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Dynamics of quantum-classical differences for chaotic systems

L. E. Ballentine
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 25 October 2001; published 19 June 2002!

The differences between quantum and classical dynamics can be studied through the moments and correla-
tions of the position and momentum variables in corresponding quantum and classical statistical states. In
chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical
Lyapunov exponent. It is shown analytically that the quantum-classical differences scale as\2, and that the
exponent for the growth of these differences is independent of\. The quantum-classical difference exponent is
studied for two quartic potential models, and the results are compared with previous work on the He´non-Heiles
model.
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I. INTRODUCTION

In studying classical and quantum chaos, it is importan
understand the evolution of the differences between quan
and classical dynamics. Two qualitatively different regim
of quantum-classical correspondence must be distinguis
@1#: ~a! the Ehrenfest regime, in which the centroid of t
wave packet approximately follows a classical trajecto
and~b! the Liouville regime, in which the quantum probab
ity distributions are in approximate agreement with those
a classical ensemble satisfying Liouville’s equation. The li
its of these regimes define two distinct quantum-class
‘‘break times,’’ whose magnitudes and scaling properties
be quite different@2#. The Ehrenfest regime persists only
long as the width of the quantum state is small compare
the length scale of the potential, whereas the Liouville
gime can persist for very wide states, for which Ehrenfe
theorem is irrelevant@1–6#.

A useful way to characterize the quantum-classical diff
ences is through the moments of the classical and quan
probability distributions for the position and momentu
variables. These moments satisfy a hierarchy of equati
which may be truncated and solved numerically, provid
the widths of the probability distributions remain sma
enough@7#. By choosing the initial quantum and classic
probabilities to be equal, one can study how the differen
between the quantum and classical theories grow in ti
how they depend on the parameters of the initial state,
how they scale with\. These calculations have been carri
out for the Hénon-Heiles model@8#, leading to several con
clusions@7,9#.

~i! The deviation from Ehrenfest’s theorem, that is, t
difference between the motion of the centroid of a quant
wave packet and a classical trajectory with the same in
condition, is not a valid measure of quantum effects. It
governed primarily by the width of the initial state, and do
not scale with\.

~ii ! A true measure of quantum effects is given by t
differences between the probability distributions of a qu
tum state and of a classical ensemble that is constructe
have the same initial position and momentum distributio
The magnitude of these differences scales as\2.
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~iii ! For chaotic states, the quantum-classical differen
grow exponentially, on average, but with an exponentlqc
that is larger than the classical Lyapunov exponent.

~iv! The exponentlqc is independent of\.

Of course, the exponential growth of quantum-classical d
ferences cannot persist indefinitely. The exponentlqc is cal-
culated as a phase-space average oflocal, short-time
Lyapunov exponents, whose computation was describe
Ref. @9#.

The conclusions~i!–~iv! were first demonstrated numer
cally for a single model, although~i! is now well established
@1–6#. It is the purpose of this paper to present results
some other models, and to show how some of the con
sions can be understood from a theoretical analysis. S
the hierarchy of equations for the moments converges o
for sufficiently narrow wave packets, our calculations a
confined to the Ehrenfest regime. However, some results
side of this regime are discussed in the final section.

II. THEORY

The equations of motion for the moments of the probab
ity distributions were developed in Ref.@7# for any system
with two degrees of freedom and a potential that is a po
nomial of the coordinates. They are sufficiently complicat
that it is practical to treat them in detail only with the help
a computer algebra system such asMAPLE, from which
FORTRAN code can then be obtained for subsequent num
cal investigations. However, they possess a form that ma
some degree of general theoretical analysis possible.

The classical equations of motion have the stand
Hamiltonian form

dqi

dt
5

]H

]pi
,

dpi

dt
52

]H

]qi
~ i 51,2!. ~1!

