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Continuous-variable Werner state: Separability, nonlocality, squeezing, and teleportation
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We investigate the separability, nonlocality, and squeezing of the continuous-variable analog of the Werner
state: a mixture of a pure two-mode squeezed vacuum state with local thermal radiations. Utilizing this Werner
state, coherent-state teleportation in the Braunstein-Kimble setup is discussed.
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I. INTRODUCTION

Quantum entanglement and nonlocality are fundame
resources for the quantum information processing, such
quantum teleportation@1#, entanglement swapping@2#, dense
coding@3#, quantum cryptography@4#, and quantum compu
tation @5#. The efficiency of quantum information processin
significantly depends on the degree of entanglement or n
locality of the quantum state shared by the parties invol
in a given protocol. This dependence may be particula
vividly illustrated with the Werner states@6#, which are
formed by a mixture of the maximally entangled state a
the separable maximally mixed state,

r5puC&^Cu1
~12p!

d2
I 1^ I 2 , 0<p<1, ~1!

where

uC&5
1

Ad
(
i 51

d

u i &1u i &2 ~2!

is the maximally entangled state ind-dimensional Hilbert
space andI denotes the identity operator.

The Werner state is characterized by a single parame
the probability p of the maximally entangled state in th
mixture and the Werner state being entangled iffp.1/(1
1d). When the Werner state is used as a quantum cha
for teleportation, then the average teleportation fidelity
given byF5p1(12p)/d @7,8#. This figure should be com
pared with the maximum fidelity achievable by means
classical communication and local operationsFC52/(1
1d) @9#. Since this boundary is reached exactly forp
51/(11d), one concludes that all entangled Werner sta
are useful for the teleportation. Particularly interesting is
Werner state of two qubits, because for this system both
necessary and sufficient conditions for inseparability a
nonlocality have been established by the Horodeckis@10–
12#. An important feature of the two-qubit Werner states i
nonempty gap 1/3,p<1/A2 between separable and nonl
cal states.

In recent years, great attention has been paid to the q
tum information processing with continuous variables~CVs!.
Most protocols developed originally for discrete quantu
variables~qubits! have been extended to continuous va
1050-2947/2002/65~6!/062315~8!/$20.00 65 0623
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ables, namely, teleportation@13#, dense coding@14#, en-
tanglement swapping@15#, and quantum cloning@16#.

In this paper, we introduce a natural analog of the Wer
state~1! for the CV systems: a mixture of a pure two-mod
squeezed vacuum state and a mixed separable thermal
We analyze in detail the separability, nonlocality and sque
ing of the CV Werner state and we also discuss its usefuln
in the teleportation of coherent states. Since there is no g
eral method how to test the separability of a generic stat
infinite-dimensional Hilbert space, one has to resort to so
particular tests. We use the Peres-Horodecki~PH! criterion
based on partial transposition@11#. Remarkably, nonpositive
partial transpose is the necessary and sufficient condition
inseparability of two-mode bipartite Gaussian states@17,18#.
However, the CV Werner state discussed in this paper is
Gaussian and hence in our case the PH criterion prov
only a sufficient condition for the entanglement.

Testing of nonlocality for CV systems is based predom
nantly on the Banaszek-Wo´dkiewicz form of the Bell in-
equalities@19# that involves the Wigner function of a state
Here, we employ alternative Clauser-Horne-Shimony-H
~CHSH! Bell-type inequalities for continuous quantum va
ables based on the single-mode realization of Pauli matr
@20#. By means of specific local transformations we map
two-mode CV Werner state into a state of two the qubits a
then we employ the necessary and sufficient conditions
nonlocality of two-qubit system.

After discussing the separability and nonlocality of t
Werner state we analyze its performance in quantum in
mation processing. We consider the standard Braunst
Kimble ~BK! scheme for teleportation of CVs@13# where the
Werner state serves as a quantum channel. Specifically
focus on the teleportation of coherent states and we com
our findings with the results that have been obtained for
bit or qudit teleportation with Werner states@7,8#.

