v(z), ando(z) are expressed in terms of the . 5
multiple valued logarithm and square root. When E&Y) is ve(x—ie)=—m/2.
used, it is assumed, on the contrary, that all the logarithm
and square roots are represented by their principal branche
and, therefore, can be readily evaluated by a computer. T
multiple valued nature of the functiongz), v(z), ando(z)
is taken into account explicitly by means of the additional
correction terms and factors. Also, singular contributions
from different terms in Eq(13) are expected to cancel each
other to yield a correct value for the generating integral, Eq.
(11). When we use Eq(57), all the singular contributions
from different terms are canceled explicitly and separately, F. Numerical procedure and results

so that each function v(+vo)(¥{/og) or (u Practical implementation of the method, described in the
+ul)(BMBY) is continuous along the path from previous sections, is inevitably a very complicated task. De-
(1,1,1,1,1,1 to (12,13, @14, @23, 04, 034) . AS @ result, the tailed information about the recursive procedure, needed to
generating integral, obtained from E&7), is a continuous compute the family of integrals, Eq10), can be found in
function of the complex parametefa;}. Thus, the problem Ref.[4]. Here we describe only the procedure for numerical
of branch tracking is successfully solved in the most generabranch tracking.
case. First, the set of point$p,}, at which different terms in
Let us consider an example of branch tracking for theEq. (13) can exhibit singular behavior, is determined. This is
functionv (z) with the argumeng(p). A sample path in the done by solving the sixth-order equatierf=0, and linear
complex p plane is displayed in Fig.(8), and the corre- equations of Eq(30), with the parametrization according to
sponding path fronz(0)=A to z(1)=B in the complexz  Eq.(35). Only those values g, which lie in or near the real
plane is shown in Fig.®). There are five points of interest: interval ]0,1, are included in the s¢p,}. Then, a path from

ontributions of this type from different terms in E7)
Yoduce an additional constam#?, needed to correct a
value of the generating integral in the case of real parameters
{ajk}. Thus, Eq.(34) is a particular case of E¢57).

This example demonstrates that the branch tracking in the
general case requires a comprehensive numerical analysis of
behavior of all the arguments in E(L3).
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Py merical branch tracking provides all the information, neces-
M i sary for successful use of E(h7).
The entire algorithm for analytic evaluation of the four-
particle integrals with complex parameters was tested in four

FIG. 4. Segmentation of the path in the comptgdane, needed different ways.

to analyze behavior of arguments of the multiple valued functions 1St real parameterfa;,; were used, and the results
numerically. obtained using the complex algorithm of Sec. Il E were com-

pared with results provided by the method of Sec. II D for
the real case. The real parts of the computed integrals, Eq.
(10), were invariably in excellent agreement. The imaginary
parts, given by method discussed here, were at least 20 or-
ders of magnitude smaller than the real parts, and could be
considered negligible. Therefore, the complex algorithm
works correctly for any acceptable real parameter.
Second, the parametefa;,} were multiplied by an arbi-
rily chosen complex numbex. A resulting integral, Eq.
(10), with a particular set ofn;,} must be equal to its origi-
nal value, multiplied byf=\X, where K=nj,+n;3+n;,
+Ny3t+ Nyt Ngyt 3. Various\’s were used, and values of
the integrals, calculated directly, were compared with the res-
caled original values. Remarkable agreement was observed
in all these cases. Note that different values\ aforrespond
Yo different paths in the space of parameters according to Eq.
(35).
P=py+rexdi(m/6)]—ie, 1=0,...,6. (59 Third, if two exponential parameters;;3 and a4, are

In order to obtain full information about behavior of dif- _equal to zero, the six Coglomb ”?tegfa's and one overlgp
ferent arguments in Eq13), all these arguments should be mte_gral, needt_ad to determine matrix element.s of the Hamll—
computed at all the pointB, along the path. The quantities ton'a'f] according t(.) Eqs(.4)—(9), can be obt.alned analyti-
Y0 80, anda?, given by Eqs(16)—(20) are simple func- cally in terms of rational functions and logarithms. Values of

tions of {a;(p)}, SO this calculation can be performed al- these integrals, calculated with various sets of complex pa-

) . rameters,aqs, @14, a3, 34, Were compared with the same
most immediately. The values of each argument are a8 tegrals, computed using this method. They were always in
lyzed, and the numbertl, n;, m;, and g;, j=1,... N, grais, P 9 ' y y

. omplete agreement.
needed to apply the formulas of Sec. Il E, are determined® Fourth, different paths in the complexplane were cho-

This procedure works as follows. To find out if an argument . . "
. ) : . sen. They included singularities, located not only near the
crosses the real axis, the imaginary parts of its values, com-

outed at pointsP, and P, ,, are compared. If they have real axis, but also further away. The results did not depend

o ) L . n the choice of the path. This fact suggests that the de-
opposite signs, dichotomy is used to reduce the interval an§cribed method of numerical branch tracking is stable and
determine where the real axis is crossed and in which direc-

tion. This is also done for the intervals along each Smallrellable. Of course, the path in actual calculations should be

- X : . as simple as possible, provided that all nearby singularities
semicircle, but without the dichotomy. In this manner, all thea[re carefully taken into account.

