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Analytic evaluation of four-particle integrals with complex parameters
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The method for analytic evaluation of four-particle integrals, proposed by Fromm and Hill, is generalized to
include complex exponential parameters. An original procedure of numerical branch tracking for multiple
valued functions is developed. It allows high precision variational solution of the Coulomb four-body problem
in a basis of exponential-trigonometric functions of interparticle separations. Numerical results demonstrate
high efficiency and versatility of this method.
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I. INTRODUCTION

The problem of four particles with the Coulomb intera
tion plays an important role in atomic and nuclear physics
forms a link between the three-body problem that can
solved numerically with very high precision, and many-bo
problems, solutions of which are very approximate. Th
profound studies of various four-particle systems can prov
valuable insights into physics of systems with greater nu
bers of particles.

In addition to the methodological interest, the four-bo
problem has unquestionable practical significance. Pos
nium beams are extensively used in positronium-atom s
tering experiments, but the positronium molecu
e1e2e1e2, has not been observed experimentally yet.
existing knowledge of its properties is based on numer
studies@1#. Molecules and ions includingm meson have at-
tracted much attention traditionally in connection with t
problem of the muon catalyzed fusion. Calculations sugg
@2# that muonic molecules such asp1m2p1m2 have higher
nuclear reaction rates than the corresponding three-par
ions. These examples show that high-precision numerica
lution of the four-body problem is essential for proper und
standing of various physical phenomena.

The majority of four-particle systems are nonadiaba
and cannot be treated within the adiabatic approximat
The only practical way to calculate their energy and prop
ties is to use the variational approach, taking into account
correlated motion of all the particles. Basis functions of t
Gaussian type, depending on six interparticle separations
several nonlinear parameters, have been extensively use
such calculations@1–3#. An important advantage of th
Gaussian functions is that all integrals can be easily ev
ated. The nonlinear parameters are optimized stochastic
@3#; at each step of basis expansion, many functions w
randomly generated parameters are examined, and the
tion, giving the largest decrease in energy, is added to
basis.

However, unlike real wave functions, the Gaussian fu
tions do not decay exponentially, and do not satisfy the c
condition. From this point of view, they are rather unphy
cal. As a result, convergence of the variational procedur
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very slow, and many hundreds of basis functions must
used. A recent calculation of the positronium molecule
Usukuraet al. @1# involved 1600 Gaussian functions. It wa
suggested that further expansion of the basis was not pr
cal because of increasing computation time and low pr
ability of finding good parameters. Thus, more efficient ba
functions are clearly required.

A method for analytic evaluation of four-particle inte
grals, proposed by Fromm and Hill@4#, opened up possibili-
ties of variational calculation of four-particle systems in
basis of exponential functions of interparticle separatio
This method reduces computation of integrals, needed to
termine matrix elements of a four-particle Hamiltonian,
evaluation of the dilogarithmic function@5# of various argu-
ments. Application of this method, however, is a very dif
cult problem. Because the dilogarithm is a multiple valu
function, the entire algorithm cannot be used without an
fective procedure of branch and singularity trackings.

This problem was initially solved by the authors for th
case of real exponential parameters. The first calculation
the positronium molecule@6#, and several mesic molecule
@7# in the exponential basis, depending on all six interparti
separations, have demonstrated high efficiency and grea
tential of this method. To the best of our knowledge, nobo
else has done this yet@8#.

Because one exponential function is as effective as e
Gaussians, a size of the basis can be reduced significa
However, an amount of time, needed to compute one ma
element, is much larger than for the Gaussian basis. T
optimization of nonlinear parameters is the main difficul
Deterministic optimization~gradient descent! gives excellent
results for a relatively small number of exponential ba
functions. Stochastic optimization~trial and error!, used to
expand the basis further, is inefficient due to a dramatic
crease in computation time. This fact suggests that a poss
alternative to an enormously large Gaussian basis is a r
tively short basis of the most efficient and versatile functio
with carefully optimized parameters.

A natural generalization of the exponential basis is
exponential-trigonometric basis, obtained by replacing r
exponential parameters with complex ones@9#. The
exponential-trigonometric functions have been successf
©2002 The American Physical Society01-1
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employed in variational calculations of three-particle ad
batic systems@10#. They are much more efficient than th
ordinary exponentials for two reasons. First, they cont
twice as many nonlinear parameters, thus allowing better
proximation of the wave function. Second, they exhibit no
monotonic dependence on interparticle separations, b
able to imitate sharp peaks in wave functions of adiab
systems. The computation time increases only insignifica
in comparison with the case of real exponential paramet

In order to use the exponential-trigonometric basis in
four-body problem, one has to evaluate the four-particle
tegrals with complex parameters. The problem of bran
tracking in a general complex case is formidable. Ev
branch change for every multiple valued function has to
taken into account if correct values of the integrals are to
obtained. An original~and, inevitably, very nontrivial! pro-
cedure of numerical branch tracking has been develope
the authors. The first variational calculations of four-parti
systems in the exponential-trigonometric basis proved
tremely promising@11#. They showed that one exponentia
trigonometric function can replace seven exponential fu
tions in calculation ofe1e2e1e2, and several dozens o
exponentials in studies of adiabatic systems@11#. Therefore,
it presents a real alternative to both the exponential
Gaussian basis functions.

Even though results of the calculations involving the e
ponential and exponential-trigonometric functions have b
published@6,7,11#, details of this method have not been r
ported yet. The purpose of the present paper is to fill this g
We present a description of our algorithm that will enable
reader to implement it as a computer program.

The paper is organized as follows. Section II A discus
what integrals are needed to compute matrix elements
four-particle Hamiltonian, and how a number of them can
reduced. In Sec. II B, principles of the original method
Fromm and Hill are outlined. Section II C provides inform
tion about multiple valued functions used in the analysis.
Sec. II D, a simplified procedure of branch tracking in t
case of real parameters is described. Section II E give
detailed exposition of the method of branch tracking in
most general case, when all the parameters are comple
Sec. II F, a practical implementation of the branch track
algorithm is described. The last section presents our con
sions.

II. DESCRIPTION OF THE METHOD

A. Matrix elements of four-particle Hamiltonian

Let us consider a Hamiltonian of a four-particle syste
with the Coulomb interactions:

H52
\2

2 (
j 51

4
D j

mj
1(

j ,k

4
qjqk

r jk
. ~1!

Here mj and qj , j 51, . . . ,4, aremasses and charges, an
r jk5ur j2r ku are interparticle separations. Our purpose is
evaluate matrix elements ofH with exponential basis func
tions
06250
-

n
p-
-
ng
ic
ly
s.
e
-
h
y
e
e

by

x-

-

d

-
n

p.
a

s
a

e

n

a
e
In

g
u-

o

Fb5expS 2(
j ,k

4

bjkr jkD , Fc5expS 2(
j ,k

4

cjkr jkD .