When the HamiltonianH is expressed as a polynomial, th
quantum-mechanical Heisenberg equations have the s
form as Eq.~1!, but with the coordinates and momenta,qi
©2002 The American Physical Society10-1
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andpi , becoming noncommuting operators. Choosing so
initial state, we introduce the centroids,Qi5^qi& and Pi
5^pi&, and the deviation-from-centroid variables

dqi5qi2^qi&, dpi5pi2^pi&. ~2!

Here the average bracket^•& denotes either a quantum ave
age or a classical ensemble average, according to the con
The generalized moments of the deviation variables have
form

1
2 ^~dpi !

m~dqj !
n1~dqj !

n~dpi !
m&, ~3!

with the symmetrization being necessary only for the qu
tum case. The equations of motion for the centroids and
moments form a hierarchy that never terminates~except in
the uninteresting case of a quadratic potential!, but which
can be truncated at sufficiently high order. It was found
Ref. @7# that at least all terms up to fourth order (m1n
<4) must be included to obtain reliable results.

For notational convenience, we defineX5(X1 ,X2 ,...) to
be the vector of moments that are to be included in the
culation. Thus, for example:X15Q1 , X45P2 , X7
5^dp1dq2&, X145^(dq2)2&. ~Up to fourth order,X has 69
elements.! The vectors of classical and quantum mome
will be denotedXc and Xq, respectively. Their time evolu
tions are governed by nonlinear equations, of the form

dXc

dt
5F~Xc!, ~4!

dXq

dt
5F~Xq!1G~Xq!. ~5!

The quantum equation~5! differs from the classical equatio
~4! because of the noncommutativity of the position and m
mentum operators. The first term on the right-hand side
Eq. ~5! has the same form as in Eq.~4!; the second term
G(Xq) contains the commutators that arise from reorder
the dq’s and dp’s into the standard order~2!. The term
G(Xq) is small, being of order\2.

In @7# and @9# the differences between the quantum a
classical theories were obtained by solving Eqs.~4! and ~5!
separately, and subtracting the results. This involved sm
differences between much larger quantities, hence it was
essary to be vigilant for round-off errors, which limited th
range over which the computation could be performed
less restricted method, whose results are presented in
paper, is to define the quantum-classical difference vecto

Z5Xq2Xc, ~6!

and obtain its equation of motion directly. Subtracting E
~4! from Eq. ~5! and expanding to first order inZ, we obtain

dZ

dt
5F8~Xq!Z1G~Xq!, ~7!

whereF8 is the matrix of derivatives. Written in compone
form, the equation becomes
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dZi

dt
5(

j

]Fi

]Xj
Zj1Gi . ~8!

Since Eq.~7! is a linear inhomogeneous equation, the ma
nitude of the solutionZ is governed by the magnitude of th
driving termG. HenceZ5O(\2). To the lowest order in\2

it makes no difference whether the right-hand side of Eq.~7!
is evaluated on the quantum trajectoryXq or on the classical
trajectory Xc. Therefore, for further analysis, we shall re
place Eq.~7! by

]Z

dt
5F8~Xc!Z1G~Xc!, ~9!

which is equivalent to the lowest order inZ, and has the
advantage that all quantum effects are contained in the fu
tional form of G.

We can now give a general proof of the properties~ii ! and
~iv!, which were previously discovered only numerical
The inhomogeneous driving termG in Eq. ~9! is generally of
order \2. In fact, in our computationsG is proportional to
\2, although terms of order\4 and higher would arise if we
were to include moments of sufficiently high order.~Those,
however, were found in@7# to have negligible effect.! This
explains why the differencesZ between the quantum an
classical moments scale as\2. Moreover, since the driving
termG is proportional to\2, it follows that the solutionZ(t)
is also proportional to\2, with its functional form being
otherwise unaffected by\. Therefore the exponentlqc that
describes the growth of quantum-classical differences will
independent of\.

The remaining qualitative result~iii !, that lqc is greater
than the largest classical Lyapunov exponent, is not so e
to explain. Consider the homogeneous equation relate
Eq. ~9!,

dZ

dt
5F8~Xc!Z. ~10!

