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Continuous-variable Werner state: Separability, nonlocality, squeezing, and teleportation
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We investigate the separability, nonlocality, and squeezing of the continuous-variable analog of the Werner
state: a mixture of a pure two-mode squeezed vacuum state with local thermal radiations. Utilizing this Werner
state, coherent-state teleportation in the Braunstein-Kimble setup is discussed.
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I. INTRODUCTION ables, namely, teleportatiofil3], dense coding14], en-
tanglement swappinfl5], and quantum cloninfl6].

Quantum entanglement and nonlocality are fundamental In this paper, we introduce a natural analog of the Werner
resources for the quantum information processing, such astate(1) for the CV systems: a mixture of a pure two-mode
quantum teleportatiofil], entanglement swappiri@], dense  squeezed vacuum state and a mixed separable thermal state.
coding[3], quantum cryptographA], and quantum compu- \We analyze in detail the separability, nonlocality and squeez-
tation[5]. The efficiency of quantum information processing ing of the CV Werner state and we also discuss its usefulness
significantly depends on the degree of entanglement or nonp, the teleportation of coherent states. Since there is no gen-

locality of the quantum state shared by the parties involveda| method how to test the separability of a generic state in

in a given protocol. This dependence may be particularlyinite_dimensional Hilbert space, one has to resort to some
vividly illustrated with the Werner stateg5], which are

f db it f 1h imall analed stat (ﬁarticular tests. We use the Peres-Horodd€¥ki) criterion
ormed by a mixture ot the maximally entangled state and,,qeq o partial transpositi¢hl]. Remarkably, nonpositive
the separable maximally mixed state,

partial transpose is the necessary and sufficient condition for
(1-p) inseparability of two-mode bipartite Gaussian stdfe518.
p=plW)(¥[+——11®l,, 0=p<l, (1)  However, the CV Werner state discussed in this paper is not
d Gaussian and hence in our case the PH criterion provides
only a sufficient condition for the entanglement.

where Testing of nonlocality for CV systems is based predomi-
d nantly on the Banaszek-\kiewicz form of the Bell in-
W)= i D i)Y 2 equalities[19] that involves the Wigner function of a state.
di=1 Here, we employ alternative Clauser-Horne-Shimony-Holt

(CHSH) Bell-type inequalities for continuous quantum vari-

is the maximally entangled state ordimensional Hilbert ables based on the single-mode realization of Pauli matrices
space and denotes the identity operator. [20]. By means of specific local transformations we map the

The Werner state is characterized by a single parametetwo-mode CV Werner state into a state of two the qubits and
the probability p of the maximally entangled state in the then we employ the necessary and sufficient conditions for
mixture and the Werner state being entangledpiff 1/(1  nonlocality of two-qubit system.
+d). When the Werner state is used as a quantum channel After discussing the separability and nonlocality of the
for teleportation, then the average teleportation fidelity iswerner state we analyze its performance in quantum infor-
given byF=p+(1—p)/d [7,8]. This figure should be com- mation processing. We consider the standard Braunstein-
pared with the maximum fidelity achievable by means ofKkimble (BK) scheme for teleportation of C\[43] where the
classical communication and local operatiohg=2/(1  Werner state serves as a quantum channel. Specifically, we
+d) [9]. Since this boundary is reached exactly for focus on the teleportation of coherent states and we compare
=1/(1+d), one concludes that all entangled Werner stategur findings with the results that have been obtained for qu-
are useful for the teleportation. Particularly interesting is thebit or qudit teleportation with Werner statgg,g].
Werner state of two qubits, because for this system both the The paper is organized as follows. In Sec. Il, the CV
necessary and sufficient conditions for inseparability andinalog of the Werner state is introduced. The mapping from
nonlocality have been established by the Horode€kB-  infinite-dimensional Hilbert space to Hilbert space of two
12]. An important feature of the two-qubit Werner states is aqubits is described in Sec. Ill. In Sec. IV, we will analyze the
nonempty gap 1R p<1/\/2 between separable and nonlo- separability of the Werner state from two different points of
cal states. view: after and before mapping into the two-qubit system.

