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Quantum characterization of a Werner-like mixture
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We introduce a Werner-like mixture@R. F. Werner, Phys. Rev. A40, 4277 ~1989!# by considering two
correlated but different degrees of freedom, one with discrete variables and the other with continuous variables.
We evaluate the mixedness of this state and its degree of entanglement, establishing its usefulness for quantum
information processing such as quantum teleportation. Then, we provide its tomographic characterization.
Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in
a Penning trap.

DOI: 10.1103/PhysRevA.65.062107 PACS number~s!: 03.65.Wj, 03.65.Ud, 03.65.Ta
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I. INTRODUCTION

It is nowadays well known that the nonlocal properties
quantum mechanics@1,2# enable striking processes in qua
tum information@3#. In these processes the role of maxima
entangled states is prominent@4,5#. However, very often, the
decoherence effects due to the environment transform
pure entangled state into a statistical mixture and degr
quantum entanglement in the real world@6#. Although puri-
fication schemes may be applied to noisy channels@7#, there
exist some mixture states that maintain interesting proper
An illuminating example is provided by the Werner mixtu
@8#, which is not a mixture of product states, nonetheless
violating any of Bell’s inequality@2#, but still useful for
quantum information processing@9,10#. Such states belong
to systems with two discrete degrees of freedom like t
spin 1

2 . However, information processing may sometimes
volve hybrid systems where one degree of freedom has
crete variables and the other continuous variables. It m
happen, for instance, in trapped ions@11,12#, in trapped elec-
trons @13#, or in cavity quantum electrodynamics@14,15#.
Thus, it will be the aim of this paper to consider a mixtu
which resembles the Werner one, but where one of the
subsystems is described by continuous variables.

On the other hand, states and processes used in qua
information typically need a well characterization@3#. This
can be accomplished by using tomographic techniques@16#.
Concerning the quantum state measurement, after the s
nal work by Vogel and Risken@16#, a lot of progress has
been obtained and further techniques and algorithms h
been developed@17#. We would just mention the possibility
of state reconstruction, for a composite system of disc
and continuous variables, by simply measuring the se
rotated spin projections and displaced number opera
@18,19#. Then, we shall provide the tomographic charact
ization of a Werner-like mixture by generalizing that metho

The outline of the paper is the following: In Sec. II w
discuss the Werner mixture and we extend the concep
considering one of the two subsystems with continuous v
ables. Then we characterize such a state in terms of mi
ness and entanglement. Section III is devoted to the tom
raphic method employed for such a state reconstruction
Sec. IV we present the results of numerical simulations.
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nally, in Sec. V we discuss a possible implementation a
Sec. VI is devoted to conclusions.

II. WERNER-LIKE MIXTURE

In his pioneering paper, Bell proved that a local realis
interpretation of quantum mechanics is impossible@2#, and
for the case of pure states it is known that, when meas
ments are performed on two quantum systems separate
space, their results are correlated in a manner which, in g
eral, cannot be explained by a local hidden variables mo
@20#. Since the only pure states satisfying the Bell inequa
are pure product states, one might naively think that the o
mixed states that do not violate Bell’s inequality are mixtur
of product states. However, Werner@8# showed that this con-
jecture is false for the so-called Werner states

r5
1

8
I 1^ I 21

1

2
uC2&^C2u, ~1!

whereI i( i 51,2) stands for the identity operator of a sing
qubit (u↓& i i ^↓u1u↑& i i ^↑u) and uC2&51/A2(u↓&1u↑&2
2u↑&1u↓&2) is the spin singlet state.

A more general Werner mixture can be obtained by c
sidering one of the two subsystems, say 2, as describe
continuous variables. A way to encode the qubit in contin
ous variable systems could be the use of even and odd
perpositions of coherent states which are orthogonal@21#,
thus resulting in the same situation of Eq.~1!. Instead, the
choice we are going to make is more general and gives
possibility of exploring a variety of situations.

