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Perturbation approach to the Casimir force between two bodies made of different real metals
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The Casimir force acting between two test bodies made of different metals is considered. The finiteness of
the conductivity of the metals is taken into account perturbatively up to the fourth order of the relative
penetration depths of electromagnetic zero-point oscillations into the metals. The influence of nonzero tem-
perature is computed explicitly for separate orders of perturbation and found to be important in the zeroth and
first orders only. The configurations of two parallel plates and a sptsgieerical lensabove a plate are
considered made of Au and Cr. The obtained results can be used also to take into account the surface
roughness. Thus, the total amount of the Casimir force between different metals with all correction factors is
determined. This may be useful in various applications.
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. INTRODUCTION It was shown that at separations smaller thanrithe sur-
face roughness and the finite conductivity of the boundary
Recently the Casimir effect attracted much attention as @netal can contribute up to several tens percent of the ideal
macroscopic quantum phenomenon caused by the existen@asimir force. At the same time, at separations of order of
of zero-point oscillations of the electromagnetic field. Ca-several micrometers the temperature corrections can achieve
simir [1] first theoretically proposed that the change of thethe value of the main contribution and even become larger.
zero-point oscillation spectrum in the presence of metallidn a transition range of separations all the above corrections
boundaries as compared to the case of empty space leads tplay an important role and their combined effect must be
finite force acting onto these boundaries. The Casimir forceonsidered. However, the case of boundary bodies made of
can be considered as the relativistic limit of the van derdifferent metals was not investigated up to now.
Waals force under the condition that the spatial separations Here, we present a perturbative approach to the calcula-
between the surfaces of the macrobodies are so large that thien of the Casimir force acting between two bodies made of
retardation effects become essential. This was demonstratelifferent real metals. We start from the famous Lifshitz for-
at first qualitatively by Sparnady2]. During the last time a mula [30] and describe metals in the framework of the
lot of precision experiments on measuring the Casimir forcgplasma model. Both the configurations of two plane parallel
have been performefB—10. The increasing interest in the plates and a sphefspherical lensabove a plate are consid-
Casimir effect is caused by the fact that it found both funda-ered. The combined effect of finite conductivity and nonzero
mental as well as technological applications. Thus, the preteemperature is found on the basis of a perturbation expansion
cise measurements of the Casimir force and the extent dah powers of the relative penetration depth of electromag-
their agreement with theory have been u$gtl-14 to set netic zero-point oscillations into the metals under consider-
the strongest constraints on hypothetical long-range forceation. The coefficients of this expansion up to the fourth
predicted by many extensions of the standard model of elerder are calculated explicitly. The temperature effect is
ementary particles. Concerning technological applicationshown to be essential only in the zeroth- and first-order
the first microelectromechanical machines were created beerms. The obtained results are generalizations of those,
ing driven by the Casimir forcgl5,16. which previously have been obtained in R¢f2,24,28, for
Increased precision and important applications of the Cathe case of boundary bodies made of one and the same metal.
simir force measurements call for the elaboration of newThe case of different metals considered here is of special
computational methods taking real experimental conditionsmportance for the nanotechnology where one of the plates
into account. During the last years different corrections to théplaying the role of an active elemgrand the underlying
ideal Casimir force were computed due to surface roughnessubstrate are typically made of different materials. The per-
finite conductivity of the boundary metal and nonzero tem-turbation formulas given below are very simple in their ap-
perature(see, e.g., Ref$§17-29). Also the combined effect plication and open the possibility to compute the combined
of these influential factors was investigated for the case oéffect of finite conductivity and nonzero temperature with an
two boundary bodies being made of one and the same metarror not larger than 1-2 % within a wide separation range
that is usually adequate for any practical purpose. In doing
S0, one avoids labor-intensive numerical computations based
*On leave from North-West Polytechnical University, St. Peters-on the use of optical tabulated data for the complex refrac-
burg, Russia, and Federal University of PhegiJoa Pessoa, Bra- tion index (compare with Refs[20,21] where such compu-
zil. tations were performed for two bodies made of one and the
TOn leave from A. Friedmann Laboratory for Theoretical Physics,same metal As an example, the test bodies covered by Au
St. Petersburg, Russia, and Federal University of Bardioa Pes-  and Cr layers are considered. The obtained formulas can sim-
soa, Brazil. ply be modified to take into account the surface roughness
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(see, e.g., Ref$26,29 for the special averaging procedyure For separation ranges of practical interest, namely, from a

