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Discrete Wigner functions and the phase-space representation of quantum teleportation
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We present a phase-space description of the process of quantum teleportation for a system with an
N-dimensional space of states. For this purpose we define a discrete Wigner function which is a minor variation
of previously existing ones. This function is useful to represent a composite quantum system in phase space
and to analyze situations where entanglement between subsystems is réd@wansionality of the space of
states of each subsystem is arbitjaiye also describe how a direct tomographic measurement of this Wigner
function can be performed.
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[. INTRODUCTION Several methods exist to represent the quantum state of a
system with arN-dimensional Hilbert space in phase space.
Quantum teleportatiofil] is a scheme by which an un- As mentioned above, Wootters introduced a discrete version

known quantum state is transported between two parties b9f the Wi_gner fu_nction that has all t_he desired prope;rties only
only transmitting classical information between them. ThisV"en N is a prime numbef10]. His phase space is ad
remarkable task requires also that the two parties share this\ 9rid (if N is prime and a Cartesian product of such
two halves of a composite system prepared in a specific erpPaces corresponding to prime chtorsl\blh the most gen-
tangled state. In recent years, this scheme has been studiecﬁ/l}?l case. On the other hand, a different approach to define a

great detail. Interest in teleportatidfwvhose experimental igner function for a system with a-dimensional Hilbert

feasibility has also been recently demonstrated in simple sysPac€ Was 'introduced by Leonhafdil] that rediscovered
tems [2])y is motivated by morg than one reason. Ir? faci/’results previously used by Hannay and Beag] and others.

teleportation is one of the most remarkable processes requi [his method, which has the property of being well defined

ing the use of entanglement as an essential resdqur&é (ig %bgrﬁyre\éaelxﬁs aOf'\Il.’egvf:)Saz;fd ;qh:evﬁézg_gogfgtrz i
Moreover, teleportation can also be conceived as a primitivé ’ Y appi yz P P P

for universal quantum computatidd]. In the seminal work Fesentation of quantum computers and algoritits, 16,

of Bennettet al.[1] the teleportation of the state of a quiit In this case, the phase space IS constructegl as a grid of
two-level systemwas described for the first time. The gen- 2Nx2N points where the state is represented ina redgndant
eralization of this method to include systems with a space Ofnanner(only NXN of _them are truly mdependentln this

states of arbitrary dimensionality was also analyzedlih paper, we use a hybrid approach allowing us to capture the
Shortly afterwards, this generalization was discussed in mor'0st useful features of both Wootters and Leqnha_rdt meth-
detail by Vaidman[5] who presented a scheme to teleportOdS' Thus, to represent a quantum state of a bipartite system

states of systems with continuous variables. A concretd/ US€ following Wootters, a phase space which is a Carte-

analysis of the teleportation of the state of a continuous syss—'an product of two grids. Each one of these grids has, as it

tem (the electromagnetic fieldvas first discussed by Braun- does'in Lepnhardt approath%ZNi points (whereN; is
stein and Kimblg6]. In their work, these authors proposed the dimensionality of the Hilbert space of ttl subsystem

(and later performed7]) interesting experiments to accom- . Theh paper IIS organlzr?d ag ff(_)llovz\s/_: In S]?C' ”. we ff'rSt re-
plish teleportation of continuous variables. For this case, jp/lew the usual approach to define Wigner functions for sys-
fems with anN-dimensional Hilbert space. Then we intro-

was natural to describe the whole procedure in terms od ient lization that be adopted in ord
phase-space distributioi8]. However, this is not the case 9YC€ & convenient generaiization that can be adopted in order
to analyze bipartitelor multipartite systems. We discuss

for systems with a finite-dimensional Hilbert space, where : K !
the use of the phase-space representation is not so commajy™e 9eneral properties of the Wigner function and analyze

The description of the usual teleportation protocol in phasdn€ Phase space representation of a family of entangled states

space has been recently presented by Koniorczyk, Buze&generalized Bell statgsin Sec. Il we show how to describe

and Jansky9] using the discrete version of Wigner functions L€leportation of the quantum state of a system with an

