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Quantum characterization of a Werner-like mixture

Anna Felicetti, Stefano Mancini, and Paolo Tombesi
INFM, Dipartimento di Fisica, Universitali Camerino, 1-62032 Camerino, Italy
(Received 17 January 2002; published 6 June 2002

We introduce a Werner-like mixturgR. F. Werner, Phys. Rev. A0, 4277 (1989] by considering two
correlated but different degrees of freedom, one with discrete variables and the other with continuous variables.
We evaluate the mixedness of this state and its degree of entanglement, establishing its usefulness for quantum
information processing such as quantum teleportation. Then, we provide its tomographic characterization.
Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in
a Penning trap.
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I. INTRODUCTION nally, in Sec. V we discuss a possible implementation and
Sec. VI is devoted to conclusions.
It is nowadays well known that the nonlocal properties of
quantum mechaniddl,2] enable striking processes in quan- Il WERNER-LIKE MIXTURE

tum information[3_]. In the_se processes the role of maximally In his pioneering paper, Bell proved that a local realistic
entangled states is promingdtS]. However, very often, the jyierpretation of quantum mechanics is impossiigé and
decoherence effects due to the environment transform thgy the case of pure states it is known that, when measure-
pure entangled state into a statistical mixture and degradgents are performed on two quantum systems separated in
quantum entanglement in the real wo[Bl. Although puri-  space, their results are correlated in a manner which, in gen-
fication schemes may be applied to noisy chanfiélisthere  eral, cannot be explained by a local hidden variables model
exist some mixture states that maintain interesting propertie$20]. Since the only pure states satisfying the Bell inequality
An illuminating example is provided by the Werner mixture are pure product states, one might naively think that the only
[8], which is not a mixture of product states, nonetheless notnixed states that do not violate Bell's inequality are mixtures
violating any of Bell's inequality[2], but still useful for of product states. However, Wern@&] showed that this con-
guantum information processiri®,10]. Such states belong jecture is false for the so-called Werner states

to systems with two discrete degrees of freedom like two 1 1

spin 3. However, information processing may sometimes in- p==11®1,+ = | W ¥, (1
volve hybrid systems where one degree of freedom has dis- 8 2

crete varlab_les and t_he other c_ontmuoug variables. It ma%hereli(i=1,2) stands for the identity operator of a single
happen, for instance, in trapped idri4,12, in trapped elec- qubit  (1ii(L]+]1)i(1])  and |‘I’_>:1/\/§(|l>1|T>2
trons [13], or in cavity quantum electrodynami¢&4,15. “11)4]1)a) is the spi||’1| singlet state.
Thus, it will be the aim of this paper to consider a mixture, A more general Werner mixture can be obtained by con-
which resembles the Werner one, but where one of the tWajgering one of the two subsystems, say 2, as described by
subsystems is described by continuous variables. continuous variables. A way to encode the qubit in continu-
On the other hand, states and processes used in quantyis variable systems could be the use of even and odd su-
information typically need a well characterizatif8]. This  perpositions of coherent states which are orthogdaal,
can be accomplished by using tomographic techniil6s  thus resulting in the same situation of Hd). Instead, the
Concerning the quantum state measurement, after the senghoice we are going to make is more general and gives the
nal work by Vogel and Riskeifil6], a lot of progress has possibility of exploring a variety of situations.
been obtained and further techniques and algorithms have That is, we now replace the sta{é$,, || ), of the second
been developefll7]. We would just mention the possibility qubit with |a), and |- a),, where the latter are coherent
of state reconstruction, for a composite system of discretgtates of amplituder and — «, respectively(we shall con-
and continuous variables, by simply measuring the set oéidera € R throughout the paper for the sake of simpligity
rotated spin projections and displaced number operatorsherefore, a Werner-like mixture would be
[18,19. Then, we shall provide the tomographic character-
ization of a Werner-like mixture by generalizing that method. _} | o] —a|+] |®|— —a
The outline of the paper is the following: In Sec. Il we p=gllLull R INE R
discuss the Werner mixture and we extend the concept by
considering one of the two subsystems with continuous vari- Dl @la)axal +[1)1x(T]@]@)2a{al}
ables. Then we characterize such a state in terms of mixed- 1
ness and entanglement. Section Il is devoted to the tomog- + Z[|l>1|a>2—|T>1|—a>2][1<l|2<a|— 1{T]2{=al].
raphic method employed for such a state reconstruction. In
Sec. IV we present the results of numerical simulations. Fi- (2
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FIG. 1. EntropyS as a function ofa=/—(1/2)In«.
by (L/2)In FIG. 2. Degree of entanglemeriE as a function of «

