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Overlap and entanglement-witness measurements
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A feasible device for measurement of fidelity, overlap, purity, and Hilbert-Schmidt distance of two mixed
states is proposed. In addition, this device realizes a decomposable entanglement witness-measurement for
bipartite systems, corresponding to Werner criterion of entanglement. The measurement, based on interfero-
metric setup and the control-phase gate, can be directly implemented in the cavity quantum electrodynamics,
trapped ion, and electromagnetically induced transparency experiments.

DOI: 10.1103/PhysRevA.65.062320 PACS number~s!: 03.67.2a, 42.50.Dv
y
on
as
re
re
le
um
s

io
te

s-
o
e
b

ou
ie

t,

on
, t
e

m

p

er
n
ru
b

h
a
e
a

ac
d
f t
e

ent
is

ess

de-
ent-
infi-

e
st,
lv-
s,
or

ume

,
ift,
I. INTRODUCTION

A state of a quantum system is fully characterized b
density matrix, which contains all achievable information
the system. For simple systems, whose Hilbert space h
low dimension, quantum-state estimations are well maste
but with increasing dimension of Hilbert space, the state
construction becomes a complicated experimental prob
@1#. However, several important properties of the quant
state can be described by simple parameters, such a
fidelity ^CuruC& of density matrixr with a pure stateuC&,
overlap TrrArB between two density matricesrA and rB

@2#, purity Tr r2 of the stater, or Hilbert-Schmidt distance
between two density matricesd2(rA,rB)51/23Tr(rA

2rB)2. These quantities are widely employed in descript
of the quantum information protocols for both the discre
and continuous variables@3#.

From the point of view of quantum information proces
ing, detection of quantum entanglement is an important pr
lem. A state is entangled if it cannot be written as a conv
combination of product states. For any state of a two-qu
system and for two-mode Gaussian states of a continu
variable system, there exist simple, necessary, and suffic
conditions for entanglement@4,5#. To detect entanglemen
the concept of entanglement witness~EW! has been intro-
duced@6,7#. Recently, a new area for the practical realizati
of such EW measurements has been opened. Typically
experimentalists measure the particular correlations betw
the subsystems and consequently employ an entangle
criterion ~Bell inequalities@8#, Duan-Simon inequalities@5#!
or directly reconstruct the density matrix and test the inse
rability of the reconstructed state@9#.

In this paper, we propose a direct method of fidelity, ov
lap, purity, and Hilbert-Schmidt distance measureme
which avoids the necessity of a complete state reconst
tion. In addition, we suggest that the same device can
used to measure an entanglement witness related to the
tanglement criterion that was first presented by Werner in
seminal paper@10#. We expect that both the suggested me
surements can be very useful if the dimension of the Hilb
space is large and the number of available copies is sm
For this case, our approach may be more efficient in extr
ing particular state characteristics, than the strategy base
complete state tomography and consequent calculation o
measured quantity. The paper is organized as follows. In S
1050-2947/2002/65~6!/062320~4!/$20.00 65 0623
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II, we present theoretical analysis of generic measurem
setup with possible experimental implementations, which
followed by discussion of overlap and entanglement-witn
measurements in Sec. III and Sec. IV.

II. GENERIC SETUP

To begin, we describe the generic measurement setup
picted in Fig. 1. We assume two systems 0 and 1, repres
ing the measured objects, whose Hilbert spaces may be
nite dimensional, in general. An auxiliary qubitA, with the
basis statesu↑& and u↓&, will serve as a quantum meter. Th
device is composed of two interferometric setups: fir
working with the main systems 0 and 1 and second, invo
ing the auxiliary qubitA. To construct these interferometer
we need to implement the following unitary operations: f
auxiliary qubit, unitary transformationUH ~Hadamard gate!,

u↑&→
1

A2
~ u↑&1u↓&),

u↓&→
1

A2
~ u↓&2u↑&) ~1!

and phase-shift transformationUPS,

u↑&→exp~ ic!u↑&, u↓&→u↓&. ~2!

