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Discrete Wigner functions and the phase-space representation of quantum teleportation
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We present a phase-space description of the process of quantum teleportation for a system with an
N-dimensional space of states. For this purpose we define a discrete Wigner function which is a minor variation
of previously existing ones. This function is useful to represent a composite quantum system in phase space
and to analyze situations where entanglement between subsystems is relevant~dimensionality of the space of
states of each subsystem is arbitrary!. We also describe how a direct tomographic measurement of this Wigner
function can be performed.
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I. INTRODUCTION

Quantum teleportation@1# is a scheme by which an un
known quantum state is transported between two parties
only transmitting classical information between them. T
remarkable task requires also that the two parties share
two halves of a composite system prepared in a specific
tangled state. In recent years, this scheme has been stud
great detail. Interest in teleportation~whose experimenta
feasibility has also been recently demonstrated in simple
tems @2#! is motivated by more than one reason. In fa
teleportation is one of the most remarkable processes re
ing the use of entanglement as an essential resource@1,3#.
Moreover, teleportation can also be conceived as a primi
for universal quantum computation@4#. In the seminal work
of Bennettet al. @1# the teleportation of the state of a qubit~a
two-level system! was described for the first time. The ge
eralization of this method to include systems with a space
states of arbitrary dimensionality was also analyzed in@1#.
Shortly afterwards, this generalization was discussed in m
detail by Vaidman@5# who presented a scheme to telep
states of systems with continuous variables. A concr
analysis of the teleportation of the state of a continuous s
tem ~the electromagnetic field! was first discussed by Braun
stein and Kimble@6#. In their work, these authors propose
~and later performed@7#! interesting experiments to accom
plish teleportation of continuous variables. For this case
was natural to describe the whole procedure in terms
phase-space distributions@8#. However, this is not the cas
for systems with a finite-dimensional Hilbert space, whe
the use of the phase-space representation is not so com
The description of the usual teleportation protocol in ph
space has been recently presented by Koniorczyk, Bu
and Jansky@9# using the discrete version of Wigner function
originally introduced by Wootters@10#. This approach, as
mentioned in@9#, can only be used when the dimension
the Hilbert space of the system to be teleported is a pr
number. In this paper we extend the results presented in@9#
to the case where the space of states has arbitrary dimen
ality. For this purpose we use a different definition for t
discrete Wigner function that turns out to be very conveni
to analyze situations where entanglement between
systems of arbitrary dimensionality is an important issue
1050-2947/2002/65~6!/062311~8!/$20.00 65 0623
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Several methods exist to represent the quantum state
system with anN-dimensional Hilbert space in phase spac
As mentioned above, Wootters introduced a discrete vers
of the Wigner function that has all the desired properties o
when N is a prime number@10#. His phase space is anN
3N grid ~if N is prime! and a Cartesian product of suc
spaces corresponding to prime factors ofN in the most gen-
eral case. On the other hand, a different approach to defi
Wigner function for a system with anN-dimensional Hilbert
space was introduced by Leonhardt@11# that rediscovered
results previously used by Hannay and Berry@12# and others.
This method, which has the property of being well defin
for arbitrary values ofN, was used in several contex
@13,14# and recently applied to analyze the phase-space
resentation of quantum computers and algorithms@15,16#.
In this case, the phase space is constructed as a gri
2N32N points where the state is represented in a redund
manner~only N3N of them are truly independent!. In this
paper, we use a hybrid approach allowing us to capture
most useful features of both Wootters and Leonhardt me
ods. Thus, to represent a quantum state of a bipartite sys
we use, following Wootters, a phase space which is a Ca
sian product of two grids. Each one of these grids has, a
does in Leonhardt approach, 2Ni32Ni points ~whereNi is
the dimensionality of the Hilbert space of thei th subsystem!.

The paper is organized as follows: In Sec. II we first r
view the usual approach to define Wigner functions for s
tems with anN-dimensional Hilbert space. Then we intro
duce a convenient generalization that can be adopted in o
to analyze bipartite~or multipartite! systems. We discus
some general properties of the Wigner function and anal
the phase space representation of a family of entangled s
~generalized Bell states!. In Sec. III we show how to describ
teleportation of the quantum state of a system with
N-dimensional Hilbert space using the Wigner function.
Sec. IV we describe the procedure by which a direct m
surement of the Wigner function of a composite system
be done. In Sec. V we summarize our conclusions.

