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Adiabatic quantum computation and Deutsch’s algorithm
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We show that by a suitable choice of a time-dependent Hamiltonian, Deutsch’s algorithm can be imple-
mented by an adiabatic quantum computer. We extend our analysis to the Deutsch-Jozsa problem and estimate
the required running time for both global and local adiabatic evolutions.
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Quantum computation and quantum information theoryimplemented7]. In this paper, we show that Deutsch’s al-
have attracted a great deal of attention in recent times. Inhegorithm can be implemented as well, by choosing a suitable
ently quantum-mechanical systems can in principle be usenhitial state and a Hamiltonian which evolves that state. Then
to implement a wide variety of computational algorithms a single measurement of the final state suffices to determine
with enhanced efficiencjl—3]. The principle of superposi- whether the functiorf is constant or balanced. Finally, we
tion in quantum mechanics, according to which a system cashow that the results can be extended to the Deutsch-Jozsa
be in a linearly superposed state of more than one eigenstataglgorithm involvingn qubits.
is the key to this increased efficiency. One of the first algo- Let us begin with a two-level system, e.g., a spin 1/2
rithms that was first proposed in this context is Deutsch'sparticle, with the basis ket§0), |1)}. We define the “initial”
algorithm[4]. and “final” HamiltoniansHy andH, respectively, as

In this, one would like to determine whether a function

Ho=1—[4o)(#ol, (1)
f:{0,4—{0,1}
Hi=I1— , 2
is constant or balanced, i.e., whethigl0)=f(1) or f(0) ! 09l @
#f(1) using a quantum computer. where the initial and final state vectors are given, respec-
The four possible outcomes bfare tively, by
f(0)=f(1)=0 (constant, 1
=—(|0)+|1)), 3)
f(0)=f(1)=1 (constant, o) 1/7(| H)
f(0)=0, f(1)=1 (balanced, |41)=a|0)+B|1), (4)

f(0)=1, f(1)=0 (balancedl. with

Ordinarily, one has to determirmth f(0) andf(1) to infer 1

the nature of the function, since the knowledge of one does a= §|(—1)f(0)+(—1)f<1)|, 5)

not shed light on the value of the other. However, it was

shown that by applying a certain sequence of unitary opera- 1

tors (gate$ on a given initialguantum-mechanicaltate, and B==|(—1)f@O—(—1)fD). (6)

then making justone measurement on the final state, the 2

nature of the functiori can be determinef#]. o . o .
Recently, a new framework of quantum computation hadVote that the Hamiltonians in the above are implicitly given

been proposed, in which the series of gates referred to above terms of some fundamental energy scdle,say, whose

is entirely replaced by a Hamiltonian that changes continuvalue is determined by the physical system used to construct

ously with time. The Hamiltonian is so chosen that the statéhe states. This energy scale has a natural time scale associ-

of the system is its ground state at all tim@dthough the  ated with it, namelyT=#/E, which will play an important

ground state itself is time dependgrdnd the system slowly role later. The following relations will also prove useful:

evolves to a desired final stafg]. Several applications of

this have been consider¢él]. Using this framework, it was a+pB=1, (7)

shown that Grover's search algorithm can be efficiently

a?=a, p*=B, (8)
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Thus, wherf is a constante=1, =0, and vice versa. We
assume that, the system is initially in a sta#®) and is
evolved by the following time dependent Hamiltonian:

H(t)=[1—s(t)]Ho+S(H)H;. (10)

In general,s(t) is an arbitrary function of the timg such
that s(0)=0 and s(1)=1. Thus, H(0)=H,; and H(1)
=H,. For the present we assume tisft) is linear int,
namely,s=t/T, whereT is the total time for which the sys-
tem is evolved.