Thus, they can be used for a complete description of théew tens of a micrometer to ten micrometers, relaxation pro-

Casimir force with all essential corrections. cesses can be neglected and the dielectric permittivities of
The paper is organized as follows. In Sec. Il the perturbathe metals are given by the free-electron plasma model,

tion expansion for the Casimir force at zero temperature act-

ing between plates made of different metals is derived. Sec- w2

tion 1ll is devoted to the consideration of temperature e (i&)=1+ _‘;k 3

corrections in configurations of two different plates. The con-

figuration of a spheréspherical lensabove a plate made of

different metals is considered in Sec. IV. Section V containsvhere w,, are the plasma frequencies of the metals under

conclusions and discussion. consideration. The perturbative approach for calculating the
effect of finite conductivity is based on the use of small
Il. PERTURBATION EXPANSION FOR TWO PARALLEL parameters,
PLATES MADE OF DIFFERENT METALS
AT ZERO TEMPERATURE & Sk X
We consider first the configuration of two metallic semi- . wpk @ 2p’ @

spaces marked by an indes and described by the dielectric

permittivitiese (w) ande,(w), respectively. Let these semi- where 5=\ /27 are the effective penetration depths of the
spaces be separated by a plane parallel gap of veidithe  electromagnetic zero-point oscillations into the metals and
Casimir force between two different metals at zero temperai = 2mc/w, are the plasma wavelengths. For the case of

ture is given by the Lifshitz formulf30-32 plates made of one and the same metal this approach was
used in Refs[31,33,34 (up to the first order in Ref.[35]
(50) = 4 =dp (up to the second ordeand in Refs[22,36 up to the fourth
Fss (@)=~ 2 4f f ) and the sixth orders, respectivelgee also the detailed ex-
32ra’/o tp planations in the monograph37-39). The obtained results
X [X1(p,X)+ Xo(p,x)], (1  were compared with the numerical computations using the
tabulated data for the complex refractive index and were
where found to be in agreement with an error of only 1-2 % at all
separation distances larger than the plasma wavelength
(s1tpey)(sy+pez) -1 [21,29. Here, we apply this approach to the case of different
XaP:X)= (51— Pen)(s,—pey) ] metals up to the fourth perturbative order that is sufficient for

) practical purposes.

(s1+p)(S+p) -1 The quantitiess, and s, entering Eq.(2) can be repre-
Xa(p,x) = fex_l} : sented in terms of the small paramet&sas
(51— P)(S2—P)
The quantitiess, (k=1,2) are given bys,= \e,— 1+ p?, 1 1
and the dielectric permittivities are computed on the imagi- e(i§)=1+—, S= p2+ — (5)
nary frequency axis,=g,(i &) =¢,[icx/(2pa)]. The upper Xk ak

index § in Eq. (1) marks the account of the effect of finite
conductivity, and the second upper index 0 is the value oExpandingX; from Eq.(2) upto the fourth power imx, one

temperature. obtains
1 A A 2 A 2 2 4 3 3 A 2
X,= 1-2—(a1+ ay) +2— (2A— 1) (a1 + ay)?— — (2— 8A+8A%—2p2+ p*)(aj+ a3) —4—(1—6A+6A?)
ex_l p p2 p3 p3
A(2A—-1 A(2A-1
X(a§a2+alag)-l-Z%[(ZA—l)z—sz-F pﬂ(aﬁ-l—aé)-l—Z%(Z—lGA—l— 16A%2—2p2+p?)
A(2A—-1
x(a§a2+alag)+4(—4)(1—12A+12A2)a§a§ , (6)
p

whereA=¢e*/(e*—1).
In the same way the expansion Xj is
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X,= [1—2Ap(a;+ay)+2Ap*(2A—1) (a1 + ay)?— Ap3(1—8A+8A?) (a3 + ad)— 4Ap3(1— 6A+6A?)

e*—1
X (a2ay+ aja3)+8A%pH(1—3A+3A%)(af+ aj) — 2Ap*(1— 18A+48A%—32A%) (ada,+ aqad)