II. PHASE-SPACE REPRESENTATION OF COMPOSITE
QUANTUM SYSTEMS

We describe here the formalism of Wigner functions
represent a composite quantum system in phase space
©2002 The American Physical Society11-1
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JUAN PABLO PAZ PHYSICAL REVIEW A 65 062311
simplicity, we consider the composite system to be form
by subsystems each one of which has anN-dimensional Hil-
bert space. We first describe the properties of discrete Wig
functions for one of the subsystems and later discuss
phase-space representation of the composite system.
clear that one can always split a system into subsystem
many ways. For example, whenN is a composite numbe
one can choose to separate each subsystem into even sm
subsystems, each one of which has a space of states wit
dimensionality of the prime factors ofN. Adopting this de-
scription is simply a matter of physical convenience. He
we assume that theN-dimensional subsystems are the r
evant elementary components and that, in some physic
interesting regime, the entanglement between them can
manipulated.

A. Discrete Wigner functions

To represent the quantum state in phase space we
first define the notions of position and momentum. To
this, we introduce a basis of the Hilbert spaceBx5$un&,n
50, . . . ,N21%, which we arbitrarily interpret as the pos
tion basis ~with periodic boundary conditions:un1N&
5un&). Given the position basisBx , we introduce the con-
jugate momentum basisBp5$uk&,k50, . . . ,N21% by
means of the discrete Fourier transform. The states ofBp can
be obtained from those ofBx as

uk&5
1

AN
(

n
exp~ i2pnk/N!un&. ~1!

As in the continuous case, position and momentum are
lated by the discrete Fourier transform. The correct semic
sical limit corresponds to the largeN limit since the dimen-
sionality of the Hilbert space is related to an effective Plan
constant asN51/2p\.

Displacement operators in position and momentum,
noted asÛ and V̂, are defined as@17#

Ûmun&5un1m&, Ûmuk&5exp~22p imk/N!uk&,

V̂muk&5uk1m&, V̂mun&5exp~ i2pmn/N!un&. ~2!

Commutation relations betweenÛ andV̂ directly generalize
the ones corresponding to finite translations in the conti
ous case,

V̂pÛq5ÛqV̂p exp~ i2ppq/N!. ~3!

A reflection operatorR̂ can also be defined as the one acti
in the position basis asR̂un&5u2n& ~again, this operation is
to be understood modN). R̂ is related to the Fourier trans
form UFT @where ^n8uUFTun&5exp(i2pnn8/N)# since R̂
5UFT

2 .
To represent the state in phase space we use the W

function defined as the following expectation value@11,16#:

W~a!5Tr@Â~a!r̂#, ~4!
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wherea denotes a phase-space point@a5(q,p)# and Â(a)
are the so-called ‘‘phase-space point operators’’ defined
terms of displacements and reflections as@16,11#

Â~a!5
1

2N
ÛqR̂V̂2p exp~ ippq/N!. ~5!

It is important to mention that, in order forW(a) to have all
the desired properties the phase space should be a gr
2N32N points, which for the rest of the paper will be de
noted asG2N @i.e., G2N is the set of pointsa5(q,p) where
q and p take values between 0 and 2N21#. It will also be
useful to denote the firstN3N subgrid asGN @i.e., GN is the
set of pointsa5(q,p) whereq andp take values between 0
andN21#.

The Wigner function~4! obeys three defining properties
~P1! It is real valued, which is a consequence of the fact t
the operatorsÂ(a) are Hermitian by construction.~P2! The
Wigner function can be used to compute expectation val
between states as

Tr@rArB#5N (
aPG2N

WA~a!WB~a!. ~6!

This is a consequence of the completeness of the set of
eratorsÂ(a), which satisfy

Tr@Â~a!Â~a8!#5
1

4N
dN~q82q!dN~p82p!, ~7!

wherea,a8PGN , anddN(q)[1/N(n50
N21e2p iq/N is the peri-

odic delta function~which is zero unlessq50 modN).
As Â(a) form a complete orthonormal basis of the spa

of operators, one can expand the density matrixr in this
basis and show that the Wigner functions are nothing but
coefficients of such expansion. Thus,

r̂54N (
aPGN

W~a!Â~a!, ~8!