Since(a|— a) = exp(=2a?)#0, the above state does not de- ~ ¥~ (1/2)In«.

scribe a real two qubit system, but rather a two qubit system ) , )

with nonorthogonal statd@2]. Of course, fora>1 Eq. (2) negative e|genvalub4,2.4]. Then, a suitable measure of en-
behaves like the statd), but we want to study its character- tanglement can be defined 25]

istics for a generic value af. To this end, we map the above

state in the two spig- Hilbert spaces by introducing for the E(p)= _22 = ®)
subsysten 2 a vectol ¢),= «| | ),+ V1—«?| 1), and consid- p)= o

ering the nonorthogonal states$|),,|#), instead of
|— @)y, @)y, with (]| )= k=exp(24?). Then, Eq.(2) can

: where\; is a negative eigenvalue pf'2. It is worth noting
be rewritten as

that this measure satisfies the necessary conditions required

1 for every measure of entanglemégsi. Then, we have plot-
p=2{|D1{l®] 1) LI+ T TI®|])2a( ] ted in Fig. 2 the quantitf calculated by exploiting again the

8 matrix representation of E@3) in the basiss.

D aa( L @) gl ]+ 1) 120 T @ | )9 4]} We can see that the Werner-like mixture is factorizable for

a=0; then, by increasing, its degree of entanglement in-
1 creases, saturating at the value 1/4 characteristic of the true
+Z[|l>l|‘/’>2_|T>1|l>2][1<i|2<‘/’|_ (Tl2(H]- Werner mixture(1). This latter value of entanglement is
known to be sufficient to improve the teleportation perfor-
©) mances over the classical limit once the senddice) and
The degree of mixedness of the sté@ecan be evaluated by the receiverBob) initially share the statel) [9]. Thus, it is
: straightforward to ask to what extent a Werner-like mixture
using the von Neumann entropg3] :
can be used for the same goal. To establish a threshold value
for &« we are going to consider the teleportation fidelity. To
S(p)=—Tr(plogzp)=— 2 \ilog;, (4 this end, we first write the statp through the Hilbert-
' Schmidt decomposition

where\; are the eigenvalues of the matrix representation of

p. We have calculated such eigenvalues in the bdsis 1
={)all)2, D12, [Dalb)2, [1)1l1)2} and we have P=2
plotted the entropysin Fig. 1.

We can see that also fer=0 the state is a mixture, then, 8
it becomes more and more mixed by increasing the value of + 2 tn,mtfﬁl)@) Ufnz)
@, but never reaching the maximufa completely mixed nm=1
density operator in d-dimensional space has entropyJdg ) )
It is also worth noting that forr(x) arbitrary, Eq.(3) is not  Whereo, (n=1,2,3) are th;standard Pauli matrices, s
a mixture of Bell's states as it is for the Werner mixtg, ~ are vectors irR® andr-e=3?_;rio;. Furthermore, the co-
ie., fora>1. efficientstn,m=Tr[pcr§11)® a'sr%)] form the real matrixT de-

Let us now consider the measure of entanglement. For &cribing the correlations between the two qubits. Thus, the
two spin4 system the state separability is related to the parteleportation capabilities will depend on the specific form of
tial transposition operatiof4,24]. The matrix elements of T. In particular it is shown in Re{26] that the teleportation
partial transpositionp™ of a statep are given byprM’nV fidelity amounts to
Epmv,n;u where pm,u.,nV: l<m| 2<lu’|p|v>2|n>1 with
m,n,u,v="1,]. A density matrixp for a two spins system Fe }
is inseparable if and only if its partial transpgs& has any 2

|1®|2+ I‘-a'(l)®|2+ | 1®S’0’(2)

: (6)

1+ %Tr ﬁ*ﬂ 7)
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FIG. 3. Teleportation fidelity as a function ef=+/—(1/2)In .
The dashed line represents the classical bound of 2/3.

Then, in Fig. 3 we have plotted the quantiy versusa
compared with the classical fidelity 2/3.
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pTT pTl
1

o' p
where each operatgr' T, p't, p'!, p!!, can in turn be rep-
resented in the Fock basis of the subsystem 2.