The paper is organized as follows. In Sec. II, the C
analog of the Werner state is introduced. The mapping fr
infinite-dimensional Hilbert space to Hilbert space of tw
qubits is described in Sec. III. In Sec. IV, we will analyze t
separability of the Werner state from two different points
view: after and before mapping into the two-qubit syste
Sections V and VI are dedicated to the nonlocality a
squeezing of the Werner state. In Sec. VII, the coherent-s
teleportation with the Werner state is discussed. Finally, S
VIII contains conclusions.
©2002 The American Physical Society15-1
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II. CONTINUOUS-VARIABLE WERNER STATE

A common resource of the quantum entanglement in
information processing is the two-mode squeezed vacu
state generated by means of spontaneous parametric d
conversion in the nondegenerate optical parametric ampl
~NOPA!,

rNOPA5~12l1
2! (

m,n50

`

l1
m1num,m&^n,nu. ~3!

Here l15tanhr, r is the squeezing parameter, andum,n&
5um&Aun&B denotes the Fock state of two modesA and B.
The NOPA state approaches the maximally entang
Einstein-Podolsky-Rosen~EPR! state @21# in the strong
squeezing limitr→`. In practice, the EPR state is well ap
proximated by the NOPA state ifr .2. Recently, squeezing
as large asr'2 has been achieved experimentally@22#.

A natural extension of the NOPA state to the Werner st
for CVs is based on the following observation: The fact
ized stateI 1^ I 2 /d2 in the mixture~1! is a tensor product o
density matricesI 1 /d and I 2 /d that can be identified with
reduced density matrices of the subsystems 1 and 2 whe
whole system is in the maximally entangled stateuC&. Now,
if the modesA andB are in the NOPA state, then each mo
separately is in the thermal state. The thermal state of mo
A andB can be expressed as follows:

rT5~12l2
2!2 (

m,n50

`

l2
2(m1n)um&^mu ^ un&^nu, ~4!

wherel25tanhs and the mean number of thermal photo
in each mode readŝn&T5sinh2(s).

It is thus natural to define the CV analog of the Wern
state@6# as a mixture of the NOPA state~3! and factorized
thermal state~4!,

rW5prNOPA1~12p!rT , 0<p<1. ~5!

The Werner statesrW form a three-parametric family o
states. The simplest analog of the Werner state can be
tained assumingr 5s. In this case the Werner state and t
d-dimensional Werner state~1! become manifestly analogou
in the strong squeezing limit whenrW approaches a mixture
of a maximally entangled EPR state and a maximally mix
state in infinite-dimensional Hilbert space.

III. MAPPING INTO THE TWO-QUBIT SYSTEM

The simplest way in which one can study the separab
and nonlocality properties of the two-mode state~5! is to
map it by means oflocal operationsinto the two-qubit sys-
tem for which separability and nonlocality conditions a
well known @11,12#. In what follows the qubits correspond
ing to modesA andB are denoted as 1 and 2, respective

We introduce the Hermitian ‘‘spin one-half’’ operato
Sj

a ,a5A,B,
06231
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a1 iS2

a52 (
m50

`

u2m&aa^2m11u,

S3
a5 (

m50

`

~21!mum&aa^mu, ~6!

which satisfy the Pauli matrix algebra

@Si
a ,Sj

b#52i« i jkdabSk
a , ~Si

a!251, ~7!

where « i jk is the totally antisymmetric tensor with«1235
11 anddab is the Kronecker symbol.

Let us for a moment restrict our attention to modeA and
qubit 1. With the help of the operators~6! one can assign the
following qubit density matrixr1 to the density matrixrA :

r15
1

2
~ I 11SA

•s!, ~8!

where

SA
•s5(

i 51

3

Tr~rASi
A!s i , ~9!

s i are standard Pauli matrices andI 1 is the identity operator
on the Hilbert space of qubit 1.

The transformation~8! is physical because it can be,
least in principle, performed in the laboratory. Let us assu
that the qubit is represented by a two-level atom resona
interacting with a single mode of electromagnetic field. Su
pose that the interaction is governed by the following Ham
tonian:

H int5 i\V~ u1&^0uaAn2u0&^1uAna†!, ~10!

wherea(a†) is the annihilation~creation! operator of mode
A andn5a†a. The Hamiltonian~10! can be considered as
kind of nonlinear Jaynes-Cummings model. The specific f
ture of H int is that its eigenvalues~the Rabi frequencies! are
linearly proportional to the number of photonsn. If the two-
level atom is initially in its ground stateu0& and if the inter-
action timet is adjusted in such a way thatVt5p/2, then the
output state of the atom is exactly given by Eq.~8!. Although
the Hamiltonian~10! may be hard to implement in practice
it provides a clear physical picture behind the mathemat
transformation~8!.

