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Quantum wave-packet revivals in circular billiards
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We examine the long-term time dependence of Gaussian wave packets in a circular infinite well~billiard!
system and find that there are approximate revivals. For the special case of purelym50 states~central wave
packets with no momentum! the revival time isTrev

(m50)58mR2/\p, wherem is the mass of the particle, and
the revivals are almost exact. For all other wave packets, we find thatTrev

(mÞ0)5(p2/2)Trev
(m50)'5Trev

(m50) and the
nature of the revivals becomes increasingly approximate as the average angular momentum or number ofm
Þ0 states is increased. The dependence of the revival structure on the initial position, energy, and angular
momentum of the wave packet and the connection to the energy spectrum is discussed in detail. The results are
also compared to two other highly symmetrical two-dimensional infinite well geometries with exact revivals,
namely, the square and equilateral triangle billiards. We also show explicitly how the classical periodicity for
closed orbits in a circular billiard arises from the energy eigenvalue spectrum, using a WKB analysis.
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I. INTRODUCTION

The connections between the quantized energy eigenv
spectrum of a bound state and the classical motions of
corresponding classical system have become increasingl
teresting and important as the ability to experimentally pro
the quantum-classical interface has dramatically improv
Methods such as periodic orbit theory@1,2#, for example,
provide direct connections between the energy spectrum
the closed orbits of the classical system. The study of
time dependence of wave-packet solutions also depends
cally on the energy spectrum, most especially as relate
the existence of revivals~and super-revivals!, wherein ini-
tially localized states that have a short-term, quasiclass
time evolution, can spread significantly over several orb
only to re-form later in the form of a quantum revival
which the spreading reverses itself, the wave packet relo
izes, and the semiclassical periodicity is once again evid
Such revival phenomena have been observed in a wide
ety of physical systems, especially in Rydberg atoms@3#, and
calculations exist for many other systems@4#.

The archetype of a one-dimensional model system
quantum revivals is the infinite well~where such revivals are
exact! and a number of analyses@5–10# have provided in-
sight into both the short-term and long-term behavior
wave packets. Just as with many systems that depend
single quantum number, one typically expands the ene
eigenvalues~assuming integral values! about the centra
value used in the construction of a wave packet via

E~n!'E~n0!1E8~n0!~n2n0!1
1

2
E9~n0!~n2n0!2

1
1

6
E-~n0!~n2n0!31•••, ~1!
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in terms of which the classical period, revival, and sup
revival times are given, respectively, by

Tcl5
2p\

uE8~n0!u
, Trev5

2p\

uE9~n0!u/2
, Tsuper5

2p\

uE-~n0!u/6
.

~2!

Systems with two quantum numbers@11,12#, with ener-
gies labeled byE(n1 ,n2), offer richer possibilities for wave-
packet revivals and typically the long-term revival structu
depends on three possible times, given by

Trev
(n1)

5
2p\

~1/2!]2E~n1 ,n2!/]n1
2

,

Trev
(n2)

5
2p\

~1/2!]2E~n1 ,n2!/]n2
2

, ~3!

and

Trev
(n1 ,n2)

5
2p\

]2E~n1 ,n2!/]n1]n2

, ~4!

and the revival structure depends on the interplay betw
these three times.

The two-dimensional generalization of the infinite well,
the two-dimensional infinite square well~billiard! of size
L3L, provides the simplest example of such a two quant
number system, and in this case the revival times are ide
cal, namely,

Trev
(nx)

5
4mL2

\p
5Trev

(ny)
~5!

with no cross term present. For rectangular infinite we
with incommensurate sides (Lx3Ly , Lx /LyÞp/q!, the
structure of the revival times may be more complex@11,12#.

Another trivially related two-dimensional~2D! billiard
system for which exact quantum revivals are guarantee
©2002 The American Physical Society03-1
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an isosceles triangle infinite well with 45° angles. The so
tions for that system can be obtained from the 2D squ
well ~cut along the diagonal! by taking appropriate linea
combinations of the form @u(nx)(x)u(ny)(y)

2u(nx)(y)u(ny)(x)#/A2, which then satisfy the boundar
conditions along the long side~hypotenuse! of the triangle,
as long asnxÞny . The energy spectrum, therefore, consi
of one set of 2D square-well energies,E(nx ,ny)5\2p2(nx

2

1ny
2)/2mL2, but is restricted tonx,ny . The purely qua-

dratic energy dependence guarantees that all wave pa
will have the standard revival time given by Eq.~5!.

