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Generation of maximum spin entanglement induced by a cavity field in quantum-dot systems
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Equivalent-neighbor interactions of the conduction-band electron spins of quantum dots in the model of
Imamoḡlu et al. @Phys. Rev. Lett.83, 4204 ~1999!# are analyzed. An analytical solution and its Schmidt
decomposition are found and applied to evaluate how much the initially excited dots can be entangled with the
remaining dots if all of them are initially disentangled. It is demonstrated that perfect maximally entangled
states~MES’s! can only be generated in systems of up to six dots with a single dot initially excited. It is also
shown that highly entangled states, approximating the MES’s with good accuracy, can still be generated in
systems of odd numbers of dots with almost half of them excited. A sudden decrease of entanglement is
observed on increasing the total number of dots in a system with a fixed number of excitations.
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I. INTRODUCTION

Since the seminal papers of Obermayer, Teich,
Mahler @1#, there has been growing interest in the quantu
information properties of quantum dots~QDs! in the quest to
implement quantum-dot scalable quantum computers@2–4#.
Those high expectations are justified to some extent by
cent experimental advances in the coherent observation
manipulation of quantum dots@5,6#, including spectacular
demonstrations of the quantum entanglement of excitons
single dot@7# or quantum-dot molecule@8#, and observations
of Rabi oscillations of excitons in single dots@9#. Among
various models of quantum computers based on local
electron spins of quantum dots as qubits@3,4#, the scheme of
Imamoḡlu et al. @10# is the first where the interactions be
tween the qubits are mediated by a cavity field. This
proach combines the advantages of long-distance optic
controlled couplings with long-decoherence times of the s
degrees of freedom. Here, we analyze quantum entangle
in the Imamoḡlu et al. model.

During the last decade, it has been highlighted that qu
tum entanglement, being at the heart of quantum mecha
is also a powerful resource for quantum communication
quantum-information processing. Quantum entanglemen
interacting systems is a common phenomenon. It is obvi
that any interacting many-body system with defined qubits
set in a properly chosen state, will evolve through states w
entangled qubits. Surprisingly, quantitative descriptions
the entanglement dynamics in multiparticle systems are
no means satisfactory yet@11#. Nevertheless, in a specia
case of bipartite entanglement, a number of measures
been introduced and studied@12–14#. For example, entangle
ment of a bipartite system in a pure state, described by
density matrixr̂AB5(uc&^cu)AB , can be measured by th
von Neumann entropy@12,13#

E@ r̂AB#52Tr$r̂Alog2r̂A%52Tr$r̂Blog2r̂B% ~1!
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of the reduced density matrixr̂A5TrB$r̂AB% or, equivalently,
r̂B5TrA$r̂AB%. The entanglement of formation of a mixe
state of a bipartite system is often measured by the so-ca
concurrence proposed by Hill and Wootters@14#. Concur-
rence has been applied to study entanglement in var
models@15# including equivalent-neighbor systems@16,17#.
The following two aspects of entanglement are especi
important:~i! coherent manipulation of entanglement and~ii !
generation of maximum entanglement. The possibility of c
herent and selective control of entanglement in a quant
dot system was analyzed by Imamogl̄u et al. @10#. Here, we
would like to focus on the latter topic, i.e., the generation
the maximally entangled states~MES’s! of quantum dots in
the model of Imamoḡlu et al. @10#. MES’s are necessary fo
the majority of quantum information-processing applic
tions. Otherwise, for example, direct application of par
entangled states for teleportation will result in unfaithf
transmission, while superdense coding with partly entang
states will cause noise in the resulting classical channel.

The paper is organized as follows. In Sec. II, we descr
an equivalent-neighbor quantum-dot model and give its a
lytical solution. In Sec. III, we analyze the possibilities
generation of the MES’s or their good approximations
different initial conditions of the number of excitations an
the total number of dots in the system.