Formally, the transformation~8! is a trace-preserving
completely positive~CP! map. Making use of the correspon
dence between CP maps and positive-semidefinite opera
@23# we can express the transformation~8! as follows:

r15TrA~xA1rA
T

^ I 1!, ~11!

where

xA15 (
m50

`

(
k,l 50

1

u2m1k&AA^2m1 l u ^ uk&11̂ l u ~12!
5-2
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is a positive-semidefinite operator acting on the direct pr
uct of the Hilbert spaces of modeA and of qubit 1;u1&1 and
u0&1 are basis states of qubit 1; andT stands for the transpo
sition. Mapping now the two-mode density matrix~5! into
the two-qubit density matrix

rW8 5TrAB~xA1xB2rW
T

^ I 1^ I 2!, ~13!

where thexB2 is obtained from Eq.~12! by replacementsA
→B and 1→2, one gets

rW8 5
1

4 S I 1^ I 21SA
•s^ I 21I 1^ SB

•s1 (
i , j 51

3

t i j s i ^ s j D .

~14!
l
e
ali
rt
er

tu
si-
s

06231
-The elementst i j 5Tr (rWSi
ASj

B) of the correlation tensorT
explicitly read

t1152t225
2l1p

11l1
2

,

t335p1~12p!S 12l2
2

11l2
2D 2

,

t i j 50, iÞ j . ~15!

By calculating the matricesSA
•s andSB

•s and taking into
account the expressions~15!, one obtains after some algeb
rW8 51
p

11l1
2

1
12p

~11l2
2!2

0 0
l1p

11l1
2

0
l2

2~12p!

~11l2
2!2

0 0

0 0
l2

2~12p!

~11l2
2!2

0

l1p

11l1
2

0 0
l1

2p

11l1
2

1
l2

4~12p!

~11l2
2!2

2 . ~16!
or
te

it

tly

trix
Thus we have mapped the staterW into this two-qubit state.
Note that the transformation~13! is local; it is carried out
separately on each subsystem (A,1) and (B,2). The essentia
feature of local unconditional transformations is that th
cannot increase the amount of entanglement or nonloc
present in any bipartite state. This ensures that the prope
of the staterW8 reflect the properties of the original Wern
staterW . If we find that the staterW8 is entangled or nonlo-
cal, then the same holds true for the original staterW .

IV. SEPARABILITY

According to the PH partial transposition criterion@11,12#
the state~16! is entangled iff its partial transpose

~rW8 !mm,nn
T1 [~rW8 !nm,mn ~17!

has some negative eigenvalue. Due to the specific struc
of the matrix~16!, it is easy to see that its partial transpo
tion has a negative eigenvalue if the off-diagonal element
rW8 are larger than the central diagonal elements,
y
ty
ies

re

of

l1p

11l1
2
.

l2
2~12p!

~11l2
2!2

. ~18!

It is instructive to rewrite this condition as an inequality f
the probabilityp. After some algebra, one finds that the sta
~14! is entangled iff

p.
1

112
tanh~2r !

tanh2~2s!

, ~19!

where we have used the relationsl15tanhr andl25tanhs.
For the direct analog of the Werner state withr 5s, and in
the strong squeezing limit, the state~16! and hence also the
state~5! are entangled ifp. 1

3 as in the case of the two-qub
Werner state@24#.