. ; ; N-dimensional Hilbert space using the Wigner function. In
originally introduced by Wootter$10]. This approach, as X - :
mentioned in[9], can only be used when the dimension of Sec. IV we describe the procedure by which a direct mea-

the Hilbert space of the system to be teleported is a primgUrément of the Wigner function of a composite system can
number. In this paper we extend the results presentég]in °€ done. In Sec. V. we summarize our conclusions.

to the case where the space of states has arbitrary dimensiony b\ se_SpACE REPRESENTATION OF COMPOSITE
ality. For this purpose we use a different definition for the

. . . . UANTUM SYSTEMS
discrete Wigner function that turns out to be very convenient Q
to analyze situations where entanglement between sub- We describe here the formalism of Wigner functions to
systems of arbitrary dimensionality is an important issue. represent a composite quantum system in phase space. For
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SlmpIICIty, we consider the CompOSite System tO be fqrmeqlvherea denotes a phase_space pq]at:(q,p)] andA(a)
by subsystems each one of which has\adimensional Hil-  are the so-called “phase-space point operators” defined in

bert space. We first describe the properties of discrete Wigngerms of displacements and reflections 38,11
functions for one of the subsystems and later discuss the

phase-space representation of the composite system. It is - 1. .. )
clear that one can always split a system into subsystems in A(a):quRV Pexp(impa/N). ®)
many ways. For example, whei is a composite number
one can choose to separate each subsystem into even smalleig important to mention that, in order faW(«) to have all
subsystems, each one of which has a space of states with ttiee desired properties the phase space should be a grid of
dimensionality of the prime factors d. Adopting this de- 2N 2N points, which for the rest of the paper will be de-
scription is simply a matter of physical convenience. Herenoted asG,y [i.e., G,y is the set of pointsy=(q,p) where
we assume that thbl-dimensional subsystems are the rel-q and p take values between 0 andN2 1]. It will also be
evant elementary components and that, in some physicallyseful to denote the firdt X N subgrid asGy [i.e., Gy is the
interesting regime, the entanglement between them can bg:t of pointsa= (q,p) whereq andp take values between 0
manipulated. andN—1].

The Wigner function(4) obeys three defining properties.

A. Discrete Wigner functions (P It is real valued, which is a consequence of the fact that

To represent the quantum state in phase space we muée operatoré\(a) are Hermitian by constructiortP2) The
first define the notions of position and momentum. To do¥igner function can be used to compute expectation values
this, we introduce a basis of the Hilbert spagg={|n),n  between states as
=0, ... N—1}, which we arbitrarily interpret as the posi-
tion basis (with periodic bOL_Idary gonditionsln+ N) Tpape]l=N > Wa(a)Wg(a). (6)
=|n)). Given the position basiB,, we introduce the con- aeGyy
jugate momentum basisB,={|k),k=0,... N—1} by o
means of the discrete Fourier transform. The staté&,afan This is a consequence of the completeness of the set of op-

be obtained from those &, as eratorsA(a), which satisfy
1 A A ’ 1 ’ ’
|k>=\/—N En: exp(i27nk/N)|n). (1) TA()A(a) =75 on@ —a)on(p'—p), (V)

) _ N—1_27ig/N ; -
As in the continuous case, position and momentum are ré¥nerea,a’ € Gy, andy(q)=1NZ,_,e ™" is the peri-
lated by the discrete Fourier transform. The correct semiclagedic delta function(which is zero unlesg=0 modN).

sical limit corresponds to the lardé limit since the dimen- As A(«) form a complete orthonormal basis of the space
sionality of the Hilbert space is related to an effective Planckof operators, one can expand the density magriin this
constant aiN=1/27#. basis and show that the Wigner functions are nothing but the

Displacement operators in position and momentum, decoefficients of such expansion. Thus,
noted asJ andV, are defined afl7]

' 2 p=4N 2, W(a)A(a), 8

Omny=|n+m), OMk)=exp —2mimk/N)[k), P QEEEBN (a)A(a) (8)