A less obvious case of exact quantum revivals in a no
2D billiard shape exists for the equilateral triangle. The e
ergy spectrum for this system@13,14# ~with side of lengthL!
is given by

E~p,q!5S 4

3D 2S \2p2

2mL2D ~p21q22qp! with 1<q<p/2,

~6!

with all states being degenerate~due to symmetries abou
obvious axes!, except for those withp52q. Because of the
exact quadratic dependence~with trivially related coeffi-
cients! on the two quantum numbers, there are exact reviv
with a common revival time given by

Trev
(p) 5Trev

(q) 5Trev
(p,q)5

9mL2

4\p
. ~7!

Given the fact that these two simple geometrical case
2D infinite well ~billiard! systems exhibit exact quantum r
vivals, it is of interest to study to what extent, if any, th
circular infinite well will exhibit revival structures. Just a
square/rectangular@15# and spherical/circular@16# billiard
geometries were among the first considered using peri
orbit theory, a comparison of the revival structure in the
two distinct systems is appropriate. While qualitatively d
ferent from the equilateral triangle or square wells, one
perhaps suggestively describe these geometries as re
N-sided polygons withN53 andN54, respectively, so tha
the circular case we will consider here corresponds
N5`.

The ability to fabricate such billiard systems~or analogs
thereof! and experimentally probe the energy spectrum
time dependence makes such a study of more than acad
interest. For example, the energy-level structure and stati
of microwave cavities@17# provide an analog system t
probe periodic orbit theory and statistical measures of c
otic behavior in arbitrarily shaped 2D billiard geometrie
Measurements of conductance fluctuations in ballistic mic
structures@18# have been tentatively used to identify fr
quency features in the power spectrum with specific clo
orbits in a circular~and stadium! billiard. More recently, the
realization of atom-optics billiards@19#, with ultracold atoms
in arbitrarily shaped 2D boundaries confined by optical
pole potentials, has allowed the study of various chaotic
integrable shapes such as the stadium, ellipse, and ci
again for short-term, semiclassical propagation. Motiva
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by these studies, we will focus on the long-term reviv
structure of quantum wave packets in a circular billiard g
ometry.

Since the revival structure of any system depends on
quantum number dependence of the quantized energy ei
values, in Sec. II we discuss, in some detail, the depende
of the two-dimensional circular infinite well eigenvalues o
the radial and angular-momentum quantum numbers,nr and
m. We then present in Sec. III, numerical results for the a
tocorrelation function for several classes of initially Gauss
wave packets in the circular well.

Based on both the energy eigenvalue analysis and
detailed wave packet simulations, for purelym50 wave
packets~implying radially symmetric states, with no averag
momentum!, we find almost exact revivals withTrev

(m50)

58mR2/\p, wherem denotes the mass of the point partic
in the circular billiard of radiusR. For wave packets includ
ing umuÞ0 components, meaning any component with no
vanishing average momentum or one that is not initially
calized at the center of the well, there are only approxim
revivals, becoming increasingly so as the angular momen
is increased. The revival times in all these cases areTrev

(mÞ0)

5(p2/2)Trev
(m50)'5Trev

(m50) due to the seemingly accidenta
fact that 10/p251.013.

Finally, in Appendix A we point out a similarity betwee
a pattern of special ‘‘accidentally’’ revival times in the 2
circular, square, and equilateral triangle wells, while in A
pendix B, we show explicitly how the classical periodici
for closed orbits in the circular well arises directly fro
the quantum-mechanical energy spectrum, using a W
analysis.

II. ENERGY SPECTRUM
FOR THE CIRCULAR INFINITE WELL

The problem of a point particle~with mass denoted bym,
to avoid confusion with the angular-momentum quantu
numberm) confined to a circular infinite well of radiusR is
defined by the potential

VC~r !5H 0 for r ,R,

` for r>R.
~8!

The ~unnormalized! solutions of the corresponding 2D
Schrödinger equation are given by

c~r ,u!5Jumu~kr !eimu, ~9!

where the quantized angular-momentum values are given
Lz5m\ for m50,61,62, . . . and theJumu(kr) are the
~regular! Bessel functions of orderumu.