It follows from the adiabatic theorem that & T, the
system would be in the state, ), with very high probability
1— €2 (wheree is a small numbeér provided the evolution is

adiabatic[8,9], i.e.,
dH
dt

g%m
where the timé is implicitly given in units of T. The lower
bound on the evolution tim& is implicitly given by the
condition(11) as will be seen later and

<eg, (11

=

dH dH
E = E+,SHE_,S (12)
and
dH _ds dH
ot/ = dt\ds) 13

E. (s) andE_(s) being the two time dependent eigenvalues

of H(s), with corresponding eigenvectortE, ,s) and
|E_,s), respectively, and

Omin:= Min [E,(s)—E_(s)].

Oss<1

Of course, the quantitigglH/dt) andg,, should be nonva-
nishing. We will show that this is indeed the case.

Thus, under adiabatic quantum evolution, the initial wav
function of the system will evolve to eithéd) or |1), almost
with certainty, and by making aingle measurement of the

state at the end, one can determine unambiguously what t

nature of the functiorf is. Namely, if the outcome of mea-
surement ig0), thenf is constant and if it ig1), then it is
balanced.

The matrix elements dfl in the {|0), |1)} basis are

12+s(B—1/2) —1/21—s)

HO=L _1p1-s)  12ts(a—1/2))°

The corresponding eigenvalues are

1
5[1i\/1—23+252].

E.(s) (14

Note that the eigenvalues are independentratnd B, and
are identical to those found {iY]. This is a consequence of
the Egs.(7)—(9). It follows that

e
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AE(S)=E,(s)—E_(s)=\1—2s+2s?,

which is nonzero for all values af and

1
Omin=AE(s=1/2)= 5 (15

In addition, the two orthonormal eigenvectors are
1-s
|E.,s)=kKu.

[(1-2a)sF J1—2s+257]

where

ke=2"Y2(1-2s+28%)+(2a—1)sy1—2s+2s%} 12

with which one can get
1 1

dH
’<H>’_T 21-2s+25%

Note that this too is independent @fand 3 although|E .. ,s)

is not. Also, note that for any value sf the above quantity

is nonvanishing and of orderT/ At the final timet=T, the

eigenstates ail®) and|1), respectively, and depending on the

value of a, B, the system evolves to one of them.
Substituting Eqs(15) and (16) in Eqg. (11), we get the

following relation:

(16)

T=

1
p (17)

which gives an estimate of the time for which the initial state
| o) must be evolved via the adiabatic Hamiltoni@i®) to
attain an accuracy of orderof the final result. For example,
if we want the final state to be thes,) with accuracy of
90%, then the minimum evolution time should be on the
order of T~1/{/1—0.9~3.2, in units ofT.

A few comments are in order here. Instead of starting with
the initial state(0.4), one can in general start with an arbi-

%ary initial state of the form

|ho)=a]0)+b|1),

with |a|?+ |b|?=1, and evolve the system with the Hamil-
tonian(10). The end result is expected to remain unchanged,
since the ground state of the final Hamiltonian is i),

to which the system will eventually tend. If one starts with
the state(18), thenA(s) and({dH/dt) are, respectively,

(18)

A(s)=1-4(a’B+b%a)s(1-s), (19
()|t =t
dt/| T (1-4(a2B+Db%a)s(1—s)

Substituting Egs(19), (20), ands=1/2 in Eq.(11) and sim-
plifying we get
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1 ab it is “promised” that the function is either constafite., all
T=-— ) = (21)  outputs are identicalor balancedi.e., has an equal number
€ Jb*(1-a%+a(a’—b?) of 0's and 1's as outputsand the task is to find which of the

. . above it actually is[1,10. The basis states now are
Thus depending on whether=0 or «=1 (although this {|O>,|1),...,|N—1§/} (with N=2"). Now we choose the nor-

value isa priori unknown), we get, respectively, malized initial and final states to be

T>EE or T>EE (22) 1 N—1
€b €a |'//o>:\/_ﬁi240 i), (23

Thus for extreme asymmetric values @fandb (e.g.,a~0
andb~ 1), the evolution into the final state would either take N-1
place in a very short or a very long time. But as the value of | 1) = a|0) + P > k), (24)
a is not known, one would have to wait for the greater of VN—1k=1

two values before making the measurement. Equivalently,
for very smalla or b, g, becomes very small for some with
value of e, which is contrary to what the validity of adiabatic
theorem requires. Consequently, the “optimal” values for
which the evolution time is independent of B is given by