Surprisingly, the PH criterion can also be applied direc
to the two-mode state~5! for which it is the only sufficient
condition for entanglement. The partially transposed ma
rW

TA has a block-diagonal form with 131 blocks in one-
dimensional subspaces spanned by vectors$um,m&%, m
5-3
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LADISLAV MIŠ TA, JR., RADIM FILIP, AND JAROMÍR FIURÁŠEK PHYSICAL REVIEW A 65 062315
50,1, . . . and 232 blocks in two-dimensional subspac
spanned by vectors$um,n&,un,m&,mÞn%,m,n50,1, . . . .
Consequently, the eigenvalues of the partially transposed
trix rW

TA can easily be calculated as roots of quadratic eq
tions and read

x( l )5p~12l1
2!l1

2l1~12p!~12l2
2!2l2

4l ,

x1,2
(mn)5~12p!~12l2

2!2l2
2(m1n)6p~12l1

2!l1
m1n ,

~20!

where l 50,1, . . . andmÞn50,1, . . . . According to the
above-mentioned separability criterion@11#, the state~5! is
entangled if there are suchm,n for which x2

(mn),0. If l2

50, thenx2
(mn),0 for all p.0 and the state~5! is always

entangled. Ifl2Þ0, then the inseparability conditionx2
(mn)

,0 is equivalent with the inequality

p.
~12l2

2!2

~12l2
2!21~12l1

2!S l1

l2
2D m1n [pm1n . ~21!

Three different cases must be considered to be depende
the value of the ratioq5l1 /l2

2.
~i! If q.1, then the factorqm1n in the denominator of Eq

~21! increases with increasingm1n and consequently the
right-hand side~RHS! of Eq. ~21! decreases attaining zer
value in the limitm1n→`. Hence, the state~5! is entangled
for any p.0. In particular, a direct analog of the Wern
state (r 5s) is entangled for everyp.0.

~ii ! If q51, then alsoqm1n51. From that it follows that
the inequality~21! is independent ofm and n and the state
~5! is entangled if

p.
12l1

2
5

12tanhr

2
. ~22!

~iii ! If q,1, then the RHS of inequality~21! increases
with growing m1n. Since the RHS attains its minimum
value form1n51, the state~5! is entangled if

p.
~12l2

2!2

~12l2
2!21~12l1

2!
l1

l2
2

5p1 , ~23!

or equivalently,

p.
1

11
cosh4~s!

cosh2~r !

tanhr

tanh2~s!

. ~24!

The partial transposition criterion applied to the original st
rW is stronger than that applied torW8 , because any loca
transformation~13! preserves the positivity of the partia
transpose. For instance, if tanhr . tanh2(s), then the en-
tangled states~5! for which
06231
a-
a-

on

e

tanh2~2s!

tanh2~2s!12 tanh~2r !
>p.0 ~25!

are mapped into separable two-qubit states~16!.
The region of Werner state inseparability is depicted

Fig. 1. We can see that the Werner state is entangled alm
for everyp if the squeezing is sufficiently large. We emph
size again that the negative partial transpose is only a s
cient condition for the entanglement and there may exist
entangled Werner states with positive partial transpose.
may even ask whether there exist any nontrivial separa
CV Werner states~5!. Although we do not have the sufficien
separability condition for generic bipartite CV states
present, it is possible to find conditions under which t
Werner state is separable, i.e. it can be written as a con
combination of product states.

The state~5! can be rewritten in the following form:

rW5 (
m50

`

Pmumm&^mmu1 (
mÞn50

`

rmn, ~26!

where

Pm5p~12l1
2!2l1

4m1~12p!~12l2
2!2~12l2

4!l2
8m,

~27!

andrmn are matrices in four-dimensional Hilbert subspac
spanned by the basis vectors$umm&,umn&,unm&,unn&%,

rmn5
1

2 S amn 0 0 bmn

0 gmn 0 0

0 0 gmn 0

bmn 0 0 amn

D , ~28!

where

FIG. 1. Minimal probabilitypmin characterizing the entangle
ment of the CV Werner state as a function of the squeezing par
eterr and the thermal noise parameters. The staterW is entangled
if p.pmin .
5-4
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amn5p~12l1
2!2l1

2(m1n)

1~12p!~12l2
2!2~12l2

4!l2
4(m1n) ,

bmn5p~12l1
2!l1

m1n ,

gmn5~12p!~12l2
2!2l2

2(m1n) . ~29!

Obviously, if all rmn are positive-semidefinite separable m
trices, thenrW is separable. From the matrix form~28! of
rmn one easily obtains the positivity conditionamn>bmn
and the separability conditiongmn>bmn . Consequently, the
Werner state is separable if both these inequalities are s
fied for all mÞn. The second condition is identical to th
necessary condition for separability of the Werner statep
<pm1n , wherepm1n is given in the inequality~21!. A fur-
ther constraint onp follows from the positivity condition
amn>bmn ,

p<
1

11
~12l1

2!

