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Adiabatic quantum computation and Deutsch’s algorithm
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We show that by a suitable choice of a time-dependent Hamiltonian, Deutsch’s algorithm can be imple-
mented by an adiabatic quantum computer. We extend our analysis to the Deutsch-Jozsa problem and estimate
the required running time for both global and local adiabatic evolutions.
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Quantum computation and quantum information the
have attracted a great deal of attention in recent times. In
ently quantum-mechanical systems can in principle be u
to implement a wide variety of computational algorithm
with enhanced efficiency@1–3#. The principle of superposi
tion in quantum mechanics, according to which a system
be in a linearly superposed state of more than one eigens
is the key to this increased efficiency. One of the first alg
rithms that was first proposed in this context is Deutsc
algorithm @4#.

In this, one would like to determine whether a function

f :$0,1%→$0,1%

is constant or balanced, i.e., whetherf (0)5 f (1) or f (0)
Þ f (1) using a quantum computer.

The four possible outcomes off are

f ~0!5 f ~1!50 ~constant!,

f ~0!5 f ~1!51 ~constant!,

f ~0!50, f ~1!51 ~balanced!,

f ~0!51, f ~1!50 ~balanced!.

Ordinarily, one has to determineboth f(0) andf (1) to infer
the nature of the function, since the knowledge of one d
not shed light on the value of the other. However, it w
shown that by applying a certain sequence of unitary op
tors ~gates! on a given initialquantum-mechanicalstate, and
then making justone measurement on the final state, t
nature of the functionf can be determined@4#.

Recently, a new framework of quantum computation h
been proposed, in which the series of gates referred to ab
is entirely replaced by a Hamiltonian that changes conti
ously with time. The Hamiltonian is so chosen that the st
of the system is its ground state at all times~although the
ground state itself is time dependent!, and the system slowly
evolves to a desired final state@5#. Several applications o
this have been considered@6#. Using this framework, it was
shown that Grover’s search algorithm can be efficien
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implemented@7#. In this paper, we show that Deutsch’s a
gorithm can be implemented as well, by choosing a suita
initial state and a Hamiltonian which evolves that state. Th
a single measurement of the final state suffices to determ
whether the functionf is constant or balanced. Finally, w
show that the results can be extended to the Deutsch-J
algorithm involvingn qubits.

Let us begin with a two-level system, e.g., a spin 1
particle, with the basis kets$u0&, u1&%. We define the ‘‘initial’’
and ‘‘final’’ HamiltoniansH0 andH1 , respectively, as

H05I 2uc0&^c0u, ~1!

H15I 2uc1&^c1u, ~2!

where the initial and final state vectors are given, resp
tively, by

uc0&5
1

&
~ u0&1u1&), ~3!

uc1&5au0&1bu1&, ~4!

with

a5
1

2
u~21! f ~0!1~21! f ~1!u, ~5!

b5
1

2
u~21! f ~0!2~21! f ~1!u. ~6!

Note that the Hamiltonians in the above are implicitly giv
in terms of some fundamental energy scale,Ē, say, whose
value is determined by the physical system used to const
the states. This energy scale has a natural time scale as
ated with it, namely,T̄5\/Ē, which will play an important
role later. The following relations will also prove useful:

a1b51, ~7!

a25a, b25b, ~8!

and

ab50. ~9!
©2002 The American Physical Society10-1



-

es

v

t t
-

f

e

te

,

he

ith
i-

l-
ed,

th

SAURYA DAS, RANDY KOBES, AND GABOR KUNSTATTER PHYSICAL REVIEW A65 062310
Thus, whenf is a constant,a51, b50, and vice versa. We
assume that, the system is initially in a stateuc0& and is
evolved by the following time dependent Hamiltonian:

H~ t !5@12s~ t !#H01s~ t !H1 . ~10!

In general,s(t) is an arbitrary function of the timet, such
that s(0)50 and s(1)51. Thus, H(0)5H0 and H(1)
5H1 . For the present we assume thats(t) is linear in t,
namely,s5t/T, whereT is the total time for which the sys
tem is evolved.

It follows from the adiabatic theorem that att5T, the
system would be in the stateuc1&, with very high probability
12e2 ~wheree is a small number!, provided the evolution is
adiabatic@8,9#, i.e.,

U K dH

dt L U
gmin

2 <e, ~11!

where the timet is implicitly given in units ofT̄. The lower
bound on the evolution timeT is implicitly given by the
condition ~11! as will be seen later and

K dH

ds Lª K E1 ,sUdH

dt UE2 ,sL ~12!

and

K dH

dt L 5
ds

dt K dH

ds L . ~13!