II. QUANTUM-DOT MODEL AND ITS SOLUTION

We will apply the model of Imamogl̄u et al. @10# to de-
scribe strong equivalent-neighbor couplings of quantum-
spins through a single-mode microcavity field. The dots
placed inside a microdisk, put into a microcavity tuned
frequencyvcav, and illuminated selectively by laser fields o
frequenciesvn

(L) . Each ofN dots with a single electron in the
conduction band is modeled by a three-level atom as sh
in Fig. 1. The total Hamiltonian forN three-level quantum
dots interacting withN11 quantized fields reads
©2002 The American Physical Society21-1
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Ĥ5ĤQD1ĤF1Ĥ int , ~2!

ĤQD5(
n

~E n
(0)ŝn

001E n
(1)ŝn

111E n
(v)ŝn

vv!,

ĤF5\vcavâcav
† âcav1(

n
\vn

(L)~ ân
(L)!†ân

(L),

Ĥ int5(
n

\gn
v0@ ân

(L)ŝn
0v1~ ân

(L)!†ŝn
v0#1(

n
\gn

v1~ âcavŝn
1v

1âcav
† ŝn

v1!,

whereĤQD andĤF are the free Hamiltonians of the quantu
dots and the fields, respectively;Ĥ int is the interaction
Hamiltonian;âcav and âcav

† are the annihilation and creatio

operators of the cavity mode, respectively;ân
(L) and (ân

(L))†

are the corresponding operators for the laser modes;ŝn
xy is

the nth dot operator given byŝn
xy5ux&nn^yu; E n

(x) is the en-
ergy of levelux&n (x50,1,v); thenth dot levelsu0&n anduv&n

are coupled by dipole interactions with a strength ofgn
v0 ;

analogously,gn
v1 is the coupling strength between levelsu1&n

and uv&n . There is no direct coupling between levelsu0&n
and u1&m in either the same (n5m) or different dots (n
Þm). The Hamiltonian~2! simply generalizes, toN dots and
N11 fields, models of a three-level atom~dot! interacting
with two modes of radiation fields widely discussed in t
literature~see, e.g.,@19#!. By applying an adiabatic elimina
tion method, Imamoḡlu et al. derived the effective interac
tion Hamiltonian describing the evolution of the conductio
band spins ofN quantum dots coupled by a microcavity fie
in the form @10#

Ĥeff5
\

2 (
nÞm

knm~ t !@ŝn
1ŝm

2ei (Dn2Dm)t1ŝn
2ŝm

1e2 i (Dn2Dm)t#

~3!

FIG. 1. Three-level atom in V configuration as a model of
semiconductor dot with the conduction-band spin statesu1&n ~spin
up! of energyEn

(1) and u0&n ~spin down! of energyEn
(0) , and the

effective valence-band stateuv&n of energyE n
(v) in thenth dot. Key:

vcav, frequency of the common cavity mode;vn
(L) , frequency of

the classical laser field addressed at thenth dot; \Dvn
(1)5E n

(1)

2E n
(v)2\vcav, \Dvn

(0)5En
(0)2En

(v)2\vn
(L) , and Dn5Dvn

(1)

2Dvn
(0) are detunings.
06232
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in terms of the Pauli spin creationŝn
1 and annihilationŝn

2

operators acting on the conduction-band spin states of
nth dot. The effective two-dot coupling strength between
spins of the nth and mth dots is given by knm(t)
5gn(t)gm(t)/Dn , where the effective single-dot coupling o
the nth spin to the cavity field is gn(t)
5gn

v0gn
v1uEn

(L)(t)u/Dvn with Dvn being the harmonic mean
of Dvn

(1) and Dvn
(0) . For simplicity, the laser fields are as

sumed to be strong and treated classically as described b
complex amplitudesEn

(L)(t). The Hamiltonian~3! was de-
rived by applying adiabatic eliminations of the valence-ba
statesuv&n and cavity modeâcav, which are valid under the
assumptions of negligible coupling strength, cavity dec
rate, and thermal fluctuations in comparison to\Dn and
\Dvn

(x) (x50,1) and the energy differenceE n
(1)2En

(0) ~see
Fig. 1!. Moreover, the valence-band levelsuv&n were as-
sumed to be far off resonance. Although the Hamiltonian~3!
describes apparently direct spin-spin interactions, the
physical picture is different: Quantum-dot spins are coup
only indirectly via the cavity and laser fields.