—4AP*(1—14A+36A%—24A%) a3 a3]. 7)
|
Substituting expression) and (7) into Eq. (1) and per- kT " &
forming the integrations with respect pandx one finally FOD@)=——— > k, dk, \/—=+Kk>
obtains 27152 Jo c?
X[Xa(ky &) +Xa(ky €)1 (10
1685 6% 6408% 2m?
(8,0)( 5y = £(0.0) - I I [P,
FEa)=FQ <a>| 132257 5|1 158

Using the Poisson summation formula this expression can be
] represented as the sum of the zero-temperature rd$uhd
+ L

2800 &* . 32672
9 g% 3675

X (1—3k) (1-3k) a temperature correction.
It can be easily checked that the temperature corrections
(8)  of the first expansion coefficients of the perturbation result
(8) following from Eq. (1) are independent of the materials,
i.e., they are the same for plates made of one and the same
where metal and of different metals. In the framework of the
plasma model these corrections can be calculated analyti-
cally in a closed form without using any perturbation expan-
_ 0116, 016 sion (see Refs.[40,23,26 where the corrections to the
6= 2 K:( 5y+ 52)2' ©) zeroth-, first-, and second-order coefficients, respectively,
were found for the plates made of one and the same jnetal

It was proved in Refs[25,26,28 that the plasma model is
and F2%(a) = n2hc/240a* is the ideal Casimir force per Well adapted to the Lifshitz formulél0) at nonzero tempera-
unit area of plates made of perfect metaldlf= 5,= &,, i.e.,  ture and that it avoids all problems and contradictions arising
when the p|a‘[es are made of one and the same meta‘BEq in the case of the Drude dielectric function. As it was shown

coincides with the result obtained earlier in Ré®2,36. in Ref.[26], in the temperature range fro0 K to 1000 K the
temperature corrections to the expansion coefficients starting
1. TWO PARALLEL PLATES MADE OF DIFFERENT from the second-order one are not essential. The reason is
METALS AT NONZERO TEMPERATURE that at small surface separations the temperature effect itself

is negligible, whereas at large separations the contribution of
Now let us consider the case of nonzero temperature. Thell the terms of the order of§/a)* with k=2 is smaller than
Lifshitz formula atT#0 is obtained from Eq(1) by chang-  1%. This opens the opportunity to modify E@) by the use
ing the integration with respect tointo a summation over of temperature corrections, calculated in R§28,26,4Q, in
the discrete  Matsubara frequenciesé =cx/2ap  order to obtain the approximate expression for the Casimir

=2mlkgT/h, wherel=0,£1,+2, ... andkg is the Boltz- force acting between different metals with account of both
mann constant. It is convenient also to introduce a new varifinite conductivity and nonzero temperature. The final result
ablek, = &+/p?—1/c (Ref.[29]). The result is can be represented in the form

8 15 1

3 Wn:lm

o

a

30 < 1 «° coth(mnt)
(T =g00 1 _
ss (a) ss (a)[ + 2 Lnt)“ nt Sin|'12(7Tnt)

77'4 n=1

1 1
X sinh( 7rnt)cosh 7rnt) + 4 coth 7rnt) + 27nt— 6 rnt coth?(mnt) + ——
(Wnt)z nt

+24i2 640(581 27721 3 +2800541 326;721 3 "
2T 7 3t 105 |y |t mers (139 (1)
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TABLE I. The relative Casimir force between two parallel plates taking account of finite conductivity and temperature corrections versus
separation for different pairs of metals.

Separation FED/ECO for Au-Au FOD/EQO for Au-Cr FDIEQO for Cr-Cr F20(a)

a (um) T= o K T=300 K T=0 K T=300 K T=0 K T=300 K (nN/mn?)
0.35 0.745 0.745 0.637 0.637 0.575 0.575 86.6
0.4 0.770 0.770 0.667 0.667 0.597 0.597 50.8
0.6 0.835 0.835 0.752 0.752 0.684 0.684 10.0
0.8 0.872 0.873 0.803 0.804 0.743 0.744 3.17
1 0.895 0.897 0.836 0.838 0.784 0.786 1.30
3 0.963 1.083 0.940 1.062 0.917 1.042 XEm 2
5 0.977 1.531 0.963 1.518 0.949 1.505 %08 3
7 0.984 2.116 0.973 2.104 0.963 2.091 5404
10 0.988 3.027 0.981 3.015 0.974 3.002 xam ¢

wheret=T.;/T, andkgTes=%cC/2a. conductivity is especially important at the smallest separa-