VMky=lk+m), VMny=exgi2Zzmn/N)|n).  (2) NS WA ©
;EGZN

Commutation relations betweéh andV directly generalize
the ones corresponding to finite translations in the continuThe last expression, where the sum is oxer G,y, can be

ous case, obtained from Eq(8) by noticing that the contributions of
o each of the foulNXN subgrids are identical. This can be
VPUI=UIPexpi2mpg/N). €©)] shown by using the fact thator o,0,=0,1)

A reflection operatoR can also be defined as the one acting A(q+oqN,p+ apN)zA(q,p)(— 1)7pdt 7qP T oqopN,

in the position basis a&|n)=|—n) (again, this operation is (10)

to be understood mol). R is related to the Fourier frans-  Finaly, W(«) satisfies a third crucial property. Consider a

form Ugr [where (n’|Ugr|n)=exp(27nn'/N)] since R  line L in the grid G,y [a line L is the set of all pointsy

=U§T. =(q,p) such thaap—bq=c for given integers, b andc].

To represent the state in phase space we use the Wign€hen the sum ofN(«) over all points lying on any ling is
function defined as the following expectation valu4d,16: always positive. This propert§P3 is a consequence of the
L following fact. Adding all phase-space operators over a line
W(a)=Ti{A(a)p], (4) L defined by the equatioap—bqg=c, one obtains a projec-
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tion operator. ThusA, =3, ., A(a) is a projector onto an Sider the phase space for the composite system as the Carte-
eigenspace of the phase_space translation Operator sian prOdUCt of the ones for the Subsystqmin the classi-
cal case¢ and use the phase-space point operators defined as

T(a,b)=U2VP exp(i mab/N) (11) . . .
Alay,ar)=A(a) @A(ay). (13
with eigenvalue expc/N). [If T(a,b) does not have
exp(mc/N) as one of its eigenvalues the projecfor van-
ishes] The simplest example of the use of this property is th
following. Consider the horizontal lineg=c. The sum of

The Set{A(al,az), with a; e Gy}, is a complete orthonor-
Jnal basis of the space of operators Hi-? since

N N 1
W(«a) over these lines vanishesdfis odd[becauseT (1,0) TridA(ay,a)Alay,a))]= W&,\I(al— ay)
=U has eigenvalues exptk/N) whenk is an even integér (4N)
On the other hand, whamnis even, the sum dN(«) is equal X Sn(ay—al), (14)

to the probability of measuring a momentum equalcta.

Thus,EqW(q,p)=<p/2|f>|p/2) if p is even(and zero other- whereq;,af € Gy and Sy(a) = Sn(q) Sn(p)-

Wise). The Wigner function for the composite system is defined
Let us summarize the results presented so far. The Wignexs the expectation value of the above operators,

function for systems with ail-dimensional Hilbert space is

defined in Eq(4) as the expectation value of the phase-space W(ay,a)=TH[A(ay,as)p]. (15

operatorA(«) given in Eq.(5). This definition is such that _ . _

W(a) is real, it can be used to compute inner products peJhis function has the same properties as the one f(_)r each

tween states and it gives all the correct marginal distributionSUbsystem. In fact, the three properti€d—P3 generalize

when added over any line in the phase space, which is a griwwally to this case. Reaht;(l?l) is once again an obvious

G,y With 2N X 2N points. The size of the phase-space grid isconsequence of the Hermitian nature of the phase-space

important to obtain a Wigner function with all the desired POINt operators. The completeness of the operators

properties. The values oWV(a) on the subgridGy are A(ai,ay) enables us to expand the total density matrix in

enough to reconstruct the rest of the phase spsicee the this basis and write

setA(a) is complete whenx belong to the gridsy]. How-

ever, the redundancy introduced by the doubling of the num- p=(4N)? 2 W(al.az)A(al.az),
ber of sites inq and p is essential when one imposes the ag,azeGy