Since it describes the tangent map@10# of the nonlinear
equation~4!, its solutions will yield the Lyapunov exponent
of Eq. ~4!. These are not the same as the Lyapunov ex
nents of the classical equation of motion~1!, but they are
closely related. For example, the largest Lyapunov expon
of Eq. ~1!, l, describes the exponential separation of tw
initially close classical trajectories in phase space. But
quantity ^(dq)2&, which is an element ofXc, describes the
mean-square separation of an ensemble of classical traje
ries. Therefore its exponential growth rate will be 2l, and
this growth rate could also be computed from Eq.~10!. Thus
we see that the solutions of Eq.~10! would yield exponents
that are directly related to the classical Lyapunov expone
of Eq. ~1!. Now in @7# and @9# it was found thatlqc.2l.
This larger value oflqc can only be due to the inhomoge
neous termG in Eq. ~9!. But we have been unable to dis
cover any useful mathematical theorems concerning
growth rates of related inhomogeneous and homogene
equations such as Eqs.~9! and~10!. Nor can we identify any
0-2
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of the many terms ofG(Xc) as being dominant. So the em
pirical result,lqc.2l, does not yet have a general explan
tion.

III. RESULTS

The above theory has been applied to models wh
Hamiltonians have the form

H5 1
2 ~px

21py
2!1V~x,y!, ~11!

where (x,y,px ,py) are alternative notations fo
(q1 ,q2 ,p1 ,p2). The initial quantum state is chosen to be
narrow Gaussian whose centroid can be located at any
sired place in phase space. The initial classical state
Gaussian probability density in phase space, constructe
that its position and momentum probability distributio
agree with the quantum state.~See Ref.@7# for technical
details.! A dynamic state is characterized by its centroid
configuration space,Q¢ 5(^q1&,^q2&), and the sum of the
variances of the two position coordinates,V5^(dq1)2

1(dq2)2&. The differences of these quantities between
quantum state and the classical ensemble,uQ¢ q2Q¢ cu and
uVq2Vcu, are the principle objects of interest.

If these differences are computed by direct subtract
they are subject to round-off errors, which limited the ran
over which the computations could be carried out in@7#.
Indeed, it was not possible to studyuQ¢ q2Q¢ cu over an ad-
equate range using that method. This limitation is overco
by using the linearized Eq.~9! to compute the difference
directly. We have, however, verified that the previously pu
lished results for the He´non-Heiles model@7# were accurate.
Further calculations have been carried out for two ot
models.

A. Quartic potential

The potential for this model is

V~x,y!5x41y41gx2y2. ~12!

SinceV is a homogeneous quartic polynomial, the motio
are similar at all energies, and so only the energyE51 need
be considered. The shapes of the equipotential curves
controlled by the parameterg. This model is separable fo

FIG. 1. Contours of the quartic potentialV(x,y)5x41y4

132x2y2.
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certain values ofg ~including g50, 2, and 6!, but is nonin-
tegrable for most values. The valueg532 ~see the contour
diagram in Fig. 1! was chosen because a Poincare´ section
shows that the orbits ergodically fill most of the energetica
accessible phase space. There are a few stable periodi
bits, but the regular islands around them are very small.

For chaotic states, the various moments~3! and their
quantum-classical differences~6! are oscillatory with upper
envelopes that grow approximately exponentially. As was
scribed in@9#, these envelopes can be fitted to exponentia
the quantum varianceVq is fitted toeb1t; the difference be-
tween the quantum and classical variancesuVq2Vcu is fitted
to eb2t; and the difference between the quantum and class
centroidsuQ¢ q2Q¢ cu is fitted to eb3t. The exponentsb1 , b2 ,
andb3 are analogous to short-time Lyapunov exponents,
their values depend on the starting point of the trajectory
phase space. We expect the average ofb1 over the ergodic
portion of phase space to correspond to 2l, wherel is the
largest classical Lyapunov exponent. The averages ofb2 and
of b3 define the quantum-classical difference exponent,lqc,

FIG. 2. Linear regression of the indexb3 , for exponential
growth of the difference between the centroids of the quantum
classical probabilities, vs the indexb2 , for the difference between
the quantum and classical variances, for the quartic potentia
Fig. 1.