The wave numberk is related to the energy viak
5A2mE/\2 and the energy eigenvalues are quantized by
application of the boundary conditions at the infinite wall
r 5R, namely,Jumu(z5kR)50. The quantized energies ar
then given by

E(m,nr )
5

\2@z(m,nr )
#2

2mR2
, ~10!
3-2
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QUANTUM WAVE-PACKET REVIVALS IN CIRCULAR . . . PHYSICAL REVIEW A 65 062103
FIG. 1. Plot of the lowest-
lying z(m,nr )

zeros of the Besse
function, determined ~numeri-
cally! by Jumu(z(m,nr )

)50, vs m,
scaled as 2z(m,nr )

/p23/2. Zeros
corresponding to fixed values o
the combination 2nr1umu are
shown connected, not ‘‘fit’’ to
data. Shown on the right are plot
of the radial probability density
P(r )5r uR(r )u2 vs r for the three
states shown with a ‘‘circle’’ for
which a value of 2nr1umu520 is
fixed. The value of Rmin /R
5umu/z suggested by Eq.~14! is
also indicated by a vertical dashe
line.
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where z(m,nr )
denotes the zeros of the Bessel function

order umu and nr counts the number of radial nodes. Th
energy spectrum is doubly degenerate forumuÞ0 corre-
sponding to the equivalence of clockwise and counterclo
wise (m.0 andm,0) motion. Because the quantum num
ber dependence of the energy eigenvalues is the determ
factor in the structure of wave-packet revivals, we wish
examine them,nr dependence of theE(m,nr )

}@z(m,nr )
#2 in

detail.
As a first approximation, one can look at the largez be-

havior of the Bessel function solutions@20# for fixed values
of umu, namely,

Jumu~z!→A 2

pz
cosS z2

umu
2

2
p

4 D1••• . ~11!

With this approximation, the zeros would be given by

z(m,nr )
2

umu
2

2
p

4
'~2nr11!

p

2
or

z~m,nr )
'S nr1

umu
2

1
3

4Dp[z0~m,nr !, ~12!

where we define the functionz0(m,nr) for future reference.
If this result were exact, the quantized energies would
pend on two quantum numbers in at most a quadratic ma
and there would be exact wave-packet revivals, just as
the 2D square or equilateral triangle billiards.

To see to what extent this approximation is, in fact, va
for various values ofm,nr , we evaluate~numerically! a
large number of the lowest-lying ‘‘exact’’ Bessel functio
zeros, z(m,nr )

. We then plot, in Fig. 1, the combinatio

2z(m,nr )
/p23/2 vs m, which would yield horizontal lines
06210
f

-

ing

-
er

or

corresponding to constant, integral values of 2nr1umu if the
result in Eq.~12! were exact. For three such states, we a
illustrate the corresponding radial probability density a
note that for increasing values ofumu, there are fewer radia
nodes so that the appropriate values ofz5kR used in the
boundary condition are smaller and the approximation u
in Eq. ~12! becomes worse.

We see that the approximation is only a good one
umu'0 with obvious quadratic corrections. Instead of a
tempting to evaluate Bessel function zeros to higher pre
sion using more elaborate ‘‘handbook’’ expansions ofJumu(z)
for large z, we note that the result of Eq.~12!, and the im-
portant and necessary corrections to it, can be obtained
straightforward and accessible way by using the WKB a
proximation.

If we first quantize the angular variable to find that ang
lar momentum is given byLz5m\, we can note that in the
radial direction the particle moves freely up to the infin
wall at r 5R, but is subject to an effective centrifugal pote
tial given byVe f f(r )5Lz

2/2mr 25(m\)2/2mr 2. The classical
particle cannot penetrate this centrifugal barrier and has
associated inner radius~distance of closest approach! given
by

Ve f f~Rmin!5
m2\2

2mRmin
2

5E or Rmin5
umu\

A2mE
. ~13!

We can also write this in the useful form

Rmin5
umuR

z
, where E[

\2z2

2mR2
, ~14!

more directly in terms of the desired dimensionless varia
z, which is equivalent to the energy eigenvalue. In Fig. 1,
3-3
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R. W. ROBINETT AND S. HEPPELMANN PHYSICAL REVIEW A65 062103
have also indicated the value ofRmin /R5umu/z for several
of the radial probability densities, to compare to the fu
quantum-mechanical results.

The WKB quantization condition on the radial variabler
is then given by

E
Rmin

R

kr~r ! dr5~nr1CL1CR!p, where

kr~r ![A2mE

\2
A12

Rmin
2

r 2
. ~15!