condition that all the marginal distributions should be ob-

tained from the Wigner function. 2 A

As an example, we show here the Wigner function of a =N avag;GZN W(ay,az)Alay,az). (16)
position eigenstate=|q,)(,| (see[16] for other interesting
examples Once again, the first linéwhere bothaq,a,€ Gy) can be

transformed into the second line where the sum can be ex-
1 tended to the grids,y by noticing that the contribution over
W(Q,p) = 5 On(d—200) (— 1)P@=2%0N, (12)  subgrids is identicaldue to the relations obtained by using
Eqg. (10)]. Using this, it is simple to show that inner products
Here,zy denotesz moduloN. W(«) is nonzero only on two between two states of the composite system can be computed

vertical strips located afj=2q, modulo N. Whenq=2q, "om the Wigner functions a2
we haveW(2qq,p)=1/2N while for q=2g,= N the modu-

lating factor (—1)P produces oscillations. They can be inter- Tr(papg)=N2 E Wi(ay,a)Wg(ay,ay).
preted as the interference between the2q, strip and its ag,azeGay
mirror image induced by the periodic boundary conditions. 17)

The fact thatW(a) becomes negative in this interference

S . . o The third property(P3) is valid as well but it is worth
strip is essential to recover the correct marginal distributions.,. S . i .
: : : . discussing it with more detail. The Wigner function turns out
Adding the values ofV(q,p) along a vertical line gives the

o . 4 to be positive when added over any “slice” of the total phase
probability of measurl_ngq/Z, which should be 1 forg space. A “slice” in phase space can be defiréallowing
=20, and zero otherwise.

Wootters[10]) as a set of line§L,,L,} (one line for each
_ _ _ subsystem These sets are called slices since, in the continu-
B. Wigner function for composite systems ous limit, the set of phase-space points satisfying the equa-
We now consider a composite system with Hilbert spacdions a;p1—b;q;=c; (that definesL,) and a,p,—b,d,
HED=HDgH @ (for simplicity we assume that the di- =C2 (defining L;) form a two-dimensional manifold im-
mension of both spacég () is the same but the method can Mersed in the four-dimensional phase space. The fact that the
be generalized if this is not the cas&o represent the states Wigner function is positive when added over all points be-
of this composite system in phase space we generalize tHgnging to the slice{L,,L,} is obvious. Thus, adding
approach described in Sec. Il A in an obvious way: We conA(«,,®,) over all points wherew; and «a,, respectively,
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belong to the lined.; andL,, one always obtains a tensor
product of two projectors. These operators project onto the ALLZ:nEm |p10) (D10l ® | P2m){ P2ml Son(nN+mM—cy o2).
eigenspaces of the operators ’ 21)

T1=T(a;,by)®l,
This explicitly shows tha/tB\L12 is a projector onto the eigens-

T,=1®T(ay,b,) spaces of a collective operator of the bipartite system. Thus,
Eq. (21) projects onto eigenspaces of

with eigenvalues expfrc;/N) and expimc,/N) respectively.

We omit the proof of this property, which can be done by A A A

copying the one presented [i16] (see also below for a T12=T(ay,by)®T(az,bz) (22)
simple proof of a related propeitySlices defined as above,

e fmehons sheylh egenvalue expe, /N). It s clea tat, wher s
' J » W9 ven, the projector is nonvanishing onlycif , is even. The

adpl_e_d over separable slices can be used to compute pro l0st important conclusion is that, generically, the sum of
abilities for the outcomes of measurements of separable ob-

servables. These are properties that are measured by in hase-space point operators over nonseparable maifeld

pendent experiments on the two separate subsystems. Will correspond to a projector over an entangled state. In the

