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Generation of maximum spin entanglement induced by a cavity field in quantum-dot systems
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Equivalent-neighbor interactions of the conduction-band electron spins of quantum dots in the model of
Imamodu et al. [Phys. Rev. Lett83, 4204 (1999] are analyzed. An analytical solution and its Schmidt
decomposition are found and applied to evaluate how much the initially excited dots can be entangled with the
remaining dots if all of them are initially disentangled. It is demonstrated that perfect maximally entangled
states(MES’s) can only be generated in systems of up to six dots with a single dot initially excited. It is also
shown that highly entangled states, approximating the MES’s with good accuracy, can still be generated in
systems of odd numbers of dots with almost half of them excited. A sudden decrease of entanglement is
observed on increasing the total number of dots in a system with a fixed number of excitations.
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. INTRODUCTION of the reduced density matrx=Trg{pag} Or, equivalently,
s=Tra{pasl. The entanglement of formation of a mixed
tate of a bipartite system is often measured by the so-called
‘concurrence proposed by Hill and Woottdiisd]. Concur-

Since the seminal papers of Obermayer, Teich, an(i
Mabhler[1], there has been growing interest in the quantum
@nformation properties of quantum dd@Ds) in the qUest 0 ronce has been applied to study entanglement in various
implement quantum-dot scalable quantum compusil.  ,4eis[15] including equivalent-neighbor systerfiss,17).
Those high expectations are justified to some extent by repy following two aspects of entanglement are especially
cent_expe_rimental advances in the _coher(_ent observation ari‘l‘fportant:(i) coherent manipulation of entanglement iy
mampulatlo.n of quantum dotf5,6], including spectgcular. eneration of maximum entanglement. The possibility of co-
demonstrations of the quantum entanglement of excitons in g .ant and selective control of entanglement in a quantum-
single (’:10'[[7]'0I’ _quantum—dqt molgcul_@S], and observations . system was analyzed by Imarhogt al. [10]. Here, we
of Rabi oscillations of excitons in single dofS]. Among .4/ |ike to focus on the latter topic, i.e., the generation of
various models of quantum computers based on localize e maximally entangled Staté®IES’s) of quantum dots in
electron spins of quantum dpts as quias, _the schgme of  the model of Imamolg et al. [10]. MES’s are necessary for
Imamodu et aI..[lo] is the f|rst where the_lnte.ractlons. be- the majority of quantum information-processing applica-
tween the qu.blts are mediated by a caV|ty' field. Th's,ap’[ions. Otherwise, for example, direct application of partly
proach combines the advantages of long-distance Opt'cqnt\;‘ntangled states for teleportation will result in unfaithful

controlled couplings with long-decoherence times of the spif5nsmission, while superdense coding with partly entangled
degrees of freedom. Here, we analyze quantum entanglemelh s will cause noise in the resulting classical channel.
in the Imamoty et al. model.

The paper is organized as follows. In Sec. Il, we describe

During thle last decade, it f;lashbeen rf\ighlighted thathqua_mén equivalent-neighbor quantum-dot model and give its ana-
tum entanglement, being at the heart of quantum mechanicRyiea| solution. In Sec. Ill, we analyze the possibilities of
is also a powerful resource for quantum communication and o aration of the MES's or their good approximations for

quantum-information processing. Qhuantum entanglembent "Qifferent initial conditions of the number of excitations and
interacting systems is a common phenomenon. It is 0bVioUse total number of dots in the system.

that any interacting many-body system with defined qubits, i

set in a properly chosen state, will evolve through states with

entangled qubits. Surpris_ingl_y, qua_ntita’give descriptions of Il. QUANTUM-DOT MODEL AND ITS SOLUTION

the entanglement dynamics in multiparticle systems are by

no means satisfactory yéill]. Nevertheless, in a special ~ We will apply the model of Imamdg et al. [10] to de-

case of bipartite entanglement, a number of measures hawgeribe strong equivalent-neighbor couplings of quantum-dot

been introduced and studigt?—14. For example, entangle- spins through a single-mode microcavity field. The dots are

ment of a bipartite system in a pure state, described by thplaced inside a microdisk, put into a microcavity tuned to

density matrix,‘JAB:(|¢><¢|)AB, can be measured by the frequencyw.,,, and illuminated selectively by laser fields of

von Neumann entrop12,13 frequencie&)ﬁ") . Each ofN dots with a single electron in the

conduction band is modeled by a three-level atom as shown
. N N . . in Fig. 1. The total Hamiltonian foN three-level quantum
Elpagl=—Tr{palogzpa} = —Tr{pglogzps} (1) dots interacting wittN+ 1 quantized fields reads
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conduction band in terms of the Pauli spin creatiom’ and annihilationo,
operators acting on the conduction-band spin states of the
10> nth dot. The effective two-dot coupling strength between the
spins of the nth and mth dots is given by x,(t)
) =gn(t)gm(t)/A,, where the effective single-dot coupling of
.......... n the nth spin to the cavity field is g,(t)
AWl Bt X VAL =g’ gn1|E(L)(t)|/Awn with Aw, being the harmonic mean
v>, " of Aw andAw . For simplicity, the laser fields are as-
valence band sumed to be strong and treated classically as described by the