~2!

These functions depend on complex parameters$bjk% and
$cjk%. In what follows, the notation$xjk% will always refer to
six quantities, xjk , with j ,k51, . . . ,4 and j ,k, i.e.,
x12,x13,x14,x23,x24,x34, assuming thatxjk5xk j .

In order to compute matrix elements of the operator
kinetic energy in Eq.~1!, one has to evaluate the followin
quantities:

^FbucosQ jkl uFc&5K FbU r jk
2 1r j l

2 2r kl
2

2r jkr j l
UFcL , ~3!

where j Þk, kÞ l , j Þ l . The integrands in the last formul
display linear and even quadratic dependences on certai
terparticle separations. Therefore, in order to obtain ma
elements of the Hamiltonian, Eq.~1!, one has to calculate a
total of 43 integrals: one overlap integral, six integrals of t
Coulomb interactions, and 36 integrals, given by Eq.~3!.

It turns out, however, that it is possible to avoid comp
tation of the integrals in Eq.~3!. It has been shown by one o
the authors that the matrix elements of the above Ham
tonian can be expressed in terms of the overlap integral
six Coulomb integrals only@12#. Thus, one can write:

^FbuHuFc&5H12H22H3 . ~4!

The individual terms in Eq.~4! are given by the following
expressions@12#:

H15(
j ,k

4 F ~mj1mk!

2mjmk
ajk1qjqkG K FaU 1

r jk
UFaL , ~5!

H25(
j ,k

4
~mj1mk!

2mjmk
djk

2 ^FauFa&, ~6!

H35(
j 51

4

(
k, l

k,lÞ j

4
~ajksjk1ajl sjl 2ajnsjn!

2mjajkajl
djkdjl . ~7!

In these formulas,Fa is a new function with parameter
$ajk%, defined asajk5(bjk* 1cjk)/2:

Fa5expS 2(
j ,k

4

ajkr jkD . ~8!

The parameters$djk% are defined asdjk5(cjk2bjk)/2, and
the quantities$sjk% are given by

sjk5 K FaU 1

r jk
UFaL 2ajk^FauFa&. ~9!

The additional indexn in Eq. ~7! is fixed by a conditionn
Þ j ,k,l .

Therefore, only seven integrals—the overlap integral a
six Coulomb integrals, calculated with the functionFa—are
1-2
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needed to determine the matrix elements of the Hamilton
Eq. ~1!. The above formulas are indispensable for any ap
cation of this method.

B. Evaluation of four-particle integrals

In this paper, we generalize the method of analytic eva
ation of four-particle integrals, proposed by Fromm and H
@4#, to include complex exponential parameters. First,
would like to recall basic ideas of this method. The followin
family of integrals is considered:

J~$njk%,$a jk%!5E S )
j ,k

4

r jk
njk21D expS 2(

j ,k

4

a jkr jkD dV.

~10!

Here, $a jk% denotes a set of six exponential paramete
a12, a13, a14, a23, a24, a34, and $njk% is the corre-
sponding set of nonnegative integers. The integrand dep
on six interparticle separations$r jk%. The integration is per-
formed over nine-dimensional space of relative coordina
of four particles:dV5d3r 12d

3r 13d
3r 14.

An integral with allnjk50 is called ‘‘generating:’’

I ~$a jk%!5E S )
j ,k

4

r jk
21D expS 2(

j ,k

4

a jkr jkD dV. ~11!

All the integrals in Eq.~10! can be obtained from the gene
ating integral, Eq.~11!, by differentiation:

J~$njk%,$a jk%!5F)
j ,k

4 S 2
]

]a jk
D njkG I ~$a jk%!. ~12!

The generating integral is given by the following formula

I ~$a jk%!5
16p3

s F (
j 51

4

(
k51

4

v~gk
( j )/s!1(

j 52

4

u~b1
(1)b1

( j )!G .

~13!

The functionsv(z) and u(z) are expressed in terms of th
dilogarithmic function Li2(z):

u~z!5Li2~z!2Li2~1/z!, ~14!

v~z!5 1
2 Li 2@~12z!/2#2 1

2 Li 2@~11z!/2# ~15!

2 1
4 ln2@~12z!/2#1 1

4 ln2@~11z!/2#.

In Eq. ~13! for the generating integral,gk
( j ) are third-order

polynomials ina ’s, defined in the following way:

gk
( j )52m j

( j )2mk
( j )1m l

( j )1mm
( j ) , ~16!

g j
( j )51m1

( j )1m2
( j )1m3

( j )1m4
( j ) ,

where for eachj Þk: lÞ j ,k; mÞ j ,k; lÞm. The polynomi-
als mk

( j ) are defined as follows:

mk
( j )5a lm~2a jk

2 1akl
2 1akm

2 !, ~17!
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with the same restrictions on values ofj , k, l , andm.
The functions is a square root of a sixth-order polyno

mial in a ’s: s5As11s2. The quantitys1 in this expression
is given by

s15(
j 52

4

a1 j
2 a lm

2 ~a1 j
2 1a lm

2 2a1l
2 2a1m

2 2a j l
2 2a jm

2 !,

~18!

where for eachj: lÞ1,j ; mÞ1,j ; lÞm. The quantitys2 is
determined as

s25(
j 51

4

a j l
2 a jm

2 a jk
2 , ~19!

where for eachj: l ,m,kÞ j ; lÞm; mÞk; lÞk. Finally, bk
( j )

is defined by the following expression:

bk
( j )5~s2gk

( j )!/~s1gk
( j )!. ~20!

In all these formulas, indicesj ,k,l ,m change from 1 to 4,
and it is assumed thata jk5ak j for eachj Þk. If some indi-
ces are not defined uniquely, the formulas are symme
under their permutations.

Equation ~13! is the main result of this method@4#. It
provides an analytic expression for the generating integ
Eq. ~11!. It was pointed out@4# that there is no need to know
an analytic dependence of the generating integral on the
rameters$a jk% to compute the family of integrals, Eq.~10!.
According to Eq.~12!, all these integrals are derivatives o
the generating integral. Special formulas can be used@4# to
calculate numerical values of derivatives of functionsf g and
h(g), if numerical values of derivatives of the function
f , g, andh have already been computed. For example,
rivatives of the termv(gk

( j )/s) in Eq. ~13! can be obtained in
the following way. First, derivatives ofs2 andgk

( j ) with re-
spect to$a jk% are calculated. Then derivatives of a functio
h(z)5z21/2 are computed atz5s2. After that, using a for-
mula for derivatives ofh(g) with g5s2, one finds deriva-
tives of 1/s with respect to$a jk%. Then, using a formula for
derivatives off g with f 5gk

( j ) and g51/s, one obtains de-
rivatives ofgk

( j ) with respect to$a jk%. After that, derivatives
of a functionh(z)5v(z) at z5gk

( j )/s are calculated. Finally,
using a formula for derivatives ofh(g) with g5gk

( j )/s, one
can find the derivatives ofv(gk

( j )/s) with respect to$a jk%.
Within this approach, all the integrals of Eq.~10! can be
evaluated by means of an efficient recursive procedu
working with numbers only.