The matching coefficients@21# are given byCL51/4 and
CR51/2, which are appropriate for ‘‘linear’’ boundaries~at
the inner centrifugal barrier! and ‘‘hard’’ or ‘‘infinite wall’’
boundaries~such as atr 5R), respectively. The WKB energy
quantization condition for the quantized energies, in terms
nr explicitly and umu implicitly, via both the E and Rmin
terms, can then be written in the form

A2mE

\2 E
Rmin

R A12
Rmin

2

r 2
dr5~nr13/4!p. ~16!

The integral on the left can be evaluated in the form

E
Rmin

R Ar 22Rmin
2

r
dr5AR22Rmin

2 2Rmin sec21S R

Rmin
D

5R@A12x22x sec21~1/x!#, ~17!

where we definex[Rmin /R5umu/z. This result can be ex
panded for small values ofx ~i.e., Rmin /R!1 or umu/z!1)
to obtain

A12x22x sec21~1/x!512
px

2
1

x2

2
1

x4

24
1

x6

80
1

5x8

896

1••• . ~18!

The WKB quantization condition in Eq.~16! can then be
written, in terms ofz, in the form

zS 12
p

2

umu
z

1
m2

2z2
1

m4

24z4
1••• D 5~nr13/4!p. ~19!

If we keep only the first two terms on the left-hand side,
find that

z'~nr1umu/213/4!p[z0~m,nr !, ~20!

which is the lowest-order result obtained directly from t
limiting form of the wave function.

To improve on this result, we simply keep successiv
higher-order terms, solving iteratively at each level of a
proximation using a lower-order result forz, and we find the
much improved approximation
06210
f

y
-

z(m,nr )
5z0~m,nr !2

m2

2z0~m,nr !
2

7

24

m4

@z0~m,nr !#
3

2
83

240

m6

@z0~m,nr !#
5

2
6949m8

13 440@z0~m,nr !#
7

1••• ,

~21!

which we have confirmed numerically is an increasing
good approximation, especially fornr@1. For the study of
wave-packet revivals, we only require the energy eigenva
dependence onm,nr to second order, but higher-order term
such as those above might be useful for super-revivals
even longer-term time-dependence studies~or more detailed
analytic periodic orbit theory studies of the circular well!.

For the special case ofm50, we find no improvement
using this WKB technique, but motivated by the form of th
expansion in Eq.~21!, we fit the first 50 lowest-lyingm50
zeros to a similar form and find the result

z(0,nr )
5z0~0,nr !1

1

8z0~0,nr !
2

1

24@z0~0,nr !#
3

1••• .

~22!

We cannot unambiguously fit to any higher-order terms,
much of the nonlinear spacing information is contained
the lowest few zeros.

Using Eqs.~21! and ~22!, we can evaluate the energ
eigenvalues to quadratic order innr ,m in order to probe the
revival structure of wave packets. For the special case om
50, we find that

E(0,nr )
5

\2@z(0,nr )
#2

2mR2
5

\2p2

2mR2 F S nr1
3

4D 2

1
1

4p2G , ~23!

while for the more general case withmÞ0, we find

E(m,nr )
5

\2@z(m,nr )
#2

2mR2
5

\2p2

2mR2 F S nr1
umu
2

1
3

4D 2

2
m2

p2G .

~24!

The fact that these energies depend on nonintegral va
of the effective quantum numbers is reminiscent of the c
of Rydberg wave packets in alkali-metal atoms due to qu
tum defects@22#, and methods similar to those used the
might prove useful. In what follows, however, we simp
examine the time dependence of typicalm50 and mÞ0
wave packets directly.

III. GAUSSIAN WAVE PACKETS AND REVIVALS

Any wave packet in the circular billiard can be expand
in the normalized eigenstates of the form

c (m,nr )
~r ,u!5@N(m,nr )

Jumu~k(m,nr )
r !#S 1

A2p
eimuD ,

~25!
3-4
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where

@N(m,nr )
#2E

0

R

r @Jumu~kr !#2 dr51, ~26!

with expansion coefficients given by

a(m,nr )
5^c~r ,u;t50!uc (m,nr )

&, ~27!

which satisfy

(
m52`

1`

(
nr50

`

ua(m,nr )
u251. ~28!