FIG. 1. Three-level atom in V configuration as a model of ac_omplex ampllltudesi.:_ﬂ‘)(t_). T_he. qulltonlan(3) was de-
semiconductor dot with the conduction-band spin st&ts (spin rived by applying ad|abat|cAeI|m|nat|ons of the valence-band
up) of energy& and|0), (spin down of energyggm, and the statesv), and cavity modea.,,, which are valid under the
effective valence-band stafte),, of energye ") in thenth dot. Key: ~ assumptions of negligible coupling strength, cavity decay
weay, frequency of the common cavity mode"') frequency of rate, and thermal fluctuations in comparison#d, and
the classical laser field addressed at tith dot hAa)gl)=6$11) hAw(® (x=0,1) and the energy differenc&"— & (see
—EV~foe, hA0P=EP-EP-hol?, and A,=Aw0{’  Fig. 1). Moreover, the valence-band levels), were as-
~ Aoy are detunings. sumed to be far off resonance. Although the Hamiltor{@n

describes apparently direct spin-spin interactions, the real
A=HFop+HAe+ A, (2)  Physical picture is different: Quantum-dot spins are coupled
only indirectly via the cavity and laser fields.
Imamodu et al. [10] applied their model for quantum
- E (5510)(}2% 5511)(}%1+ 551”)(}?1”), cpmputing purposes by implementing the conditional phgse-
n flip and controlled~oT (CNOT) operations between two arbi-
trary dots addressed selectively by laser fields to satisfy the
conditionA,=A,. Here, we are interested in a realization
Ar=fweal At 2 holP@b)ald), of an equivalent-neighbor model scalable for a large number
n of dots(even for more than 10[L0]). This goal can readily
be achieved by assuming that all dots are identical and illu-
minated by a single-mode stationary laser field of frequency

1>

VO[30 50 1 (A1)T5 R I
'm_E hgrlaf on’ + (@) oy HZ hgh'(@cay wP=w®), which implies k,m(t)=x=const. In fact, the
condition of equivalent-neighbor interactions can also be as-
+al ovh), sured for nonidentical dots by adjusting the laser-field fre-

guenciesw") to get the same detuniny,=const, and by

~ ~ . X . . . L) 2 . -
whereH op andH are the free Hamiltonians of the quantum choosing the proper laser intensiti&}"|” to obtain the ef
dots and the fields, respectivelyd, is the interaction [eCtive coupling constants a,(t)=const or, equivalently,

LA ~t — . knm(t)=const for every pair of dots. Thus, E@) can be
Hamiltonian;a.,, and a.,, are the ann|h|IaAt|on and Acreaﬂon reduced to the effective equivalent-neighbomot Hamil-
operators of the cavity mode, respectivedy) and @)"  tonian as

are the corresponding operators for the laser mo&ﬁ%;is

the nth dot operator given byY=|x),(y|; £ is the en- h Cm el

ergy of level|x), (x=0,1p); thenth dot levelg0), and|v),, eﬁ—7 2 (0qomtT0o,0m), 4

are coupled by dipole interactions with a strengthgq‘l’;

analogouslyg®! is the coupling strength between levils,, _ ) _
and|v),. There is no direct coupling between levé®, whereK.|s the cqupllng constant. The systern described by
and |1),, in either the samer(=m) or different dots @ Eqg. (4) is somet|me§ rgferred to as the spin-1/2 van der
#m). The Hamiltonian(2) simply generalizes, tbl dots and V\_/aa_ls mode_[Z(_J], the |nf|n|tely_ coordinated SyStefﬁll the
N+1 fields, models of a three-level atofdot) interacting  -iPKin or Lipkin-Meshkov-Glick model[22], or just the
with two modes of radiation fields widely discussed in the€duivalent-neighbor mod¢p3]. Let us assume that the ini-
literature (see, e.g.[19]). By applying an adiabatic elimina- @l state describing a system bf (M =0, ... N) dots ini-
tion method, Imamdg et al. derived the effective interac- tially excited (i.e., with conduction-band spins uand N

tion Hamiltonian describing the evolution of the conduction- ~M dots in the ground stateonduction-band spins down
band spins oN quantum dots coupled by a microcavity field 'S 9iven as

in the form[10]

% . |(0))={]1)*M},{|0) >N~}

Hep== knm(D[ 07 o e @ndmty GGt e i(An—Amt
M2 h (DL o nem ] _ |11+ 1),]00- - - 0)
3 — va )
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GENERATION OF MAXIMUM SPIN ENTANGLEMENT . ..

