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Dynamics of quantum-classical differences for chaotic systems
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The differences between quantum and classical dynamics can be studied through the moments and correla-
tions of the position and momentum variables in corresponding quantum and classical statistical states. In
chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical
Lyapunov exponent. It is shown analytically that the quantum-classical differences sdsle asd that the
exponent for the growth of these differences is independeft ©he quantum-classical difference exponent is
studied for two quartic potential models, and the results are compared with previous work omtre #les
model.
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I. INTRODUCTION (iii) For chaotic states, the quantum-classical differences
grow exponentially, on average, but with an exponkgt
In studying classical and quantum chaos, it is important tdhat is larger than the classical Lyapunov exponent.
understand the evolution of the differences between quantum (iv) The exponenk . is independent ofi.
and classical dynamics. Two qualitatively different regimes
of quantum-classical correspondence must be distinguish

[1]: (a) the Ehrenfest regime, in which the centroid of theculated as a phase-space average ladfal, short-time

wave packet approximately follows a classical trajectory;l_yapunov exponents, whose computation was described in
and(b) the Liouville regime, in which the quantum probabil- Ref. [9] '

ity distributions are in approximate agreement with those of 11,4 conclusionsi)—(iv) were first demonstrated numeri-

a classical ensemble satisfying Liouville’s equation. The "m'cally for a single model, althougt) is now well established

its of these regimes define two distinct quantum-classical1_g]. |t is the purpose of this paper to present results for
“break times,” whose magnitudes and scaling properties capome other models, and to show how some of the conclu-
be quite differen{2]. The Ehrenfest regime persists only assjons can be understood from a theoretical analysis. Since
long as the width of the quantum state is small compared tgne hierarchy of equations for the moments converges only
the length scale of the potential, whereas the Liouville refor gyfficiently narrow wave packets, our calculations are
gime can persist for very wide states, for which Ehrenfest'sonfined to the Ehrenfest regime. However, some results out-

theorem is irrelevantl-6]. _ _ side of this regime are discussed in the final section.
A useful way to characterize the quantum-classical differ-

ences is through the moments of the classical and quantum
probability distributions for the position and momentum
variables. These moments satisfy a hierarchy of equations, The equations of motion for the moments of the probabil-
which may be truncated and solved numerically, providedty distributions were developed in R€f7] for any system

the widths of the probability distributions remain small with two degrees of freedom and a potential that is a poly-
enough[7]. By choosing the initial quantum and classical nomial of the coordinates. They are sufficiently complicated
probabilities to be equal, one can study how the differencegnat it is practical to treat them in detail only with the help of
between the quantum and classical theories grow in timea computer algebra system such msPLE, from which

how they depend on the parameters of the initial state, anflorTrAN code can then be obtained for subsequent numeri-
how they scale witti. These calculations have been carriedcal investigations. However, they possess a form that makes
out for the Heon-Heiles mode[8], leading to several con- some degree of general theoretical analysis possible.
clusions[7,9]. The classical equations of motion have the standard

. " . Hamiltonian form
(i) The deviation from Ehrenfest's theorem, that is, the

difference between the motion of the centroid of a quantum dg oH
wave packet and a classical trajectory with the same initial L=

f course, the exponential growth of quantum-classical dif-
erences cannot persist indefinitely. The exponeptis cal-

Il. THEORY

condition, is not a valid measure of quantum effects. It is dt  ap;

governed primarily by the width of the initial state, and does

not scale with#. dpi _ oH (=12 o
(ii) A true measure of quantum effects is given by the dt  Jq; e

differences between the probability distributions of a quan-

tum state and of a classical ensemble that is constructed #When the HamiltoniarH is expressed as a polynomial, the
have the same initial position and momentum distributionsquantum-mechanical Heisenberg equations have the same
The magnitude of these differences scaled4s form as Eq.(1), but with the coordinates and momentg,
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andp;, becoming noncommuting operators. Choosing some dz
initial state, we introduce the centroid®;=(q;) and P; HZZ O,,TZ,*Gi- (8)
=(p;), and the deviation-from-centroid variables

——{A. D Since Eq.(7) is a linear inhomogeneous equation, the mag-
o\ , O . 2 h . X ;
Q== (e, opi=pi—(py @ nitude of the solutiorZ is governed by the magnitude of the

Here the average brackét) denotes either a quantum aver- driving termG. HenceZ=0(#%?). To the lowest order ir?
age or a classical ensemble average, according to the contefftmakes no difference whether the right-hand side of &g.