Imamoḡlu et al. @10# applied their model for quantum
computing purposes by implementing the conditional pha
flip and controlled-NOT ~CNOT! operations between two arb
trary dots addressed selectively by laser fields to satisfy
condition Dn5Dm . Here, we are interested in a realizatio
of an equivalent-neighbor model scalable for a large num
of dots~even for more than 100@10#!. This goal can readily
be achieved by assuming that all dots are identical and
minated by a single-mode stationary laser field of freque
vn

(L)[v (L), which implies knm(t)5k5const. In fact, the
condition of equivalent-neighbor interactions can also be
sured for nonidentical dots by adjusting the laser-field f
quenciesvn

(L) to get the same detuningDn5const, and by
choosing the proper laser intensitiesuEn

(L)u2 to obtain the ef-
fective coupling constants ofgn(t)5const or, equivalently,
knm(t)5const for every pair of dots. Thus, Eq.~3! can be
reduced to the effective equivalent-neighborN-dot Hamil-
tonian as

Ĥeff5
\k

2 (
nÞm

~ ŝn
1ŝm

21ŝn
2ŝm

1!, ~4!

wherek is the coupling constant. The system described
Eq. ~4! is sometimes referred to as the spin-1/2 van
Waals model@20#, the infinitely coordinated system@21#, the
Lipkin or Lipkin-Meshkov-Glick model @22#, or just the
equivalent-neighbor model@23#. Let us assume that the ini
tial state describing a system ofM (M50, . . . ,N) dots ini-
tially excited ~i.e., with conduction-band spins up! and N
2M dots in the ground state~conduction-band spins down!
is given as

~5!
1-2
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Then, we find the solution of the Schro¨dinger equation of
motion for the model~4! in the form

uc~ t !&5 (
m50

M8

Cm
NM~ t !$u1& ^ (M2m)u0& ^ m%A

^ $u1& ^ mu0& ^ (N2M2m)%B , ~6!

where M 85min(M,N2M). The states in curly bracket
$u1& ^ (n2m)u0& ^ m% denote the sum of alln-dot states with
(n2m) excitations. For example,$u1& ^ 2u0& ^ 2% stands for
u0011&1u0101&1u0110&1u1001&1u1010&1u1100&. The
number of states in the superposition$u1& ^ (n2m)u0& ^ m% ~or
equivalently$u1& ^ mu0& ^ (n2m)%) is equal to the binomial co
efficient (m

n ). Thus, for givenN andM, the solution~6! con-
tains (M

N ) terms. The energy of the QD system described
Eq. ~4! is conserved; thus all the superposition states in
~6! have the same numberM of excitations. We find the
time-dependent superposition coefficients in Eq.~6! as

Cm
NM~ t !5 (

n50

M8

bnm
NMexp$ i @n~N112n!2M ~N2M !#kt%

~7!

in terms of

bnm
NM5 (

k50

m

~21!kS m
k D S N22k

M2k D 21F S N1122k
n2k D

22S N22k
n2k21D G , ~8!

where (y
x) are binomial coefficients. Our solution can be re

resented in a biorthogonal form via the Schmidt decomp
tion

uc~ t !&5 (
m50

M8

APm
NM~ t !ufm~ t !&A^ uwm~ t !&B , ~9!

where ufm(t)&A and uwm(t)&B are the orthonormal basi
states of subsystemsA andB, respectively. We find that the
real and positive Schmidt coefficients can be related to
squared module of superposition coefficients~7! as follows:

Pm
NM~ t !5S M

mD S N2M
m D uCm

NM~ t !u2, ~10!

while the phases ofCm
NM(t) are absorbed into the definition

of the basis statesufm(t)&A and uwm(t)&B . The Schmidt co-
efficients are normalized to unity. The evolutions of allPm

NM

for systems with single and two excitations are given in Fi
2 and 3, respectively. We observe that the evolution
Schmidt coefficients is periodic with the period ofkT
52p/N for systems with a single (M51 or, equivalently,
M5N21) excitation~Fig. 2!, andp-periodic (2p periodic!
for systems of even~odd! numbers of dots with higher num
bers of excitations~see Fig. 3!. For brevity, only half of the
period is depicted in the right-hand panels of Fig. 3.
06232
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III. ENTANGLEMENT IN QUANTUM-DOT SYSTEMS

We address the following questions: How much can
initially excited dots~say, subsystemA) be entangled with
the remaining dots~subsystemB) in the equivalent-neighbo
system of initially all disentangled dots if the evolution
governed by Hamiltonian~4!? And whether the maximally
entangled states can be generated exactly or, at least

FIG. 2. Evolution of the quantum entanglement ofEN1(t)
~solid! and the Schmidt coefficients ofP0

N1(t) ~dashed! andP1
N1(t)

~dot-dashed curves! for systems ofN52, . . . ,8quantum dots with
only one (M51) of them initially excited. Figure illustrates that th
exact maximally entangled states can be generated in systemsN
up to 6 dots only.

FIG. 3. Evolution of the entanglement ofEN2(t) ~solid! and all
Schmidt coefficients:P0

N2(t) ~dashed!, P1
N2(t) ~dot-dashed!, and

P2
N2(t) ~dotted curves!, in systems with two (M52) dots initially

excited.
1-3
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proximately in systems of an arbitrary numberN of dots
while M of them are excited.

With the help of an explicit form of the Schmidt decom
position, it is convenient to calculate the entanglement~1!
via the Shannon entropy

ENM~ t ![E@ uc~ t !&^c~ t !u#52 (
m50

M8

Pm
NM~ t !log2Pm

NM~ t !

~11!

of the Schmidt coefficients given for our system by Eq.~10!.
By applying Eq.~11!, we can determine the maximum e
tanglement given byEmax

NM (t)[maxtE
NM(t), which can peri-

odically be generated during the evolution ofN-dot systems
with M excitations. The coefficients~10!, as well as~7!, pos-
sess the symmetry ofPm

NM(t)5Pm
N,N2M(t), which implies

equal evolutions of entanglement

ENM~ t !5EN,N2M~ t ! ~12!

in the N-dot system withM andN2M excitations. Figure 4
shows this symmetry in a special case for maximum
tanglement of maxtE

NM(t)5maxtE
N,N2M(t).

To solve the second problem proposed at the beginnin
this section, we have to determine the quantum correlat
of the maximally entangled state of two subsystems havind
equally weighted terms in its Schmidt decomposition. A
cording to the theorem of Bennettet al. @12#, the MES has
log2d ebits of entanglement, whered is the Hilbert space
dimension of the smaller subsystem. Thus, in our case,
MES of the subsystemA consisting ofM dots and the sub
systemB of N2M dots has

EMES
NM 5 log2@min~M ,N2M !11# ~13!