On the other hand, for the main systems 0 and 1, we ass
the linear coupling represented by unitary operation

UR5expFp4 ~a0
†a12a1

†a0!G . ~3!

FIG. 1. Generic measuring device.H stands for Hadamard gate
CPS stands for controlled phase shift, PS stands for phase shR
stands for coupling gate, and D stands for detector.
©2002 The American Physical Society20-1
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The linear coupling is generated by interaction Hamiltoni

HI15 i\j~a0
†a12H.c!, ~4!

where j is a linear coupling constant anda0 , a1 are the
annihilation operators of corresponding main systems.
time of coupling should be set to the valuet5p/4j. The
operationsUH , UR , and UPS can be performed by linea
systems and their experimental implementations obviou
do not represent a major problem.

A key point in the proposed setup is a realization of e
cient controlled phase shift~CPS! operation

UCPS5exp~ ipa0
†a0u↑&^↑u!, ~5!

which couples the main system 0 and auxiliary qubit syst
A. This CPS operation is described by the following intera
tion Hamiltonian

HI25\ka0
†a0u↑&^↑u, ~6!

wherek is a real coupling constant and effective interacti
time is set to be equal top/k. A kind of interaction~6! can
be mediated by appropriate nonlinear interaction betw
systems 0 andA, which are frequently available in the cavit
quantum electrodynamics, trapped ion experiments, an
the experiments employing electromagnetically induc
transparency. If a state of auxiliary system isu↑&, the above
described operation realizes phase shift aboutp in the sys-
tem 0, whereas for stateu↓&, no phase shift is induced. W
compound the CPS gate with the coupling operationsUR ,
UR

† to the following sequence of transformationsUX

5UR
†UCPSUR on the systems 0 and 1. In dependence on

qubit state,UX effectively flips the states of systems 0 and

UXucn&0ufm&1u↑&5ufm&0ucn&1u↑&,
~7!

UXucn&0ufm&1u↓&5ucn&0ufm&1u↓&,

without any change of the basis statesu↑& andu↓&. If we are
able to perform all the above-mentioned operations, then
generic measurement can be realized in the way depicte
Fig. 1. The measuring device consists of a main interfero
eter with the operationsUR , UR

21 on systems 0,1 coupled b
CPS gate to an auxiliary interferometer with the operatio
UH , UPS on the qubit systemA. Finally, the auxiliary qubit
is measured in the basis statesu↑& andu↓& and corresponding
probabilitiesp↑ and p↓ are obtained. From these probabi
ties, the overlap TrrArB and entanglement witness can
inferred.

Note, that the measurement setup can be simplified if
reject the secondUR

† operation in Fig. 1. However, a non
demolition character of the measurement, which will be d
cussed in Sec. III, vanishes. The proposed measurem
based on the interferometric techniques and nonlinear c
pling, could be experimentally implemented in the cav
quantum electrodynamics~QED! and trapped ion experi
ments. In both these areas of quantum optics, the interf
metric experiments are well mastered and the nonlinear
teraction~6! can be achieved with a sufficient strength.
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cavity QED experiments, we would like to measure the ov
lap and entanglement witness for two light fields confined
the cavities. To accomplish this, we can directly employ
experimental setup, previously suggested in Ref.@11#, based
on Ramsey interferometer and the coupling between cavi
In trapped ion experiments, the generic setup can be use
measure the overlap and entanglement witness between
independent vibrational degrees of freedom of an ion c
fined in a linear Paul trap@12#. The construction of the CPS
gate is similar to the commonly used QND measuremen
vibrational energy in trapped ion experiments@13#. To mea-
sure the overlap and entanglement witness of traveling o
cal pulses, we can utilize Kerr coupling to design the C
gate. Recently, an enhancement of the nonlinear Kerr c
pling between two traveling pulses using electromagnetic
induced transparency has been achieved. A change of
pulse phase aboutp by single photon pulse is expected@14#.
To realize a large phase modulation on a single photon le
both the cavity and free-medium regimes have been con
ered@15#.