Then, we find the solution of the Schilinger equation of
motion for the model(4) in the form

MI
(0)= 2 CaM{|1)*M"™[0)"

©f|1)emo)eN=M=m1, (6)

where M’'=min(M,N—M). The states in curly brackets
{]2)®(=mM|0)*™M denote the sum of alh-dot states with
(n—m) excitations. For example]|1)®2]0)®?} stands for
|0012)+|0102)+]0110 +]1001) +]1010 +|1100.  The
number of states in the superpositifgd)®("~™|0)*™} (or
equivalently{|1)®™ 0)®("~™1) js equal to the binomial co-
efficient (J}). Thus, for givenN andM, the solution(6) con-
tains (,’t‘,l) terms. The energy of the QD system described by
Eq. (4) is conserved; thus all the superposition states in Eq.
(6) have the same numbeé¥ of excitations. We find the
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M!
CNM(t)= ZO bNMexp{i[n(N+1—n)—M(N—M)]«t}

()

in terms of

-2, - T M

FIG. 2. Evolution of the quantum entanglement BM!(t)
(solid) and the Schmidt coefficients &)(t) (dashed and P)"*(t)
(dot-dashed curvédor systems oN=2, . .. ,8quantum dots with
only one M =1) of them initially excited. Figure illustrates that the
exact maximally entangled states can be generated in systels of
up to 6 dots only.

IIl. ENTANGLEMENT IN QUANTUM-DOT SYSTEMS

We address the following questions: How much can the
initially excited dots(say, subsystenh) be entangled with

; (8)  the remaining dotg¢subsystenB) in the equivalent-neighbor
system of initially all disentangled dots if the evolution is
where () are binomial coefficients. Our solution can be rep-governed by Hamiltoniari4)? And whether the maximally
resented in a biorthogonal form via the Schmidt decomposi€ntangled states can be generated exactly or, at least, ap-

tion

N—2k)
2l h_k-1

N=4 M=2 N=5 M=2

M/
|<//<t>>=mE:0 VPR dm(0))a®]@m(t)s,  (9)

where |¢m(t))a and |em(t))g are the orthonormal basis
states of subsysten#s and B, respectively. We find that the
real and positive Schmidt coefficients can be related to the
squared module of superposition coefficietitsas follows:

M
PR (=] (10

'N—M
( m )ICMMG)IZ,

while the phases oE}(t) are absorbed into the definitions
of the basis statelsh,(t))a and|em(t))g. The Schmidt co-
efficients are normalized to unity. The evolutions of )|

for systems with single and two excitations are given in Figs.
2 and 3, respectively. We observe that the evolution of
Schmidt coefficients is periodic with the period &T
=2m/N for systems with a singleM =1 or, equivalently,
M=N-—1) excitation(Fig. 2), and7-periodic (27 periodig FIG. 3. Evolution of the entanglement Bf*3(t) (solid) and all
for systems of evefodd numbers of dots with higher num-  schmidt coefficientsP}%(t) (dashed, PY2(t) (dot-dashey and
bers of excitationgsee Fig. 3. For brevity, only half of the  P)2(t) (dotted curve) in systems with two i1 =2) dots initially
period is depicted in the right-hand panels of Fig. 3. excited.
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N=10 N=20 ebits of entanglement. In particular, the MES in tRelot
¢ ¢ system with a single initial excitation has only 1 ebit inde-
ms = pendent ofN. The empty staircase in Fig. 4 and solid lines in
52 52 Fig. 5 correspond t&yrs. To show a deviation of a given
® ® state from the MES, it is convenient to use the relative
scaled entanglement defined to be
0 0 M 10 00 10 20
_ Ema EN(t)
N=30 M= i = max——. (14)
EMES t EMES
In the simplest nontrivial case, fdvi=1, the Schmidt
coefficients reduce to
N— 1) N
A VI PN(t)=4 4 SInz(—Kt> (15)