Now, we setfd= =0 and we suppose to retain only the
measurement resuls=1; then, expanding the density op-
eratorp'! in the Fock basis, and defining, as an appropri-

ate estimate of the maximum number of excitatiéoigtoff),
we have

p= . pt=[pMT (11

NC
W(T,n;O,Oﬂ)=km2:O (n, BlKk)(klp!T[m)(m[n, ).
(12

The projection of the displaced number statg3) onto the
Fock statelm) can be obtained generalizing the result de-
rived in Ref.[30].

We immediately recognize the presence of a threshold L€t us now consider, for a given value 8|, w as a
value (&, =0.268) below which the Werner-like mixture be- function of ¢=ard 8] [31] and calculate the coefficients of

comes useless for quantum teleportation.

IIl. STATE MEASUREMENT

the Fourier expansion

1 (2 .
W(T,n:O,Or)=Zf0 dew(T,n;0,04)e"?, (13

We now discuss the possibility of a complete characterfor r—0,1,2 .. .. Combining Eqs(12) and(13), we get

ization of the Werner-like mixture through tomographic tech-
niques. In particular, we generalize the method presented in

Refs.[18,19 to nonpure states.

NC—I’

W(T,n:O,Or)=mE:O GUOL(BN(m+r|p!Tm), (14

According to the state reconstruction principle developed

in Ref.[27] we choose an observable, hergz a'a, then we

where the explicit expression of the matrig8ss given in

apply suitable unitary transformations to get a set of observRef.[18]. ' ' S
ables giving the whole state information upon measurements. We may now notice that if the distribution(7,n;0,0,8)

In our case the transformations would be
U(6,0)=exd —i6(og,C0s¢+ a,Sine)], (8)

D(B)=exd Ba'—p*a], 9)

which lead to rotatedby angles# and ¢) spin projection in
the subsystem 28], and to displaced number statiey a
complex amountB) in the subsystem 229]. Then, it is

tributions:

w(s,n;0,¢,8)=Tr{pD(B)U(0,¢)|s)1

X 1(s|®@[nY,x(n|UT(6,¢)DT(B)},
(10

having as variables the eigenvalugsn of o3, a'a, and
parametrically depending o, ¢, and 8. Thus, measuring
the statep would mean the possibility to expregs as a
functional operator ofv, i.e., to invert expressiofiL0). This

is measured fone[O,N] with N=N., then Eq.(14) repre-
sents, for each value of a system oN+1 linear equations
between theN+1 measured quantities and ti,+1—r
unknown density-matrix elements. Therefore, in order to ob-
tain the latter, we only need to invert the system

N
<m+r|p”|m>=n§=:0 MO (|B)w(T,n;0,05), (15

where the matriceM are given byM =(G'G) "'G".
possible to consider the following measurable marginal dis-

The procedure can be repeated witb| ,n;0,0,8) in or-

der to get the matrix elements of !. Then, changing the
parameters so that= 7/4 ande = — 7/2 we can get the real
part of the matrix elements @f . Instead, withd= /4 and
¢=0 we can get the imaginary part of the matrix elements of
p'!, thus concluding the reconstruction procedure of the state
(11).

IV. NUMERICAL RESULTS

As an example of the proposed method, we show in Figs.

4—-6, the results of numerical Monte Carlo simulations of the

reconstruction of the sta{®) once written in the form(11).

also means the possibility to sample the density-matrix eleln this simulation we have used the value=0.7, which
ments(in some basijsfrom the quantity measured by span- makes the state different from a true Werner mixture, but still

ning the whole space of parameters.

having nonclassical features as discussed in Sec. Il.

In reality, we shall see that it is not necessary to consider In order to account for experimental conditions, we have
all possible values of parameters. As matter of fact, we writealso considered the effects of a nonunit quantum efficiepcy

the density operata?) as

in the counting of the number of excitations. Wher 1, the
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FIG. 4. Density-matrix elements gf'! for the state(2) with
a=0.7. In the computer simulatioN ,=96 phases are considered FIG. 6. Density-matrix elements gf'! for the state(2) with
and V= 10" measurement events at each phase are assumed to Be-0.7. In the computer simulatioN ;= 96 phases are considered
recorded usingN.=31. The other parameters &ig|=0.6 and7  andA/,,=10* measurement events at each phase are assumed to be
=0.9.(a) Exact density matrix(b) reconstructed density matritc) recorded usingN.=31. The other parameters gg|=0.6 andz
statistical errors(d) absolute difference between reconstructed and=0.9. (a) Exact density matrix(b) reconstructed density matrifc)
exact density-matrix elements. statistical errors(d) absolute difference between reconstructed and

exact density-matrix elements.
actually measured distribution is related to the ideal distribu-
tion by a binomial convolutiof32]. ber of events at the same phase. Then, following the argu-