FIG. 4. Maximum entanglementEmax
NM5maxtE

NM(t) ~solid bars!,
measured in ebits, as a function of the excitation numberM gener-
ated in systems ofN510, 20, 30, and 31 dots. The empty stairca
corresponds to entanglement ofEMES

NM for the MES’s. The figure
illustrates that the highest entanglement, closest toEMES

NM , can be
generated in systems withM5@N/2# excitations. On decreasingM
or (N2M ), the entanglement decreases. The discrepancy betw
Emax

NM andEMES
NM becomes more pronounced with increasingN espe-

cially for 0,M!@N/2#.
06232
-

of
ns

-

he

ebits of entanglement. In particular, the MES in theN-dot
system with a single initial excitation has only 1 ebit ind
pendent ofN. The empty staircase in Fig. 4 and solid lines
Fig. 5 correspond toEMES

NM . To show a deviation of a given
state from the MES, it is convenient to use the relative~or
scaled! entanglement defined to be

emax
NM[

Emax
NM

EMES
NM

5max
t

ENM~ t !

EMES
NM

. ~14!

In the simplest nontrivial case, forM51, the Schmidt
coefficients reduce to

P1
N1~ t !54

~N21!

N2
sin2S N

2
kt D ~15!

andP0
N1(t)512P1

N1(t), which enable a direct calculation o
the entanglementEN1(t) with the help of Eq.~11!. The evo-
lutions of entanglement and the Schmidt coefficients
Pm

N1(t) for m50,1 are depicted in Fig. 2. The quantum-d
systems evolve into the MES’s at evolution times, that
the roots of the equation

05ĖNM~ t !52k
N21

N
sin~Nkt !

3 log2F N2

4~N21!
csc2S N

2
kt D21G . ~16!

Thus, we get

kt85
2

N
arccscS 2

N
A2~N21! D ~17!

and kt95p/N. We find that the maximum entanglemen
equal toEN1(t8)51 ebit, can be achieved at evolution time
t8 for N<6 only. ForN.6, a real solution fort8 does not
exist. Another explanation of this result, as illustrated in F
2, can be given as follows: The maximum entanglement c
responds to the Schmidt coefficients mutually equal or,
general, the least different. But the MES corresponds so
to the former case. As is seen in Fig. 2, the conditi
P0

N1(t8)5P1
N1(t8) is strictly satisfied forN<6. The en-

tanglement forN.6 reaches its maximum at the evolutio
times t9. This maximum value is given by

EN1~ t9!5
2

N2
$N2log2N2~N22!2log2~N22!

22~N21!log2@4~N21!#%, ~18!

which is less than unity and monotonically decreases w
increasingN as clearly illustrated in Figs. 5 and 6 forM
51. Thus, the perfect MES’s cannot be generated in syst
of N.6 dots. Nevertheless, a good approximation of
MES can also be obtained forN57. On the scale of Fig. 2
maxtE

7,1(t)5E7,1(p/7)50.9997 is close to unity since
P0

N1(p/7) and P1
N1(p/7) are almost the same. It is wort

noting that a critical value ofN56 was also found, although

en
1-4
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GENERATION OF MAXIMUM SPIN ENTANGLEMENT . . . PHYSICAL REVIEW A 65 062321
in the different context of the pairwise entanglement m
sured by the concurrence@14#, for an equivalent-neighbo
model of entangled webs in Ref.@16#. In comparison, a criti-
cal value of N56 for the concurrence in the equivalen
neighbor isotropic or anisotropic Heisenberg models was
observed~see, e.g.,@17#!. Similarly, generation of the MES
in an equivalent-neighbor quantum-dot model of Reinaet al.
was discussed only in two special cases of the Bell (N52)
and Greenberger-Horne-Zeilinger~GHZ! (N53) entangled
states@18#. Thus, no critical behavior of entanglement as
function of N was reported there.

The case forM51 is the only one where the gener
formula~10! for the Schmidt coefficients simplifies to a com

FIG. 5. Maximum entanglementEmax
NM as a function of the tota

numberN of dots generated in systems withM51, 2, 3, and@N/2#
excitations. The solid lines and empty staircase correspond
EMES

NM . On the scale of the figure, an apparent plateau occurs foN
smaller than some critical valueNM . For N higher thanNM and
fixed M, a monotonic decrease of the maximum entanglemen
clearly visible. One concludes that arbitrary high entanglement
be achieved by increasingN and keeping halfM5@N/2# of the
system excited.