~12l2
2!2~12l2

4!
F S l1

l2
4D m1n

2~12l1
2!S l1

2

l2
4D m1nG ,

~30!

where mÞn50,1, . . . . Similarly to the case of entangle
ment we have to distinguish three regions in dependenc
the value of the ratioq̃5l1 /l2

4:

~i! If q̃.1, then the RHS of the inequality~30! goes to
zero in the limitm1n→`. Hence, the state~5! is separable
only for p50.

~ii ! If q̃51, then the expression in square brackets in
RHS of the inequality~30! attains its maximum equal to
unity in the limit m1n→` and the Werner state can b
separable if

p<
~12l2

2!2

2~12l2
21l2

4!
. ~31!

In this case the conditionp<p1 is weaker than the inequalit
~31! that is thus a sufficient condition for separability of th
Werner state.

~iii ! If q̃,1, then the RHS of the inequality~30! attains its
minimum for m1n51 and the state~5! can be separable i

p<
1

11
~12l1

2!

~12l2
2!2~12l2

4!
F S l1

l2
4D 2~12l1

2!S l1
2

l2
4D G .

~32!

Since in this case the inequality~32! is stronger than the
conditionp<p1, the inequality~32! is a sufficient condition
for separability of the Werner state. The region of separa
CV Werner states is depicted in Fig. 2.
06231
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V. NONLOCALITY

Due to the commutation rules~7! the nonlocality of the
Werner state~5! can be investigated employing the standa
two-qubit CHSH Bell inequalities in which the Pauli matr
ces are replaced with the single-mode operators~6!,

2>u^~a•SA!~b•SB!&1^~a8•SA!~b•SB!&

1^~a•SA!~b8•SB!&2^~a8•SA!~b8•SB!&u, ~33!

wherea,a8,b,b8 are real three-dimensional unit vectors a
the angle brackets denote the averaging over the density
trix rW . It is instructive to formulate this approach in term
of the mapping introduced in Sec. III. We map the Wern
staterW into the state of two qubitsrW8 and then we analyze
the nonlocality of the staterW8 characterized by the correla
tion tensorT whose elements are given by Eq.~15!.

Now, according to the Horodecki criterion@10#, if the sum
of the two largest eigenvalues of the matrixU5T TT is
greater than unity, then the state~5! violates the inequalities
~33! for some choice of vectorsa,a8,b,b8. The matrixU has
a twofold eigenvaluet11

2 and single eigenvaluet33
2 . It can be

shown thatt11
2 <t33

2 holds for anyl1 , l2, and p. Thus the
maximal Bell factor is given by

Bmax52At11
2 1t33

2 . ~34!

Hence, the Bell inequality~33! is violated if t11
2 1t33

2 .1.
Substituting here from the formulas~15! one obtains after
some algebra that the state~5! violates the Bell inequalities
~33! if

p.
a~a21!1Aa~a2ab212b2!

a21b2
, ~35!

wherea5tanh2(2s) andb5tanh(2r). The region of nonlocal-
ity of the state~16! is depicted in Fig. 3. In the strong
squeezing limit the direct analog of the Werner state~5! with

FIG. 2. Maximal probabilitypmax characterizing the separabilit
of the CV Werner state as a function of the squeezing paramer
and the thermal noise parameters. The staterW is separable ifp
<pmax.
5-5
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r 5s is nonlocal if p.(1/A2) as in the case of two-qub
Werner state. However, it was found in the preceding sect
that the original staterW in infinite-dimensional Hilbert
space may be entangled even if the two-qubit staterW8 is
separable. We can conjecture that the nonlocality has a s
lar behavior and that the staterW may violate some Bell
inequalities although the staterW8 admits local realistic de-
scription.