The generalized moments of the deviation variables have thig evaluated on the quantum trajectoty or on the classical
form trajectory X¢. Therefore, for further analysis, we shall re-

place Eq.(7) by
3((8p)™(8a))"+ (89;)"(5pi)™), 3

with the symmetrization being necessary only for the quan- EZF’(XC)Z-F G(X9), 9
tum case. The equations of motion for the centroids and the

moments form a hierarchy that never terminatescept in
the uninteresting case of a quadratic potejptibut which
can be truncated at sufficiently high order. It was found in

Ref. [7] that at least all terms up to fourth ordemn . .
<4) must be included to obtain reliable results. ( )\Ne cr:ﬁmhnow give a genelraldproof of tze prICJperﬁe)sandll
: : : iv), which were previously discovered only numerically.
For notational convenience, we defike: (X;, Xy, ..) t0 The inhomogeneous driving ter@in Eq. (9) is generally of

be the vector of moments that are to be included in the Calbrderhz In fact. in our computations is proportional to
culation. Thus, for example:X;=Q;, X;=P,, X, ) ' P prop

- _ 2 %2, although terms of ordet* and higher would arise if we
(9D1802), X14=((50)°). (Up to fourth orderX has 69\ Jo o inclde moments of sufficiently high ordéFhose,

elements. The vectors of classical and quantum moment . - .
will be dS)enotedXC and X9, respectively. 'Igheir time evolu- %oweyer, were founq 7] to have negligible effegt.This
tions are governed by nonlinear equations, of the form expla_ms why the differencez between the quantum _and
classical moments scale &8. Moreover, since the driving
c termG is proportional tak?, it follows that the solutiorZ(t)
=F(X°), (4 is also proportional taz2, with its functional form being
otherwise unaffected bj. Therefore the exponent,. that
dxd _describes the growth of quantum-classical differences will be
—— =F(X%+G(X9). (5)  independent of:.
dt The remaining qualitative resulttii), that A is greater

) ) ) . than the largest classical Lyapunov exponent, is not so easy
The quantum equatiofb) differs fr.om the classm_a_l equation 4, explain. Consider the homogeneous equation related to
(4) because of the noncommutativity of the position and mqu. (9)

mentum operators. The first term on the right-hand side o
Eqg. (5) has the same form as in E¢); the second term
G(XY) contains the commutators that arise from reordering —=F'(X%)Z. (10
the 8q's and &p’s into the standard orde(2). The term dt
G(X9) is small, being of ordef; . . . . :

In [7] and [9] the differences between the quantum andSINce it describes the tangent m@ho] of the nonlinear
classical theories were obtained by solving E@3.and (5) equation(4), its solutions will yield the Lyapunov exponents

separately, and subtracting the results. This involved smafff Ed- (4). These are not the same as the Lyapunov expo-

differences between much larger quantities, hence it was ne8€NtS Of the classical equation of motioh), but they are

essary to be vigilant for round-off errors, which limited the Cl0S€ly refated. For example, the largest Lyapunov exponent
range over which the computation could be performed. A°f Ed- (1), \, describes the exponential separation of two

less restricted method, whose results are presented in thiditially close classical trajectories in phase space. But the

. 2 . . Cc .
paper, is to define the quantum-classical difference vector duantity((6a)<), which is an element oK®, describes the
mean-square separation of an ensemble of classical trajecto-