III. OVERLAP MEASUREMENT

Now, we will discuss the overlap TrrArB measurement,
which is the building block for the measurement of pur
and Hilbert-Schmidt distance. LetrA andrB denote the den-
sity matrices of the systems 0 and 1, which can be expres
in particular diagonal basesucn& and ufn&,

r0
A5(

n
pnucn&^cnu, r1

B5(
m

r mufm&^fmu. ~8!

The scalar productcnm5^cnufm& characterizes the overla
between two basis states. We initially assume the qubit s
tem in the stateu↑&A . After straightforward calculation, we
can find that probabilityp↑ exhibits interference effect in
dependence on the variable phase shiftc. If we assume
maximum and minimum ofp↑ in dependence onc, we can
simply calculate the visibility of interference fringes,

V5
pmax2pmin

pmax1pmin
5(

n,m
pnr mucnmu25Tr rArB. ~9!

We find that if we consider the two independent states~8! at
the input, then the visibility of the interference fringes
given exactly by the overlapO5Tr rArB. It is important that
only a single parameter~the visibility! has to be estimated to
measure the overlapO, irrespective of the complexity of the
statesrA andrB. In this way, we can define overlap obser
ableO in the following form:

O5 (
n8,m8

ucn8&00̂ cm8u ^ ucm8&11̂ cn8u,

~10!
O5Tr Or,

wherer5rA
^ rB is the input density matrix. Note, that op

eratorO is exactly the flip operator@4,10# making transfor-
mation O(c ^ f)5f ^ c. Particularly, the fidelity F
0-2
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5^CuruC& between the pure state and the density matrix
be measured. The overlap measurement can be also us
quantify other important state characteristics such as pu
P5Tr r2 and Renyi entropySR52 ln P, if two copies of the
same state are available. In addition, the proposed mea
ment is overlap nondemolition measurement. It can be s
ply proved that after the overlap measurement, the ou
state

rout5
r1

A
^ r2

B1r1
B

^ r2
A

2
~11!

is a balanced mix of the input density matrices. If we on
more carry out the same overlap measurement, then iden
visibility ~9! is obtained. The nondemolition character can
utilized to measure the Hilbert-Schmidt distance

d2~rA,rB!5
PA1PB

2
2OAB ~12!

between two statesrA and rB. To measured2(rA,rB), we
first perform the measurement of particular puritiesPA

5Tr(rA)2 andPB5Tr(rB)2 and then use the same ensem
of the systems to measure the overlapOAB5Tr rArB be-
tween systemsA andB. Then, we can calculate the Hilber
Schmidt distance from the formula~12!.

IV. ENTANGLEMENT-WITNESS MEASUREMENT

In the preceeding section, we had assumed the stat
two systems 0 and 1 in the formr5r0

A
^ r1

B and demon-
strated that the overlap TrrArB is directly measurable. Now
we consider a general state of total system 0 and 1, wri
in the local basisucn&0 and ufm&0,

r5 (
n,m,k,l

rnmklucn&00̂ cku ^ ufm&11̂ f l u, ~13!

to illustrate the entanglement-witness measurement.
again employ the measurement setup depicted in Fig. 1,
now we focus on the difference of probabilitiesD5p↑
2p↓ , instead of calculating the visibilityV. The measure-
ment procedure is the following. First, we use this se
without CPS gate and fix the phasec in such a way that
p↑51. Subsequently, after performing complete measu
ment with CPS gate, the difference of probabilities given

D5p↑2p↓5 (
n,m,k,l

rnmkl̂ f l ucn&^ckufm& ~14!

can be rewritten by partial transposition operation in t
interesting form

D5^LurT1uL&. ~15!

Here, the partial transposition is defined as follows:

r
mn,m8n8

T1 5^mu0^nu1rT1un8&1um8&05rmn8,m8n ~16!

and uL& is an unnormalized maximally entangled state,
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uL&5(
j

uf j&0uf j&1 . ~17!