VI. SQUEEZING

Apart from entanglement and nonlocality, the nonclas
cality of the Werner state~5! can be judged by means o
squeezing. For this purpose, it is useful to arrange
quadrature operatorsxa ,pb(@xa ,pb#5 idab),a,b5A,B into
the vectorj5(xA ,pA ,xB ,pB), and to define the 434 vari-
ance matrix VW of the state ~5!, (VW)ab5(^DjaDjb&
1^DjbDja&)/2, where Dja5ja2^ja& and ^ja&
5Tr (rWja). After some calculations one arrives at

VW5
1

2 S x 0 y 0

0 x 0 2y

y 0 x 0

0 2y 0 x

D , ~36!

where

x5p cosh~2r !1~12p!~2^n&T11!,

y5p sinh~2r !. ~37!

A convenient measure of the squeezing is the general
squeeze variancelG @25# that coincides with the lowest ei
genvalue of the variance matrixVW . By definition, the state
is squeezed iflG,1/2. SincelG5x2y one obtains the fol-
lowing squeezing condition:

FIG. 3. Minimal probabilitypmin characterizing the nonlocality
of the staterW8 as a function of the squeezing parameterr and the
thermal noise parameters. The state is nonlocal ifp.pmin .
06231
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p.
1

11
12e22r

2^n&T

, ~38!

where^n&T5sinh2(s).
Interestingly, since the RHS of this inequality approach

unity in the strong squeezing limit ifr 5s, we arrive at the
family of Werner states that are never squeezed. This
counterintuitive example of the Werner states that are
squeezed; however, they can be entangled or even nonl

It is worth noting that the inequalitylG5x2y,1/2 is not
only the squeezing condition, but also the sufficient con
tion for inseparability of the state~5! according to Duan’s
inseparability criterion@17# that is currently used in experi
mental tests of inseparability@26#. It is evident that the cri-
terion becomes useless ifr 5s and in the strong squeezin
limit in contrast to the PH criterion employed in Sec. IV.

VII. TELEPORTATION

An interesting application of the two-qubit Werner sta
arises in quantum teleportation@1,7#. By analogy, the pro-
posed Werner state~5! can be utilized in the BK scheme o
the CV coherent-state teleportation@13#. In this scheme, the
two-mode entangled state is shared between Alice and B
The Wigner functionWin(x1 ,p1) of Alice’s input state and
the Wigner functionWout(x2 ,p2) of Bob’s output state are
related by the convolution@27#

Wout~x2 ,p2!5
1

4E2`

`

KAB~x22x1 ,p22p1!

3Win~x1 ,p1!dx1dp1 . ~39!

The kernel functionKAB(x2 ,p1) reads

KAB~x2 ,p1!5E
2`

`

WAB~2x2 ,x1 ,p2 ,p1!dx1dp2 ,

~40!

where x65xA6xB and p65pA6pB , and
WAB(xA ,pA ,xB ,pB)5WAB(x2 ,x1 ,p2 ,p1) is the Wigner
function of the state shared by Alice and Bob~quantum
channel!. The fidelity between Alice’s and Bob’s states ca
be calculated as follows:

F5
p

2E2`

` E
2`

`

Win~x2 ,p2!KAB~x22x1 ,p22p1!

3Win~x1 ,p1!dx1dp1dx2dp2 . ~41!

The BK scheme is designed in such a way that the fidelit
invariant under displacement transformations. In particu
all coherent states are teleported with the same fidelity. If
quantum channel is in the NOPA state, then this fidelity re
5-6
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1

11e22r
. ~42!

This exceeds the maximal classical valueF51/2 for every
r .0. Now we consider the Werner state~5! in symmetric
form with r 5s. One can find that the fidelity of teleportatio
in the standard BK scheme utilizing such a Werner stat
changed as follows:

FW5pFNOPA1~12p!
1

d
, ~43!

whered52/(12l1
2)52 cosh2r. The dependence of the fide

ity FW on the probabilityp and the squeezing parameterr is
depicted in Fig. 4.

FIG. 4. The dependence of the fidelityFW in the standard BK
scheme employing the shared CV Werner state on the squee
parameterr 5s and the probabilityp.
, a

.