That is, we now replace the statesu↑&2 , u↓&2 of the second
qubit with ua&2 and u2a&2, where the latter are coheren
states of amplitudea and 2a, respectively~we shall con-
sideraPR throughout the paper for the sake of simplicity!.
Therefore, a Werner-like mixture would be

r5
1

8
$u↓&11^↓u ^ u2a&22^2au1u↑&11^↑u ^ u2a&22^2au

1u↓&11^↓u ^ ua&22^au1u↑&11^↑u ^ ua&22^au%

1
1

4
@ u↓&1ua&22u↑&1u2a&2] @ 1^↓u2^au2 1^↑u2^2au#.

~2!
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ANNA FELICETTI, STEFANO MANCINI, AND PAOLO TOMBESI PHYSICAL REVIEW A65 062107
Since^au2a&5exp(22a2)Þ0, the above state does not d
scribe a real two qubit system, but rather a two qubit sys
with nonorthogonal states@22#. Of course, fora@1 Eq. ~2!
behaves like the state~1!, but we want to study its characte
istics for a generic value ofa. To this end, we map the abov
state in the two spin-1

2 Hilbert spaces by introducing for th
subsystem 2 a vectoruc&25ku↓&21A12k2u↑&2 and consid-
ering the nonorthogonal statesu↓&2 ,uc&2 instead of
u2a&2 ,ua&2, with ^cu↓&5k[exp(22a2). Then, Eq.~2! can
be rewritten as

r5
1

8
$u↓&11^↓u ^ u↓&22^↓u1u↑&11^↑u ^ u↓&22^↓u

1u↓&11^↓u ^ uc&22^cu1u↑&11^↑u ^ uc&22^cu%

1
1

4
@ u↓&1uc&22u↑&1u↓&2] @1^↓u 2^cu2 1^↑u 2^↓u#.

~3!

The degree of mixedness of the state~3! can be evaluated by
using the von Neumann entropy@23#

S~r!52Tr~r log2r!52(
i

l i log2l i , ~4!

wherel i are the eigenvalues of the matrix representation
r. We have calculated such eigenvalues in the basiB
[$u↓&1u↓&2 , u↓&1u↑&2 , u↑&1u↓&2 , u↑&1u↑&2% and we have
plotted the entropyS in Fig. 1.

We can see that also fora50 the state is a mixture, then
it becomes more and more mixed by increasing the valu
a, but never reaching the maximum~a completely mixed
density operator in ad-dimensional space has entropy log2d).
It is also worth noting that fora(k) arbitrary, Eq.~3! is not
a mixture of Bell’s states as it is for the Werner mixture~1!,
i.e., for a@1.

Let us now consider the measure of entanglement. F
two spin-12 system the state separability is related to the p
tial transposition operation@4,24#. The matrix elements o
partial transpositionrT2 of a stater are given byrmm,nn

T2

[rmn,nm , where rmm,nn5 1^mu 2^murun&2un&1 with
m,n,m,n5↑,↓. A density matrixr for a two spin-12 system
is inseparable if and only if its partial transposerT2 has any

FIG. 1. EntropyS as a function ofa[A2(1/2)lnk.
06210
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negative eigenvalue@4,24#. Then, a suitable measure of e
tanglement can be defined as@25#

E~r!522(
i

l i
2 , ~5!

wherel i
2 is a negative eigenvalue ofrT2. It is worth noting

that this measure satisfies the necessary conditions req
for every measure of entanglement@5#. Then, we have plot-
ted in Fig. 2 the quantityE calculated by exploiting again th
matrix representation of Eq.~3! in the basisB.