> (—1fw

xe{0,"

: (29

Z| -

B=1—a. (26)

Once again, if (x) is constant them=1 andB=0, and vice
versa. Thus after the required running time, if a measurement
%t the final state yieldf), thenf(x) is constant and if it does
not yield |0), then it is balanced. The properti€d—(9) con-

which is what we started with.
The above procedure can be generalized to Boolean fun
tions of the form

£:{0,1"{0,1} tinue to be valid. AlsoHy, H,, andH(s) are still given by
Egs.(1), (2), and(10), respectively.
by making use oh qubits instead of a single orié&,10]. In In the chosen basis, the adiabatic Hamiltonka(s) is

accordance with the Deutsch-Jozsa problem, we assume thaw given by the followingN <X N matrix:

1-s 1-s 1-s 1-s
N TN TN N
1-s 1 1-s sB 1-s sB 1-s sB
N N N-1 N N-1 N N-1
H(s)= 1-s l1-s sB 1 l1-s sg 1-s sB
N N N-1 - N N-1 N N-1
1-s 1-s sB 1-s sB 1-s sB
N N N-1 N N-1 N N-1
|
It can be shown that the highest eigenvalue of the above 4s(1—s)
Hamiltonian is 1, which is —2)-fold degenerate, and the AE(s)=E_.(s)—E_(s)= \/1— T[[H a(N—-1)]
two remaining distinct eigenvalugboth less than )lare
#0, (28
1 4s(1-s implyin
E+(S)=§[1i \/l—%[ﬁﬁ-a(N—l)] . pying
27 A _
Omin=AE(s=1/2)= /1 N[ﬂ+a(N 1. (29
Thus, In addition, it can be shown that
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dH
ds

Thus for s=t/T, from condition (11) it follows that (for
large N)

N—1

N \/ 4s(1—5s) .
1- T[ﬂ+ a(N—1)]

(30

1

=

=

N
T=—
€

; 31)

which shows that the evolution time scalesNagghe number
of qubits.

However, following Ref.[7] if we assume an evolution
with a generab(t) we obtain the adiabaticity conditioiil)
that must be satisfied at any given instant of tigme

ds_ [Ei(5)—E-(9]

at = ¢ dH
ds
Substituting Eqgs.(28) and (30), we get (here y=4[8

+a(N—1)]/N),

T >l YyN—1 (1 ds

fodt N Jo[l-sy+s*y]®*

(32

c (33

The expression on the right-hand side can be integrated, ar%cé’

is equal to

JN=1 1 25—1
N Y (y1-1/a)(P—s+y ¢

Inserting the limits ofs, we get the following bound:

1

€
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- 1JN—-1 1 34
= — .
e N y(1—vld) (34)
It can be verified that foN>1, this lower bound is
N
T= £ (35

€

which is a quadratic improvement over the previous bound
(31). Also since relation(32) has to be satisfied at every
instant, the bound35) is optimal.

To conclude, in this paper, we have implemented Deut-
sch’s algorithm using adiabatic quantum evolution by a
Hamiltonian that takes a given initial state to a final state
such that the final state depends on the nature of the function
f. In particular, if the function is constant, the final statéjs
with a very high probability, and if it is balanced then the
outcome ig1) almost with certainty. Then a measurement on
the final state helps to determine the naturé W¥e have also
estimated the required evolution time for a given accuracy of
the result. Finally, we have generalized the result for the
Deutsch-Jozsa problem, usimgqubits, and found that the
number of time steps required to solve the problem scales as
JN, whereN=2". Although this is a marginal improvement
over the classically required exponential tiioé orderN), it
does not match the polynomial time that is achievable using
standard quantum computational techniq{i&g]. It would
be interesting to compare adiabatic and standard quantum
mputational methods for other algorithms to see whether
is difference in computational time is the exception rather
than the rule. We hope to report on this elsewhere.
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