In recent years, great attention has been paid to the quasections V and VI are dedicated to the nonlocality and
tum information processing with continuous variabl€¥’s).  squeezing of the Werner state. In Sec. VII, the coherent-state
Most protocols developed originally for discrete quantumteleportation with the Werner state is discussed. Finally, Sec.
variables (qubity have been extended to continuous vari-VIII contains conclusions.
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II. CONTINUOUS-VARIABLE WERNER STATE *

A common resource of the quantum entanglement in CV Sl+|82:2m§:“0 |2m) 4 o(2m+1],

information processing is the two-mode squeezed vacuum

state generated by means of spontaneous parametric down- o
conversion in the nondegenerate optical parametric amplifier Si= 2 (—21)™m)go{m], (6)
(NOPA), m=0
% which satisfy the Pauli matrix algebra
prora=(1-1)) > A" m,m)(n,n|. ) « . o "
m,n=0 [S ,Sf]:2|8ijk5a,35k, (SM)?=1, (7)

Here N;=tanhr, r is the squeezing parameter, apd,n) where g;j is the totally antisymmetric tensor with,,3=
=|m)a|n)g denotes the Fock state of two modesandB. ~ +1 andd, is the Kronecker symbol.
The NOPA state approaches the maximally entangled Let us for a moment restrict our attention to molend
Einstein-Podolsky-RosefEPR state [21] in the strong qubit 1. With the help of the operato(8) one can assign the
squeezing limitr —o. In practice, the EPR state is well ap- following qubit density matrixp; to the density matrixpa :
proximated by the NOPA state if>2. Recently, squeezing
as large as~2 has been achieved experimentd®2].

A natural extension of the NOPA state to the Werner state
for CVs is based on the following observation: The factor-
ized statd ;®1,/d? in the mixture(1) is a tensor product of where
density matriced,/d andl,/d that can be identified with
reduced density matrices of the subsystems 1 and 2 when the 3
whole system is in the maximally entangled stal®. Now, 0= Tr(paSHay, 9
if the modesA andB are in the NOPA state, then each mode =1

Zegs(;aée(i};rl]sgg ter]fptrz(:;rgc? Iassfaft(;aliow: thermal state of mode(% are standard Pauli matrices ahdis the identity operator

on the Hilbert space of qubit 1.
The transformation(8) is physical because it can be, at

1
p1=§(|1+SA~0'), ®

* least in principle, performed in the laboratory. Let us assume
pr=(1-1%)2 > N2 Vmy(m|@|n)(n|, (4 that the qubit is represented by a two-level atom resonantly
m,n=0

interacting with a single mode of electromagnetic field. Sup-

pose that the interaction is governed by the following Hamil-
where\,=tanhs and the mean number of thermal photonsynian:

in each mode read®)=sinh(s).

It is thus natural to define the CV analog of the Werner Hin=i%0(]1)(0layn—]0)(1] Jnah), (10)
state[6] as a mixture of the NOPA stai®) and factorized
thermal statg4), wherea(a') is the annihilation(creation operator of mode

A andn=a'a. The Hamiltonian(10) can be considered as a
kind of nonlinear Jaynes-Cummings model. The specific fea-
ture of H,,; is that its eigenvalue@he Rabi frequencigsare
linearly proportional to the number of photonsif the two-
ggvel atom is initially in its ground stat®) and if the inter-
action timet is adjusted in such a way th@it= /2, then the

pw=Ppnopat (1-p)p7, Osp=<1l. (5)

The Werner statep,y form a three-parametric family of
states. The simplest analog of the Werner state can be o

tained assuming=s. In this case the Werner state and the fth . v ai b ithouah
d-dimensional Werner statd) become manifestly analogous output stgte 0 the atom Is exactly given by ) At ougr
the Hamiltonian(10) may be hard to implement in practice,

in the strong squeezing limit whew, approaches a mixture | . 4 : X ;
of a maximally entangled EPR state and a maximally mixed! provides a clear physical picture behind the mathematical

state in infinite-dimensional Hilbert space. transformation(8). . . .
Formally, the transformation(8) is a trace-preserving

completely positiv§ CP) map. Making use of the correspon-
Ill. MAPPING INTO THE TWO-QUBIT SYSTEM dence between CP maps and positive-semidefinite operators