Z=X9-X¢, (6) ries. Therefore its exponential growth rate will b, Znd
this growth rate could also be computed from Ef). Thus

and obtain its equation of motion directly. Subtracting Eqg.we see that the solutions of E(LO) would yield exponents
(4) from Eq.(5) and expanding to first order i3, we obtain  that are directly related to the classical Lyapunov exponents
of Eq. (1). Now in [7] and[9] it was found that\ ;> 2\.
This larger value o\, can only be due to the inhomoge-
neous termG in Eq. (9). But we have been unable to dis-
cover any useful mathematical theorems concerning the
whereF’ is the matrix of derivatives. Written in component growth rates of related inhomogeneous and homogeneous
form, the equation becomes equations such as Eg®) and(10). Nor can we identify any

which is equivalent to the lowest order i#y and has the
advantage that all quantum effects are contained in the func-
tional form of G.

dt

dz
EZF’(Xq)Z+G(Xq), (7)
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FIG. 1. Contours of the quartic potentidl(x,y)=x*+y* T
+32x%y2,
0 I A
of the many terms o6(X®) as being dominant. So the em- 0 1 2 3 b 4 5 6
pirical result,\ ;c>2\, does not yet have a general explana- 3
tion.

FIG. 2. Linear regression of the inddx;, for exponential
growth of the difference between the centroids of the quantum and

Ill. RESULTS classical probabilities, vs the inddag, for the difference between
The above theory has been applied to models WhostEhig iuantum and classical variances, for the quartic potential of
Hamiltonians have the form T
H=13(p2+ p§)+V(x,y), (11  certain values o (includingg=0, 2, and 6, but is nonin-

tegrable for most values. The valge= 32 (see th,e contour
where  &y,p.,p,) are alternative notations for diagram in Fig. J.yvas chqsen bgcause a Poincaee:tiqn
(d1,92.p1,P,). The initial quantum state is chosen to be ashows Fhat the orbits ergodically fill most of the energe_tlcglly
narrow Gaussian whose centroid can be located at any déccessible phase space. There are a few stable periodic or-
sired place in phase space. The initial classical state is RitS, but the regular islands around them are very small.
Gaussian probability density in phase space, constructed so FOr chaotic states, the various momeii8 and their
that its position and momentum probability distributions quantum-classical difference6) are oscillatory with upper
agree with the quantum statéSee Ref.[7] for technical ~€nvelopes that grow approximately exponentially. As was de-
details) A dynamic state is characterized by its centroid inScribed in[9], these envelopes can be fitted to exponentials:
configuration space®=((q),(d,)), and the sum of the the quantum varianc¥, is fitted toe"'; the difference be-

variances of the two position coordinate¥,={(5q,)> twebezrtl.the dqtlﬁ]anél)f;n and cléls;:/cal V?h”anbé‘ﬁvJ |sc1;|tt|ed ical
+(689,)?). The differences of these quantities between thd® € # and the dilierence between the quantum and classica

quantum state and the classical ensemb@,— O, and centroids|Q,— Q| is fitted toetfst_ The exponent®,, b,,
IV,— V.|, are the principle objects of interest ¢ andb; are analogous to short-time Lyapunov exponents, and
q Veb :

If these differences are computed by direct subtractioﬁhe'r values depend on the starting point of the trajectory in

they are subject to round-off errors, which limited the rangepha_Se space. We expect the averagé,obver the e_rgodic
over which the computations could be carried out[T. portion of phase space to correspond g @here) is the

. . > o largest classical Lyapunov exponent. The avera efnd
Indeed, it was not possible to studi@,— Q.| over an ad- g yap P g

: <q  <cl TUE of b; define the quantum-classical difference exponkg,
equate range using that method. This limitation is overcome
by using the linearized Eq9) to compute the differences

directly. We have, however, verified that the previously pub- 70 2
lished results for the Hen-Heiles mode]7] were accurate. 60 |
Further calculations have been carried out for two other 50 :
models. .
€ 40 f
5 :