We can see that the Werner-like mixture is factorizable
a50; then, by increasinga, its degree of entanglement in
creases, saturating at the value 1/4 characteristic of the
Werner mixture~1!. This latter value of entanglement i
known to be sufficient to improve the teleportation perfo
mances over the classical limit once the sender~Alice! and
the receiver~Bob! initially share the state~1! @9#. Thus, it is
straightforward to ask to what extent a Werner-like mixtu
can be used for the same goal. To establish a threshold v
for a we are going to consider the teleportation fidelity.
this end, we first write the stater through the Hilbert-
Schmidt decomposition

r5
1

4 F I 1^ I 21r "s(1)
^ I 21I 1^ s"s(2)

1 (
n,m51

3

tn,msn
(1)

^ sm
(2)G , ~6!

wheresn (n51,2,3) are thestandard Pauli matrices,r , s
are vectors inR3 and r "s5( i 51

3 r is i . Furthermore, the co-
efficients tn,m5Tr@rsn

(1)
^ sm

(2)# form the real matrixT de-
scribing the correlations between the two qubits. Thus,
teleportation capabilities will depend on the specific form
T. In particular it is shown in Ref.@26# that the teleportation
fidelity amounts to

F5
1

2 F11
1

3
TrAT†TG . ~7!

FIG. 2. Degree of entanglementE as a function of a
[A2(1/2)lnk.
7-2
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QUANTUM CHARACTERIZATION OF A WERNER-LIKE MIXTURE PHYSICAL REVIEW A65 062107
Then, in Fig. 3 we have plotted the quantityF versusa
compared with the classical fidelity 2/3.

We immediately recognize the presence of a thresh
value (a th50.268) below which the Werner-like mixture be
comes useless for quantum teleportation.

III. STATE MEASUREMENT

We now discuss the possibility of a complete charac
ization of the Werner-like mixture through tomographic tec
niques. In particular, we generalize the method presente
Refs.@18,19# to nonpure states.

According to the state reconstruction principle develop
in Ref. @27# we choose an observable, heres3^ a†a, then we
apply suitable unitary transformations to get a set of obse
ables giving the whole state information upon measureme
In our case the transformations would be

U~u,w!5exp@2 iu~s1cosw1s2sinw!#, ~8!

D~b!5exp@ba†2b* a#, ~9!

which lead to rotated~by anglesu andw) spin projection in
the subsystem 1@28#, and to displaced number state~by a
complex amountb) in the subsystem 2@29#. Then, it is
possible to consider the following measurable marginal d
tributions:

w~s,n;u,w,b!5Tr$rD~b!U~u,w!us&1

3 1^su ^ un&22^nuU†~u,w!D†~b!%,

~10!

having as variables the eigenvaluess, n of s3, a†a, and
parametrically depending onu, w, andb. Thus, measuring
the stater would mean the possibility to expressr as a
functional operator ofw, i.e., to invert expression~10!. This
also means the possibility to sample the density-matrix
ments~in some basis! from the quantity measured by spa
ning the whole space of parameters.

In reality, we shall see that it is not necessary to consi
all possible values of parameters. As matter of fact, we w
the density operator~2! as

FIG. 3. Teleportation fidelity as a function ofa[A2(1/2)lnk.
The dashed line represents the classical bound of 2/3.
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r5Fr↑↑ r↑↓

r↓↑ r↓↓G , r↓↑5@r↑↓#†, ~11!

where each operatorr↑↑, r↑↓, r↓↑, r↓↓, can in turn be rep-
resented in the Fock basis of the subsystem 2.

Now, we setu5w50 and we suppose to retain only th
measurement resultss5↑; then, expanding the density op
eratorr↑↑ in the Fock basis, and definingNc as an appropri-
ate estimate of the maximum number of excitations~cutoff!,
we have

w~↑,n;0,0,b!5 (
k,m50

Nc

^n,buk&^kur↑↑um&^mun,b&.

~12!

The projection of the displaced number stateun,b& onto the
Fock stateum& can be obtained generalizing the result d
rived in Ref.@30#.

Let us now consider, for a given value ofubu, w as a
function of f5arg@b# @31# and calculate the coefficients o
the Fourier expansion

w~↑,n;0,0,r !5
1

2pE0

2p

dfw~↑,n;0,0,f!eir f, ~13!

for r 50,1,2, . . . . Combining Eqs.~12! and ~13!, we get

w~↑,n;0,0,r !5 (
m50

Nc2r

Gn,m
(r ) ~ ubu!^m1r ur↑↑um&, ~14!

where the explicit expression of the matricesG is given in
Ref. @18#.