The simplest way in which one can study the separability 23] We can express the transformatic) as follows:

and nonlocality properties of the two-mode stéfe is to

map it by means ofocal operationsinto the two-qubit sys- P1=TrA(XA1PA® 1), 1D

tem for which separability and nonlocality conditions are

well known[11,17. In what follows the qubits correspond- where

ing to modesA andB are denoted as 1 and 2, respectively. w 1

SaWe_lntroduce the Hermitian “spin one-half” operators Xar= 2 2 12m+ k) an(2m+1]@ [K)gl]  (12)
i ,a=A,B, m=0 k,[=0
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is a positive-semidefinite operator acting on the direct prodThe elements;;=Tr (pWSAS]B) of the correlation tenso?”
uct of the Hilbert spaces of modeand of qubit 1;|1); and  explicitly read
|0), are basis states of qubit 1; aficstands for the transpo-

sition. Mapping now the two-mode density matf®) into 2\1p

the two-qubit density matrix t= _t22:1+—7\%,
pw=Tras(Xa1Xe2Pw®11®12), (13 2|2

where theyg, is obtained from Eq(12) by replacement tg=p+(1— IO)( 1+)\§) ,

—B and 1-2, one gets

1
W=7 11®1,+S* o®1,+1,8S% o+ tioi®a;|. . : o
Pw=g| 1¥02 7l 7 i,j2:1 Ihdhad By calculating the matriceS": o and S®- o and taking into

(19 account the expressioii$5), one obtains after some algebra

1- A
i 2 + 2 2 0 0 lp2
1+A2  (1+\3) 1+\2
A3(1-
0 2(1-p) 0
(1+13)2
pPw= : (16)
A5(1—
0 0 2(1-p) 0
(1+173)2
\1p 0 0 AP A3(1-p)
1+A2 1+A2 (1+A3)2
|
Thus we have mapped the staig into this two-qubit state. \:p \2(1-p)
Note that the transformatiofl3) is local; it is carried out ! 5> 2 55 (18
separately on each subsystem) and B,2). The essential 1+A7 (1+A3)

feature of local unconditional transformations is that they

cannot increase the amount of entanglement or nonlocalitit is instructive to rewrite this condition as an inequality for
present in any bipartite state. This ensures that the properti¢lse probabilityp. After some algebra, one finds that the state
of the statep|, reflect the properties of the original Werner (14) is entangled iff

statepy . If we find that the statey, is entangled or nonlo-

cal, then the same holds true for the original siate 1
p>———, (19
142 tanh 2r)
IV. SEPARABILITY tanl’?(ZS)

According to the PH partial transposition criteridii,12]

the state(16) is entangled iff its partial transpose where we have used the relationg=tanhr and\ ,=tanhs.

For the direct analog of the Werner state with s, and in
the strong squeezing limit, the states) and hence also the
state(5) are entangled ip> 3 as in the case of the two-qubit
Werner statg24].

Surprisingly, the PH criterion can also be applied directly
has some negative eigenvalue. Due to the specific structuf the two-mode staté5) for which it is the only sufficient
of the matrix(16), it is easy to see that its partial transposi- condition for entanglement. The partially transposed matrix
tion has a negative eigenvalue if the off-diagonal elements of,, has a block-diagonal form with X1 blocks in one-
pyw are larger than the central diagonal elements, dimensional subspaces spanned by vectdrs,m)}, m

T .
(pW)m%u,nvz(pW)n,u,mv (17)
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=0,1,... and X2 blocks in two-dimensional subspaces
spanned by vector|m,n),|n,m),m#n},mn=0,1,....
Consequently, the eigenvalues of the partially transposed ma-
trix p\;ﬁ can easily be calculated as roots of quadratic equa-
tions and read

Prmin

xO=p(1-AHAZ+(1-p)(1-A3)2NF,

X%V =(1-p)(1-AGAZM W p(1-ADATH",
(20)

where 1=0,1,... andm#n=0,1, ....According to the
above-mentioned separability criteriphl], the state(5) is
entangled if there are suah,n for which x{"?<0. If X,
=0, thenx{"<0 for all p>0 and the stat¢5) is always
entangled. If\,#0, then the inseparability conditiox,™
<0 is equivalent with the inequality