Statistical errors are accounted for as well by consideringnents given in Refd.31,33, the quantities\4(n) can ap-
an estimation of the marginal distributions given by proximately be regarded as independent Poissonian random
wes’(n;¢):N¢(n)/N¢, where Ny(n) is the number of variables, whose means and variances are given by
events withn counts at phase, while \V,, is the total num-  w(n; #) N ,~w®(n; ¢) N, . The variance otv®{(n; ) may
then be approximated bw®*{n;¢)/\,, so that the vari-
ances of the real and imaginary parts of the density matrix
can be easily estimated using E&5) (and similarly for the
other density operatorsThis means that the errors can be
estimated in real time as the experiment runs, simultaneously
with the reconstruction of the density-matrix elements.

Other error sources leading to discrepancies between true
and reconstructed density matrices can be identified in the
choice of|B|, N, andN,, (number of phas@sHowever, as
can be seen from Figs. 4—6 the reconstructed density matri-
ces turn out to be quite faithful.

In addition to the present case we have performed other
simulations with different values af and several values of
the parameters, which confirm that the present method is
quite stable and accurate.

The phase-space description corresponding to(EL).is
given by the Wigner-function matrij34]

0.001,
0.0008}
0.0006}
0.0004,

W (y) WH(y)
W (y)  WH(y)
Trlp!'8(y—a)] Trlp''d(y—a)]
Trlp!'8(y—a)] Trlp'd(y—a)]

FIG. 5. Density-matrix elements gf'! for the state(2) with
a=0.7. In the computer simulatioN ,=96 phases are considered
andN,,=10* measurement events at each phase are assumed to be
recorded usindN.=31. The other parameters aig|=0.6 and#
=0.9.(a) Exact density matrix(b) reconstructed density matritc) .
statistical errors(d) absolute difference between reconstructed andwhere §(y—a) is the Fourier transform of the displacement
exact density-matrix elements. operator[30].

. (16
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different degrees of freedom of the same particle can be en-
tangled and also measured.

An electron in a Penning trap is confined by the combi-
nation of a homogeneous magnetic field along the posttive
axis and an electrostatic quadrupole potential inxyplane
[35]. The spatial part of the electronic wave function consists
of three degrees of freedom. Neglecting the slow magnetron
motion (whose characteristic frequency lies in the kHz re-
gion), here we only consider the axial and cyclotron motions,
which are two harmonic oscillators radiating in the MHz and
GHz regions, respectively. On the other hand, the spin dy-
namics results from the interaction between the magnetic
moment of the electron and the static magnetic field, so that
the free Hamiltonian reads §35]

Hfree=ﬁwzalaz+ﬁwca2ac+ﬁw50'3/2, (17

FIG. 7. Top: Wigner function corresponding to the density ma-where the indiceg, ¢, ands refer to the axial, cyclotron, and
trix of Fig. 4 (true on the left and reconstructed on the rjgBiot-  Spin motions, respectively.
tom: Wigner function corresponding to the density matrix of Fig. 5  Here, in addition to the usual trapping fields, we consider
(true on the left and reconstructed on the rght an external radiation field as a standing wave alongzhe
direction and rotating, i.e., circularly polarized, in thg
Then, the Wigner functions corresponding to the densityplane with frequency) [36]. To be more specific, we con-
matrices of Figs. 4—6 are shown in Figs. 7 and 8. sider a standing wave within the cylindrical cavity configu-
The reconstructed Wigner functions as well turn out to beration[37] with the (dimensionlesswave vectoik. Then, the
quite faithful. We would like to emphasize their particular interaction Hamiltonian read$6]
shape. InW'! there are two hills, one centered in Re _ _
=—a and the other in Rg=a coming from the random Hin="ie[ace' ¥ +ale™ (" Dcogkz+ x)
part of the statg?2), instead, the pseudosinglet part of the Qi+ O+ o)
state contributes only to the bump ine, thus producing the thilo @I+ o e T Dsintkz y),
asymmetric effect. The opposite happensWr. The shape (18
of W, is due to the quantum interference given by the en- .
tanglgment between ?he two degrees of fregedom; Bi/n fact, ilﬁ‘/here 0.=(01%i07)/2 andz=a,+a,. The phasey de-

the absence of entanglemesit would just be a replica of [N€S the position of the center of the axial motion with re-
the diagonal part'! andp'! spect to the wave. Depending on its value the electron can be

positioned in any place between a noge=0) and an anti-
node (y= = 7/2). Instead, the phaseis related to the initial
direction of the electri¢magneti¢ field in thexy plane, or to

We now briefly discuss a system where the Werner-likethe phase of any reference field. The two coupling constants
mixture could be synthesized and even measured. It is & and { are proportional to the amplitude of the applied

single electron trapped in a Penning tid5], where two radiation field. Depending o) and y, the interaction
Hamiltonian(18) gives rise to different contributions at lead-

ing order in the Taylor expansion of skxty) and coskz
+X).