]clgos;mg [pot'rr:it; gﬁ;l)t/);sfoitsmga?l?g dar(;ﬁ![y?;gzl '?;:;afp (lrnzterva Table | displays values of the integrals for three different
crolésclag ltt,1e positive real axis, whenis betweenP, and  S€tS of parametersy;}, used to test the computer program.
. ' 0 ! Many other sets of parameters were also considered. All the
P11, the sign ofo should be phgnged. Then, @ll ,(]_():om- integrals were calculated using the general algorithm for nu-
puted atP,, ,, should be multiplied by-1, and allBi” are  merical branch tracking, described in Sec. Il E. Implementa-
inverted. The quantity; is determined as follows: tion of this algorithm requires quadruple precision. The pro-
gram computes a family of 64 integrals, E40), with two
5 possible values for every inder;,=0,1. Only seven inte-
Jj ZIZ [argz(Py 1)) —argz(P))]. (59 grals, necessary to obtain matrix elements of the Hamiltonian
=0 according to Eqgs(4)—(9), are presented in Table | for each
set of parameters.
Here, the point$, are specified by E¢58), andz can stand Our results demonstrate that the developed algorithm al-
for any of the arguments{)/o and 88\ as functions of lows precise evaluation of the four-particle integrals with
{ajk(p)}. The right-hand side of this formula is presented asarbitrary complex parameters, provided that the integrals
a sum, because gschanges fronP, to Pg, the argument themselves converge.
z(p) may go around the singular poinfp,) several times. The described method makes it possible to use the highly
Thus, behavior of each argument in the vicinity of each sinversatile exponential-trigonometric basis functions in varia-
gular point can be analyzed. The described procedure of ndional calculations of four-particle Coulomb systems. In or-

0 to 1 in the complexp plane is chosen. Figure 2 gives an
idea of this. The whole path is shifted downward by a small
imaginary quantityi e to avoid possible ambiguities, when
arguments of the functions(z) andv(z) are real. All the
arguments in Eq(57) are computed at the final point of this
path,p=1—ie. In actual calculationse was set to 10%,
This did not affect values of the integrals, but was enough t(%ra
shift the arguments from the real axis.

The path in the compley plane is divided into small
intervals, as shown in Fig. 4. The intervalB,}P,, [, into
which the linear segments between the singular po{is.,
are divided, have a typical length of 191 Each small semi-
circle beneath a singular poipt, has a radius =10"°, and
is divided into six parts. The corresponding boundary point
are
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TABLE I. Examples of four-particle integrals evaluated using the algorithm for numerical branch tracking

in the complex case.

{aj} i Re(J) Im(J)
a1,=1.56 Q11111 0.205508891740038681D8-03 —0.523230424634876878D3-21
a13=—0.69 10111 0.497016028250334068B4+ 02 0.37462639365280834432- 21
a1, =2.71 110111 0.3327860642013192565803 0.29262335382214159496- 21
ax»=1.75 111011 0.69156207020089168B0702 0.39044885805975934492- 21
=142 111101 0.20401147280211976886 03 0.44225408142944401998- 21
az,=—0.50 111110 0.500465835019598094b3- 02 0.759950784058261388D4- 21
111111 0.2164478150585439585# 03 0.3203979457465454390D6- 20
a1,=1.56(1+0.5) 011111 —0.709775759422261722B9% 02 0.4525325524969258812 02
ap=—0.69(1+0.5) 101111 -0.171656771592471218D6+02 0.10944340655611068227 02
a1,=2.71(1+0.5) 110111 —0.11493589374343266163-03 0.73279810811752133324-02
a1,=1.75(1+0.5) 111011 —0.23884805635825330988-02 0.152282631757823741D% 02
a,=1.42(1+0.5) 111101 —0.704604052958197304D5-02 0.44923522162040663022- 02
ao=—0.50(1+0.5) 111110 —0.172848247639459886B4-02 0.11020305731851711925-02
111111 —-0.407396761500475882B# 02 0.68031854740817630022 02
a,=1.29+1.19 011111 0.412991418475752343P3-01 —0.133546993188295220R5+01
a13=0 101111 0.255685852058383735M9+01 —0.144209031111123897b62-01
a14=2.53-1.32 110111 0.3932745978781493186301 —0.6452206991229590696%# 01
ay3=1.86+1.44 111011 0.5676155385482076116501 —0.121983397088320046BH- 01
ay,=0 111101 0.3829418682046674504601 —0.253178107055793107Mm2- 01
a3,=0.65-0.93 111110 0.260441202783397876B0-01 —0.231519547687330327b6+01
111111 0.378492645317138410B33-01 —0.283721531176072275B6+01