The expectation value of the energy in this potential wel
given by

^Ê&5 (
m52`

1`

(
nr50

`

ua(m,nr )
u2S \2@z(m,nr )

#2

2mR2 D , ~29!

and the expectation values of powers of angular momen
are also easily evaluated to give

^L̂z
k&5 (

m52`

1`

(
nr50

`

ua(m,nr )
u2~m\!k. ~30!

The subsequent time dependence of the wave pack
then given by

c~r ,u;t !5 (
m52`

1`

(
nr50

`

a(m,nr )
c (m,nr )

~r ,u! e2 iE(m,nr )
t/\,

~31!

and the standard autocorrelation function@23# is given by

A~ t ![^c~r ,u;t !uc~r ,u,0!&

5 (
m52`

1`

(
nr50

`

ua(m,nr )
u2e2 iE(m,nr )

t/\. ~32!

For definiteness, we will use a standard Gaussian w
packet of the form

c~x,y;t50!5c0~x;x0 ,p0x ,b!c0~y;y0 ,p0y ,b!, ~33!

where

c0~x;x0 ,p0x ,b!5
1

Ab~p!1/2
eip0x(x2x0)/\e2(x2x0)2/2b2

~34!

with a similar expression forc0(y;y0 ,p0y ,b). The initial
expectation values for thex variables are given by

^x&05x0, ^x2&05x0
21

b2

2
, Dx05

b

A2
~35!

and
06210
s

m

is

ve

^px&05p0x , ^px
2&05p0x

2 1
\2

2b2
, Dp05

\

A2b
,

~36!

with similar results fory. So long as the initial location
(x0 ,y0) is well away from the edges of the potential we
such a Gaussian form can be easily and reproducibly
panded in terms of eigenstates. The expectation value of
energy is

^Ê&5
1

2m
^ p̂x

21 p̂y
2&5

1

2mF ~p0x!
21~p0y!21

\2

b2G . ~37!

In this central potential, angular momentum is conserv
and we also have the specific results for this Gaussian fo

^L̂z&5^xp̂y2yp̂x&5^x&^ p̂y&2^y&^ p̂x&5x0p0y2y0p0x

~38!

and

^L̂z
2&5~x0p0y2y0p0x!

21
b2

2
@~p0x!

21~p0y!2#

1
\2

2b2
@~x0!21~y0!2#, ~39!

so that

~Dm!\[DLz

5Ab2

2
@~p0x!

21~p0y!2#1
\2

2b2
@~x0!21~y0!2#.

~40!

As a check on the numerical evaluation of the expans
coefficients, it is useful to be able to compare the gene
results for^E& and ^L̂z

(1,2)& in Eqs. ~29! and ~30! with the
specific results for the Gaussian in Eqs.~37!–~39!.

We begin by focusing on the special case of ze
momentum wave packets centered at the origin, namely, w
vanishing values of (p0x ,p0y) and (x0 ,y0) in which case the
initial wave packet is radially symmetric and, therefore, h
an expansion in purem50 angular-momentum states.@This
is consistent with the result in Eq.~40!, which hasDL
5Dm50 for this state.#

For such states, where only them50 eigenstates contrib
ute, we can write the energy eigenvalues from Eq.~23! in the
form

E~nr !5
\2p2

2mR2 F S nr1
3

4D 2

1
1

4p2
1OS 1

~nr13/4!2D G
'

\2p2

32mR2 F8nr~2nr13!1S 91
4

p2D G
5

\2p2

4mR2 F l ~nr !1S 9

8
1

1

2p2D G , ~41!
3-5



n

il-

R. W. ROBINETT AND S. HEPPELMANN PHYSICAL REVIEW A65 062103
FIG. 2. Plot of the autocorrelation functio
uA(t)u2 vs t, in units of T0[2mR2/\p. The nu-
merical values of Eq.~44! are used along with
y050 and p0x5p0y50. The results foruA(t)u2

vs t, as one varies thex0 of the initial wave
packet away from the center of the circular b
liard, are shown on the horizontal axes.
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where l (nr)[nr(2nr13) is an integer~neither even nor
odd, in general!. The last term in the square brackets is
dependent ofnr and will make the same, constant, over
phase contribution to the autocorrelation function, so we
cus on thel (nr) term. Since this integer has no spec
evenness/oddness properties, its contribution to the phas
eachua(n,nr )

u2 term in Eq.~32! will be identically unity at a
revival time given by

S \2p2

4mR2D Trev
(m50)

\
52p or Trev

(m50)54F2mR2

\p G[4T0 .