FIG. 6. The same as in Fig. 5 but for the relative maximu
entanglementemax

NM5Emax
NM /EMES

NM . The figure shows that the appare
plateau for finiteM actually occurs forM51 only. The first and
second highest maxima of entanglement correspond toN equal to
2M11 and 2M15, respectively.
06232
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pact form for arbitrary evolution times. Thus, for clarity, w
present mainly numerical results forM>2. For example,
Fig. 3 illustrates that the exact MES cannot be generate
systems withM52 excitations at any evolution time. Thi
conclusion can be drawn from the observation thatPm

N2(t)
for m50,1,2 do not cross simultaneously at any times in
period. Nevertheless, the MES can be approximated w
good precision. The highest possible entanglement, co
sponding to the least mutually differentPm

N2 , is observed for
N55 and 9, where the relative entanglement deviates fr
unity at the order of 1025 and 1024, respectively~see Fig. 6
for M52). The states generated inN-dot systems with three
excitations can be entangled up toemax

7,3 50.9996~first! and
emax

11,350.9990 ~second maximum! for the relative entangle-
ment ~see Fig. 6 forM53). It is interesting to compare th
relative entanglement ofemax

NM , depicted in Fig. 6, with the
‘‘absolute’’ entanglement ofEmax

NM presented in Fig. 5. By
analyzing the numerical data given, in part, in Fig. 6, we fi
the following rule: The maximally or almost maximally en
tangled states can be generated in systems ofN52M11
dots withM excitations. Slightly worse entanglement can
achieved in systems ofN52M15 dots withM excitations.
Thus, systems composed of odd rather than even numbe
dots enable generation of the entangled states better app
mating the MES forM.1. This is clearly illustrated in Fig.
6 for M5@N/2#, i.e., the integer part ofN/2. We observe that
the system of odd and large numbers (N.2M15 for M
.1) of dots is the most entangled at the evolution tim
kt5(112k)p for k50,1, . . . ~see, e.g., Fig. 3 forN511).
In this special case, the Schmidt coefficients can be writ
compactly via

UCm
NMS p

k D U52mm! ~N22M !
~N22m22!!!

N!!
. ~19!

For kt5kp and evenN, in contrast to oddN, the entangle-
ment vanishes. The maximum entanglement ofEmax

NM for N
.NM[2M152d1M can be well fitted by the inverse o
linear functions as shown in Fig. 7.

IV. CONCLUSION

We studied the evolution of the conduction-band spins
quantum dots in the model of Imamogl̄u et al. @10#. We
found the analytical solution and its Schmidt decomposit
for the equivalent-neighbor model and applied them in o
study of bipartite entanglement in quantum-dot systems w

to

is
n

FIG. 7. The inverse of the maximum entanglement, (Emax
NM )21

~dots! measured in ebits21, and its approximation~solid lines! as a
function of N.2M15 generated in systems withM51,2,3 exci-
tations.
1-5
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ADAM MIRANOWICZ et al. PHYSICAL REVIEW A 65 062321
arbitrary numbers of dots and their excitations. We ha
raised and solved the problem to what extent the initia
excited dots can be entangled with the remaining dots if
of them are initially disentangled in the equivalent-neighb
energy-conserving model. We have shown that the per
maximally entangled states can only be generated in sys
of N52, . . . ,6dots with a single dot initially excited. Nev
ertheless, highly entangled states, being excellent appr
mations of the MES’s, can periodically be generated in s
tems of odd numbersN of dots with the numberM of
excitations equal toM5(N21)/2 ~leading to the best ap
proximation! andM5(N25)/2 ~giving a slightly worse ap-
proximation!. If we increase N beyond NM52M15
,

06232
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2d1M , the entanglement decreases monotonically as
scribed by the inverse of linear functions.
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