FIG. 3. Histogram of the exponentb1 for the growth of the
quantum variance, for the quartic model of Fig. 1.
0-3
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L. E. BALLENTINE PHYSICAL REVIEW A 65 062110
which measures the rate of separation of the quantum
classical theories.

Although there is noa priori reason why the averages o
b2 andb3 must be equal, the numerical data strongly indic
that they yield the same value forlqc. Figure 2 shows tha
b2 andb3 cluster around the lineb25b3 , with no evidence
of any systematic differences. The slope of the best fitt
straight line is 0.992, which is not significantly differe
from 1. This indicates that the quantum-classical differen
of the centroids and of the variances grow at the same r
and sob2 and b3 provide the same information. The es
mates oflqc from the averages ofb2 andb3 are 2.820 and
2.805, respectively. The difference is not significant.

The histograms ofb1 andb3 ~Figs. 3 and 4! for this model
have the same general shape as was found for the He´non-
Heiles model in@9#. Figure 5 shows a linear trend ofb3 vs
b1 , with no apparent systematic deviations, but with
greater scatter of the points than for the He´non-Heiles model.

Table I compares the earlier results for the He´non-Heiles
model@9# with those for the quartic model. It is notable th
(b1)av, which should theoretically be comparable to 2l, is
systematically larger. This is probably due to the inhomo
neous nature of phase space. The boundary between th
gions of regular and chaotic orbits is not sharp, and cons

FIG. 4. Histogram of the quantum-classical difference expon
b3 , for the quartic model.

FIG. 5. Linear regression of the exponentb3 vs b1 , for the
quartic model.
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of a fractal set of tori. An orbit spends part of its time ne
these ‘‘sticky tori,’’ accumulating very small contributions t
its Lyapunov exponent, and part of its time in the ergod
sea, where it accumulates large contributions to its Lyapu
exponent. The techniques of this paper apply to ensemble
orbits, rather than to single orbits. Since we wish the
semble to be purely chaotic~or purely regular@7#!, rather
than mixed, the fractal boundary region was deliberat
avoided. Thus the contributions from the sticky tori we
underestimated, and so (b1)av comes out to be somewha
greater than 2l.

B. x2y2 model

The Hamiltonian for this model is given by Eq.~11! with
V(x,y)5 1

2 x2y2. Since this is also a homogeneous potent
the motions will be similar at all energies, and so we sh
consider onlyE50.5. This model attracted considerable a
tention because it was believed that all of its periodic orb
were unstable, but that conjecture proved to be false@11#.

This model differs from the others in that its energetica
accessible phase space is not compact; a particle can m
arbitrarily long excursions up the valleys that center on thx
andy axes. The motions in the valleys are qualitatively d
ferent from the motions in the junction around the orig
~Fig. 6!. Motions in the valleys areadiabatically integrable
@12#; the rapid transverse motion can be averaged to yield
effective potential for the slow longitudinal motion, whic
appears smooth and regular. When the particle reaches
junction, the adiabatic approximation breaks down, and

t

FIG. 6. Level curvex2y251 for the potential, showing the
boundary between the valleys and the junction.

TABLE I. Lyapunov-like exponents for the He´non-Heiles model
@9# and the quartic model.