~42!

Thus, at integral multiples of 4T0, we expect nearly perfec
revivals because of the almost regularly spaced structur
them50 Bessel function zeros. At these recurrences, we
also predict the overall phase corresponding to the last t
in Eq. ~41!, namely,

e2 i\2p2/4mR2(4T0)(9/811/2p2)5e22p i (9/811/2p2)

5e22p ie22p i (1/811/2p2)[e2 ipF,

~43!

whereF51/411/p2'0.351.
To investigate these predictions numerically, we ha

used a Gaussian of the form in Eq.~33! with the specific
values

2m5\5R51 and b5
1

10A2
,

so that

Dx05Dy050.05. ~44!

Using the normalized eigenstates, we numerically evalu
the overlap integrals to obtain thea(m,nr )

, using enough
06210
-
l
-

l
of

of
n
m

e

te

states to ensure that the appropriate conditions, such as
~28!–~30!, are all satisfied to better than 1024 accuracy.

Using the expansion coefficients for this state, we plot
modulus squared of the autocorrelation functionuA(t)u2 in
the bottom plots of both Figs. 2 and 3, with time ‘‘measure
in units of T0. The almost exact revival structure at integr
multiples of 4T0 is evident. As a further check, we ca
evaluate the phase ofA(t) at each revival and find that to a
excellent approximation it is given by2nFp as in Eq.~43!.
If one decreases~increases! the value ofb, so that the initial
wave packet is narrower~wider!, the energy eigenvalues re
quired to construct the packet are then larger~smaller! @from
Eq. ~37!# and are, therefore, generally more~less! evenly
spaced@from Eq. ~22!# and we indeed confirm this with ou
numerical simulations; the eventual, long-term decre
uA(nT0)u with increasingn is faster ~slower! for smaller
~larger! values ofb.

We next move away from the special case of the ze
momentum central wave packet by considering individua
the case ofx0Þ0 andp0yÞ0 ~but not both!. In each case,
the average angular momentum of the state is still vanish
@from Eq. ~38!#, but mÞ0 values of the expansion coeffi
cients are now required. We must now use the more gen
case for the energies, which to second order inmÞ0,nr , are
given by Eq.~24!,

E(m,nr )
5

\2p2

2mR2 F S nr1
umu
2

1
3

4D 2

2
m2

p2G
5

\2p2

32mR2 F ~16nr
2124nr116umunr !

14umu~ umu13!2
16m2

p2 G
5

\2p2

32mR2 F8 l̃ ~nr !18 l̄ ~ umu!2
16m2

p2
19G , ~45!

where
3-6
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FIG. 3. Same as Fig. 2, but withx05y050
andp0x50, as one increasesp0y .
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l̃ ~nr ![nr~2nr1312umu! and l̄ ~ umu![umu~ umu13!/2

~46!

are both integers, again, with no special even or oddn
properties. We can then write these energies in the form

E(m,nr )
5

2p\

4T0
F l̃ ~nr !1 l̄ ~ umu!2

2m2

p2
1

9

8G . ~47!

At integral multiples of them50 revival time,tN5N(4T0),
the first two terms givee2N(2p i )51 phases to each (m,nr)
term in the autocorrelation function, while the last term giv
an overall, (m,nr)-independent phase, just as in them50
case. The other term, however, gives a contribution

e2(2p i )(m2N)(2/p2), ~48!

which depends onm explicitly and which, therefore, elimi-
nates the revivals, increasingly so, as the wave packe
dominated bymÞ0 terms. However, because of a seem
numerical accident, at integral multiples of 5Trev

(m50)520T0,
we recover approximate revivals due to the fact that
3(2/p2)51.013. We thus find approximate revivals for th
more generalmÞ0 case given byTrev

(mÞ0)5(p2/2)Trev
(m50)

'5Trev
[m5(0)] .

This effect is illustrated in greater detail in Figs. 2 and
where we plotuA(t)u2 vs t as we move away from the centr
zero-momentum wave packet by first moving away from
origin (x0Þ0 in Fig. 2! or from wave packets having non
zero momentum values (p0yÞ0 in Fig. 3!. In each case, a
we increase the parameter (x0 or p0y), we necessarily in-
clude more and moreumuÞ0 eigenstates. For even a sma
mix of such states, theTrev

(m50) revival periods at most inte
gral multiples of 4T0 disappear, while evidence for the mo
generalTrev

(mÞ0)520T0 revivals remains.
06210
ss

s
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e

For the particular numerical values used in Eq.~44!, the
spread in angular momentum required from Eq.~40! is given
by

DL5AS p0y

20 D 2

1~10x0!25Dm ~49!

