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Spin-space entanglement transfer and quantum statistics
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Both the topics of entanglement and particle statistics have aroused enormous research interest since the
advent of quantum mechanics. Using two pairs of entangled particles we show that indistinguishability en-
forces a transfer of entanglement from the internal to the spatial degrees of freedom without any interaction
between these degrees of freedom. Moreover, subensembles selected by local measurements of the path will,
in general, have different amounts of entanglement in the internal degrees of freedom depending on the
statistics~either fermionic or bosonic! of the particles involved.
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Since the advent of quantum mechanics, entanglemen
been identified as one of its most peculiar features@1–3#.
This ‘‘excess correlation’’ has recently become an import
resource in quantum information processing@4#. Entangle-
ment is believed to be at the root of the speedup of quan
computers over their classical counterparts@5#, and it also
leads to an unconditionally secure quantum cryptograp
key exchange@6#. Another fundamental aspect of quantu
physics, somewhat neglected in the field of quantum in
mation, is the distinction between two different types of p
ticles, fermions and bosons, manifested through particle
tistics ~although see@7# and for fermions see@8–10#!. There
are at first sight two seemingly ‘‘conflicting’’ views regard
ing the role of indistinguishability and particle statistics
quantum information processing. On the one hand, these
notions appear to combine to offer ‘‘natural’’ entangleme
through forcing the use of symmetrized and antisymmetri
states~for bosons and fermions, respectively!, and as we
mentioned before, entanglement is generally an advan
for quantum information processing~although see@11#!. On
the other hand, indistinguishability prevents us from addre
ing the particles separately that seems to be a disadvanta
information processing. In this paper we analyze the role
indistinguishability and particle statistics in a simple info
mation processing scenario.

Consider the following situation. Suppose that we ha
two pairs of qubits~quantum two-level systems!, each pair
maximally entangled in some internal degree of freedom
the particles carrying the qubits are of the same type—
bosons—but distinguishable as a result of spatial separa
then we have two units of entanglement~ebits! in total. All
of this entanglement is in the internal degrees of freedom
we now consider bringing the particles close together
then separating them again, without the internal degree
freedom ever interacting with the spatial ones, we sho
expect the whole entanglement to remain in the internal
grees of freedom. Surprisingly, as we demonstrate in
paper, a fraction of the initial entanglement is transferred
the path degrees of freedom of the particles. The fascina
implication is that the transfer of entanglement is imposed
particle indistinguishability and does not involve any co
trolled operation between the internal and external degree
freedom ~i.e., spin-path interaction!, in contrast with the
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standard entanglement swapping scheme@12#. The prevalent
setting for local manipulations of entanglement in quant
information processing either involves explicit interactio
between the internal degrees of freedom of two particles
an interaction of the internal degrees of freedom with so
apparatus. Here we introduce a completely different set
in which particle paths are locally mixed without any inte
action of the internal degrees of freedom with anything el

Now we turn to describe the exact details of our thoug
experiment. Imagine the following setup, described in Fig
We have two pairs of identical particles, each pair be
maximally entangled in some internal degree of freedo
e.g., the spin or polarization. In our case, we consider s
tems with spin one-half, or isomorphic to it. We assume t
our setup is symmetrical both horizontally and vertical
where the dotted lines in Fig. 1 show the axis of symme

FIG. 1. This figure presents our setup for spin-space entan
ment transfer. Each black circle represents a source of a pa
particles maximally entangled in the internal degrees of freed
~not explicitly shown in the figure!. The rectangles represent bea
splitters.
©2002 The American Physical Society05-1
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FIG. 2. Spin uSzu50 compo-
nent of the total output wave func
tion for the (1,1) case, both for
fermions and bosons.
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We have to ensure that particles arrive at the beam splitte
the same time. The initial entanglement is between side
and 2. In each pair, the particles fly apart and meet a par
from the other pair at a beam splitter. The paths on the l
hand side are labeledA andC, respectively, before and afte
the beam splitter. Similarly, paths on the right-hand side
labeledB andD.

The output states of this setup represent particles in p
C1, D1, C2, andD2 with a particular spin state~we note,
for instance, that we can have two particles inC1 and none
in D1). Now we show that, although the initial entangleme
is only in the internal degrees of freedom, in the final st
some of the entanglement has been transferred to the p
We will refer to this effect as thespin-space entanglemen
transferby local actions only.

