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Spin-space entanglement transfer and quantum statistics
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Both the topics of entanglement and particle statistics have aroused enormous research interest since the
advent of quantum mechanics. Using two pairs of entangled particles we show that indistinguishability en-
forces a transfer of entanglement from the internal to the spatial degrees of freedom without any interaction
between these degrees of freedom. Moreover, subensembles selected by local measurements of the path will,
in general, have different amounts of entanglement in the internal degrees of freedom depending on the
statistics(either fermionic or bosonjcof the particles involved.
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Since the advent of quantum mechanics, entanglement hasandard entanglement swapping schéi®. The prevalent
been identified as one of its most peculiar featyrkes3].  setting for local manipulations of entanglement in quantum
This “excess correlation” has recently become an importaninformation processing either involves explicit interactions
resource in quantum information processi@. Entangle- between the internal degrees of freedom of two particles, or
ment is believed to be at the root of the speedup of quantur@in interaction of the internal degrees of freedom with some
computers over their classical counterpd§ and it also  apparatus. Here we introduce a completely different setting
leads to an unconditionally secure quantum cryptographié? Which particle paths are locally mixed without any inter-
key exchang¢6]_ Another fundamental aspect of quantum action of the internal degrees of freedom W|th anything else.
physiCS, somewhat neg'ected in the field of quantum infor- Now we turn to describe the exact details of our thought
mation, is the distinction between two different types of par-experiment. Imagine the following setup, described in Fig. 1.
ticles, fermions and bosons, manifested through particle sta/e have two pairs of identical particles, each pair being
tistics (although se¢7] and for fermions sef8—10]). There maximally entangled in some internal degree of freedom,
are at first sight two seemingly “conflicting” views regard- €.9., the spin or polarization. In our case, we consider sys-
ing the role of indistinguishability and particle statistics in téms with spin one-half, or isomorphic to it. We assume that
quantum information processing. On the one hand, these tw@Ur setup is symmetrical both horizontally and vertically,
notions appear to combine to offer “natural” entanglementWhere the dotted lines in Fig. 1 show the axis of symmetry.
through forcing the use of symmetrized and antisymmetrized
states(for bosons and fermions, respectivelyand as we
mentioned before, entanglement is generally an advantage
for quantum information processinglthough se¢11]). On
the other hand, indistinguishability prevents us from address-
ing the particles separately that seems to be a disadvantage in
information processing. In this paper we analyze the role of
indistinguishability and particle statistics in a simple infor-
mation processing scenario.

Consider the following situation. Suppose that we have
two pairs of qubits(quantum two-level systemseach pair
maximally entangled in some internal degree of freedom. If
the particles carrying the qubits are of the same type—say
bosons—but distinguishable as a result of spatial separation,
then we have two units of entanglemégbitg in total. All
of this entanglement is in the internal degrees of freedom. If
we now consider bringing the particles close together and
then separating them again, without the internal degrees of
freedom ever interacting with the spatial ones, we should
expect the whole entanglement to remain in the internal de- :
grees of freedom. Surprisingly, as we demonstrate in this o) ' D2
paper, a fraction of the initial entanglement is transferred to
the path degrees of freedom of the particles. The fascinating FiG. 1. This figure presents our setup for spin-space entangle-
implication is that the transfer of entanglement is imposed bynent transfer. Each black circle represents a source of a pair of
particle indistinguishability and does not involve any con-particles maximally entangled in the internal degrees of freedom
trolled operation between the internal and external degrees @ifiot explicitly shown in the figupe The rectangles represent beam
freedom (i.e., spin-path interaction in contrast with the splitters.
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We have to ensure that particles arrive at the beam splitter @f modes. Due to the symmetry of the problem we only
the same time. The initial entanglement is between sides &nalyze two cases: when the two signs in En. are the
and 2. In each pair, the particles fly apart and meet a particlsame, the {,+) case, and when they are different, the
from the other pair at a beam splitter. The paths on the left{ +,—) case. Note that initially there is no left-right correla-
hand side are labele®l andC, respectively, before and after tion between spin and space. This is because there is no
the beam splitter. Similarly, paths on the right-hand side areincertainty in either the spin or space in the initial state, so
labeledB andD. by measuring the spatial state one cannot gain any informa-