5N (
ãPG2N

W~ ã !Â~ ã !. ~9!

The last expression, where the sum is overaPG2N , can be
obtained from Eq.~8! by noticing that the contributions o
each of the fourN3N subgrids are identical. This can b
shown by using the fact that~for sq ,sp50,1)

Â~q1sqN,p1spN!5Â~q,p!~21!spq1sqp1sqspN.
~10!

Finally, W(a) satisfies a third crucial property. Consider
line L in the grid G2N @a line L is the set of all pointsa
5(q,p) such thatap2bq5c for given integersa, b andc].
Then the sum ofW(a) over all points lying on any lineL is
always positive. This property~P3! is a consequence of th
following fact. Adding all phase-space operators over a l
L defined by the equationap2bq5c, one obtains a projec
1-2
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DISCRETE WIGNER FUNCTIONS AND THE PHASE- . . . PHYSICAL REVIEW A 65 062311
tion operator. ThusÂL5(aPLÂ(a) is a projector onto an
eigenspace of the phase-space translation operator

T̂~a,b!5UaVb exp~ ipab/N! ~11!

with eigenvalue exp(ipc/N). @If T(a,b) does not have
exp(ipc/N) as one of its eigenvalues the projectorÂL van-
ishes.# The simplest example of the use of this property is
following. Consider the horizontal linesp5c. The sum of
W(a) over these lines vanishes ifc is odd @becauseT(1,0)
5U has eigenvalues exp(ipk/N) whenk is an even integer#.
On the other hand, whenc is even, the sum ofW(a) is equal
to the probability of measuring a momentum equal toc/2.
Thus,(qW(q,p)5^p/2ur̂up/2& if p is even~and zero other-
wise!.

Let us summarize the results presented so far. The Wig
function for systems with anN-dimensional Hilbert space i
defined in Eq.~4! as the expectation value of the phase-sp
operatorÂ(a) given in Eq.~5!. This definition is such tha
W(a) is real, it can be used to compute inner products
tween states and it gives all the correct marginal distributi
when added over any line in the phase space, which is a
G2N with 2N32N points. The size of the phase-space grid
important to obtain a Wigner function with all the desire
properties. The values ofW(a) on the subgridGN are
enough to reconstruct the rest of the phase space@since the
set Â(a) is complete whena belong to the gridGN#. How-
ever, the redundancy introduced by the doubling of the nu
ber of sites inq and p is essential when one imposes t
condition that all the marginal distributions should be o
tained from the Wigner function.

As an example, we show here the Wigner function o
position eigenstater̂5uq0&^q0u ~see@16# for other interesting
examples!:

W~q,p!5
1

2N
dN~q22q0!~21!p(q22q0)N. ~12!

Here,zN denotesz moduloN. W(a) is nonzero only on two
vertical strips located atq52q0 modulo N. When q52q0
we haveW(2q0 ,p)51/2N while for q52q06N the modu-
lating factor (21)p produces oscillations. They can be inte
preted as the interference between theq52q0 strip and its
mirror image induced by the periodic boundary conditio
The fact thatW(a) becomes negative in this interferen
strip is essential to recover the correct marginal distributio
Adding the values ofW(q,p) along a vertical line gives the
probability of measuringq/2, which should be 1 forq
52q0 and zero otherwise.

B. Wigner function for composite systems

We now consider a composite system with Hilbert spa
H (1,2)5H (1)

^ H (2) ~for simplicity we assume that the d
mension of both spacesH ( i ) is the same but the method ca
be generalized if this is not the case!. To represent the state
of this composite system in phase space we generalize
approach described in Sec. II A in an obvious way: We c
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sider the phase space for the composite system as the C
sian product of the ones for the subsystems~as in the classi-
cal case! and use the phase-space point operators define

Â~a1 ,a2!5Â~a1! ^ Â~a2!. ~13!

The set$Â(a1 ,a2), with a iPGN%, is a complete orthonor-
mal basis of the space of operators onH (1,2) since

Tr1,2@Â~a1 ,a2!Â~a18 ,a28!#5
1

~4N!2 dN~a12a18!