We may now notice that if the distributionw(↑,n;0,0,b)
is measured fornP@0,N# with N>Nc , then Eq.~14! repre-
sents, for each value ofr, a system ofN11 linear equations
between theN11 measured quantities and theNc112r
unknown density-matrix elements. Therefore, in order to
tain the latter, we only need to invert the system

^m1r ur↑↑um&5 (
n50

N

Mm,n
(r ) ~ ubu!w~↑,n;0,0,r !, ~15!

where the matricesM are given byM5(GTG)21GT.
The procedure can be repeated withw(↓,n;0,0,b) in or-

der to get the matrix elements ofr↓↓. Then, changing the
parameters so thatu5p/4 andw52p/2 we can get the rea
part of the matrix elements ofr↑↓. Instead, withu5p/4 and
w50 we can get the imaginary part of the matrix elements
r↑↓, thus concluding the reconstruction procedure of the s
~11!.

IV. NUMERICAL RESULTS

As an example of the proposed method, we show in F
4–6, the results of numerical Monte Carlo simulations of t
reconstruction of the state~2! once written in the form~11!.
In this simulation we have used the valuea50.7, which
makes the state different from a true Werner mixture, but s
having nonclassical features as discussed in Sec. II.

In order to account for experimental conditions, we ha
also considered the effects of a nonunit quantum efficiench
in the counting of the number of excitations. Whenh,1, the
7-3
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ANNA FELICETTI, STEFANO MANCINI, AND PAOLO TOMBESI PHYSICAL REVIEW A65 062107
actually measured distribution is related to the ideal distri
tion by a binomial convolution@32#.

Statistical errors are accounted for as well by consider
an estimation of the marginal distributions given
west(n;f)5Nf(n)/Nf , where Nf(n) is the number of
events withn counts at phasef, while Nf is the total num-

FIG. 4. Density-matrix elements ofr↑↑ for the state~2! with
a50.7. In the computer simulationNf596 phases are considere
andNf5104 measurement events at each phase are assumed
recorded usingNc531. The other parameters areubu50.6 andh
50.9.~a! Exact density matrix;~b! reconstructed density matrix;~c!
statistical errors;~d! absolute difference between reconstructed a
exact density-matrix elements.

FIG. 5. Density-matrix elements ofr↓↓ for the state~2! with
a50.7. In the computer simulationNf596 phases are considere
andNev5104 measurement events at each phase are assumed
recorded usingNc531. The other parameters areubu50.6 andh
50.9.~a! Exact density matrix;~b! reconstructed density matrix;~c!
statistical errors;~d! absolute difference between reconstructed a
exact density-matrix elements.
06210
-

g
ber of events at the same phase. Then, following the a
ments given in Refs.@31,33#, the quantitiesNf(n) can ap-
proximately be regarded as independent Poissonian ran
variables, whose means and variances are given
w(n;f)N f'west(n;f)Nf . The variance ofwest(n;f) may
then be approximated bywest(n;f)/Nf , so that the vari-
ances of the real and imaginary parts of the density ma
can be easily estimated using Eq.~15! ~and similarly for the
other density operators!. This means that the errors can b
estimated in real time as the experiment runs, simultaneo
with the reconstruction of the density-matrix elements.

Other error sources leading to discrepancies between
and reconstructed density matrices can be identified in
choice ofubu, Nc , andNf ~number of phases!. However, as
can be seen from Figs. 4–6 the reconstructed density m
ces turn out to be quite faithful.

In addition to the present case we have performed o
simulations with different values ofa and several values o
the parameters, which confirm that the present method
quite stable and accurate.

The phase-space description corresponding to Eq.~11! is
given by the Wigner-function matrix@34#

W5FW↑↑~g! W↑↓~g!