The output states of this setup represent particles in pathfon about the spin stat@nd vice verspin addition to what
C1, D1, C2, andD2 with a particular spin stateve note, we knew before the measurement.
for instance, that we can have two particlesdfh and none The operation of the beam splitter is described by any
in D1). Now we show that, although the initial entanglementunitary transformation in (2) [13]. However, since the over-
is only in the internal degrees of freedom, in the final stateall phase factor has no relevance for entanglement, we can
some of the entanglement has been transferred to the pathgithout any loss of generality consider a transformation in
We will refer to this effect as thepin-space entanglement SU(2):
transferby local actions only.

In order to calculate what happens in the above setup, we
write our initial state in the second quantization formalism, U

-

-

Vitm

a B
— B* a* , (2)
1

—=(aky1ahy T any 3k )—=(alyal, =ak; al,)]0), . .
J2 AR R 2 [ e where|a|?+]|B|?=1. Since we consider entanglement only

1) between sides 1 and 2, the beam splitters, in fact, perform
local unitary operations. Hence they cannot change the total

where |0) is the vacuum state and, for instan@,lT is a entanglement present initially. Also, they only affect the spa-
creation operator describing a particle in p&th and with  tial degrees of freedom and are not intrinsically dependent on
spin up. The positive and negative signs in the above equapin (or polarization. Therefore, they are incapable of swap-
tion are necessary in order to take into account all the posping entanglement from spifpolarization to space by per-
sible initial states(the singlet and the entangled triplet of forming a controlledNoT operation in the usual fashid@2].
spin). We restrict our attention to analyze one mode per parAlthough the transformation law will be the same for fermi-
ticle only, but our results can be generalized to any numbeons and bosons, they obey different statistics, which is why
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3 'y ' 5). For both types of particles, the+(,—) case will only
introduce a phase difference in some terms.
(a/~+BI) + As a consequence of applying only local unitary opera-
tions, the total output wave function should have also two
VN ebits of entanglement. For clarity, let us consider for the rest
of the paper the particular case of 50/50 beam splitters (
~ FIG. 4. Spin|S;|=1 component of the total output wave func- —1/,/2 = —i/\2). To illustrate the spin-space entangle-
tion for the (+,+) cases, for fermions. ment transfer effect, we look at the-(+) case for fermions

Figs. 2 and 4 Here, it is clear that theS,|=1 terms give
there will be an observable difference in their behavior in our( g A €| 9

. . . ) one ebit of entanglement, solely in the internal degrees of
experiment. For fermions we have the following anticommu-¢. oo 4om. as the path states are identical. TB$=0 case
tation relation: ! :

gives the other ebit of entanglement, but this time involving

ot both the internal and external degrees of freeddhus we
[ai 1aj]+_oa (3) in_ : _
have spin-space entanglement transfer, without any con
while for bosons we have the commutation relation: trolled operation between spin and space.
We now show how we can extract space-only entangle-
[af ,aJT]_=O, (4y  ment from the total wave function by doing particular mea-

surements on the internal degrees of freedom without reveal-
wherei andj are sets of labels. Figures 2—5 present diagralng any knowledge about the external ortttgs is perfectly
matically the output states for both fermions and bosons. Fogllowed by quantum mechanics and can be accomplished by
instance, the first diagram in Fig. 4 represents the following?@ssing the particles on each side through a cavity that ex-
term: tends over both the left and the right patisor example, we
can measure the total sgBon both side$1 and 2 along the
(lal?+|81%(aly,aby a8, a0,))]0). (5  x axis and then select th&,=0 results. For fermions, the
entire wave function is then projected onto
Note that for each output pair, i.e., both on sides 1 and 2,
the total spin(or polarization Scan take the valuesOor 1. If 1| 1
we consider, without any loss of generality, that the spin is ﬁ E(|L>1+