FIG. 4. Maximum entanglemer&w,=maxENY(t) (solid bars,
measured in ebits, as a function of the excitation numbeyener-  andP{*(t)=1— P}"(t), which enable a direct calculation of
ated in systems dfl= 10, 20, 30, and 31 dots. The empty staircasethe entanglemerEN*(t) with the help of Eq(11). The evo-
corresponds to entanglement Bfj's for the MES's. The figure |utions of entanglement and the Schmidt coefficients of
illustrates that the highest entanglement, closedf,ws, can be P,’;']l(t) for m=0,1 are depicted in Fig. 2. The quantum-dot
generated in systems witid =[N/2] excitations. On decreasind  systems evolve into the MES’s at evolution times, that are
or (N—M), the entanglement decreases. The discrepancy betwegRe roots of the equation
ENY and ENYs becomes more pronounced with increashhgspe-
cially for 0O<M <[ N/2]. . N—1

0=E"M(t)=2« N

sin(N«t)
proximately in systems of an arbitrary numbirof dots

while M of them are excited. N2
With the help of an explicit form of the Schmidt decom- Xlogy| 7=~ 4(N—1) CSLZ . (16)
position, it is convenient to calculate the entanglem@nt
via the Shannon entropy Thus, we get
M’ , 2 2
ENMH =EL[p()) (D)1= = X PR"(t)logoPi" (1 wt! =g arcesggva(N—1) (17)
11

and «t”"=x/N. We find that the maximum entanglement,

of the Schmidt coefficients given for our system by Exf). e,qual toEM!(t") =1 ebit, can be achieved at ev,olution times
tanglement glven b;E a>é(t) maxENM(t), which can peri- exist. Another explanation of this result, as illustrated in Fig.
odically be generated during the evolutioniidot systems 2 €an be given as follows: The maximum entanglement cor-

with M excitations. The coefficientd0), as well ag7), pos- responds to the Schmidt coefficients mutually equal or, in
sess the symmetry d®M(t)=PNN"M(t), which implies general, the least different. But the MES corresponds solely
m m 4

. to the former case. As is seen in Fig. 2, the condition
equal evolutions of entanglement PY(t")=PY(t") is strictly satisfied forN<6. The en-
ENM(t)=EN-N"M(t) (120  tanglement folN>6 reaches its maximum at the evolution
timest”. This maximum value is given by
in the N-dot system withM andN—M excitations. Figure 4
shows this symmetry in a special case for maximum en-

tanglement of maE"M(t)=maxENN"M(t). ENY(t)= {N2|092N (N—2)%log(N—2)
To solve the second problem proposed at the beginning of
this section, we have to determine the quantum correlations —2(N—=1)log,[4(N—1)]}, (19

of the maximally entangled state of two subsystems hagling

equally weighted terms in its Schmidt decomposition. Ac-which is less than unity and monotonically decreases with

cording to the theorem of Bennett al. [12], the MES has increasingN as clearly illustrated in Figs. 5 and 6 fod

log,d ebits of entanglement, whemre is the Hilbert space =1. Thus, the perfect MES’s cannot be generated in systems
dimension of the smaller subsystem. Thus, in our case, thef N>6 dots. Nevertheless, a good approximation of the

MES of the subsystem consisting ofM dots and the sub- MES can also be obtained foé=7. On the scale of Fig. 2,

systemB of N—M dots has maxE"{(t)=E"Y#/7)=0.9997 is close to unity since
PO (#/7) and PY!(7/7) are almost the same. It is worth
Emes=log[min(M,N—M)+1] (13)  noting that a critical value dfl=6 was also found, although
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M=1 M=2 2.5

1

0.?0

ebits ™'
o

n
o

=<

=8 n
IS
o
[42]

0

M=[N/2] FIG. 7. The inverse of the maximum entanglemer@hy)
(dotg measured in ebits!, and its approximatiofsolid lineg as a
function of N>2M +5 generated in systems witl =1,2,3 exci-
tations.

pact form for arbitrary evolution times. Thus, for clarity, we
present mainly numerical results féd=2. For example,
Fig. 3 illustrates that the exact MES cannot be generated in
FIG. 5. Maximum entanglemei™. as a function of the total systems withM =2 excitations at any evolution time. This