FIG. 1. Minimal probability p.,, characterizing the entangle-
ment of the CV Werner state as a function of the squeezing param-
eterr and the thermal noise paramegeiThe statep,y is entangled

(1_)\3)2 if P> Ppin-

p>
tant?(2s)

tant?(2s)+ 2 tank 2r)

m+n — Pm+n- (21
) =p>0 (25

Ay
<1—x§>2+<1—x§>(P
2

Three different cases must be considered to be dependent on ) ]
the value of the ratig=X, /2. are mapped into separable two-qubit statE).

(i) If g>1, then the factog™ " in the denominator of Eq. The region of Werner state inseparabi_lity is depicted in
(21) increases with increasinm+n and consequently the Fig. 1. We can see that the Werner state is entangled almost
right-hand side(RHS) of Eqg. (21) decreases attaining zero fqr everyp if the squeezing 1S suf_ﬁmently Iarge._ we empha—_
value in the limitm+ n—. Hence, the statés) is entangled size again that the negative partial transpose is only a suffi-

for any p>0. In particular, a direct analog of the Werner cient condition for the entanglement and there may exist the
state (=s) is; entangled f0,r everp=0 entangled Werner states with positive partial transpose. One

(i) If q=1, then alsqg™ "=1. From that it follows that may even ask whether there exist any nontrivial se_pfirable
the inequality(21) is independent ofn andn and the state cv Werr_u_er state@).. Although we _do not hgve the sutficient
(5) is entangled if separab|I|_ty. condm.on for generic l;)!part|te CVv states at

present, it is possible to find conditions under which the
1-\, 1—tanhr Werner state is separable, i.e. it can be written as a convex
= (22)  combination of product states.

2 2 The statg(5) can be rewritten in the following form:

p>

(iii) If g<1, then the RHS of inequality2l) increases

with growing m+n. Since the RHS attains its minimum B . . mn
value form+n=1, the state5) is entangled if pW_mZ:o Pm|mm>(mn1+m;n:=0 P (26
(1-23)?
p> 2 =p;, (23)  Wwhere
(LA (12D
A3 Pm=p(l—ﬁ)zxi‘mﬂl—p)(l—x§>2<1—x‘2‘>x§m,(
27)

or equivalently,
and p™" are matrices in four-dimensional Hilbert subspaces

1 (24 spanned by the basis vectdtsnm),|mn),|nm),|nn)},
+cosH‘(s) tanhr
cosH(r) tant(s) @m0 0 Bmn
mn 1 0 Ymn 0 0

The partial transposition criterion applied to the original state P=51 o 0 5 o |’ (28)
pw is stronger than that applied e, because any local mn
transformation(13) preserves the positivity of the partial Bmn O 0 amn
transpose. For instance, if tant tantf(s), then the en-
tangled state$5) for which where
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@mn=P(1—NDANZMN)

+(1=p)(1=AHAL-APAF™ ™,
Bmn= p(l—)\f)?\TM,

Ymn=(1—p)(1—\H)A\ZMM, (29)

Obviously, if all p™ are positive-semidefinite separable ma-
trices, thenpyy, is separable. From the matrix for(@8) of
p™" one easily obtains the positivity conditiof,,= Bmn
and the separability condition,,,= Bmn- Consequently, the
Werner state is separable if both these inequalities are satis-
fied for all m#n. The second condition is identical to the
necessary condition for separability of the Werner sgte
<Pmen, Wherep,., is given in the inequalityf21). A fur-
ther constraint orp follows from the positivity condition

FIG. 2. Maximal probabilityp,o, characterizing the separability
of the CV Werner state as a function of the squeezing parameter
and the thermal noise paramewrThe statepy, is separable ifp