In order to calculate what happens in the above setup
write our initial state in the second quantization formalism

1

A2
~aA1↑

† aA2↓
† 6aA1↓

† aA2↑
† !

1

A2
~aB1↑

† aB2↓
† 6aB1↓

† aB2↑
† !u0&,

~1!

where u0& is the vacuum state and, for instance,aA1↑
† is a

creation operator describing a particle in pathA1 and with
spin up. The positive and negative signs in the above eq
tion are necessary in order to take into account all the p
sible initial states~the singlet and the entangled triplet
spin!. We restrict our attention to analyze one mode per p
ticle only, but our results can be generalized to any num
06230
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of modes. Due to the symmetry of the problem we on
analyze two cases: when the two signs in Eq.~1! are the
same, the (1,1) case, and when they are different, th
(1,2) case. Note that initially there is no left-right correla
tion between spin and space. This is because there is
uncertainty in either the spin or space in the initial state,
by measuring the spatial state one cannot gain any infor
tion about the spin state~and vice versa! in addition to what
we knew before the measurement.

The operation of the beam splitter is described by a
unitary transformation in U~2! @13#. However, since the over
all phase factor has no relevance for entanglement, we
without any loss of generality consider a transformation
SU(2):

U5F a b

2b* a* G , ~2!

whereuau21ubu251. Since we consider entanglement on
between sides 1 and 2, the beam splitters, in fact, perf
local unitary operations. Hence they cannot change the t
entanglement present initially. Also, they only affect the sp
tial degrees of freedom and are not intrinsically dependen
spin ~or polarization!. Therefore, they are incapable of swa
ping entanglement from spin~polarization! to space by per-
forming a controlled-NOT operation in the usual fashion@12#.
Although the transformation law will be the same for ferm
ons and bosons, they obey different statistics, which is w
-

FIG. 3. Spin uSzu50 compo-

nent of the total output wave func
tion for the (1,2) case, both for
fermions and bosons.
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there will be an observable difference in their behavior in o
experiment. For fermions we have the following anticomm
tation relation:

@ai
† ,aj

†#150, ~3!

while for bosons we have the commutation relation:

@ai
† ,aj

†#250, ~4!

wherei and j are sets of labels. Figures 2–5 present diag
matically the output states for both fermions and bosons.
instance, the first diagram in Fig. 4 represents the follow
term:

~ uau21ubu2!2~aC1↑
† aD1↑

† aC2↓
† aD2↓

† !u0&. ~5!

Note that for each output pair, i.e., both on sides 1 and
the total spin~or polarization! Scan take the values 0 or 1. I
we consider, without any loss of generality, that the spin
aligned with thez axis, thenuSzu – the absolute value of th
projection ofS alongz – can also only take the values 0
1. We can then divide the total output wave function in
these two components, where the spins of the particle
each output pair are, respectively, antialigned or align
alongz.

~1! uSzu50 component. There is no difference betwe
fermions and bosons~bearing in mind that the correspondin
operators obey different commutation relations!. However,
there is a difference between the (1,1) case, where we
have all possible output terms~see Fig. 2!, and the (1,2)
case, where some terms never appear~see Fig. 3!.

~2! uSzu51 component. There is a difference between
output states for fermions~see Fig. 4! and bosons~see Fig.

FIG. 4. SpinuSzu51 component of the total output wave fun
tion for the (1,6) cases, for fermions.
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5!. For both types of particles, the (1,2) case will only
introduce a phase difference in some terms.

As a consequence of applying only local unitary ope
tions, the total output wave function should have also t
ebits of entanglement. For clarity, let us consider for the r
of the paper the particular case of 50/50 beam splittersa
51/A2,b52 i /A2). To illustrate the spin-space entangl
ment transfer effect, we look at the (1,1) case for fermions
~Figs. 2 and 4!. Here, it is clear that theuSzu51 terms give
one ebit of entanglement, solely in the internal degrees
freedom, as the path states are identical. TheuSzu50 case
gives the other ebit of entanglement, but this time involvi
both the internal and external degrees of freedom.Thus we
have spin-space entanglement transfer, without any c
trolled operation between spin and space.