At this point, we can appreciate importance of Eqs.~4!–
~9!. In order to obtain the matrix elements of the Ham
tonian, Eq.~1!, we have to compute the mixed derivative
given by Eq.~12! up to the sixth order only, i.e., fornjk
50,1, where j ,k51, . . . ,4, andj ,k. This means that, a
each step of the recursive procedure, we calculate 26564
derivatives. If we tried to evaluate the integrals of Eq.~3!
directly, it would be necessary to compute the mixed deri
1-3
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tives in Eq.~12! up to 18th order, i.e., fornjk50, . . . ,3. The
number of derivatives, calculated at each step, would
crease quadratically. An amount of time, required to ca
out the entire recursive procedure, would be enormo
Therefore, the original method by Fromm and Hill@4#, used
by itself, does not make high-precision calculations of fo
particle systems possible. Only in conjunction with t
method@12# for reducing the number of integrals, it can pr
duce valuable results.

C. The multiple valued functions

The main difficulty in using Eq.~13! for the generating
integral is the fact that the functions in this formula are m
tiple valued. Indeed, the functionsu(z) and v(z), given by
Eqs.~14! and ~15!, are expressed in terms of the dilogarit
mic function Li2(z). The dilogarithm is defined as follow
@5#:

Li 2~z!52E
0

z ln~12z!

z
dz. ~21!

This function is analytic inside the unit circle in the compl
plane:

Li2~z!5 (
n51

`
zn

n2
, uzu,1. ~22!

Its values outside the unit circle can be determined usin
relation @5#:

Li 2~z!52
p2

6
2

1

2
ln2~2z!2Li2~1/z!. ~23!

In the immediate vicinity of the unit circle, where conve
gence of the series in Eq.~22! is slow, the following relations
can be used to shift the argument of Li2(z):

Li 2~z!5
p2

6
2 ln~z!ln~12z!2Li2~12z!, ~24!

Li2~z!5 1
2 li 2~z2!2Li2~2z!. ~25!

Presence of the logarithm in Eqs.~23! and ~24! clearly
indicates that the function Li2(z) is, in general, multiple val-
ued. In order to specify its principal branch we need to
the principal branch of the logarithm. The complex logarith
has branch points at 0 and̀. We choose its branch cut to ru
along the negative real axis and define the principal bra
as follows:

ln~z!5 lnuzu1 i argz, 2p,argz,p. ~26!

This choice determines branch cuts and fixes the princ
branch for the dilogarithm, and the functionsu(z) andv(z).

The function Li2(z) has branch points at 1 and̀; its
branch cut runs from 1 tò along the positive real axis. Th
functionu(z) has branch points at 0, 1, and̀; its branch cut
goes from 0 tò along the positive real axis. The functio
06250
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v(z) has branch points at 1,21, and`; its branch cuts run
from ` to 21 along the negative real axis, and from 1 to`
along the positive real axis.

Figure 1 exhibits the branch points and cuts for the
multiple valued functions.

It is important to note that the functions, which is
present in Eq.~13! and defined using Eqs.~18! and ~19!, is
also a multiple valued function. The complex square root
branch points at 0 and̀ . We choose its branch cut to ru
along the positive real axis and define the principal branch
follows:

Az5AuzuexpS i

2
argzD , 0,argz,2p. ~27!

It can be seen from the definition of the generating in
gral, Eq.~11!, that it is a continuous function of paramete
$a jk% for all values of these parameters satisfying the follo
ing conditions:

a121a131a14.0, a121a231a24.0, ~28!

a131a231a34.0, a141a241a34.0.

a121a131a241a34.0,

a121a141a231a34.0, ~29!

a131a141a231a24.0.

These conditions mean, physically, that the wave function
a system of four particles decreases exponentially when
of the interparticle separations become infinitely large. If t
parameters$a jk% are complex, the above inequalities must
satisfied by their real parts.

The continuity of the generating integral, Eq.~11!, implies
that the right-hand side of Eq.~13! is also a continuous func
tion of $a jk%. This fact has two important consequences.

FIG. 1. Branch cuts in the complexz plane, necessary to defin
principal branches of the multiple valued functions:~a! ln(z), branch
points at 0 and̀ ; ~b! Li2(z), branch points at 1 and̀ ; ~c! u(z),
branch points at 0, 1, and̀; and ~d! v(z), branch points at 1,21,
and`.
1-4
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First, the multiple valued functionsu(z), v(z), ands(z)
in Eq. ~13! remain continuous while their branches chan
As a point of interest moves in 12-dimensional space of
complex parameters,$a jk%, the arguments of these function
move freely in the complex plane, and their branches cha
repeatedly. However, a computer can evaluate only the p
cipal branch of the logarithm, given by Eq.~26!, and the
principal branch of the square root, given by Eq.~27!. There-
fore, only the principal branches of the functions li2(z),
u(z), v(z), ands(z), defined in the complex plane with th
branch cuts, can be calculated directly. Thus, a special
cedure of branch tracking is necessary to restore contin
of these functions every time their arguments cross
branch cuts.

Second, all singularities, which different terms in Eq.~13!
can have, cancel mutually. These singularities arise whes
50, and when any of the following equalities are satisfie

2a j l 1a jm1a jn50,

a j l 2a jm1a jn50, ~30!

a j l 1a jm2a jn50,

where for eachj 51, . . . ,4: l ,m,nÞ j ; lÞm; mÞn; lÞn.
These singularities are unphysical, and should have no e
on the value of the generating integral. As a point un
consideration moves in the space of the parameters$a jk%, the
arguments of the functionsu(z) and v(z) can frequently
appear in the vicinity of the singular~branch! points. As a
result, the values of these functions can exhibit considera
change, even if the parameters$a jk% change only slightly.
Therefore, a special procedure for dealing with the singul
ties is needed in order to carry out explicit cancellation of
singular terms.

This discussion demonstrates that the method of Ref.@4#
is impossible to use without an effective algorithm for n
merical branch and singularity trackings.

D. Branch tracking in the real case

Before discussing a general algorithm of branch tracki
it is beneficial to consider a particular case, when all
exponential parameters$a jk% are real numbers. Let us intro
duce the following parametrization:

a jk~p!5~a jk21!p11, 0<p<1. ~31!