3dN~a22a28!, ~14!

wherea i ,a i8PGN anddN(a)5dN(q)dN(p).
The Wigner function for the composite system is defin

as the expectation value of the above operators,

W~a1 ,a2!5Tr@Â~a1 ,a2!r#. ~15!

This function has the same properties as the one for e
subsystem. In fact, the three properties~P1–P3! generalize
trivially to this case. Reality~P1! is once again an obviou
consequence of the Hermitian nature of the phase-sp
point operators. The completeness of the opera
Â(a1 ,a2) enables us to expand the total density matrix
this basis and write

r5~4N!2 (
a1 ,a2PGN

W~a1 ,a2!Â~a1 ,a2!,

5N2 (
a1 ,a2PG2N

W~a1 ,a2!Â~a1 ,a2!. ~16!

Once again, the first line~where botha1 ,a2PGN) can be
transformed into the second line where the sum can be
tended to the gridG2N by noticing that the contribution ove
subgrids is identical@due to the relations obtained by usin
Eq. ~10!#. Using this, it is simple to show that inner produc
between two states of the composite system can be comp
from the Wigner functions as~P2!

Tr~rArB!5N2 (
a1 ,a2PG2N

WA~a1 ,a2!WB~a1 ,a2!.

~17!

The third property~P3! is valid as well but it is worth
discussing it with more detail. The Wigner function turns o
to be positive when added over any ‘‘slice’’ of the total pha
space. A ‘‘slice’’ in phase space can be defined~following
Wootters@10#! as a set of lines$L1 ,L2% ~one line for each
subsystem!. These sets are called slices since, in the conti
ous limit, the set of phase-space points satisfying the eq
tions a1p12b1q15c1 ~that definesL1) and a2p22b2q2
5c2 ~defining L2) form a two-dimensional manifold im-
mersed in the four-dimensional phase space. The fact tha
Wigner function is positive when added over all points b
longing to the slice$L1 ,L2% is obvious. Thus, adding
Â(a1 ,a2) over all points wherea1 and a2, respectively,
1-3
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JUAN PABLO PAZ PHYSICAL REVIEW A 65 062311
belong to the linesL1 and L2, one always obtains a tenso
product of two projectors. These operators project onto
eigenspaces of the operators

T15T~a1 ,b1! ^ I ,

T25I ^ T~a2 ,b2!

with eigenvalues exp(ipc1 /N) and exp(ipc2 /N) respectively.
We omit the proof of this property, which can be done
copying the one presented in@16# ~see also below for a
simple proof of a related property!. Slices defined as above
by picking a line for each subsystem, will be denoted ‘‘sep
rable slices.’’ As we have just seen, Wigner functions wh
added over separable slices can be used to compute p
abilities for the outcomes of measurements of separable
servables. These are properties that are measured by
pendent experiments on the two separate subsystems.

It is possible, however, to consider more general nonse
rable slices in the phase space. As we will show below,
adding phase-space operators on these nonseparable
we will obtain projectors onto entangled states. For this
should use a general kind of manifoldL1,2 that can be de-
fined as the set of points (a1 ,a2) satisfying the condition
a1p12b1q11a2p22b2q25c12 ~notice that callingL12 a line
can be misleading: in the continuous limit it is a thre
dimensional manifold!. It is simple to show that by adding
phase-space operators over all points belonging toL1,2 one
also obtains a projection operator. It is rather instructive
see this proof: For this, we just have to use the fact that
Fourier transform of the subsystem’s phase-space point
eratorsÂ(a i) is a translation@16#

T~a,b!5 (
q,p50

2N21

Â~q,p!expF2 i
2p

2N
~ap2bq!G . ~18!

Using this, we can compute the sum ofÂ(a1 ,a2) over L1,2
as follows:

ÂL1,2
[ (

(a1 ,a2)PS1,2

Â~a1 ,a2!5 (
a1 ,a2PG2N

Â~a1! ^ Â~a2!

3d2N~a1p12b1q11a2p22b2q22c12!