~since \51), so that thexÞ0 and p0yÞ0 values used in
Figs. 2 and 3 actually correspond to the same set ofDL for
each horizontal case shown.

We note that this ‘‘lifting’’ of a seemingly ‘‘accidental’’
degeneracy in the pattern of revival times is somewhat si
lar to the special case of a zero-momentum Gaussian w
packet in a 2D square or triangular billiard, initially placed
the center, cases that we briefly discuss in Appendix A.

This pattern of revival times depending on two distin
quantum numbers is also somewhat reminiscent of that
countered in a rectangular billiard with differing sides
length Lx ,Ly , where if the sides are incommensurate o
would expect a less elaborate revival structure. Since
revival times typically scale asTrev}L2, the appearance of a
p2 scale factor that can give rise to very close to an inte
ratio 10/p2'1 ~to within 1.3%) is appropriate; in this case
the relevant length scales for the radial quantum number
azimuthal quantum numbers are most likely multiples ofR
and 2pR, respectively, so that relative factors ofp2 in the
revival times can appear naturally.

The presence of theDmÞ0 revivals becomes increas
ingly less obvious as the average angular momentum is
creased away from zero~with both x0 andp0y now nonvan-
ishing!, since the required energy eigenvalues are in a reg
of large umu/z, where the lowest-order approximation@from
Eq. ~20!# of evenly spacedz values becomes worse. We als
note that even witĥL̂&50, as we increasep0y , the spread in
m values required also increases@as in Eq.~40!#, so that the
overall number of states required to reproduce the ini
Gaussian, and which have to ‘‘beat’’ against each other
3-7
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propriately, increases as well, making revivals more diffic
to produce. The increasingly large number of states requ
to construct the Gaussian wave packets for larger value

^L̂& can also be seen during the collapsed phase, when
‘‘average value’’ ofuA(t)u2, namely,(m,nr

ua(m,nr )
u4, becomes

increasingly small as the fixed probability~constrained via
(m,nr

ua(m,nr )
u251) is spread over more and more states.

While we have focused on the long-term, revival structu
of the autocorrelation function, the appearance of m
short-time features inuA(t)u, corresponding to short-term
semiclassical closed orbits is also apparent. Such trajecto
are characterized@16# by periodic orbits with path length
and minimum radii~distances of closest approach! given by

L~p,q!52pRsinS pq

p D and Rmin5R cosS pq

p D ,

~50!

with integral values of (p,q) ~with p.2q) describing the
number of ‘‘hits’’ on the wall and the number of ‘‘revolu
tions’’ for one complete orbit, respectively. If, for exampl
we place Gaussian wave packets withp0x50 andp0y.0 at
locations given by (x0 ,y0)5„Rmin(p,q),0…, we find obvious
peaks in the autocorrelation function at times given
Tcl(p,q)[L(p,q)/(p0y /m) corresponding to classica
closed orbits.~This structure is evident, of course, only whe
the expected classical periods are less than the wave-pa
spreading timeDt; this can be estimated using the result f
a free Gaussian asDt52mDx0

2/\.! We discuss in Appendix
B exactly how the classical closed orbit periodicity is rep
duced from the quantum-mechanical energy spectrum, u
the WKB approximation of Eq.~16!.

Variations of the problem of a circular infinite well ca
also be examined for their possible revival structure. T
‘‘half-circular’’ well, with an infinite wall added along a di-
ameter, is exactly soluble with linear combinations ofeimu

ande2 imu solutions being able to satisfy the new bounda
condition for mÞ0, while the m50 solutions are not al-
lowed. The energy spectrum then consists of one copy of
E(mÞ0,nr )

values for the circular well, with a resulting reviva

behavior consistent withTrev
(mÞ0) , since nom50 states are

allowed.
Another variant would be an annular circular billiar

with an inner infinite wall atr 5Rinner,R. The energy
eigenstates can also be derived using Bessel function s
tions @now including the ‘‘irregular’’ or divergentYumu(kr)
terms since the particle is kept explicitly away from the o
gin by the inner wall# with the energy eigenvalues resultin
from the condition

Jumu~kR!Yumu~kRinner!2Jumu~kRinner!Yumu~kR!50.
~51!