A. Quartic potential © 30

The potential for this model is 20

V(x,y)=x*+y*+gx?y?2. (12

SinceV is a homogeneous quartic polynomial, the motions
are similar at all energies, and so only the endfgyl need

be considered. The shapes of the equipotential curves are FIG. 3. Histogram of the exponetit; for the growth of the
controlled by the parametey. This model is separable for quantum variance, for the quartic model of Fig. 1.
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50 4+ TABLE I. Lyapunov-like exponents for the en-Heiles model
f [9] and the quartic model.
40 -t
b 2\ (bl)av )\qc
S ’¢ r HH (E=0.13) 0.113 0.145 0.221
3 20 ; HH (E=0.16) 0.222 0.246 0.371
' Quartic 1.74 1.93 2.81

of a fractal set of tori. An orbit spends part of its time near
these “sticky tori,” accumulating very small contributions to
its Lyapunov exponent, and part of its time in the ergodic
FIG. 4. Histogram of the quantum-classical difference exponenf€@, Where it accumulates large contributions to its Lyapunov
bs, for the quartic model. exponent. The techniques of this paper apply to ensembles of
orbits, rather than to single orbits. Since we wish the en-
which measures the rate of separation of the quantum argémble to be purely chaoti@r purely regulaf7]), rather
classical theories. than mixed, the fractal boundary region was deliberately
Although there is na priori reason why the averages of avoided. Thus the contributions from the sticky tori were
b, andb; must be equal, the numerical data strongly indicateunderestimated, and sd4),, comes out to be somewhat
that they yield the same value fag.. Figure 2 shows that greater than .
b, andbj cluster around the linb,=bs, with no evidence
of any systematic differences. The slope of the best fitting
straight line is 0.992, which is not significantly different o ) o ]
from 1. This indicates that the quantum-classical differences The Hamiltonian for this model is given by E@L1) with
of the centroids and of the variances grow at the same rat/(X.y) = X°y?. Since this is also a homogeneous potential,
and sob, and bs provide the same information. The esti- the motions will be similar at all energies, and so we shall
mates ofk4. from the averages df, andbs are 2.820 and consider onlyE=0.5. This model attracted considerable at-
2.805, respectively. The difference is not significant. tention because it was believed that all of its periodic orbits
The histograms o, andb; (Figs. 3 and #for this model ~ Were unstable, but that conjecture proved to be fEldg
have the same general shape as was found for fr®ie This model differs from the others in that its energetically
Heiles model in[9]. Figure 5 shows a linear trend bf, vs ~ accessible phase space is not compact; a particle can make
b,, with no apparent systematic deviations, but with a@Pitrarily long excursions up the valleys that center onxhe
greater scatter of the points than for therida-Heiles model. ~ andy axes. The motions in the valleys are qualitatively dif-
Table | compares the earlier results for thende-Heiles ~ férent from the motions in the junction around the origin
model[9] with those for the quartic model. It is notable that (Fig. 6. Motions in the valleys aradiabatically integrable
(by) sy, Which should theoretically be comparable to, 2 [12]; the rapid transverse motion can be averaged to yield an
systematically larger. This is probably due to the inhomoge_effectlve potential for the slow longitudinal motion, which
neous nature of phase space. The boundary between the ARP€ars smooth and regular. When the particle reaches the
gions of regular and chaotic orbits is not sharp, and consisténction, the adiabatic approximation breaks down, and the

B. x2y? model

6 +——F—————————f—] 4
] 3 |-
5 3 :
Q. O -ia
A o}
4 O
1L
b3 A
8 o 0 ' :
o
(O NNo)
2T & -1
F o @50
0 -2
1 [ 80
© -3
0t
0 1 2 3 4 5 6 -4 L L L
b, 1. 2 3 4
FIG. 5. Linear regression of the expondmt vs by, for the FIG. 6. Level curvex?y?=1 for the potential, showing the
quartic model. boundary between the valleys and the junction.
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FIG. 7. Linear regression of the expondmtvs b, for junction FIG. 9. Linear regression of the expondnt vs b, for valley
orbits. i
orbits.