One can easily find the asymptotic behavior of Blid) at  tions. The results for the pair of different metdlsu-Cr)
low (T<Tg¢s) and high IT>T.¢;) temperatureswhich also  differ significantly from both the cases of Au-Au and Cr-Cr.
means small, respectively, large separations when taking intAt small separations the temperature effect is negligible.
account the definition of .¢¢). At low temperatureste1) it ~ With an increase of the separation distance the temperature

holds effect also increases in all cases, and for separations larger
than 3um it becomes larger than the ideal Casimir force.
(N) (O 0 1 5|8 15 However, even at largest separations under consideration the
Fss /(@)=Fgs(a)] 1+ 5—25 3 g 3) effects of finite conductivity influence the value of the tem-
perature force. Note that the asymptotics of low temperatures
52 640 63 22 (12) is applicable at separations smaller than® and the
- 1—-3«k asymptotics of high temperatur works good starting
5 5 —( ) i f high €%3) k d i
a 7 a - 105 from 4 um.
28006* 326772(1 30) 12 IV. CONFIGURATION OF A SPHERE ABOVE A PLATE
9 g4 3675 K MADE OF DIFFERENT METALS

. . . . The configuration of two plane parallel plates was used
where {(zl) |shthe R"f”?a”r.‘ Ze% function. At high tempera- only in two experiment$2,9]. More often the configuration
tures ¢<1) the result is given by of a sphere(spherical lens above a plate was employed

[3-8,10,15,16,41L By this reason it is expedient to modify
304(3) ( (13) the obtained results for this configuration. This can be
w3t achieved by the application of the proximity force theorem
[42]. According to this theorem the Casimir force acting be-
All the results(11)—(13) take into account that the metals of tween a semispace and a ldag(a) =27mRE{(a), whereR
both the plates are different. is the lens(sphere radius ande¢(a) is the energy per unit
For example, in Table | some numerical data obtained byarea of two parallel plates, which is related to the force of
Eq. (11) are presented for the pairs of plates Au-Au, Au-Cr, Egs. (1) and(8) by the equalityFs{a) = — dEs{a)/da. Al-
and Cr-Cr. Note that both Au- and Cr-covered test bodies aréhough the proximity force theorem is an approximation, its
widely used in the measurements of the Casimir fqgme, accuracy is very higlit leads to an error of the order afR,
e.g., Refs.[3,7-10,15,16,4]). For Au the value of the whichis much smaller than 1% for configurations used in the
plasma wavelength ,; =136 nm was usefR0] and for Cr  experiment§43,44)).
Np2=314 nm[41]. The separation range of 0.35-%0m is Applying the proximity force theorem to E¢8) one ob-
covered including both the cases of low and high temperatains the Casimir force acting between a plate and a lens
tures. The smallest separation of 0,85 is chosen to be (spher¢ made of different real metals at zero temperature,
larger than both plasma wavelengths in order to respect the
application range of the fourth-order perturbation expansion (50)(a) F(O O)(a){ 1— 4
of Eqg. (11). In Table I the ratio of the Casimir force acting
between real metals at zero and room temperatures relative

1- 3

FoD(@~FeMa)——

272
105

5 72 8% 32065°

to the ideal valudi.e. to a force between perfect metals at 400 &* 32672

zero temperatueis given. In the last column the absolute X(1-3k)|+ Tj[ ~ 3575 (173%) ]
values of the ideal Casimir force in units of force per unit a

area are presented. As is seen from Table I, the effect of finite (14
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Wherng?'o)(a) = — m°hcR/360a3 is the ideal Casimir force. In the same way as it was done for the two parallel plates,

If one putss; = 8,= &, then Eq.(14) coincides with the ear- EQq. (14) can be generalized to take into account nonzero
lier result for test bodies made of one and the same metdaémperature in the range fr 0 K to 1000 K. Using the