Measured variableD is given by partial transposition of th
density matrix, which is closely related to the entanglem
witness operatorW,

D5Tr rW, W5P12P2 ,

P15 (
n.m

u1,m,n&^1,m,nu1(
n

un,n&^n,nu,

P25 (
n.m

u2,m,n&^2,m,nu,

~18!

u1,m,n&5
1

A2
~ ucn&0ucm&11ucm&0ucn&1),

u2,m,n&5
1

A2
~ ucn&0ucm&12ucm&0ucn&1),

un,n&5ucn&0ucn&1 .

Note that due to relation TrAT1B5Tr ABT1, the flip operator
V can be also expressed in a formW5(uL&^Lu)T1. A value
of D5^LurT1uL& can be both negative or positive. Due
Peres-Horodecki criterion@4# of separability, ifD is negative
we can be sure that the total state is entangled. Unfortuna
for positiveD, we are not able to decide whether the state
entangled or separable. Note that measurement of the
tanglement witness requires the interaction between syst
0 and 1. It is still an open question, whether a modificat
of the proposed measurement utilizing only local measu
ments and classical communication can be found. Analo
cally to the overlap measurement, we need to estimate on
single parameter to determine the entanglement witness
respective of the complexity of the total Hilbert space. T
particular positive operator valued measures~POVMs! P1

andP2 represent projectors onto symmetric~antisymmetric!
subspaces of the total space of systems 0 and 1. Thus, i
are able to distinguish between the symmetrical and antis
metrical states by a direct measurement, we can straigh
wardly implement the overlap and entanglement-witn
measurements. HenceW is a dichotomic variable with ei-
genvalues61. This dichotomic variable was first introduce
by Werner in his famous paper@10#, where an entanglemen
criterion corresponding to this entanglement-witness m
surement was suggested. This is not as strong as the
established later by Peres and Horodecki’s family, but it
very efficient for the Werner states, for example. We pres
here the simplest illustrative example: one can simply fi
that for the two-qubit Werner staterW5puC&^Cu1@(1
2p)/4#1^ 1, where uC&51/A2(u01&2u10&) in systems 0
and 1, the witness parameterD51/2(123p) says that
Werner state is entangled only ifp.1/3, which is in exact
coincidence with the result of Peres-Horodecki criterion@4#.
More generally, the Werner state ind-dimensional Hilbert
space@16#
0-3
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rW5
2p

d22d
P21

2~12p!

d21d
P1 ~19!

is entangled if and only ifD is negative@10#. Assuming the
unitary operations on the system 0 and 1 and relationA
^ BrC^ D)T15A^ DTrT1C^ BT, where T denotes the
transposition, we are able to extend the entanglem
witness measurement to a generalized formW̃5uV&^VuT1,
where uV& is any maximally entangled state on the to
Hilbert space. This entanglement witness belongs to the c
of decomposableentanglement witnesses that have a gen
form W5aP1(12a)QT1, wherea>0 andQ,P are posi-
tive operators with unit trace@7#. Decomposable entangle
ment witnesses are only able to detect the entangled s
with nonpositive partial transposition. On the other ha
entangled states with positive partial transposition conne
with so-called bound entanglement cannot be detected in
way.

V. CONCLUSION

We propose overlap TrrArB and an entanglement
witness W measurements employing interferometric tec
T
on
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ev

ys

v.
.
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niques and specific nonlinear interaction~to realize CPS op-
eration!. Experimental feasibility of this CPS operation is th
most important requirement in the proposed setup. We
directly implement the suggested measurement in contem
rary laboratories: in the cavity QED experiments, trapped
experiments, and for traveling light pulses utilizing electr
magnetically induced transparency. These overlap
entanglement-witness measurements can be especially u
for the state in Hilbert spaces with large dimension wh
direct state reconstruction could be too complicated. In th
cases, it seems to be more efficient to use the device
posed in this paper, than directly reconstruct an unkno
state and, consequently, calculate the particular state cha
teristics.
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