We immediately recognize the possibility of implement-
ing the transformationg8), (9) on the spin and cyclotron
degrees of freedom by appropriately exploiting the Hamil-
tonian (18). For instanceU can be realized by settinf
=wg, x=0, and then adjusting and 6= ¢t. Differently, D
can be realized by settinQ=w., y=—/2, and then ad-
justing 8= ete™'?,

These transformations easily allow one to generate the
disentangled components of the mixtutd), i.e., |T)4]
+a), and|] )|+ a),, starting from the typical initial state
[7)110)2-

Instead, for what concerns the generation of the entangled
fraction of the mixture(2), we recall the procedure devel-
oped in Ref.[18]. That is, we consider the possibility of

FIG. 8. Wigner function corresponding to the density matrix of introducing pulsed standing waves through th~e ininOW&Ve
Fig. 6 (true on the left and reconstructed on the right inlet [35] so thate, ¢ become time dependent aed{ indi-

V. PHYSICAL REALIZATION
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cate the pulse argghe duration of the pulse is assumed to be  Equation(20) describes the fact that the axial angular fre-
much shorter than the characteristic axial period, which is ofjuency is affected both by the number of cyclotron excita-
the order of microseconglsThen, nonclassical cyclotron tions a;raC and by the eigenvalue o&;. The modified
states can be entangled with the spin states through the folshifted axial frequency can be experimentally measured
lowing stepq18]. (1) First, we considey=0, Q=wg, and  [35] after the application of the inhomogeneous magnetic
a pulsed standing wave lastidg,;=t; —to=t;. (2) Second, bottle field. One immediately sees that it assumes different
we allow a free evolution for a timAt,=t,—t;=7/(2w,).  values for every pair of eigenvalues afa, and o3 due to

(3) Third, we consider the action of another pulsed standinghe fact that the electrog factor is slightly(but measurably
wave withy=—m/2, Q=w., for a timeAt;=t3;—t,. [35]) different from 2.

Finally, if we consider the initial axial state as a Gaussian However, prior to such kind of measurement, one has to
state with momentum width much smaller thawhich is  deal with the transformation®), (9) which can be realized
easily obtained in the case of the ground state of the axiahrough the Hamiltoniari18) as discussed above.
oscillaton, we end up with an evolution operator of the form  Repeating this procedure many times allows us to recover
D(aay), wherea is related tce, 7, and . It is then imme- the desired marginal distributions, hence to sample the

diate to see that the initial staltg),]0), may evolve with the ~ density-matrix elements.
aid of D(a o) and a spin rotation into

1 VI. CONCLUSIONS
E(|l>1|a>2—|T>1|_01>2)- (19

In conclusion, we have studied the properties of a Werner-
like mixture and a reliable method to achieve its tomographic
This state has been already discussed in H&,15 and  characterization. A useful system to investigate such states
constitutes the pseudosinglet component of the mix®re  has been individuated in the trapped electron. There are other

Thus, at each run of the experiment the desired compacandidate systems that offer the possibility of generating and
nent of the Werner-like mixture can be synthesized, thus almanipulating the studied state. We mention, for example,
lowing the generation of the staf@) on average ensemble. trapped iong11], or atoms in cavity quantum electrodynam-

For what concerns the measurement, the addition of g&s[14]. Moreover, in such systems the studied state might
particular inhomogeneous magnetic fighthown as the mag- involve two particles, or quite generally the two subsystems
netic bottle field[35]) to that already present in the trap, could be spatially separated.
allows one to perform a simultaneous measurement of both The experimental studies on this state might yield new

the spin and the cyclotron excitations number. The usefuinsight in the foundations of quantum mechanics and allow
interaction Hamiltonian for the measurement process is  further progress in the field of quantum information.

g
Hypoe=F wp| alae+ = o3| 22, (20)
poule™ D] T T 2 T3 ACKNOWLEDGMENT
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