[22,36. results of Ref[26], one obtains
|
90 2 1 5 -
FOD(@)=F0%a){ 1+ — cot + —2-|2——
(@)= (a) '’ nEl 2(nt )3 i)~ (nt)*  2(nt)? sinkf(wnt)| @ 't nzl
4 A 1 22 coth(7rnt) 725> 320 a\’) 2
- + _ ||+ = = — = —|1- T—(1-3«)
(nH*  (nt)? sinfP(wnt) Nt sinkP(ant) Sa? 7 a3 105
400 5* 32672 1-3 1
3 4|1 3675 (173K (19

The asymptotic behavior of Eq15) at low temperatures test bodies is different. The last column of Table Il contains
(separationsis the values of the ideal Casimir force for a sphere of radius
R=1 mm. The data demonstrate almost the same behavior
45¢(3) with the increase of the separation as in the case of two plane
N parallel plates. It is seen, however, that the effect of nonzero

450(3) 19

%W%m~F9%aﬁ1+

w3 o a w3t
temperature becomes noticeable at smaller separations. The
2] 7282 32063 22 asymptotics of low temperatur¢$6) works good at separa-
+—|+t=—=——— (1-3k) tions smaller than 2Zzm and the asymptotics of high tem-
t4 5 a2 7 a3 105 . .
peratureg17) is applicable fora>4 um.
. 400 6% 326m° I 16
3 ~ 3575 (173%) (16) V. CONCLUSIONS AND DISCUSSION

To conclude, we have developed a perturbative approach
In the opposite case of high temperatufiasge separations to the calculation of the Casimir force acting between two
the asymptotic behavior is parallel plates or a sphetspherical lensabove a plate made
of different real metals. The coefficients of the perturbation
45{(3) ( 1_2f 17) expansion in powers of two small parameters were found up
w3t al’ to the fourth order. These parameters have the meaning of
the effective penetration depth of electromagnetic zero-point
As an example, in Table Il the numerical results obtained byoscillations into both metals. The effect of nonzero tempera-
Eq. (15) are presented for the case of a plate and a spheteire was taken into account explicitly in the coefficients of
made of Au-Au, Au-Cr, and Cr-Cr. Table Il is organized in perturbation expansions of zeroth and first orders. The tem-
the same manner as Table |—only the configuration of theerature dependence of the higher-order expansion coeffi-

FOD(a)~F{%a)

TABLE Il. The relative Casimir force between a lens and a plate taking account of finite conductivity and temperature corrections versus
separation for different pairs of metals.

Separation FODIFQO for Au-Au FON/EQO for Au-Cr FEDIFQO for Cr-Cr FO%a)
a (um) T=0 K T=300 K T=0 K T=300 K T=0 K T=300 K (nN)
0.35 0.799 0.800 0.706 0.707 0.639 0.640 &4 ?
0.4 0.820 0.822 0.732 0.735 0.665 0.668 KA 2
0.6 0.872 0.879 0.805 0.811 0.746 0.754 KAQ 2
0.8 0.902 0.916 0.846 0.862 0.797 0.813 X3P 3
1 0.920 0.947 0.873 0.902 0.831 0.860 X003
3 0.972 1.443 0.954 1.427 0.937 1.411 xan 4
5 0.983 2.275 0.972 2.262 0.961 2.249 X185
7 0.988 3.181 0.980 3.168 0.972 3.155 AP 6
10 0.991 4.551 0.986 4.538 0.980 4.526 X1 6
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cients is negligible in the temperature rangenfr® K to  tion and extrapolation procedurf20]. It is notable also that

1000 K and thereby it is of no practical interest. Thethe above perturbative approach is very convenient to take

asymptotic behavior of the explicit temperature dependencegto account the surface roughness. This can be done by

at low and high temperatures is also given. averaging of the obtained results over all possible separation
The obtained formulas are simple in application and givedistances and it leads to a perfect agreement between experi-

the possibility to calculate the Casimir force with account ofment and theon|10,17. Thus, the suggested perturbative

both finite conductivity and nonzero temperature between thapproach presents a complete description of the Casimir

test bodies made of different metals. They can be applied iforce acting between different metals with all important cor-

a wide range of separations and temperatures quite sufficienéctions and can be used in various applications of the Ca-

for all practical purposes. The error of the results obtained irsimir effect.

such a way is only 1-2% and is in fact caused by the error

|n_the values of.plasma wavelengths. The.much more com- ACKNOWLEDGMENTS

plicated alternative approach using the optical tabulated data
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