.

e

. A

ki

A

A

06231
is

In the strong squeezing limit, the fidelity~43! approaches
the valueFW'p. In order to teleport the coherent state wi
fidelity FW.1/2, we need to employ the CV Werner sta
with p.1/2. Note that, for everypÞ0, this Werner state is
entangled~recall that we assumer 5s here!. This should be
contrasted with the results obtained for teleportation with
d-dimensional Werner state, where if the shared Werner s
is entangled it is then useful for quantum teleportation@8#. In
our case, some of the entangled Werner states in infin
dimensional Hilbert space are not useful for the BK telep
tation protocol. It is an open question whether the B
scheme can be modified in such a way that the cohe
states would be teleported with a fidelity higher than 1
even when using entangled Werner states withp,1/2.

VIII. CONCLUSIONS

A natural extension of the Werner state into CV system
presented, and separability, nonlocality, and squeezing of
state are analyzed. In a certain sense, the CV Werner
can be considered as a counterpart of the two-qubit We
state. This relationship is established by the mapping~12!.
On the other hand, some features of the CV Werner s
correspond to those ofd-dimensional Werner states whend
→`. For instance, in the simplest case whenr 5s, the CV
Werner state~5! is entangled for anyp.0. Since the
d-dimensional Werner state is entangled whenp.1/(11d),
the above behavior of the CV Werner state corresponds to
limit d→`.

ACKNOWLEDGMENTS

This work was supported by an EU grant under QIP
Project No. IST-1999-13071~QUICOV! and Project No.
LN00A015 of the Czech Ministry of Education.

ing
.A.

v.

De
@1# C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres
W.K. Wootters, Phys. Rev. Lett.70, 1895~1993!.

@2# M. Zukowski, A. Zeilinger, M.A. Horne, and A.K. Ekert, Phys
Rev. Lett. 71, 4287 ~1993!; J.-W. Pan, D. Bouwmeester, H
Weinfurter, and A. Zeilinger,ibid. 80, 3891~1998!.

@3# C.H. Bennett and S.J. Wiesner, Phys. Rev. Lett.69, 2881
~1992!.

@4# A.K. Ekert, Phys. Rev. Lett.67, 661 ~1991!.
@5# A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. R

Lett. 74, 4083~1995!.
@6# R.F. Werner, Phys. Rev. A40, 4277~1989!.
@7# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev

60, 1888~1999!.
@8# P. Badziag, M. Horodecki, P. Horodecki, and R. Horodec

Phys. Rev. A62, 012311~2000!.
@9# S. Massar and S. Popescu, Phys. Rev. Lett.74, 1259~1995!.

@10# R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett.
200, 340 ~1995!.

@11# A. Peres, Phys. Rev. Lett.77, 1413~1996!.
@12# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

223, 1 ~1996!.
@13# S.L. Braunstein and H.J. Kimble, Phys. Rev. Lett.80, 869
nd

v.

,

~1998!; A. Furusawa, J.L. Sørensen, S.L. Braunstein, C
Fuchs, H.J. Kimble, and E.S. Polzik, Science282, 706~1998!.

@14# S.L. Braunstein and H.J. Kimble, Phys. Rev. A61, 042302
~2000!.

@15# R.E.S. Polkinghorne and T.C. Ralph, Phys. Rev. Lett.83, 2095
~1999!.

@16# G. Lindblad, J. Phys. A33, 5059~2000!; N.J. Cerf, A. Ipe, and
X. Rottenberg, Phys. Rev. Lett.85, 1754 ~2000!; S.L. Braun-
stein, N.J. Cerf, S. Iblisdir, P. van Loock, and S. Massar,ibid.
86, 4938~2001!; J. Fiurášek, ibid. 86, 4942~2001!.

@17# L.-M. Duan, G. Giedke, J.I. Cirac, and P. Zoller, Phys. Re
Lett. 84, 2722~2000!.

@18# R. Simon, Phys. Rev. Lett.84, 2726~2000!.
@19# K. Banaszek and K. Wo´dkiewicz, Phys. Rev. A58, 4345

~1998!; M.S. Kim and J. Lee,ibid. 61, 042102~2000!.
@20# Zeng-Bing Chen, Jian-Wei Pan, Guang Hou, and Yong-

Zhang, Phys. Rev. Lett.88, 040406~2002!.
@21# A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.47, 777

~1935!.
@22# O. Aytür and P. Kumar, Phys. Rev. Lett.65, 1551~1990!.
@23# A. Jamiolkowski, Rep. Math. Phys.3, 275~1972!; J. Fiurášek,
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