E1(s) andE2(s) being the two time dependent eigenvalu
of H(s), with corresponding eigenvectorsuE1 ,s& and
uE2 ,s&, respectively, and

gminª min
0<s<1

@E1~s!2E2~s!#.

Of course, the quantitieŝdH/dt& andgmin should be nonva-
nishing. We will show that this is indeed the case.

Thus, under adiabatic quantum evolution, the initial wa
function of the system will evolve to eitheru0& or u1&, almost
with certainty, and by making asingle measurement of the
state at the end, one can determine unambiguously wha
nature of the functionf is. Namely, if the outcome of mea
surement isu0&, then f is constant and if it isu1&, then it is
balanced.

The matrix elements ofH in the $u0&, u1&% basis are

H~s!5S 1/21s~b21/2! 21/2~12s!

21/2~12s! 1/21s~a21/2!
D .

The corresponding eigenvalues are

E6~s!5
1

2
@16A122s12s2#. ~14!

Note that the eigenvalues are independent ofa and b, and
are identical to those found in@7#. This is a consequence o
the Eqs.~7!–~9!. It follows that
06231
e

he

DE~s!5E1~s!2E2~s!5A122s12s2,

which is nonzero for all values ofs and

gmin5DE~s51/2!5
1

&
. ~15!

In addition, the two orthonormal eigenvectors are

uE6 ,s&5k6S 12s

@~122a!s7A122s12s2#
D ,

where

k65221/2$~122s12s2!6~2a21!sA122s12s2%21/2

with which one can get

U K dH

dt L U5 1

T

1

2A122s12s2
. ~16!

Note that this too is independent ofa andb althoughuE6 ,s&
is not. Also, note that for any value ofs, the above quantity
is nonvanishing and of order 1/T. At the final timet5T, the
eigenstates areu0& andu1&, respectively, and depending on th
value ofa, b, the system evolves to one of them.

Substituting Eqs.~15! and ~16! in Eq. ~11!, we get the
following relation:

T>
1

e
, ~17!

which gives an estimate of the time for which the initial sta
uc0& must be evolved via the adiabatic Hamiltonian~10! to
attain an accuracy of ordere of the final result. For example
if we want the final state to be theuc1& with accuracy of
90%, then the minimum evolution time should be on t
order ofT'1/A120.9'3.2, in units ofT̄.

A few comments are in order here. Instead of starting w
the initial state~0.4!, one can in general start with an arb
trary initial state of the form

uc0&5au0&1bu1&, ~18!

with uau21ubu251, and evolve the system with the Hami
tonian~10!. The end result is expected to remain unchang
since the ground state of the final Hamiltonian is stilluc1&,
to which the system will eventually tend. If one starts wi
the state~18!, thenD(s) and ^dH/dt& are, respectively,

D~s!5A124~a2b1b2a!s~12s!, ~19!

U K dH

dt L U5 1

T

ab

A124~a2b1b2a!s~12s!
. ~20!

Substituting Eqs.~19!, ~20!, ands51/2 in Eq.~11! and sim-
plifying we get
0-2
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T>
1

e

ab

Ab2~12a2!1a~a22b2!
. ~21!

Thus depending on whethera50 or a51 ~although this
value isa priori unknown!, we get, respectively,

T>
1

e

a

b
or T>

1

e

b

a
. ~22!

Thus for extreme asymmetric values ofa andb ~e.g.,a'0
andb'1!, the evolution into the final state would either ta
place in a very short or a very long time. But as the value
a is not known, one would have to wait for the greater
two values before making the measurement. Equivalen
for very small a or b, gmin becomes very small for som
value ofa, which is contrary to what the validity of adiabat
theorem requires. Consequently, the ‘‘optimal’’ values
which the evolution time is independent ofa, b is given by

a5b5
1

&
,

which is what we started with.
The above procedure can be generalized to Boolean f

tions of the form

f :$0,1%n→$0,1%

by making use ofn qubits instead of a single one@1,10#. In
accordance with the Deutsch-Jozsa problem, we assume
ov
e

06231
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it is ‘‘promised’’ that the function is either constant~i.e., all
outputs are identical! or balanced~i.e., has an equal numbe
of 0’s and 1’s as outputs!, and the task is to find which of the
above it actually is @1,10#. The basis states now ar
$u0&,u1&,...,uN21&% ~with N52n!. Now we choose the nor
malized initial and final states to be

uc0&5
1

AN
(
i 50

N21

u i &, ~23!

uc1&5au0&1
b

AN21
(
k51

N21

uk&, ~24!

with

a5
1

N U (
xP$0,1%n

~21! f ~x!U, ~25!

b512a. ~26!