As the real parameterp changes from 0 to 1, the correspon
ing point in six-dimensional space moves from~1,1,1,1,1,1!
to (a12,a13,a14,a23,a24,a34). If the parameters$a jk% sat-
isfy the conditions of Eqs.~28! and ~29!, the parameters
$a jk(p)% will satisfy these conditions for anyp between 0
and 1. Therefore, the generating integral, given by Eq.~13!,
must be a continuous function ofp. It is known @4# that Eq.
~13! with the functionsu(z), v(z), and s(z), represented
by their principal branches, yields the correct value
the generating integral at the reference point~1,1,1,1,1,1!.
If this value changes continuously, as the parametep
goes from 0 to 1, one can be sure that the generating inte
06250
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will be computed correctly at the final poin
(a12,a13,a14,a23,a24,a34). Therefore, continuity of this
integral is a criterion of the correct branch tracking.

Let us define a functionS(p) as the sum in the squar
brackets of Eq.~13! when the parameters$a jk(p)% are used
instead of$a jk%:

S~p!5(
j 51

4

(
k51

4

v~gk
( j )/s!1(

j 52

4

u~b1
(1)b1

( j )!. ~32!

Our purpose is to ensure that this function is continuo
along the path fromp50 to p51.

First, we consider a case whens2(p).0. The function
s(p) is real, and all the arguments of the functionsu(z) and
v(z) in Eq. ~32! are real as well. It will be shown in Sec. II E
that only imaginary parts of these functions exhibit discon
nuities, when their arguments cross the branch cuts. Bec
the generating integral is real, the imaginary parts of
functions u(z) and v(z) in Eq. ~32! must cancel anyway
Therefore, discontinuities in the real part ofS(p) may appear
near the singular points of the functionsu(z) andv(z) only.
The singularities of different terms in Eq.~32! should cancel
one another. However, because of possible branch chan
complete cancellation may not happen. The formulas of S
II E suggest that, near the singular points ofu(z) andv(z),
the real part of the functionS(p) can undergo changes b
mp2, wherem is some integer. Thus, the functionS(p) can
have finite discontinuities, which are integer multiples ofp2.

From now on, the branch tracking is only a technic
problem. To solve it, it is necessary to find all values of t
parameterp between 0 and 1, which correspond to singu
points. They include zeros of the sixth-order polynom
s2(p), and values ofp, at which the parameters$a jk(p)%
satisfy any of the conditions of Eq.~30!. Let us denote the
resulting set of numbers as$pj%, j 51, . . . ,n. The correction
function, needed to remove discontinuities of the functi
S(p), is given by the following expression:

C~p!52p2 (
pj ,p

Nint@~S~pj1e!2S~pj2e!!/p2#.

~33!

Here, the functionNint@x# returns an integer number, neare
to the real numberx. The value ofe in actual calculations
was set to 1022. The correct value of the generating integr
can now be determined from the formula:

I 5
16p3

s F (
j 51

4

(
k51

4

v~gk
( j )/s!1(

j 52

4

u~b1
(1)b1

( j )!1C~1!G .

~34!

Therefore, in the case of the real parameters$a jk%, the
procedure of branch tracking can be implemented withou
detailed numerical analysis of behavior of the multiple v
ued functions. All we need to do is to calculate the functi
S(p) twice for each singular pointpj , encountered along the
path fromp50 to p51, and subtract discontinuities, propo
tional to p2. The time, needed to determine the correcti
C(1) in Eq. ~34!, is shorter than the time required to car
1-5



I
tl
-

al
io

an
le

o
oy

re

tis
be

e
le

.

a
l
e

le
ar
ig

r a

n
the

of
ity
of
of

he
-

n
f

c-

r

by

of

e

V. S. ZOTEV AND T. K. REBANE PHYSICAL REVIEW A65 062501
out the recursive procedure for the family of integrals.
does not increase the overall computation time significan

The case ofs2(p),0 is also straightforward. The quan
tity s is now imaginary. The functionS(p) is imaginary as
well, thus giving a real value of the generating integr
Im@S(p)# can be expressed in terms of Clausen’s funct
Cl2(u), which is a real function of a real argument@4,5#.
Equations~33! and~34! are valid also in this case, ifS(p) is
replaced by Im@S(p)#, ands(p) is replaced by Im@s(p)#.
Therefore, in both cases (s2.0 ands2,0) the entire algo-
rithm for analytic evaluation of the four-particle integrals c
be presented in the real form without any use of comp
numbers.

The described method of branch tracking in the case
real exponential parameters has been successfully empl
in variational calculations of four-particle systems@6,7#.
Therefore, it is both theoretically correct and practically
liable.

E. Branch tracking in the complex case

Let us now describe a method of branch tracking in
general case, when the exponential parameters,$a jk%, are
complex numbers. It is assumed that their real parts sa
Eqs. ~28! and ~29!. We use the same parametrization as
fore, but with a complex parameterp:

a jk~p!5~a jk21!p11, 0<Re~p!<1. ~35!

As p moves in the complex plane from 0 to 1, the corr
sponding point in 12-dimensional space of six comp
parameters moves from ~1,1,1,1,1,1! to
(a12,a13,a14,a23,a24,a34). The generating integral, Eq
~13!, must be a continuous function ofp. Moreover, its value,
computed at the final point,$a jk%, should not depend on
choice of the path fromp50 to p51. However, an optima
choice of this path can facilitate branch tracking consid
ably.

Figure 2 exhibits three examples of paths in the comp
p plane. In case~a!, there are no singular points on or ne
the real axis between 0 and 1. The path is simply a stra
line segment between these points. In case~b!, there is one

FIG. 2. Examples of paths in the complexp plane:~a! no sin-
gular points on or near the real axis between 0 and 1;~b! one
singular pointp1 on the real axis;~c! two singular pointsp1 andp2

near the real axis. The plots are not to scale.
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point, p1, at which different terms in Eq.~13! exhibit singu-
lar behavior. The path is the same as before, except fo
small semicircle in the vicinity of this point. In case~c!, there
are two singular points,p1 andp2, near the real axis betwee
0 and 1. The path is more complicated, as shown in
figure. In general, only those singular points in thep plane,
which are close to the real interval between 0 and 1, are
interest. The path should be carefully defined in the vicin
of every such point to allow precise analysis of behavior
all arguments of the multiple valued functions. The values
p, at which singularities may arise, can be found from t
polynomial equations2(p)50, and from 12 linear equa
tions, contained in Eq.~30!.

In order to obtain correction functions for the functio
u(z), defined by Eq.~14!, we have to consider behavior o
this function near its branch points 0, 1, and`:

u~z→0!5 1
2 ln2~2z!1u(0)~z!,

u~z→1!522 ln~z!ln~12z!1u(1)~z!, ~36!

u~z→`!52 1
2 ln2~2z!1u(`)~z!.

In these formulas, the functions with subscripts~0!, ~1!, and
(`) are functions, analytic in the vicinities of 0, 1, and̀,
respectively.