It is possible, however, to consider more general nonsepd€vious casd , is a collective operator generating simul-
rable slices in the phase space. As we will show below, by@n€ous phase-space translations of both systems. In the con-
adding phase-space operators on these nonseparable slig@§ous limit it is clear that this operator is generated by
we will obtain projectors onto entangled states. For this weinear combinations of the momenta and coordinates of the
should use a general kind of manifold , that can be de- WO subsystems. _ . _
fined as the set of pointsag,a,) satisfying the condition In general, a manifold.;, will not be associated with a
a,p;—b10; +a,p,— byg,= 4, (Notice that calling.- 1, a line one-dimensional projector. For example, the manllolqpﬁ
can be misleading: in the continuous limit it is a three-defined by the equatiom;+p,=2p; corresponds to an
dimensional manifol It is simple to show that by adding N-dimensional subspace. The same is true for the manifold
phase-space operators over all points belongingjte one Lf,qﬁ defined as the set of points satisfying—q,=2q;.
also obtains a projection operator. It is rather instructive toThe intersection between these two sets will be denoted as
see this proof: For this, we just have to use the fact that thgﬁ (defined as the set of points belonging to bbth,pﬁ and

Fourierﬂtransform of the subsystem’s phase-space point op- 4.) and corresponds to a one-dimensional projector over
eratorsA(«;) is a translatior 16] an eﬂntangled stateee below.

Wigner functions of separable states have very different
- 2w features than those of entangled states: In fact, if the density

T(a,b)=q20 A(q,p)ex;{ﬂ m(ap—bq)} (18 matrix is a tensor produgh=p;®p, then W(ay,a,) is a

' product of the formW(a; , a,) =W, (a;)W,(a,). More gen-
erally, if the state is separablee., the density matrix is a
convex sum of tensor producthen the Wigner function is a
convex sum of products of the above form. For entangled
states(states which are not separapthis is not the case as
will be explicitly seen below. It is also useful to notice that

2N-1

Using this, we can compute the sumfb(fal,az) overl,,
as follows:

A= 2 Aapa)= X Ala)eAlay)

(a1,42) €S 5 a1, d9eGay reduced Wigner functions can be computed for one sub-
system by adding the total Wigner function over the comple-
X dan(a1Pp1— b1y +axpa—ba0,— 1)) mentary half of the phase space. Thus, sumnw(@; , a,)
2N-1 over a, is equivalent to taking the partial trace over the

1 : .
= 5N go T”(al,b1)®T”(a2,bz)e'W’N"‘:lZ, (19 second subsystem since

where to obtain the last line we representeddtfanction as _ _ A
a sum of exponentials and used Efj8). As the translation Wala) aZEEGZN Wlar,ar)=Tr[Ala)pal, (23
operators are unitary and cyclic one can always express them
in terms of their eigenstates and eigenvalues as
where p, is the reduced density matrix of the first system

N-1 obtained from the total density matrix ag=Tr, p. Finally,
T(a;,b)= E | i n){ i nlexp(—i27n/N). (20) it is also useful to notice other properties of the composite
n=0 Wigner function when we sum it over half of the phase
space. For example, jff5 and pg are two states of the com-
Using this equation one finally obtains posite system, then
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) ) and Roserj18] to present their argument against complete-
Flag,ap)= 2, Walay,a)Ws(a,a;) ness of quantum mechanics as a description of nature.

apyeCGy . .. .
Having this in mind, one expects the phase-space repre-
1 . -, sentation of Bell states to be rather simple. This is indeed the
= mTrZ{Trl[pAA(a’l)]Trl[PBA(a'l)]}- case,
29 Wy(ay,a2) =TH (|0 (O 4l A(ay) ©A(ay)]
an equation that will be useful later. —Wo(ay—28,a,),
C. Wigner functions for Bell states where
Let us first introduce a complete basis of entangled states R R
(generalized Bell statg9)). First we define the sta® ) as Wy(a)=Tr{|@g){(O| A(ar) ®A(ay)]
g Nt 1
©0)=—= 2, [n)1®[n),. (25 = 292 NG, ™ Gay) ON(Pes, T Pay)
\/N n=0
X( — 1)(q”1p"1+q"2p"‘2)/N. (31)

This pure state for the composite system is maximally en-

tangled since the reduced density matrix of each subsysteqcnn
is proportional to the identity. A complete basis of entangledq
states can be defined frof®,) as follows:

us, the Wigner function of® ) is nonzero only when
a;~ Ya,=20p @ndp, +p,,=2pz (ModuloN). The oscil-
lations, whose origin we described above for a simpler case

N-1 (12), can also be interpreted as due to the interference with
|@B>:_ 2 eizwp,enf’\‘|n)l®|n— Op)2- (26) the mirror images created by the boundary conditions. Notice
YN =0 that these are precisely the equations defining the manifold

Lg. Thus, the projector onto Bell stat@ﬁ> is simply the
sum of phase-space point operators over all points belonging
toLsg.