motio_n is no longer integrab!e. Qualitatively, an orbit can t?elong-time limit of the exponen, , being twice the classical
described as a regular motion up and down a valley, with yapunoy exponent, should be zero for integrable motions.
_stochastlc switching between valleys as it passes through thg,q larger the value of 4, the more time the orbit spends
junction. Due to the noncompact nature of the phase Spaqg the adiabatically integrable region, and so the smdler
e_md the qgalltanve dlﬁeren.ce_ between motions in the juncxhauid be. Figure 8 shows thiat varies nearly linearly with
tion and in the valleys, it is not useful to compute a 1/ max, @nd does indeed approach zeroyas, becomes in-
Lyapunov exponent, which would average over both kinds Ofrinite. The quantum-classical difference exponént also

motion. shows an approximately linear trend withyl/,, but ap-
To study the irregular junction orbits, we started orbits at P PR

a large number of initial positions and directions of motion prolg;:?;; g gﬁgjvir?hlgr;;;g‘”;rafrgﬁgotr)gejslgfllnnse{m”ar re-

within the junction. Many of these had to be dlsgar(jed be'sults have been found for all models, and are summarized in

cause they soon departed up a valley. The criterion Wa$,pe |1.

adopted that an orbit must remain within the junctiale-

fined as|x andly| less than 2for at least 10 time units in

order to be counted. Figure 7 shotxsto be greater thah,,

as in the other models, but there is much more scatter about A general analytic derivation has now been provided for

the linear regression line. some results that were previously only known numerically.
The valley orbits are quite regular, and can be studiedrhese are that the differences between quantum and

systematically by releasing the particle at some distangge  classical-ensemble dynamics scaléidsand that for chaotic

from the origin with zero longitudinal velocity, all the kinetic states the exponential growth exponent of these differences,

energy being initially confined to the transverse motion. The;\qc, is independent of. Two more models have been stud-

ied in detail, confirming the general picture that was obtained

IV. CONCLUSIONS

1.4 o ] in earlier studieg7,9] of the Haon-Heiles model. In addi-
r A ] tion, we find that the difference between the centroids of the
19 - —e—b1 . - . . . .
C - . quantum and classical probability distributions grows with
Gt —a b, ] the same average exponent,, as does the difference be-
! r e ] tween the quantum and classical variances.
i A ] The short-time exponent for the growth of quantum-
0.8 « ] . ) : ) .
X Vs ] classical differencesh;) shows a linear correlation with the
0.6 L Ve //Q . exponent for the growth of the mean square width of the
féfm / ] state p,). The slope of the regression line bf vs b, (see
0.4 T ]
C ﬂ/ ] TABLE Il. Linear regression ob, vsb;.
0.2 T ]
- R ] HH (E=0.13) b,=0.017+1.41d,
0 HH (E=0.16) b,=0.037+1.356;
0 0.1 0.2 0.3 i
Y e Quartic b,=0.228+1.346,
x2y? (junction) b,=0.316+1.24D,
FIG. 8. Exponent®, andb; for valley orbits vs the reciprocal  x2y? (valley) b,=0.265+1.384%;

of the maximum extent up the valley.
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Table ll) is dimensionless, and so can be meaningfully com-exponential growth of the quantum-classical differences per-
pared between models. That its val(@out 1.35 on aver- sists. Our computations with the moment equations are nec-
age is always greater than 1, is related to the previouslyessarily restricted to the Ehrenfest regirfmarrow states
known fact that\ ,c> 2\, since the two sides of the inequal- However, the results of2] suggest that this exponential
ity are identified with the averages of, and b;, respec- growth does not persist outside of the Ehrenfest regime, and
tively. These two interesting facts have yet to find a generathat the quantum-classical differences have a different behav-
theoretical explanation. Recently, however, this qualitativaor in the broader Liouville regime.

behavior has been confirmed on a very different system

teracting _spin}sby a d_ifferent techniq.u(adirect integra_tion of ACKNOWLEDGMENT
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