Let us introduce the following notations. A complex fun
tion z(p) will represent any of the arguments,b1

(1)b1
( j ) , of

the functionu(z) in Eq. ~13!. It depends onp through the
parameters a jk(p), given by Eq. ~35!. Let $pj%, j
51, . . . ,N, denote values of the parameterp, for which
z(pj ) are singular points 0, 1,̀ , or any points, wherez(p)
crosses the real axis. It is assumed that 0<Re(pj )<1 for
eachj 51, . . . ,N, and Re(pj ),Re(pj 11). Each pointpj will
be characterized by an indexnj , and either integermj , or
real d j . The indexnj51, . . . ,6specifies a type of singula
behavior, as explained below. The numbermj provides infor-
mation about direction, in which the real axis is crossed
z(p). We setmj511, if the axis is crossed from below~i.e.,
↑), and mj521, if it is crossed from above~i.e., ↓). The
real quantityd j is equal to a change in arg@z(p)2z(pj )#,
whenz(p) moves in the vicinity of a singular pointz(pj ). If
z(pj )5`, the quantityd j denotes a change in arg@z(p)#.
These notations will allow us to present the algorithm
branch tracking as a series of formulas.

Five correction functions,unj
(z, j ), are needed to restor

continuity of the computed functionu(z).
If z(p) crosses the branch cut ]1,1`@ at z(pj ), let nj

51, and

u1~z, j !512p222mjp i @ ln~2z!1U j #. ~37!

If z(p) crosses the branch cut ]0,1@ at z(pj ), let nj52,
and

u2~z, j !522p212mjp i @ ln~2z!1U j #. ~38!

If z(p) moves near the singular pointz(pj )51, let nj
53, and
1-6
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u3~z, j !52id j@ ln~z!1Û j #. ~39!

If z(p) moves near the singular pointz(pj )50, let nj
54, and

u4~z, j !52d j
2/22 id j@ ln~2z!1U j #. ~40!

If z(p) moves near the singular pointz(pj )5`, let nj
55, and

u5~z, j !51d j
2/21 id j@ ln~2z!1U j #. ~41!

If z(p) crosses the branch cut ]2`,0@ of the function
ln(z) at z(pj ), let nj56.

The logarithms in these formulas are multiple valu
functions themselves. Their branches can also change,
they can exhibit singular behavior, while an argumentz(p)
moves further in the complex plane. Because only the p
ciple branch of the logarithm is calculated by a computer,
additional terms,U j andÛ j , are included to correct the va
ues of these functions. These terms are given by the foll
ing formulas:

U j51 (
k. j

nk51,2

N

2mkp i 2 (
k. j

nk54,5

N

idk , ~42!

Û j52 (
k. j

nk56

N

2mkp i 2 (
k. j

nk54,5

N

idk . ~43!

The conditionnk51,2 in these formulas means that we ha
to sum up only those indicesmk , which correspond to situ
ations, whenz(p) crosses the branch cuts ]1,1`@ and ]0,1@ .
The conditionnk54,5 limits the summation ofdk to those
cases whenz(p) moves near the singular points 0 and`. If
nk56, we consider only situations whenz(p) crosses the
real axes in the interval ]2`,0@ .

Thus, each singular or crossing pointz(pj ), encountered
by the argumentz(p) of the functionu(z), gives rise to a
correction functionunj

(z, j ) required to makeu(z) continu-
ous. However, the structure of this correction function at
end of the pathp51 will depend on behavior ofz(p) near
all the following singular and crossing pointsz(pk), j ,k
<N. The resulting correction functionuc(z), obtained after
passing all the pointsz(pj ), j 51, . . . ,N, is given by the
following expression:

uc~z!5(
j 51

N

unj
~z, j !. ~44!

In order to see, how these correction functions oper
consider values of the principal branch ofu(z) at the edges
of the branch cut ]1,1`@ :

u~x6 i e!5
p2

3
22Li2~1/x!2

1

2
ln2~x!6 ip ln~x!. ~45!
06250
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In this formula,x.1 is real ande→10. Imagine that the
branch cut is crossed from below (↑). Then mj511, and
the value of the correction functionu1(z, j ), defined by Eq.
~37!, at the pointz5x1 i e is equal to

u1~x1 i e, j !522p i ln~x!.

If the branch cut is crossed from above (↓), mj521, and
the value of this correction function at the pointz5x2 i e is
equal to

u1~x2 i e, j !512p i ln~x!.

Thus, the correction functionu1(z, j ), added after the branch
cut is crossed, eliminates the finite discontinuity of the pr
cipal branch, Eq.~45!, of the functionu(z) along ]1,1`@ .
The correction functionu2(z, j ), defined by Eq.~38!, acts in
a similar way at ]0,1@ .

Imagine now that the argument ofu(z) goes around the
singular point at̀ , starting fromz5x1 i e, and coming back
to z5x2 i e, without crossing the branch cut along the po
tive real axis. The value ofu(z) exhibits a singular change
@from Eq. ~45!# by

Du522p i ln~x!.

In this case,d j52p, and the value of the correction functio
u5(z, j ), defined by Eq.~41!, at the pointz5x2 i e is equal to

u5~x2 i e, j !512p i ln~x!.

Thus, the correction functionu5(z, j ), added afterz has
moved near the singular point at̀, eliminates the singular
contribution to the value of the functionu(z). The correction
functionsu3(z, j ) andu4(z, j ), given by Eqs.~39! and ~40!,
produce similar results for the other singular points.

If, in the above examples, the argument ofu(z) first
crosses the branch cut, and then moves around the sing
point, the correction functionu1(z, j ) has to be modified by
adding nonzeroU j to the logarithm according to Eq.~37!.

The same principles of branch tracking apply to the fun
tion v(z), defined by Eq.~15!. First, we consider behavior o
this function near its branch points 1,21, and`:

v~z→1!52 1
4 ln2@~12z!/~11z!#1v (1)~z!,

v~z→21!5 1
4 ln2@~11z!/~12z!#1v (21)~z!, ~46!

v~z→`!5 1
2 ln~2z2/4!ln@~z11!/~z21!#1v (`)~z!.

In these formulas, the functions with subscripts(1), (21),
and (̀ ) are functions, analytic in the vicinities of 1,21, and
`, respectively.

Let us again consider a complex functionz(p), which can
represent each of the argumentsgk

( j )/s of the functionv(z)
in Eq. ~13!. Let $pj%, j 51, . . . ,N, denote values of the pa
rameterp, such thatz(pj ) are singular points 1,21, `, or
z(p) crosses the real axis. It is assumed that their real p
form an increasing set of numbers between 0 and 1. As
fore, each pointpj is characterized by an indexnj , and
1-7
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either mj or d j . Values ofnj will be assigned below, and
meanings ofmj andd j remain the same.