1 1 1
R> )=(IL)2+|R)2) — —=|A)1—=IA)2,
aligned with thez axis, then|S,| — the absolute value of the 1 V2 V2o N2

projection ofS alongz — can also only take the values O or ©
1. We can then divide the total output wave function into . .
these two components, where the Spins of the particles iwhelre LL)lyzdmeans I%ftztjur;chmg hofbthe ﬁart|clesC1, r;aspec-
. ' . - : ively, for sides 1 an R)1 2 right bunching andA), ,
z;’:(\)cnhgzoutput pair are, respectively, antialigned or aIIgnEzé:epresents antibunchingunormalized staje The bosonic
(1) |S,|=0 component. There is no difference betweencounterpart of the above state is
fermions and boson@earing in mind that the corresponding 1 1 1
operators obey different commutation relatipnslowever,  _— | = ||V 4R ) )= (IL)o4 |R).) + —| A}, —| A},
there is a difference between the- (+) case, where we /2 \/f(l h l)\/§(| 2+ IR)2) \/§| h \/§| )2
have all possible output termisee Fig. 2 and the ¢,—) (7)
case, where some terms never apgsee Fig. 3.
(2) |S,/]=1 component. There is a difference between theBoth these states have 1 ebit of entanglement in space and
output states for fermiongsee Fig. 4 and bosongsee Fig. the same outcome probability of 1/2. Note that since these
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two states are orthogonal they can be perfectly discriminated,

1
T T T T T T T T
+ E(acuacu +ap; apy))(acyiacy; +apyiapy)]|0),

offering an operational way of distinguishing fermions and
bosons. with probability 2/3 and log3 units of entanglement. We

If on the other hand, we measure the spatial component@pPserve that for a given path selection one type of particles
of the total wave function, we will find different amounts of €xhibits some entanglement in the internal degrees of free-
entanglement in the internal degrees of freedom of fermiongom, whereas the other exhibits none. In other words, under
and bosons. For instance, if we select the antibunching rehesamesituation, fermions and bosons show a difference in

sults, we will obtain the following state for fermions: their information processing behavior. Moreover, measuring

this degree of entanglement in the internal degrees of free-

i I - 1o, - dom could thus also be an operational way of distinguishing
ﬁ E(aCITaDli+aClLaDlT)E(aCﬁaDZl+aCZlaD2T) between fermions and bosons.

with an outcome probability of 2/3 and gy units of en-
tanglement, whereas for bosons we will get

1

1
tot Tt tot T4t
\/E(aCnaDll_aC1iaD1T)E(aCZTaD2l_aC21aD2T)|0>'

with probability 1/3 and 0 units of entanglement.

In this paper we have shown that it is possible to transfer
R ottt entanglement from the internal to the spatial degrees of free-
—(ac11ap1jacz ap2)) ~ (a1 8p1 8c21@p21)110), 8 gom through local actions using only the effects of particle
indistinguishability and quantum statistics, without any inter-
action between the spin and the path. Moreover, suben-
sembles selected by local measurements of the path will, in
general, have different amounts of entanglement in the inter-
nal degrees of freedom depending on the statig@ither
fermionic or bosonit of the particles involved. This estab-
C)] lishes a connection between two fundamental notions of
quantum physics: entanglement and particle statistics. We in-
tend to present a more detailed and systematic analysis of

If we select the bunching results, for fermions we will his setup in a subsequent longer work.
obtain the state Our analysis suggests further investigation of the conse-

1

1
T T T T T T i T
E(acnacu + aDlTaDll)E(aCZTaCZL +ap,ap,)|0),

quences and applications of particle statistics in quantum in-
formation processing. For example, in some protocols using
spin-space entanglement the statistical effects make it unnec-
(10) essary to have controlled operations, such as using
polarization-dependent beam splittdsd]. Other types of

with an outcome probability of 1/3 and 0 units of entangle-statistics(e.g., anyonscan similarly be addressed within our
ment, and for bosons we will get framework. Recent experiments, such as, RefS,16 sug-

1

T T T T T T T
—=|—=(aci1ac1; +ap1iap1)—=(acz@cz T ap2i@p2))
\/§ \/E 1 ! 1 ! \/E 1 ! 1 i)

(1]
(2]
(3]

(4]
(5]

gest that it would be possible to test our results in the near

T future.
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