5
1

2N (
l50

2N21

Tl~a1 ,b1! ^ Tl~a2 ,b2!eip/Nlc12, ~19!

where to obtain the last line we represented thed function as
a sum of exponentials and used Eq.~18!. As the translation
operators are unitary and cyclic one can always express t
in terms of their eigenstates and eigenvalues as

T~ai ,bi !5 (
n50

N21

uf i ,n&^f i ,nuexp~2 i2pn/N!. ~20!

Using this equation one finally obtains
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ÂL1,2
5(

n,m
uf1,n&^f1,nu ^ uf2,m&^f2,mud2N~n1m2c1,2/2!.

~21!

This explicitly shows thatAL1,2
is a projector onto the eigens

spaces of a collective operator of the bipartite system. Th
Eq. ~21! projects onto eigenspaces of

T̂1,25T̂~a1 ,b1! ^ T̂~a2 ,b2! ~22!

with eigenvalue exp(ipc1,2/N). It is clear that, whenN is
even, the projector is nonvanishing only ifc1,2 is even. The
most important conclusion is that, generically, the sum
phase-space point operators over nonseparable manifoldL12
will correspond to a projector over an entangled state. In
previous caseT̂1,2 is a collective operator generating simu
taneous phase-space translations of both systems. In the
tinuous limit it is clear that this operator is generated
linear combinations of the momenta and coordinates of
two subsystems.

In general, a manifoldL12 will not be associated with a
one-dimensional projector. For example, the manifoldL1,pb

defined by the equationp11p252pb corresponds to an
N-dimensional subspace. The same is true for the mani
L2,qb

defined as the set of points satisfyingq12q252qb .
The intersection between these two sets will be denoted
Lb ~defined as the set of points belonging to bothL1,pb

and

L2,qb
) and corresponds to a one-dimensional projector o

an entangled state~see below!.
Wigner functions of separable states have very differ

features than those of entangled states: In fact, if the den
matrix is a tensor productr5r1^ r2 then W(a1 ,a2) is a
product of the formW(a1 ,a2)5W1(a1)W2(a2). More gen-
erally, if the state is separable~i.e., the density matrix is a
convex sum of tensor products! then the Wigner function is a
convex sum of products of the above form. For entang
states~states which are not separable! this is not the case a
will be explicitly seen below. It is also useful to notice th
reduced Wigner functions can be computed for one s
system by adding the total Wigner function over the comp
mentary half of the phase space. Thus, summingW(a1 ,a2)
over a2 is equivalent to taking the partial trace over th
second subsystem since

W1~a1!5 (
a2PG2N

W~a1 ,a2!5Tr1@Â~a1!r1#, ~23!

where r1 is the reduced density matrix of the first syste
obtained from the total density matrix asr15Tr2 r. Finally,
it is also useful to notice other properties of the compos
Wigner function when we sum it over half of the pha
space. For example, ifrA andrB are two states of the com
posite system, then
1-4
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F~a1 ,a18![ (
a2PGN

WA~a1 ,a2!WB~a18 ,a2!

5
1

4N
Tr2$Tr1@rAÂ~a1!#Tr1@rBÂ~a18!#%,

~24!

an equation that will be useful later.

C. Wigner functions for Bell states

Let us first introduce a complete basis of entangled st
~generalized Bell states@9#!. First we define the stateuQ0& as

uQ0&5
1

AN
(
n50

N21

un&1^ un&2 . ~25!

This pure state for the composite system is maximally
tangled since the reduced density matrix of each subsys
is proportional to the identity. A complete basis of entang
states can be defined fromuQ0& as follows:

uQb&5
1

AN
(
n50

N21

ei2ppbn/Nun&1^ un2qb&2 . ~26!

These states can all be obtained fromuQ0& by using one of
the following equivalent expressions:

uQb&5T1~qb ,pb!eipqbpb /N
^ I2uQ0&5V1

pb ^ U2
2qbuQ0&.

~27!

Above, the notationb5(qb ,pb) was used. WhenbPGN
these states form a complete orthonormal basis of the Hil
spaceH (1,2). In fact, theseN2 vectors satisfy

^QbuQb8&5dN~b2b8!. ~28!

It is interesting to note that these are the common eigens
of the following complete set of commuting operators:

U15U1^ U2 ,

V25V1^ V2
† . ~29!