Five correction functions,vnj
(z, j ), are used to make th

computed functionv(z) continuous.
If z(p) crosses the branch cut ]1,1`@ at z(pj ), let

nj51, and

v1~z, j !51p21mjp i $ ln@~11z!/~12z!#1Vj%. ~47!

If z(p) crosses the branch cut ]2`,21@ at z(pj ), let
nj52, and

v2~z, j !52p22mjp i $ ln@~11z!/~12z!#1Vj%. ~48!

If z(p) moves near the singular pointz(pj )51, let
nj53, and

v3~z, j !51
d j

2

4
2 i

d j

2
$ ln@~11z!/~12z!#1Vj%. ~49!

If z(p) moves near the singular pointz(pj )521, let
nj54, and

v4~z, j !52
d j

2

4
2 i

d j

2
$ ln@~11z!/~12z!#1Vj%. ~50!

If z(p) moves near the singular pointz(pj )5`, let
nj55, and

v5~z, j !52 id j$ ln@~z11!/~z21!#1V̂j%. ~51!

If z(p) crosses the branch cut ]21,1@ of the function
ln@(z11)/(z21)# at z(pj ), let nj56.

The additional terms,Vj andV̂j , necessary to correct be
havior of the logarithms, are given by the following form
las:

Vj52 (
k. j

nk51,2

N

2mkp i 1 (
k. j

nk53

N

idk2 (
k. j

nk54

N

idk , ~52!

V̂j51 (
k. j

nk56

N

2mkp i 1 (
k. j

nk53

N

idk2 (
k. j

nk54

N

idk . ~53!

As in the previous case, a correction functionvnj
(z, j ) has

to be added to the functionv(z) every time its argumen
z(p) passes a singular or crossing pointz(pj ). This way, the
calculated functionv(z) can be made continuous. Howeve
the form of this correction function at the end of the pa
depends on behavior ofz(p) near all the pointsz(pk), fol-
lowing z(pj ). The resulting correction functionvc(z) is the
following:

vc~z!5(
j 51

N

vnj
~z, j !. ~54!

Let us now briefly discuss the effect of using these c
rection functions. Consider values ofv(z) at the edges of the
branch cut ]1,1`@ :
06250
-

v~x6 i e!5
1

2
Li2@2/~11x!#2

1

2
Li2@2/~12x!#

1
1

2
ln2@2/~11x!#2

1

2
ln2@2/~x21!# ~55!

6 i
p

2
ln@~x21!/~x11!#.

Here,x.1 is real ande→10. Imagine that the branch cut i
crossed from below (↑). Thenmj511, and a value of the
correction functionv1(z, j ) defined by Eq.~47!, at a point
z5x1 i e is equal to

v1~x1 i e, j !52 ip ln@~x21!/~x11!#.

If the branch cut is crossed from above (↓), thenmj521,
and a value of this correction function atz5x2 i e is equal to

v1~x2 i e, j !51 ip ln@~x21!/~x11!#.

Therefore, the functionv1(z, j ), added to the functionv(z)
after the branch cut is crossed, removes the discontinuit
the principal branch along ]1,1`@ . The correction function
v2(z, j ), given by Eq. ~48!, makes v(z) continuous at
] 2`,21@ .

Imagine now that the argument ofv(z) moves around the
singular point11, starting fromz5x1 i e and returning to
z5x2 i e, without crossing the branch cut. The value ofv(z)
undergoes a change@from Eq. ~55!# by

Dv52 ip ln@~x21!/~x11!#.

Becaused j52p, a value of the correction functionv3(z, j ),
defined by Eq.~49!, at z5x2 i e is equal to

v3~x2 i e, j !51 ip ln@~x21!/~x11!#.

Thus, by adding the correction functionv3(z, j ), it is pos-
sible to eliminate the singular contribution to the value
v(z), when z goes around the singular point11. The cor-
rection functionsv4(z, j ) and v5(z, j ), given by Eqs.~50!
and~51!, produce the same results for the other two singu
points.

If, in the above examples, the argument ofv(z) first
crosses the branch cut, and then moves around the sing
point, the correction functionv1(z, j ) should be modified by
adding nonzeroVj according to Eq.~47!.

It is important to note that the functions(z) is also a
multiple valued function. Its principal branch, defined by E
~27!, changes sign each time the argumentz crosses the
branch cut along the positive real axis. If this happensN
times while the parameterp changes from 0 to 1, the cor
rected valuesc(z) of this function atp51 is equal to

sc~z!5~21!Ns~z!, ~56!

wheres(z) is the value of the principal branch of the com
plex square root.
1-8
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We are now in a position to write a corrected express
for the generating integral:

I 5
16p3

sc
F (

j 51

4

(
k51

4

~v1vc!~gk
( j )/sc!

1(
j 52

4

~u1uc!~b1
(1)b1

( j )!G . ~57!

In this formula, each of 16 terms with the functionv(z)
contains its own correction functionvc(z), which is charac-
terized by its ownN and sets of numbers$pl%, $nl%, $ml%,
and $d l%. The same is true for each of the three terms w
the functionu(z).

Equation ~57! is profoundly different from the origina
formula, Eq.~13!, for the generating integral. In Eq.~13!, the
functionsu(z), v(z), ands(z) are expressed in terms of th
multiple valued logarithm and square root. When Eq.~57! is
used, it is assumed, on the contrary, that all the logarith
and square roots are represented by their principal branc
and, therefore, can be readily evaluated by a computer.
multiple valued nature of the functionsu(z), v(z), ands(z)
is taken into account explicitly by means of the addition
correction terms and factors. Also, singular contributio
from different terms in Eq.~13! are expected to cancel eac
other to yield a correct value for the generating integral,
~11!. When we use Eq.~57!, all the singular contributions
from different terms are canceled explicitly and separat
so that each function (v1vc)(gk

( j )/sc) or (u
1uc)(b1

(1)b1
( j )) is continuous along the path from

~1,1,1,1,1,1! to (a12,a13,a14,a23,a24,a34). As a result, the
generating integral, obtained from Eq.~57!, is a continuous
function of the complex parameters$a jk%. Thus, the problem
of branch tracking is successfully solved in the most gen
case.