<pl’ﬂaX'
Amn= Bmns
V. NONLOCALITY
_ 1 Due to the commutation rule§) the nonlocality of the
p= (1-\3) N | N 2\ mny» Werner staté5) can be investigated employing the standard
+ lel (—i) —(1-\)) —i) two-qubit CHSH Bell inequalities in which the Pauli matri-
(1=A)(1=N) [\ A3 2 0 ces are replaced with the single-mode operatéys
30
A ’ B
wherem#n=0,1, ... .Similarly to the case of entangle- 2=|((a-$N(b-$)) +((a’- S (b-S%)
ment we have to distinguish three regions in dependence on +{(a- M (b'-S?))—((a’-SM(b'-P))|, (33

the value of the rati@=\,/\3:
(i) If a>1 then the RHS of the inequaliB0) goes to wherea,a’,b,b’ are real three-dimensional unit vectors and

the angle brackets denote the averaging over the density ma-
trix py . It is instructive to formulate this approach in terms
of the mapping introduced in Sec. Ill. We map the Werner
%tatepw into the state of two qubitgy, and then we analyze
the nonlocality of the statpy, characterized by the correla-
tion tensor7 whose elements are given by Ed5).
Now, according to the Horodecki criteri¢mQ], if the sum
of the two largest eigenvalues of the matlix=7"7 is
(1—)\3)2 greater than unity, then the staf® violates the inequalities
p= m- 31 (33) for some choice of vectors,a’,b,b’. The matrixU has
2072 a twofold eigenvalu¢?, and single eigenvalug,. It can be

2 2
In this case the conditiop<p; is weaker than the inequality Shown thatti;<t3; holds for any\;, A, andp. Thus the
(31) that is thus a sufficient condition for separability of the maximal Bell factor is given by
Werner state.
(ii) If g<1, then the RHS of the inequalit@0) attains its Bra= 2\t + 35 (34)

minimum form+n=1 and the stat€¢5) can be separable if _ _ o o o
Hence, the Bell inequality33) is violated if t{;+1t5,>1.

Substituting here from the formulgd5) one obtains after
1 some algebra that the stat® violates the Bell inequalities

zero in the limitm+n—o. Hence, the stat) is separable
only for p=0.

(i) If g=1, then the expression in square brackets in th
RHS of the inequality(30) attains its maximum equal to
unity in the limit m+n—« and the Werner state can be
separable if

) (1-19))
(1-A2)%(1—2\))

N 2\ (33 if
R
’ ’ (32 a(a—1)+Ja(a—ab’+2b?)
p> ’

a’+b?

(39

Since in this case the inequalit2) is stronger than the

conditionp=< p,, the inequality(32) is a sufficient condition ~wherea=tantf(2s) andb=tanh(2). The region of nonlocal-
for separability of the Werner state. The region of separabléy of the state(16) is depicted in Fig. 3. In the strong
CV Werner states is depicted in Fig. 2. squeezing limit the direct analog of the Werner st&jewith
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FIG. 3. Minimal probabilityp,,, characterizing the nonlocality
of the statepy, as a function of the squeezing parametend the
thermal noise parametsr The state is nonlocal > pi, -

r=s is nonlocal if p>(1/y2) as in the case of two-qubit

Werner state. However, it was found in the preceding section,

that the original statep,y in infinite-dimensional Hilbert
space may be entangled even if the two-qubit sigteis

PHYSICAL REVIEW A 65 062315

1
1+ ———
2(n)+

p> (38

where(n)=sink?(s).

Interestingly, since the RHS of this inequality approaches
unity in the strong squeezing limit if=s, we arrive at the
family of Werner states that are never squeezed. This is a
counterintuitive example of the Werner states that are not
squeezed; however, they can be entangled or even nonlocal.

It is worth noting that the inequality=x—y<1/2 is not
only the squeezing condition, but also the sufficient condi-
tion for inseparability of the statés) according to Duan’s
inseparability criterior{17] that is currently used in experi-
mental tests of inseparabilify26]. It is evident that the cri-
terion becomes uselessrit=s and in the strong squeezing
limit in contrast to the PH criterion employed in Sec. IV.

VIl. TELEPORTATION

An interesting application of the two-qubit Werner state
arises in quantum teleportatidd,7]. By analogy, the pro-

separable. We can conjecture that the nonlocality has a simposed Werner stat@) can be utilized in the BK scheme of

lar behavior and that the stajgy may violate some Bell
inequalities although the statg, admits local realistic de-
scription.