In fact, V2 andU1 commute and the Bell states~26! obey
the following identities:

U1uQb&5exp~2 i2ppb /N!uQb&,

V2uQb&5exp~ i2pqb /N!uQb&. ~30!

These expressions allow us to better understand the na
of Bell states:U1 displaces both systems in position by t
same amount whileV2 displaces them in momentum in th
opposite direction. As Bell states are common eigenstate
these operators, such states can be interpreted as corres
ing to the eigenstates of thetotal momentumand relative
position „note that in the continuum limitU15exp@2i(P1
1P2)dx/\# andV25exp@idp(Q12Q2)/\#…. In this sense, Bell
states~26! are precisely the ones used by Einstein, Podols
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and Rosen@18# to present their argument against comple
ness of quantum mechanics as a description of nature.

Having this in mind, one expects the phase-space re
sentation of Bell states to be rather simple. This is indeed
case,

Wb~a1 ,a2!5Tr@~ uQb&^Qbu Â~a1! ^ Â~a2!#

5W0~a122b,a2!,

where

W0~a!5Tr@ uQ0&^Q0u Â~a1! ^ Â~a2!#

5
1

~2N!2 dN~qa1
2qa2

!dN~pa1
1pa2

!

3~21!(qa1
pa1

1qa2
pa2

)/N. ~31!

Thus, the Wigner function ofuQb& is nonzero only when
qa1

2qa2
52qb andpa1

1pa2
52pb ~moduloN). The oscil-

lations, whose origin we described above for a simpler c
~12!, can also be interpreted as due to the interference w
the mirror images created by the boundary conditions. No
that these are precisely the equations defining the mani
Lb . Thus, the projector onto Bell stateuQb& is simply the
sum of phase-space point operators over all points belon
to Lb .

Before explicitly discussing teleportation, it is useful
present some further results related to Bell states and t
connection to phase-space point operators. A complete b
of the space of operators onH (1,2) can be constructed usin
Bell states. Thus, the operatorsB̂(b1 ,b2)5uQb1

&^Qb2
u

form a complete orthogonal set~with b1 ,b2PGN). The
change of basis between this set and phase-space poin
erators is

B̂~b1 ,b2!5~4N!2 (
a1 ,a2PGN

K~b1 ,b2ua1 ,a2!Â~a1 ,a2!,

~32!

where the coefficientsK(b1 ,b2ua1 ,a2) are, in general,
complex numbers@when b15b2 we haveK(b,bua1 ,a2)
5Wb(a1 ,a2)#. The precise form of these coefficients can
easily obtained but will not be needed here. The inverse
Eq. ~32! is also useful and reads

Â~a1 ,a2!5 (
b1 ,b2

K̃~a1 ,a2ub1 ,b2!B̂~b1 ,b2!. ~33!

Simple relations between the coefficients of Eqs.~32! and
~33! exist. In particular, one can show that

K̃~a1 ,a2ub1 ,b2!5K~b2 ,b1ua1 ,a2!5K* ~b1 ,b2ua1 ,a2!.
~34!

Finally, we mention that Bell states satisfy the followin
identity:
1-5
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Tr1@Â~a! ^ I2uQ0&^Q0u#5
1

N
I1^ ÂT~a!, ~35!

where the transpose of the phase-space point operato
pears in the right-hand side.

III. TELEPORTATION IN PHASE SPACE

We show here how the usual teleportation protocol can
described in phase space. We consider three identical
systems labeled by the integersj 51,2,3. The aim is to tele-
port the initial state of system 1, which is characterized by
arbitrary Wigner functionW(a1). For this we initially pre-
pare systems 2 and 3 in one of the Bell states~for simplicity
we useuQ0&2,3 as the initial state!. Thus, the initial density
matrix of the combined three-partite system is

r1,2,35r1^ uQ0&^Q0u2,3

5N3 (
a1 ,a2 ,a3PG2N

W~a1!W0~a2 ,a3!