Once again, iff (x) is constant thena51 andb50, and vice
versa. Thus after the required running time, if a measurem
of the final state yieldsu0&, thenf (x) is constant and if it does
not yield u0&, then it is balanced. The properties~7!–~9! con-
tinue to be valid. Also,H0 , H1 , andH(s) are still given by
Eqs.~1!, ~2!, and~10!, respectively.

In the chosen basis, the adiabatic HamiltonianH(s) is
now given by the followingN3N matrix:
H~s!51
12

12s

N
2as 2

12s

N
2

12s

N
¯ 2

12s

N

2
12s

N
12

12s

N
2

sb

N21
2

12s

N
2

sb

N21
¯ 2

12s

N
2

sb

N21

2
12s

N
2

12s

N
2

sb

N21
12

12s

N
2

sb

N21
¯ 2

12s

N
2

sb

N21

¯ ¯ ¯ ¯ ¯

2
12s

N
2

12s

N
2

sb

N21
2

12s

N
2

sb

N21
¯ 12

12s

N
2

sb

N21

2 .
It can be shown that the highest eigenvalue of the ab
Hamiltonian is 1, which is (N22)-fold degenerate, and th
two remaining distinct eigenvalues~both less than 1! are

E6~s!5
1

2 F16A12
4s~12s!

N
@b1a~N21!#G .

~27!

Thus,
e
DE~s!5E1~s!2E2~s!5A12

4s~12s!

N
@b1a~N21!#

Þ0, ~28!

implying

gmin5DE~s51/2!5A12
1

N
@b1a~N21!#. ~29!

In addition, it can be shown that
0-3
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U K dH

ds
L U5 AN21

N

1

A12
4s~12s!

N
@b1a~N21!#

.

~30!

Thus for s5t/T, from condition ~11! it follows that ~for
largeN!

T>
N

e
, ~31!

which shows that the evolution time scales asN, the number
of qubits.

However, following Ref.@7# if we assume an evolution
with a generals(t) we obtain the adiabaticity condition~11!
that must be satisfied at any given instant of timet,

ds

dt
<e

@E1~s!2E2~s!#2

U K dH

ds L U
. ~32!

Substituting Eqs.~28! and ~30!, we get ~here g[4@b
1a(N21)#/N!,

E
0

T

dt>
1

e

AN21

N E
0

1 ds

@12sg1s2g#3/2. ~33!

The expression on the right-hand side can be integrated,
is equal to

1

e FAN21

N

1

g3/2

2s21

~g2121/4!As22s1g21G .

Inserting the limits ofs, we get the following bound:
R

t

rin
ill
rin

en
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T>
1

e

AN21

N

1

g~12g/4!
. ~34!

It can be verified that forN@1, this lower bound is

T>
AN

e
, ~35!

which is a quadratic improvement over the previous bou
~31!. Also since relation~32! has to be satisfied at ever
instant, the bound~35! is optimal.

To conclude, in this paper, we have implemented De
sch’s algorithm using adiabatic quantum evolution by
Hamiltonian that takes a given initial state to a final sta
such that the final state depends on the nature of the func
f. In particular, if the function is constant, the final state isu0&
with a very high probability, and if it is balanced then th
outcome isu1& almost with certainty. Then a measurement
the final state helps to determine the nature off. We have also
estimated the required evolution time for a given accuracy
the result. Finally, we have generalized the result for
Deutsch-Jozsa problem, usingn qubits, and found that the
number of time steps required to solve the problem scale
AN, whereN52n. Although this is a marginal improvemen
over the classically required exponential time~of orderN!, it
does not match the polynomial time that is achievable us
standard quantum computational techniques@10#. It would
be interesting to compare adiabatic and standard quan
computational methods for other algorithms to see whet
this difference in computational time is the exception rath
than the rule. We hope to report on this elsewhere.
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