2l (b1)av lqc

HH (E50.13) 0.113 0.145 0.221
HH (E50.16) 0.222 0.246 0.371
Quartic 1.74 1.93 2.81
0-4
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DYNAMICS OF QUANTUM-CLASSICAL DIFFERENCES . . . PHYSICAL REVIEW A 65 062110
motion is no longer integrable. Qualitatively, an orbit can
described as a regular motion up and down a valley, w
stochastic switching between valleys as it passes through
junction. Due to the noncompact nature of the phase sp
and the qualitative difference between motions in the ju
tion and in the valleys, it is not useful to compute
Lyapunov exponent, which would average over both kinds
motion.

To study the irregular junction orbits, we started orbits
a large number of initial positions and directions of moti
within the junction. Many of these had to be discarded
cause they soon departed up a valley. The criterion
adopted that an orbit must remain within the junction~de-
fined asuxu and uyu less than 2! for at least 10 time units in
order to be counted. Figure 7 showsb2 to be greater thanb1 ,
as in the other models, but there is much more scatter a
the linear regression line.

The valley orbits are quite regular, and can be stud
systematically by releasing the particle at some distanceymax
from the origin with zero longitudinal velocity, all the kineti
energy being initially confined to the transverse motion. T

FIG. 7. Linear regression of the exponentb2 vs b1 for junction
orbits.

FIG. 8. Exponentsb2 andb1 for valley orbits vs the reciproca
of the maximum extent up the valley.
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long-time limit of the exponentb1 , being twice the classica
Lyapunov exponent, should be zero for integrable motio
The larger the value ofymax, the more time the orbit spend
in the adiabatically integrable region, and so the smallerb1
should be. Figure 8 shows thatb1 varies nearly linearly with
1/ymax, and does indeed approach zero asymax becomes in-
finite. The quantum-classical difference exponentb2 also
shows an approximately linear trend with 1/ymax, but ap-
proaches a nonzero limit asymax becomes infinite.

Figure 9 shows the linear trend ofb2 vs b1 . Similar re-
sults have been found for all models, and are summarize
Table II.

IV. CONCLUSIONS

A general analytic derivation has now been provided
some results that were previously only known numerica
These are that the differences between quantum
classical-ensemble dynamics scale as\2, and that for chaotic
states the exponential growth exponent of these differen
lqc, is independent of\. Two more models have been stu
ied in detail, confirming the general picture that was obtain
in earlier studies@7,9# of the Hénon-Heiles model. In addi-
tion, we find that the difference between the centroids of
quantum and classical probability distributions grows w
the same average exponent,lqc, as does the difference be
tween the quantum and classical variances.

The short-time exponent for the growth of quantum
classical differences (b2) shows a linear correlation with th
exponent for the growth of the mean square width of
state (b1). The slope of the regression line ofb2 vs b1 ~see

FIG. 9. Linear regression of the exponentb2 vs b1 for valley
orbits.

TABLE II. Linear regression ofb2 vs b1 .

HH (E50.13) b250.01711.412b1

HH (E50.16) b250.03711.356b1

Quartic b250.22811.346b1

x2y2 ~junction! b250.31611.241b1

x2y2 ~valley! b250.26511.384b1
0-5
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L. E. BALLENTINE PHYSICAL REVIEW A 65 062110
Table II! is dimensionless, and so can be meaningfully co
pared between models. That its value~about 1.35 on aver-
age! is always greater than 1, is related to the previou
known fact thatlqc.2l, since the two sides of the inequa
ity are identified with the averages ofb2 and b1 , respec-
tively. These two interesting facts have yet to find a gene
theoretical explanation. Recently, however, this qualitat
behavior has been confirmed on a very different system~in-
teracting spins! by a different technique~direct integration of
the equations of motion! @2#, so there is reason to believe th
it is typical.

Another interesting question is the time over which t
06211
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e

exponential growth of the quantum-classical differences p
sists. Our computations with the moment equations are n
essarily restricted to the Ehrenfest regime~narrow states!.
However, the results of@2# suggest that this exponentia
growth does not persist outside of the Ehrenfest regime,
that the quantum-classical differences have a different beh
ior in the broader Liouville regime.
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