B
; — Before explicitly discussing teleportation, it is useful to

— imqgpg /N —\/Ps ap ! .
©5)=T1(dg,pp)e ™ @ 15|00) =V P& U, #|O). present some further results related to Bell states and their
(27) connection to phase-space point operators. A complete basis

Above, the notations=(q,p,) was used. Wherg e Gy, of the space of operators ¢ (*? can be constructed using
these states form a complete orthonormal basis of the HilbeRell states. Thus, the operatoi(B1,82) =04 )(Opg|

These states can all be obtained fro#n) by using one of
the following equivalent expressions:

spaceH (2). In fact, theseN? vectors satisfy form a complete orthogonal séwith 3,,8,<Gy). The
) change of basis between this set and phase-space point op-
(O4@p)=nB—B"). (28)  erators is
It is interesting to note that these are the common eigenstates
of the following complete set of commuting operators: B(B1,B82)=(4N)2 >, K(B1.Bslai,an)A(ay,ay),
aq,ape Gy
U,=U;®U,, (32
V,=V1®V;. (290  where the coefficientK(B;,B;|a;,a;) are, in general,
complex numberg§when 8;= 8, we haveK(B,8|a;,a,)
In fact, V_ andU, commute and the Bell staté26) obey = =Wpg(a1,a,)]. The precise form of these coefficients can be
the following identities: easily obtained but will not be needed here. The inverse of

) Eqg. (32 is also useful and reads
U.|@g=exp—i2mpgz/N)|0p),

V_|0 gy =exp(i2mqz/N)|0 4). (30) A(al,az>=B2B K(as,aB1,82)B(B1.B2). (33

These expressions allow us to better understand the nature
of Bell states:U . displaces both systems in position by the Simple relations between the coefficients of E2) and
same amount whil® _ displaces them in momentum in the (33) exist. In particular, one can show that
opposite direction. As Bell states are common eigenstates of
these operators, such states can be interpreted as correspoitia; , a,| B1,82) =K (B2, B1| a1, az) =K* (B1,Bs| a1, ay).
ing to the eigenstates of thetal momentumand relative
position (note that in the continuum limit , =exg —i(P;
+P,) k] andV_=exdidp(Q;—Q,)/A]). In this sense, Bell Finally, we mention that Bell states satisfy the following
stateq26) are precisely the ones used by Einstein, Podolskyidentity:
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- 1 .
Tr[A(a) 215/ 00)(O0|]1= 119AT(a), (39 W(ag)= 2 Z(ag,a)W(ay). (39

a1eGy

where the transpose of the phase-space point operator aphe matrixZ(as,a,) simply tells us how to construct the

pears in the right-hand side. final Wigner function for the third system from the initial
Wigner function of the first one. Again, the explicit form of
lll. TELEPORTATION IN PHASE SPACE this matrix is read from Eq37),

We show here how the usual teleportation protocol can be
described in phase space. We congider threpe identical sub- Z(a3'al):(2N)4a2§GN Wo( g, a2) Wp(ay, az).
systems labeled by the integgrs 1,2,3. The aim is to tele- (40)
port the initial state of system 1, which is characterized by an
arbitrary Wigner functionW(«,). For this we initially pre- The above expression is easy to evaluate, since it contains a
pare systems 2 and 3 in one of the Bell stafessimplicity ~ sum over half of the total phase space. Thus, we can use the

we use|®,), 3 as the initial state Thus, the initial density ~relation(24) to simplify it. Doing this[and using Eq(35)]