der to illustrate efficiency of the new basis, we would like totial functions are even nearly as efficigdf]. Thus, a single
mention some results, obtained previouglyt] for the fol-  symmetrized exponential-trigonometric basis function, Eq.
lowing systems:e"e e'e”, pTu"ptu, ue"ue”, (60), provides a remarkable accuracy in variational calcula-
andp*te p*e”. The calculations were performed using onetions of various four-particle systems.
exponential-trigonometric basis function:

Ill. CONCLUSION

The method for analytic evaluation of four-particle inte-
grals with complex parameters, described in this paper, can
be regarded as both further theoretical development and
This function includes 12 real nonlinear parametéss; practical implementation of the original method by Fromm
and{Bj.}, and one linear parameter, t&)( It can be con- and Hill [4]. Validity of this method is not limited to the case
sidered a linear combination of two exponential functions,of real parameters. Moreover, because the integrals are ex-
Eq. (2), with the complex parameters, +iBj,. The opera- pressed in terms of multiple valued complex functions, it is
tor S ensures that this function has correct symmetry withmore natural to consider a general case when all the param-
respect to permutations of particles. eters are complex. The original formula, Ed.3), for the

All integrals, necessary to determine matrix elements offenerating integral can be used only in the immediate vicin-
the Hamiltonian, Eq(1), with the function¥, were com- ity of the standard reference point where all the parameters
puted according to the method described in this paper. The
nonlinear parameters were subjected to careful gradient op- TABLE Il. Ground-state energf of four molecules, computed
timization. For more details about this calculation, &8. with a single exponential-trigonometric basis function. The most

Table Il exhibits values of the ground-state enefgjor ~ accurate valuess,, of this energy are taken from Refdl], [2],
eteete, pru p'u, e ute, andpte pie [13], and[14], respectively. The values are given in atomic units.

determined using the variational method with the trial func-

. (60

4 4
\P:ASQX[{_E Aikr]‘k)Sin(z Bjkr]-k+C
1<k 1<k

. ; M E E E %
tion ¥. The table also displays the most accurate energ\§ysuem m/ 0 rror (%)
values,E,, available for these systen$,2,13,14. One can e‘e e'e” 1 —0.514956 —0.516003 0.2

0.1126095 —198.2056 —199.6294 0.7
0.0048363 —1.113198 —1.141000 2.4
0.0005446 —1.122378 —1.164025 3.6

see that the relative errors are 0.2%, 0.7%, 2.4%, and 3.6%, . p*u"~
respectively. The results for two adiabatic systems, ‘e u*e”
w'e u'e” andpe p’e’, with very low mass ratios pte pte-
m/M, are very impressive. Neither Gaussian, nor exponen
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are equal to 1. The procedure of numerical branch tracking, However, if the full potential of the exponential-
proposed in this paper, allows computation of the integrals arigonometric basis is to be revealed, an efficient procedure
any other point in the space of six complex parameters, bjor selecting optimal values of the nonlinear parameters is
taking into account all branch changes along the path. Theecessary. Ideally, all the parameters should be chasen
simplified method of branch tracking for real parameters isori, and all matrix elements are computed only once. Such a
also discussed. procedure has been developed by the authors for the case of
This method makes possible high-precision variational soadiabatic three-particle systemis0]. All nonlinear param-
lution of the Coulomb four-body problem in the basis of eters of the exponential-trigonometric functions had been
exponential-trigonometric functions. The calculations havechoserbeforethe computation, which yielded 10 correct sig-
shown high efficiency of this basi41]. They have also dem- nificant figures for the ground-state energytbf [10]. We
onstrated correctness of the branch tracking algorithm debelieve that the exponential-trigonometric basis can provide
scribed in this paper. similar precision in calculations of four-particle systems.
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