Let us consider an example of branch tracking for
function v(z) with the argumentz(p). A sample path in the
complex p plane is displayed in Fig. 3~a!, and the corre-
sponding path fromz(0)5A to z(1)5B in the complexz
plane is shown in Fig. 3~b!. There are five points of interes

FIG. 3. Illustration of branch tracking in the complex case:~a!
the path in the complexp plane, chosen to avoid singular pointsp1 ,
p3, andp5; ~b! the corresponding path in the complexz plane from
z(0)5A to z(1)5B, wherez(p) is an argument of the multiple
valued functionv(z).
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z(p1)51, z(p3)5`, andz(p5)521 are singular points of
the function v(z); z(p2) and z(p4) are points where the
argumentz(p) crosses the branch cuts. According to the ch
sen classification:n153, d15p; n251, m2511; n3
55, d35p; n452, m4521; and n554, d55p. Using
Eqs. ~47!–~53!, one can easily obtain expressions for t
correction functions:

v3~z,1!5
p2

4
2 i

p

2
$ ln@~11z!/~12z!#2 ip%,

v1~z,2!5p21 ip$ ln@~11z!/~12z!#1 ip%,

v5~z,3!502 ip$ ln@~z11!/~z21!#2 ip%,

v2~z,4!52p21 ip$ ln@~11z!/~12z!#2 ip%,

v4~z,5!52
p2

4
2 i

p

2
$ ln@~11z!/~12z!#10%.

The resulting correction functionvc(z) is

vc~z!52
3p2

2
1 ip ln@~11z!/~12z!#

2 ip ln@~z11!/~z21!#.

One can see that this function is different from zero, eve
A5B, i.e., the contour is closed. This is not surprising. Ev
thoughv(z) is represented by its principal branch, the su
v(z)1vc(z) is still a multiple valued function. Its value gen
erally undergoes a finite change, if its argument traverse
closed loop, encircling branch points. Consider a value
vc(z) at z5x2 i e, where 21,x,1 and e→10. In this
case, the logarithms cancel, and

vc~x2 i e!52p2/2.

Contributions of this type from different terms in Eq.~57!
produce an additional constantmp2, needed to correct a
value of the generating integral in the case of real parame
$a jk%. Thus, Eq.~34! is a particular case of Eq.~57!.

This example demonstrates that the branch tracking in
general case requires a comprehensive numerical analys
behavior of all the arguments in Eq.~13!.

F. Numerical procedure and results

Practical implementation of the method, described in
previous sections, is inevitably a very complicated task. D
tailed information about the recursive procedure, needed
compute the family of integrals, Eq.~10!, can be found in
Ref. @4#. Here we describe only the procedure for numeri
branch tracking.

First, the set of points$pk%, at which different terms in
Eq. ~13! can exhibit singular behavior, is determined. This
done by solving the sixth-order equations250, and linear
equations of Eq.~30!, with the parametrization according t
Eq. ~35!. Only those values ofp, which lie in or near the rea
interval ]0,1@ , are included in the set$pk%. Then, a path from
1-9
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V. S. ZOTEV AND T. K. REBANE PHYSICAL REVIEW A65 062501
0 to 1 in the complexp plane is chosen. Figure 2 gives a
idea of this. The whole path is shifted downward by a sm
imaginary quantityi e to avoid possible ambiguities, whe
arguments of the functionsu(z) and v(z) are real. All the
arguments in Eq.~57! are computed at the final point of th
path, p512 i e. In actual calculations,e was set to 10228.
This did not affect values of the integrals, but was enough
shift the arguments from the real axis.

The path in the complexp plane is divided into smal
intervals, as shown in Fig. 4. The intervals ]Pl ,Pl 11@ , into
which the linear segments between the singular points,$pk%,
are divided, have a typical length of 1022. Each small semi-
circle beneath a singular pointpk has a radiusr 51029, and
is divided into six parts. The corresponding boundary poi
are

Pl5pk1r exp@ i ~p l /6!#2 i e, l 50, . . . ,6. ~58!

In order to obtain full information about behavior of di
ferent arguments in Eq.~13!, all these arguments should b
computed at all the pointsPl along the path. The quantitie
gk

( j ) , bk
( j ) , ands2, given by Eqs.~16!–~20! are simple func-

tions of $a jk(p)%, so this calculation can be performed a
most immediately. The values of each argument are a
lyzed, and the numbersN, nj , mj , and d j , j 51, . . . ,N,
needed to apply the formulas of Sec. II E, are determin
This procedure works as follows. To find out if an argume
crosses the real axis, the imaginary parts of its values, c
puted at pointsPl and Pl 11, are compared. If they hav
opposite signs, dichotomy is used to reduce the interval
determine where the real axis is crossed and in which di
tion. This is also done for the intervals along each sm
semicircle, but without the dichotomy. In this manner, all t
crossing points can be found and analyzed. At each inte
] Pl ,Pl 11@ , this analysis is carried out fors2 first. If s2

crosses the positive real axis, whenp is betweenPl and
Pl 11, the sign ofs should be changed. Then, allgk

( j ) , com-
puted atPl 11, should be multiplied by21, and allbk

( j ) are
inverted. The quantityd j is determined as follows:

d j5(
l 50

5

@arg„z~Pl 11!…2arg„z~Pl !…#. ~59!

Here, the pointsPl are specified by Eq.~58!, andz can stand
for any of the argumentsgk

( j )/s andb1
(1)b1

( j ) as functions of
$a jk(p)%. The right-hand side of this formula is presented
a sum, because asp changes fromP0 to P6, the argument
z(p) may go around the singular pointz(pk) several times.
Thus, behavior of each argument in the vicinity of each s
gular point can be analyzed. The described procedure of

FIG. 4. Segmentation of the path in the complexp plane, needed
to analyze behavior of arguments of the multiple valued functi
numerically.
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merical branch tracking provides all the information, nec
sary for successful use of Eq.~57!.

The entire algorithm for analytic evaluation of the fou
particle integrals with complex parameters was tested in f
different ways.

First, real parameters$a jk% were used, and the result
obtained using the complex algorithm of Sec. II E were co
pared with results provided by the method of Sec. II D f
the real case. The real parts of the computed integrals,
~10!, were invariably in excellent agreement. The imagina
parts, given by method discussed here, were at least 20
ders of magnitude smaller than the real parts, and could
considered negligible. Therefore, the complex algorith
works correctly for any acceptable real parameter.

Second, the parameters$a jk% were multiplied by an arbi-
trarily chosen complex numberl. A resulting integral, Eq.
~10!, with a particular set of$njk% must be equal to its origi-
nal value, multiplied byf 5lK, where K5n121n131n14
1n231n241n3413. Variousl ’s were used, and values o
the integrals, calculated directly, were compared with the r
caled original values. Remarkable agreement was obse
in all these cases. Note that different values ofl correspond
to different paths in the space of parameters according to
~35!.

Third, if two exponential parameters,a13 and a24, are
equal to zero, the six Coulomb integrals and one over
integral, needed to determine matrix elements of the Ham
tonian according to Eqs.~4!–~9!, can be obtained analyti
cally in terms of rational functions and logarithms. Values
these integrals, calculated with various sets of complex
rameters,a12,a14,a23,a34, were compared with the sam
integrals, computed using this method. They were alway
complete agreement.