numberN of dots generated in systems with=1, 2, 3, and N/2] conclusion can be drawn f.rom the observation tlﬁﬁf(t.)
excitations. The solid lines and empty staircase correspond tgor _m:0,1,2 do not cross simultaneously at any Flmes In the
ENMs. On the scale of the figure, an apparent plateau occursl for period. Ne_v_ertheless, t_he MES can be approximated with
smaller than some critical valu,, . For N higher thanN,, and good precision. The highest possible entanglement, corre-
fixed M, a monotonic decrease of the maximum entanglement i$ponding to the least mutually differeRfy”, is observed for
clearly visible. One concludes that arbitrary high entanglement calN=>5 and 9, where the relative entanglement deviates from
be achieved by increasiny and keeping halM=[N/2] of the  unity at the order of 10° and 10 *, respectively(see Fig. 6
system excited. for M=2). The states generatedNdot systems with three
excitations can be entangled up ef3,=0.9996 (first) and
in the different context of the pairwise entanglement meaelL3=0.9990 (second maximumfor the relative entangle-
sured by the concurrendd4], for an equivalent-neighbor ment(see Fig. 6 folM =3). It is interesting to compare the
model of entangled webs in R¢fL6]. In comparison, a criti-  relative entanglement oM depicted in Fig. 6, with the

max»
cal value of N=6 for the concurrence in the equivalent- “absolute” entanglement oENY presented in Fig. 5. By

neighbor isotropic or anisotropic Heisenberg models was nonalyzing the numerical datag?i(/en, in part, in Fig. 6, we find

observed(see, e.g.[17]). Similarly, generation of the MES the following rule: The maximally or almost maximally en-

in an equivalent-neighbor quantum-dot model of Re#hal.  tangled states can be generated in systemslo2M + 1

was discussed only in two special cases of the B¥H-Q)  dots withM excitations. Slightly worse entanglement can be

and Greenberger-Horne-ZeilingéHZ) (N=3) entangled achieved in systems df=2M +5 dots withM excitations.

states[18]. Thus, no critical behavior of entanglement as aThus, systems composed of odd rather than even numbers of

function of N was reported there. dots enable generation of the entangled states better approxi-
The case forM=1 is the only one where the general mating the MES foM>1. This is clearly illustrated in Fig.

formula(10) for the Schmidt coefficients simplifies to a com- 6 for M =[N/2], i.e., the integer part dfi/2. We observe that

the system of odd and large numbef$>2M +5 for M

NM

M=1 M=2 >1) of dots is the most entangled at the evolution times
& ! ! kt=(1+2k) = for k=0,1, ... (see, e.g., Fig. 3 foN=11).
Jo.os 0.98¢ In this special case, the Schmidt coefficients can be written
Iino.ge 096! compactly via
«
I_ufzo.sm 0.94f . (N— 2m_2)!!
08275 6 8 10 1209 4 6 8 10 12 14 Crl?le K) ‘ =2"m! (N* 2M )T (19)
M=3 M=[N/2]
o For kt=km and evenN, in contrast to odd, the entangle-
= %! ment vanishes. The maximum entanglemen€fl, for N
~ 096 96/ >Ny=2M+5— 61y can be well fitted by the inverse of
20_94 gal linear functions as shown in Fig. 7.
L
0.2 6 8 1(}\I 12 14 : 2 4 6 8 1&12 14 16 18 20 |V CONCLUSION

FIG. 6. The same as in Fig. 5 but for the relative maximum e studied the evolution of the conduction-band spins of
entanglemenelM =ENM/ENM, . The figure shows that the apparent quantum dots in the model of Imariaget al. [10]. We
plateau for finiteM actually occurs fotM =1 only. The first and  found the analytical solution and its Schmidt decomposition
second highest maxima of entanglement correspori égual to ~ for the equivalent-neighbor model and applied them in our

2M+1 and M +5, respectively. study of bipartite entanglement in quantum-dot systems with
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arbitrary numbers of dots and their excitations. We have-4;,,, the entanglement decreases monotonically as de-
raised and solved the problem to what extent the initiallyscribed by the inverse of linear functions.

excited dots can be entangled with the remaining dots if all
of them are initially disentangled in the equivalent-neighbor
energy-conserving model. We have shown that the perfect
maximally entangled states can only be generated in systems We thank J. Bajer, T. Cheon, T. Kobayashi, H. Matsueda,
of N=2, ... ,6dots with a single dot initially excited. Nev- and I. Tsutsui for their stimulating discussions. Y.L. acknowl-
ertheless, highly entangled states, being excellent approxedges support from the Japan Society for the Promotion of
mations of the MES’s, can periodically be generated in sysScience(JSP3. This work was supported by a Grant-in-Aid
tems of odd numberdN of dots with the numbeM of  for Scientific ResearchB) (Grant No. 1244011)1and a
excitations equal ttM=(N—1)/2 (leading to the best ap- Grant-in-Aid for Encouragement of Young Scienti¢Grant
proximation andM = (N—5)/2 (giving a slightly worse ap- No. 12740243 by the Japan Society for the Promotion of
proximation. If we increase N beyond Ny,=2M+5  Science.
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