3Â~a1! ^ Â~a2! ^ Â~a3!, ~36!

where the Wigner function for the Bell stateuQb& is given in
Eq. ~31!. After preparing this initial state the teleportatio
protocol proceeds as follows. First we perform a measu
ment of system 1 and 2 that projects them into the Bell ba
Physically, as discussed above, this corresponds to a co
tive measurement that determines the total momentump1
1p2 and the relative coordinateq12q2 for these two sub-
systems. After this measurement the state of the syste
projected into the resulting stateuQb&1,2, where b
5(qb ,pb) (pb andqb are the measured values of the to
momentum and distance!. To explicitly write down the re-
sulting state, it is better to rewrite Eq.~36! expressing the
phase-space point operatorÂ(a1) ^ Â(a2) in terms of the
Bell operatorsB(b1 ,b2) as in Eq.~32!. Thus,

r1,2,35~4N!3 (
a j PGN
bkPGN

W~a1!W0~a2 ,a3!K̃~a1 ,a2ub1 ,b2!

3B̂~b1 ,b2! ^ Â~a3!. ~37!

From this equation it is obvious that, after the Bell measu
ment of the first two subsystems, only the terms withb1
5b25b in the above expression survive. Therefore,
state of the third subsystem is

r3854N (
a3PGN

W8~a3!Â~a3!, ~38!

where the term multiplying the phase-space point operato
Eq. ~37! can be identified as the new Wigner function of t
third system~up to a normalization constant!. In turn, this
Wigner function can be seen to be defined by an expres
involving a sum that contains the initial Wigner function
the first system. Thus, this can be written as
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W8~a3!5 (
a1PGN

Z~a3 ,a1!W~a1!. ~39!

The matrixZ(a3 ,a1) simply tells us how to construct th
final Wigner function for the third system from the initia
Wigner function of the first one. Again, the explicit form o
this matrix is read from Eq.~37!,

Z~a3 ,a1!5~2N!4 (
a2PGN

W0~a3 ,a2!Wb~a1 ,a2!.

~40!

The above expression is easy to evaluate, since it conta
sum over half of the total phase space. Thus, we can use
relation ~24! to simplify it. Doing this @and using Eq.~35!#
one discovers thatZ(a3 ,a1) is just the trace of a product o
two phase-space point operators acting on the second
system, which are evaluated at pointsa1 and a322b.
Therefore, taking into account the orthogonality conditio
for phase-space point operators, one obtains

Z~a3 ,a1!5dN~a32a122b!. ~41!

This means that the state of the third subsystem has a Wi
function that is displaced in phase space by an amounb
with respect to the initial state of the first system. Therefo
to recover the initial state one must displace the third sys
in phase space by applying the evolution operatorT̂(b)
5T̂(qb ,pb) †in fact, one can show that when the opera
T̂(b) acts on the state of the system, the Wigner function
simply shifted in phase space by the amounts (2a,2b) the
factors of 2 being originated in the fact that the grid h
2N32N points@16#‡. Obviously, the recovery operation de
pends onb, which is revealed by the Bell measurement p
formed on the first two subsystems. In this way the final st
of the third system is always identical to the unknown init
state of the first subsystem, which is the goal of the telep
tation protocol.

IV. MEASURING THE WIGNER FUNCTION

The Wigner function, as mentioned above, is in one-
one correspondence with the quantum state of the sys
Thus, experimentally determining the value ofW(a1 ,a2) in
every phase-space point is equivalent to completely de
mining the state of the system. Experimentally reconstru
ing the Wigner function has been the goal of a series
experiments, all dealing with continuous systems@19#. In
general, these experiments are aimed at determining firs
marginal distribution of some observables and later rec
structing the Wigner function by means of a Radon-li
transform. However, it is interesting~and useful! to realize
that there is no need to fully determine the quantum stat
evaluate the Wigner function at a given phase-space po
Indeed, this was proposed originally by Davidovich and L
terbach for the Wigner function of the state of the elect
magnetic field stored in a superconducting cavity@20,21#.
Using a minor variation of this method the direct measu
ment of the Wigner function at the origin of phase space
1-6
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been recently performed in a cavity QED experiment. Mo
recently, this method was generalized and shown to be
plicable to the measurement of discrete~or continuous!
Wigner functions of generic systems in@16,22#. Here, we
will describe how this tomographic scheme can be gene
ized to directly measure the Wigner function we presente
this paper. The fact that this Wigner function can be m
sured in an efficient way~i.e., in a number of steps whic
scales polynomially with the dimensionality of the syste!
may be important if, for example, one is able to relate int
esting physical quantities~such as some entanglement me
sures! with phase-space observables~work is in progress in
this direction!.