matrix of the combined three-partite system is one discovers thaf(as,a4) is just the trace of a product of
two phase-space point operators acting on the second sub-
p123=P12|00)(O¢|23 system, which are evaluated at points and az;—28.
Therefore, taking into account the orthogonality conditions
=N3 2 W(ay)Wo( g, as) for phase-space point operators, one obtains

aq,ap,a3eGoy
. . . Z(ag,a1)=on(az—ay—2p). (41)
XA(a) ®A(ar) ®A(as), (36) _ . .
This means that the state of the third subsystem has a Wigner

where the Wigner function for the Bell std® ;) is given in ~ function that is displaced in phase space by an amglnt
Eq. (31). After preparing this initial state the teleportation With respect to the initial state of the first system. Therefore,
protocol proceeds as follows. First we perform a measureto recover the initial state one must displace the third system
ment of system 1 and 2 that projects them into the Bell basisn phase space by applying the evolution operaf¢]3)
Physically, as discussed above, this corresponds to a colleg—i-(qﬁ,pﬁ) [in fact, one can show that when the operator
tive measurement that determines the total momenpym
+p, and the relative coordinatg, —q, for these two sub-
systems. After this measurement the state of the system
projected into the resulting stat¢®z);,, where B
=(dg.Pp) (Pg andqg are the measured values of the total

'T'(,B) acts on the state of the system, the Wigner function is
simply shifted in phase space by the amounta,pB) the
fctors of 2 being originated in the fact that the grid has
2N X 2N points[16]]. Obviously, the recovery operation de-

: - . ends ong, which is revealed by the Bell measurement per-
mor_nentum ar_1d_d|stan):eTo expl_lcnly write down Fhe re- Formed c?r? the first two subsysteyms. In this way the final State
sulting state, it '_S‘ better to rewrite E(BG). expressing the ot e thirg system is always identical to the unknown initial
phase-space point operatéa;) ©A(a,) in terms of the  gtate of the first subsystem, which is the goal of the telepor-

Bell operatorsB(81,8,) as in Eq.(32). Thus, tation protocol.
91,2,3:(4'\')3 2; W(aq) Wo( a2,a3)R(a11a2|,31u32) IV. MEASURING THE WIGNER FUNCTION
BLEGE The Wigner function, as mentioned above, is in one-to-
. . one correspondence with the quantum state of the system.
XB(B1,B2)®A(az). (37 Thus, experimentally determining the valueWfa; ,a>) in

) o ] every phase-space point is equivalent to completely deter-
From this equation it is obvious that, after the Bell measuremijning the state of the system. Experimentally reconstruct-
ment of the first two subsystems, only the terms with  ing the Wigner function has been the goal of a series of
=pB2=p in the above expression survive. Therefore, theexperiments, all dealing with continuous systefa$]. In

state of the third subsystem is general, these experiments are aimed at determining first the
marginal distribution of some observables and later recon-
'— AN W’ A ’ 38 structing the ngner_fL_Jn(_:tlon by means of a Radqn-llke
Ps a3§GN (ag)Alas) 38 ransform. However, it is interestingind useful to realize

that there is no need to fully determine the quantum state to
where the term multiplying the phase-space point operator ievaluate the Wigner function at a given phase-space point.
Eq. (37) can be identified as the new Wigner function of the Indeed, this was proposed originally by Davidovich and Lut-
third system(up to a normalization constantin turn, this  terbach for the Wigner function of the state of the electro-
Wigner function can be seen to be defined by an expressiomagnetic field stored in a superconducting cayi?p,21.
involving a sum that contains the initial Wigner function of Using a minor variation of this method the direct measure-
the first system. Thus, this can be written as ment of the Wigner function at the origin of phase space has
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been recently performed in a cavity QED experiment. More
recently, this method was generalized and shown to be ap- 10><0l ! <> @
plicable to the measurement of discrefer continuoug Measure <5, >