Fourth, different paths in the complexp plane were cho-
sen. They included singularities, located not only near
real axis, but also further away. The results did not dep
on the choice of the path. This fact suggests that the
scribed method of numerical branch tracking is stable a
reliable. Of course, the path in actual calculations should
as simple as possible, provided that all nearby singulari
are carefully taken into account.

Table I displays values of the integrals for three differe
sets of parameters$a jk%, used to test the computer program
Many other sets of parameters were also considered. All
integrals were calculated using the general algorithm for
merical branch tracking, described in Sec. II E. Implemen
tion of this algorithm requires quadruple precision. The p
gram computes a family of 64 integrals, Eq.~10!, with two
possible values for every index:njk50,1. Only seven inte-
grals, necessary to obtain matrix elements of the Hamilton
according to Eqs.~4!–~9!, are presented in Table I for eac
set of parameters.

Our results demonstrate that the developed algorithm
lows precise evaluation of the four-particle integrals w
arbitrary complex parameters, provided that the integr
themselves converge.

The described method makes it possible to use the hig
versatile exponential-trigonometric basis functions in var
tional calculations of four-particle Coulomb systems. In o

s
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TABLE I. Examples of four-particle integrals evaluated using the algorithm for numerical branch tra
in the complex case.

$a jk% $njk% Re(J) Im(J)

a1251.56 011111 0.20550889174003868108D103 20.52323042463487687803D221
a13520.69 101111 0.49701602825033406834D102 0.37462639365280834442D221
a1452.71 110111 0.33278606420131925558D103 0.29262335382214159490D221
a2351.75 111011 0.69156207020089168507D102 0.39044885805975934492D221
a2451.42 111101 0.20401147280211976836D103 0.44225408142944401598D221
a34520.50 111110 0.50046583501959809463D102 0.75995078405826138804D221

111111 0.21644781505854395857D103 0.32039794574654543500D220

a1251.56(110.5i ) 011111 20.70977575942226172269D102 0.45253255249692588012D102
a12520.69(110.5i ) 101111 20.17165677159247121876D102 0.10944340655611068217D102
a1252.71(110.5i ) 110111 20.11493589374343266153D103 0.73279810811752133344D102
a1251.75(110.5i ) 111011 20.23884805635825330948D102 0.15228263175782374191D102
a1251.42(110.5i ) 111101 20.70460405295819730405D102 0.44923522162040663029D102
a12520.50(110.5i ) 111110 20.17284824763945988644D102 0.11020305731851711925D102

111111 20.40739676150047588287D102 0.68031854740817630022D102

a1251.2911.19i 011111 0.41299141847575234393D101 20.13354699318829522025D101
a1350 101111 0.25568585205838373519D101 20.14420903111112389762D101
a1452.5321.32i 110111 0.39327459787814931363D101 20.64522069912295906967D101
a2351.8611.44i 111011 0.56761553854820761165D101 20.12198339708832004631D101
a2450 111101 0.38294186820466745046D101 20.25317810705579310712D101
a3450.6520.93i 111110 0.26044120278339787630D101 20.23151954768733032766D101

111111 0.37849264531713841033D101 20.28372153117607227596D101
to
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der to illustrate efficiency of the new basis, we would like
mention some results, obtained previously@11# for the fol-
lowing systems:e1e2e1e2, p1m2p1m2, m1e2m1e2,
andp1e2p1e2. The calculations were performed using o
exponential-trigonometric basis function:

C5ŜexpS 2(
j ,k

4

Ajkr jkD sinS (
j ,k

4

Bjkr jk1CD . ~60!

This function includes 12 real nonlinear parameters,$Ajk%
and $Bjk%, and one linear parameter, tan(C). It can be con-
sidered a linear combination of two exponential functio
Eq. ~2!, with the complex parametersAjk6 iB jk . The opera-
tor Ŝ ensures that this function has correct symmetry w
respect to permutations of particles.

All integrals, necessary to determine matrix elements
the Hamiltonian, Eq.~1!, with the functionC, were com-
puted according to the method described in this paper.
nonlinear parameters were subjected to careful gradient
timization. For more details about this calculation, see@11#.

Table II exhibits values of the ground-state energy,E for
e1e2e1e2, p1m2p1m2, m1e2m1e2, and p1e2p1e2,
determined using the variational method with the trial fun
tion C. The table also displays the most accurate ene
values,E0, available for these systems@1,2,13,14#. One can
see that the relative errors are 0.2%, 0.7%, 2.4%, and 3
respectively. The results for two adiabatic system
m1e2m1e2 and p1e2p1e2, with very low mass ratios
m/M , are very impressive. Neither Gaussian, nor expon
06250
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tial functions are even nearly as efficient@11#. Thus, a single
symmetrized exponential-trigonometric basis function, E
~60!, provides a remarkable accuracy in variational calcu
tions of various four-particle systems.

III. CONCLUSION

The method for analytic evaluation of four-particle int
grals with complex parameters, described in this paper,
be regarded as both further theoretical development
practical implementation of the original method by From
and Hill @4#. Validity of this method is not limited to the cas
of real parameters. Moreover, because the integrals are
pressed in terms of multiple valued complex functions, it
more natural to consider a general case when all the par
eters are complex. The original formula, Eq.~13!, for the
generating integral can be used only in the immediate vic
ity of the standard reference point where all the parame

TABLE II. Ground-state energyE of four molecules, computed
with a single exponential-trigonometric basis function. The m
accurate values,E0, of this energy are taken from Refs.@1#, @2#,
@13#, and@14#, respectively. The values are given in atomic units

System m/M E E0 Error ~%!

e1e2e1e2 1 20.514956 20.516003 0.2
p1m2p1m2 0.1126095 2198.2056 2199.6294 0.7
m1e2m1e2 0.0048363 21.113198 21.141000 2.4
p1e2p1e2 0.0005446 21.122378 21.164025 3.6
1-11
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are equal to 1. The procedure of numerical branch track
proposed in this paper, allows computation of the integral
any other point in the space of six complex parameters
taking into account all branch changes along the path.
simplified method of branch tracking for real parameters
also discussed.

This method makes possible high-precision variational
lution of the Coulomb four-body problem in the basis
exponential-trigonometric functions. The calculations ha
shown high efficiency of this basis@11#. They have also dem
onstrated correctness of the branch tracking algorithm
scribed in this paper.
s
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However, if the full potential of the exponentia
trigonometric basis is to be revealed, an efficient proced
for selecting optimal values of the nonlinear parameters
necessary. Ideally, all the parameters should be chosena pri-
ori, and all matrix elements are computed only once. Suc
procedure has been developed by the authors for the ca
adiabatic three-particle systems@10#. All nonlinear param-
eters of the exponential-trigonometric functions had be
chosenbeforethe computation, which yielded 10 correct si
nificant figures for the ground-state energy ofH2

1 @10#. We
believe that the exponential-trigonometric basis can prov
similar precision in calculations of four-particle systems.
dy
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