W↓↑~g! W↓↓~g!
G

5FTr2@r↑↑d~g2â!# Tr2@r↑↓d~g2â!#

Tr2@r↓↑d~g2â!# Tr2@r↓↓d~g2â!#
G , ~16!

whered(g2â) is the Fourier transform of the displaceme
operator@30#.

be

d

be

d

FIG. 6. Density-matrix elements ofr↑↓ for the state~2! with
a50.7. In the computer simulationNf596 phases are considere
andNev5104 measurement events at each phase are assumed
recorded usingNc531. The other parameters areubu50.6 andh
50.9.~a! Exact density matrix;~b! reconstructed density matrix;~c!
statistical errors;~d! absolute difference between reconstructed a
exact density-matrix elements.
7-4
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QUANTUM CHARACTERIZATION OF A WERNER-LIKE MIXTURE PHYSICAL REVIEW A65 062107
Then, the Wigner functions corresponding to the dens
matrices of Figs. 4–6 are shown in Figs. 7 and 8.

The reconstructed Wigner functions as well turn out to
quite faithful. We would like to emphasize their particul
shape. InW↑↑ there are two hills, one centered in Reg
52a and the other in Reg5a coming from the random
part of the state~2!, instead, the pseudosinglet part of t
state contributes only to the bump in2a, thus producing the
asymmetric effect. The opposite happens forW↓↓. The shape
of W↑↓ is due to the quantum interference given by the
tanglement between the two degrees of freedom; in fac
the absence of entanglementr↑↓ would just be a replica of
the diagonal partsr↑↑ andr↓↓.

V. PHYSICAL REALIZATION

We now briefly discuss a system where the Werner-l
mixture could be synthesized and even measured. It
single electron trapped in a Penning trap@35#, where two

FIG. 7. Top: Wigner function corresponding to the density m
trix of Fig. 4 ~true on the left and reconstructed on the right!. Bot-
tom: Wigner function corresponding to the density matrix of Fig
~true on the left and reconstructed on the right!.

FIG. 8. Wigner function corresponding to the density matrix
Fig. 6 ~true on the left and reconstructed on the right!.
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different degrees of freedom of the same particle can be
tangled and also measured.

An electron in a Penning trap is confined by the com
nation of a homogeneous magnetic field along the positivz
axis and an electrostatic quadrupole potential in thexy plane
@35#. The spatial part of the electronic wave function consi
of three degrees of freedom. Neglecting the slow magne
motion ~whose characteristic frequency lies in the kHz r
gion!, here we only consider the axial and cyclotron motio
which are two harmonic oscillators radiating in the MHz a
GHz regions, respectively. On the other hand, the spin
namics results from the interaction between the magn
moment of the electron and the static magnetic field, so
the free Hamiltonian reads as@35#

H free5\vzaz
†az1\vcac

†ac1\vss3/2, ~17!

where the indicesz, c, ands refer to the axial, cyclotron, and
spin motions, respectively.

Here, in addition to the usual trapping fields, we consid
an external radiation field as a standing wave along thz
direction and rotating, i.e., circularly polarized, in thexy
plane with frequencyV @36#. To be more specific, we con
sider a standing wave within the cylindrical cavity config
ration @37# with the ~dimensionless! wave vectork. Then, the
interaction Hamiltonian reads@36#

H int5\e@ace
i (Vt1w)1ac

†e2 i (Vt1w)#cos~kz1x!

1\z@s2ei (Vt1w)1s1e2 i (Vt1w)#sin~kz1x!,

~18!

where s65(s16 is2)/2 and z5az1az
† . The phasex de-

fines the position of the center of the axial motion with r
spect to the wave. Depending on its value the electron ca
positioned in any place between a node (x50) and an anti-
node (x56p/2). Instead, the phasew is related to the initial
direction of the electric~magnetic! field in thexy plane, or to
the phase of any reference field. The two coupling consta
e and z are proportional to the amplitude of the applie
radiation field. Depending onV and x, the interaction
Hamiltonian~18! gives rise to different contributions at lead
ing order in the Taylor expansion of sin(kz1x) and cos(kz
1x).