VI. SQUEEZING

the CV coherent-state teleportatipt3]. In this scheme, the
two-mode entangled state is shared between Alice and Bob.
The Wigner functionW,,(x4,p;) of Alice’s input state and
the Wigner functionW,,(X,,p,) of Bob’s output state are
related by the convolutiof27]

Apart from entanglement and nonlocality, the nonclassi-

cality of the Werner staté5) can be judged by means of
it is useful to arrange the

squeezing. For this purpose,
quadrature operatoss, , ps([ X, Pgl=i6,p),@,8=A,B into
the vectoré=(Xa,Pa,Xg,Pg), and to define the 4 4 vari-
ance matrix Vy, of the state(5), (Vw)a.z=((A&,A&p)

+(AERAEL))2,  where AE,=¢,—(&,) and  (&,)
=Tr (pwé,). After some calculations one arrives at

X y O
1/0 x 0 -y
VW_E y x 0|’ 36
0 -y 0 x
where
x=pcosh2r)+(1-p)(2(n);+1),
y=psinh(2r). (37)

[

Wout(X2,P2) = %f Kag(X2—X1,P2—P1)
X Win(Xg,p1)dxidp;. (39
The kernel functiorK og(X_ ,p.) reads
Ko%= | Was(—x_ x;.p- pi)dx.dp.
- (40)
where X+ =XptXp and P+=pPatPs, and

Was(Xa:Pa:Xs,Pe) = Was(X- X+ ,p-,p+) is the Wigner
function of the state shared by Alice and Béfuantum
channel. The fidelity between Alice’s and Bob’s states can
be calculated as follows:

m (e (=
F= Eﬁwf,wWiH(XZ*pz)KAB(Xz—Xl,pz—pl)

X Win(Xq,p1)dX;dpidxodp,. (41)

A convenient measure of the squeezing is the generalized

squeeze varianckg [25] that coincides with the lowest ei-
genvalue of the variance matrik, . By definition, the state
is squeezed ik 3<1/2. Sincexg=X—Yy one obtains the fol-
lowing squeezing condition:

The BK scheme is designed in such a way that the fidelity is
invariant under displacement transformations. In particular,
all coherent states are teleported with the same fidelity. If the
quantum channel is in the NOPA state, then this fidelity reads

062315-6
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In the strong squeezing limit, the fidelit$3) approaches

the valueF~p. In order to teleport the coherent state with
08 | fidelity F\,>1/2, we need to employ the CV Werner state
with p>1/2. Note that, for everp+#0, this Werner state is
L U8 entangledrecall that we assume=s here. This should be
- contrasted with the results obtained for teleportation with the
04 d-dimensional Werner state, where if the shared Werner state
. ’ is entangled it is then useful for quantum teleportafi@h In
2 our case, some of the entangled Werner states in infinite-
04 dimensional Hilbert space are not useful for the BK telepor-
= e tation protocol. It is an open question whether the BK
TS \XQ@Q?’ scheme can be modified in such a way that the coherent
- - = states would be teleported with a fidelity higher than 1/2

even when using entangled Werner states \pithl/2.

FIG. 4. The dependence of the fidelify, in the standard BK
scheme employing the shared CV Werner state on the squeezing VIIl. CONCLUSIONS

parameter =s and the probabilityp. A natural extension of the Werner state into CV systems is
presented, and separability, nonlocality, and squeezing of this
1 state are analyzed. In a certain sense, the CV Werner state
m- (42 can be considered as a counterpart of the two-qubit Werner
state. This relationship is established by the mappi®).
On the other hand, some features of the CV Werner state
correspond to those af-dimensional Werner states when

Fnopa=

This exceeds the maximal classical vakie 1/2 for every

r>0. Now we consider the Werner sta®) in symmetric —oo, For instance, in the simplest case whens, the CV

form with r =s. One can find that the fidelity ofteleportatlon_Werner state(5) is entangled for anyp>0. Since the

in the standard BK.scheme utilizing such a Werner state IS dimensional Werner state is entangled wien1/(1+d),
changed as follows:

the above behavior of the CV Werner state corresponds to the
limit d—oo.

1
FW:pFNOPA+(1_p)aa (43
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