Wigner functions of generic systems j6,22. Here, we
will describe how this tomographic scheme can be general-

ized to directly measure the Wigner function we presented in A0)

this paper. The fact that this Wigner function can be mea- ~
sured in an efficient wayi.e., in a number of steps which P

scales polynomially with the dimensionality of the sysjem &ﬁ\)
may be important if, for example, one is able to relate inter- N

esting physical quantitiessuch as some entanglement mea-
sure$ with phase-space observabl@gork is in progress in i ~ .
tem. The controlled operations apply the operatd®2«;) (which

this direction.
The effici?ent strategy to measure the Wigner function of ais unitary) conditioned on the state of the ancilla qubit. The phase-

composite system afany) given phase-space point is, as space operators parametrically depend on the phase-spacexpoint
. . L . ' “~.and can be efficiently built as a simple sequence of displacements
mentioned aboye, a direct generallzatlon_ of the lde_a ON915nd reflections on each of the two subsystems. The measured po-
nally proposgd 116,23 to measure .th? ngn.er function of larization of the ancilla qubit is directly proportional to the Wigner
an N-dimensional system. The basic ingredient can be deg,,ction.
scribed in terms of the following quantum algorithm. Con-

sider a system initially prepared in a quantum staté/e put

this system in contact with an ancillary qubit prepared in the . .
state |yo>_ This ancillary qubit plays %g rolepofpa “orobe moduloN) and reflectiongwhich are the square of the Fou-

particle” in a scatteringlike experiment. The algorithm is as"e! .transfqrn) Fh.e network of Fig. 1 can be implemented
follows. (i) Apply a Hadamard transform to the ancillary efficiently[i.e., it involves a number of elementary gates that

qubit [where H|0Y=(|0)+|1))/\2, H|1)=(|0)—|1))/  9rows polynomially with Ink)].
% \2]. (ii) Apply a “controlled-M” operator (if the ancilla is
in state|0) this operator acts as the identity for the system
but if the state of the ancilla ikl) it acts as the unitary
operatorM on the system (iii) Apply another Hadamard In this paper we used a hybrid approach to construct a
gate to the ancilla and finally performveeakmeasurement Wigner function to represent quantum states of a composite
on this qubit detecting its polarizatiofi.e., measuring the system in phase space. The function we defined has interest-
expectation values of Pauli operatersando,). Itis easy to  ing features enabling us to study situations where entangle-
show that the above algorithm has the following remarkablement between Subsystems p|ay5 an important role. Thus, the
property: hybrid method captures some of the most useful properties of
. . the Wigner functions defined by Woottef$0] and Leon-
(o)=RdTr(Mp)], (oy)=Im[Tr(Mp)]. (42 hardt (and others[11,16. For a bipartite system this func-
tion depends upon two phase-space coordindlés,,as).

Thus, the final polarization measurement of the ancilla[y dUThe phase space is a Cartesian product of the phase spaces of
bit reveals a property determined both by the initial sjate the subsystems, as it is the case in Wootters’ proposal. How-
and the unitary operatd?/l. ever, each phase-space grid h&s22N points, as suggested

In [22] we discussed how to view this simple algorithm asby Leonhardt and others. For separable states the Wigner
the basic tool to construct a rather general tomografdredt  function is, in general, a convex sum of products of indepen-
also a rather general spectrometém particular, we showed dent functions for each subsystem. Thus, this Wigner func-
how to use it to measure the Wigner function of a simpletion is a natural tool to study entanglement between sub-
system. Here, we show how to adapt it to measure theystems. In this paper we showed that the basis of entangled
Wigner function of the composite system we have been disstates can be identified with nonseparable slices in the phase
cussing so far. This can be done by applying the algorithmypace(the basis formed by Bell states is one such example
shown in Fig. 1. We also showed thalV(«,a’) is measurable by a simple

_ From the discussion so far it is clear that the above algoscatteringlike experiment where an ancillary particle succes-
rithm is such that by measuring the polarization of the ancil-sjyely interacts with the two subsystems.

lary qubit we determine the Wigner function. Indeed, this
follows from the identity

FIG. 1. Circuit for measurin§V(«4,«,), for a composite sys-

V. CONCLUSION
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