We immediately recognize the possibility of implemen
ing the transformations~8!, ~9! on the spin and cyclotron
degrees of freedom by appropriately exploiting the Ham
tonian ~18!. For instance,U can be realized by settingV
5vs , x50, and then adjustingw andu5zt. Differently, D
can be realized by settingV5vc , x52p/2, and then ad-
justing b5ete2 iw.

These transformations easily allow one to generate
disentangled components of the mixture~2!, i.e., u↑&1u
6a&2 and u↓&1u6a&2, starting from the typical initial state
u↑&1u0&2.

Instead, for what concerns the generation of the entang
fraction of the mixture~2!, we recall the procedure deve
oped in Ref.@18#. That is, we consider the possibility o
introducing pulsed standing waves through the microwa
inlet @35# so thate, z become time dependent andẽ, z̃ indi-

-

f

7-5
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cate the pulse area~the duration of the pulse is assumed to
much shorter than the characteristic axial period, which is
the order of microseconds!. Then, nonclassical cyclotro
states can be entangled with the spin states through the
lowing steps@18#. ~1! First, we considerx50, V5vs , and
a pulsed standing wave lastingDt15t12t05t1. ~2! Second,
we allow a free evolution for a timeDt25t22t15p/(2vz).
~3! Third, we consider the action of another pulsed stand
wave withx52p/2, V5vc , for a timeDt35t32t2.

Finally, if we consider the initial axial state as a Gauss
state with momentum width much smaller thanz̃ ~which is
easily obtained in the case of the ground state of the a
oscillator!, we end up with an evolution operator of the for
D(as1), wherea is related toẽ, z̃, andw. It is then imme-
diate to see that the initial stateu↑&1u0&2 may evolve with the
aid of D(as1) and a spin rotation into

1

A2
~ u↓&1ua&22u↑&1u2a&2). ~19!

This state has been already discussed in Refs.@12,15# and
constitutes the pseudosinglet component of the mixture~2!.

Thus, at each run of the experiment the desired com
nent of the Werner-like mixture can be synthesized, thus
lowing the generation of the state~2! on average ensemble

For what concerns the measurement, the addition o
particular inhomogeneous magnetic field~known as the mag-
netic bottle field@35#! to that already present in the tra
allows one to perform a simultaneous measurement of b
the spin and the cyclotron excitations number. The use
interaction Hamiltonian for the measurement process is

Hbottle5\vbFac
†ac1

g

2
s3Gz2, ~20!

where the angular frequencyvb is directly related to the
strength of the magnetic bottle field.
-

.
.

J.

h
,

06210
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Equation~20! describes the fact that the axial angular fr
quency is affected both by the number of cyclotron exci
tions ac

†ac and by the eigenvalue ofs3. The modified
~shifted! axial frequency can be experimentally measur
@35# after the application of the inhomogeneous magne
bottle field. One immediately sees that it assumes differ
values for every pair of eigenvalues ofac

†ac and s3 due to
the fact that the electrong factor is slightly~but measurably
@35#! different from 2.

However, prior to such kind of measurement, one has
deal with the transformations~8!, ~9! which can be realized
through the Hamiltonian~18! as discussed above.

Repeating this procedure many times allows us to reco
the desired marginal distributions, hence to sample
density-matrix elements.

VI. CONCLUSIONS

In conclusion, we have studied the properties of a Wern
like mixture and a reliable method to achieve its tomograp
characterization. A useful system to investigate such st
has been individuated in the trapped electron. There are o
candidate systems that offer the possibility of generating
manipulating the studied state. We mention, for examp
trapped ions@11#, or atoms in cavity quantum electrodynam
ics @14#. Moreover, in such systems the studied state mi
involve two particles, or quite generally the two subsyste
could be spatially separated.

The experimental studies on this state might yield n
insight in the foundations of quantum mechanics and all
further progress in the field of quantum information.
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