The efficient strategy to measure the Wigner function o
composite system at~any! given phase-space point is, a
mentioned above, a direct generalization of the idea or
nally proposed in@16,22# to measure the Wigner function o
an N-dimensional system. The basic ingredient can be
scribed in terms of the following quantum algorithm. Co
sider a system initially prepared in a quantum stater̂. We put
this system in contact with an ancillary qubit prepared in
state u0&. This ancillary qubit plays the role of a ‘‘prob
particle’’ in a scatteringlike experiment. The algorithm is
follows. ~i! Apply a Hadamard transform to the ancilla
qubit @where Hu0&5(u0&1u1&)/A2, Hu1&5(u0&2u1&)/
3A2#. ~ii ! Apply a ‘‘controlled-M̂ ’’ operator ~if the ancilla is
in stateu0& this operator acts as the identity for the syste
but if the state of the ancilla isu1& it acts as the unitary
operatorM̂ on the system!. ~iii ! Apply another Hadamard
gate to the ancilla and finally perform aweakmeasuremen
on this qubit detecting its polarization~i.e., measuring the
expectation values of Pauli operatorssz andsy). It is easy to
show that the above algorithm has the following remarka
property:

^sz&5Re@Tr~M̂ r̂ !#, ^sy&5Im@Tr~M̂ r̂ !#. ~42!

Thus, the final polarization measurement of the ancillary
bit reveals a property determined both by the initial stater̂

and the unitary operatorM̂ .
In @22# we discussed how to view this simple algorithm

the basic tool to construct a rather general tomographer~and
also a rather general spectrometer!. In particular, we showed
how to use it to measure the Wigner function of a sim
system. Here, we show how to adapt it to measure
Wigner function of the composite system we have been
cussing so far. This can be done by applying the algorit
shown in Fig. 1.

From the discussion so far it is clear that the above al
rithm is such that by measuring the polarization of the an
lary qubit we determine the Wigner function. Indeed, th
follows from the identity

^sz&54N2 Tr@rÂ~a1! ^ Â~a2!#54N2W~a1 ,a2!.
~43!

As phase-space point operators~5! are simply a product
of displacement operators~which implement addition of one
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moduloN) and reflections~which are the square of the Fou
rier transform! the network of Fig. 1 can be implemente
efficiently @i.e., it involves a number of elementary gates th
grows polynomially with ln(N)#.

V. CONCLUSION

In this paper we used a hybrid approach to construc
Wigner function to represent quantum states of a compo
system in phase space. The function we defined has inte
ing features enabling us to study situations where entan
ment between subsystems plays an important role. Thus
hybrid method captures some of the most useful propertie
the Wigner functions defined by Wootters@10# and Leon-
hardt ~and others! @11,16#. For a bipartite system this func
tion depends upon two phase-space coordinatesW(a1 ,a2).
The phase space is a Cartesian product of the phase spac
the subsystems, as it is the case in Wootters’ proposal. H
ever, each phase-space grid has 2N32N points, as suggeste
by Leonhardt and others. For separable states the Wig
function is, in general, a convex sum of products of indep
dent functions for each subsystem. Thus, this Wigner fu
tion is a natural tool to study entanglement between s
systems. In this paper we showed that the basis of entan
states can be identified with nonseparable slices in the p
space~the basis formed by Bell states is one such examp!.
We also showed thatW(a,a8) is measurable by a simpl
scatteringlike experiment where an ancillary particle succ
sively interacts with the two subsystems.
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FIG. 1. Circuit for measuringW(a1 ,a2), for a composite sys-

tem. The controlled operations apply the operator 2NÂ(a i) ~which
is unitary! conditioned on the state of the ancilla qubit. The pha
space operators parametrically depend on the phase-space poa i

and can be efficiently built as a simple sequence of displacem
and reflections on each of the two subsystems. The measured
larization of the ancilla qubit is directly proportional to the Wign
function.
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