We now show how we can extract space-only entang
ment from the total wave function by doing particular me
surements on the internal degrees of freedom without rev
ing any knowledge about the external ones~this is perfectly
allowed by quantum mechanics and can be accomplishe
passing the particles on each side through a cavity that
tends over both the left and the right paths!. For example, we
can measure the total spinS on both sides~1 and 2! along the
x axis and then select theSx50 results. For fermions, the
entire wave function is then projected onto

1

A2
F 1

A2
~ uL&11URL

1

)
1

A2
~ uL&21uR&2)2

1

A2
uA&1

1

A2
uA&2,

~6!

where uL&1,2 means left bunching of the particles, respe
tively, for sides 1 and 2,uR&1,2 right bunching anduA&1,2
represents antibunching~unormalized state!. The bosonic
counterpart of the above state is

1

A2
F 1

A2
~ uL&11URL

1

)
1

A2
~ uL&21uR&2)1

1

A2
uA&1

1

A2
uA&2.

~7!

Both these states have 1 ebit of entanglement in space
the same outcome probability of 1/2. Note that since th
-

FIG. 5. Spin uSzu51 compo-

nent of the total output wave func
tion for the (1,6) cases, for
bosons.
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two states are orthogonal they can be perfectly discrimina
offering an operational way of distinguishing fermions a
bosons.

If on the other hand, we measure the spatial compon
of the total wave function, we will find different amounts o
entanglement in the internal degrees of freedom of fermi
and bosons. For instance, if we select the antibunching
sults, we will obtain the following state for fermions:

1

A3
F 1

A2
~aC1↑

† aD1↓
† 1aC1↓

† aD1↑
† !

1

A2
~aC2↑

† aD2↓
† 1aC2↓

† aD2↑
† !

2~aC1↑
† aD1↑

† aC2↓
† aD2↓

† !2~aC1↓
† aD1↓

† aC2↑
† aD2↑

† !] u0&, ~8!

with an outcome probability of 2/3 and log23 units of en-
tanglement, whereas for bosons we will get

1

A2
~aC1↑

† aD1↓
† 2aC1↓

† aD1↑
† !

1

A2
~aC2↑

† aD2↓
† 2aC2↓

† aD2↑
† !u0&,

~9!

with probability 1/3 and 0 units of entanglement.
If we select the bunching results, for fermions we w

obtain the state

1

A2
~aC1↑

† aC1↓
† 1aD1↑

† aD1↓
† !

1

A2
~aC2↑

† aC2↓
† 1aD2↑

† aD2↓
† !u0&,

~10!

with an outcome probability of 1/3 and 0 units of entang
ment, and for bosons we will get

1

A3
F 1

A2
~aC1↑

† aC1↓
† 1aD1↑

† aD1↓
† !

1

A2
~aC2↑

† aC2↓
† 1aD2↑

† aD2↓
† !

~11!

1
1

2
~aC1↑

† aC1↑
† 1aD1↑

† aD1↑
† !~aC2↓

† aC2↓
† 1aD2↓

† aD2↓
† !
ic

r

R

,
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~aC1↓
† aC1↓

† 1aD1↓
† aD1↓

† !~aC2↑
† aC2↑

† 1aD2↑
† aD2↑

† !] u0&,

with probability 2/3 and log23 units of entanglement. We
observe that for a given path selection one type of partic
exhibits some entanglement in the internal degrees of f
dom, whereas the other exhibits none. In other words, un
thesamesituation, fermions and bosons show a difference
their information processing behavior. Moreover, measur
this degree of entanglement in the internal degrees of f
dom could thus also be an operational way of distinguish
between fermions and bosons.

In this paper we have shown that it is possible to trans
entanglement from the internal to the spatial degrees of f
dom through local actions using only the effects of parti
indistinguishability and quantum statistics, without any int
action between the spin and the path. Moreover, sub
sembles selected by local measurements of the path wil
general, have different amounts of entanglement in the in
nal degrees of freedom depending on the statistics~either
fermionic or bosonic! of the particles involved. This estab
lishes a connection between two fundamental notions
quantum physics: entanglement and particle statistics. We
tend to present a more detailed and systematic analysi
this setup in a subsequent longer work.

Our analysis suggests further investigation of the con
quences and applications of particle statistics in quantum
formation processing. For example, in some protocols us
spin-space entanglement the statistical effects make it un
essary to have controlled operations, such as us
polarization-dependent beam splitters@14#. Other types of
statistics~e.g., anyons! can similarly be addressed within ou
framework. Recent experiments, such as, Refs.@15,16# sug-
gest that it would be possible to test our results in the n
future.
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