WKB-type expansions for the quantized energies are a
useful in this case. The qualitatively different featur
present in this geometry include not only classical orb
~bouncing off the inner wall! but also diffraction features, a
seen in periodic orbit theory analyses@24# of such systems
@For the WKB analysis of the energies corresponding to
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bits that bounce off the ‘‘hard’’ inner wall, one must us
(nr11) in place of (nr13/4) in Eq. ~16!.# While m50
states are allowed, the special central, zero-momentum in
state is not, and whether a pattern of something like
Trev

(mÞ0) revivals is supported is currently under study.
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APPENDIX A

We briefly consider the special case of a Gaussian w
packet@of the form in Eq.~33!# with vanishing momentum,
and initially located at the center of a two-dimension
square infinite well~or billiard! of dimensionL3L. Because
the problem is entirely separable, the autocorrelation fu
tion for the 2D problem will be a product of the individua
1D values, namely,A(t)5Ax(t)Ay(t), so it suffices to con-
sider the 1D case. The energy eigenstates and eigenva
are given as

un~x!5
2

L
sinS npx

L D and En5
\2p2n2

2mL2
with

n51,2,3,4, . . . ~A1!

@over the range (0,L)# and the general revival time is give
by Trev54mL2/\p. For an initial Gaussian with vanishin
momentum (p0x50) and located at the center of the we
(x05L/2), the 1D expansion coefficientsan simplify since
the ‘‘odd’’ parity states~here meaningn52,4, . . . )make no
contributions to the wave packet and the energies can
written in the form

En5
\p2

2mL2
~2n21!2 with n51,2,3, . . . ~A2!

or as

En5
\2p2

2mL2
@4n224n11#5

\2p2

2mL2
@8n~n21!/211#

5S 2p\

Trev
D8@Ñ~n!11/8#, ~A3!

whereÑ(n)[n(n21)/2 is an integer~neither even nor odd
in general!. Just as with them50 case of the circular well, in
this very special alignment, the modulus ofA(t) is unity
with a reduced revival time ofTrev

(center)5Trev/8, with a pre-
dictable phase factor~due to the constant 1/8 term! at inte-
gral multiples ofTrev

(center) . If one moves away from this spe
cial case by havingx0ÞL/2 or p0Þ0, this special revival
structure is lost and only the~still exact! Trev revivals are
evident.

We illustrate this in Fig. 4 for the case of a central, n
momentum solution~a! and for x0ÞL/2 ~b! and p0*0 ~c!
cases. We also show in the bottom~d! of Fig. 4, another
3-8
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FIG. 4. Plots of the one-dimensional autocorrelation functionA(t) vs t, for various Gaussian wave packets in a one-dimensional infi
well defined over the length (0,L). For case~a!, wherex05L/2 andp050, there are special revivals atTrev/8 due to the extra symmetrie
forcing all even expansion coefficients to vanish. The values ofuanu are shown directly to the right, with arrows indicating those that van
identically for symmetry reasons. Cases~b! and~c!, respectively, show the effect of changingx0 andp0 slightly away from the values in cas
~a!, illustrating how only the ‘‘true’’ revival time is maintained. In case~d!, we show another special case (x05L/3), where certainan vanish
~every third one in this case! for symmetry reasons, also giving accidental revival times.
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special case where certain expansion coefficients vanish
symmetry reasons in the no-momentum case (x052L/3,
where every thirdan is zero! with exact revivals at integra
multiples of Trev/3. Thus, a no-momentum 2D Gaussi
wave packet moved slightly away from, say, (x0 ,y0)
5(2L/3,L/3) would experience the same kind of ‘‘broken
revival time symmetry, as one moved from the center.

A similar set of ‘‘accidental’’ or ‘‘symmetry’’ revival
times exists for the equilateral triangle billiard. For examp
for a zero-momentum state placed at the geometrical ce
the revival time isTrev/9, whereTrev is the exact revival
time in Eq.~7!. Similar ‘‘symmetry’’ points exist at distance
of A3L/12 from the center in the direction of each vert
where the revival times areTrev/4. Not surprisingly, we find
no such additional ‘‘symmetry’’ points~besides the center! in
the circular case.

APPENDIX B

While we have focused on the longer-term, revival dep
dence of wave packets in the circular well, it is interesting
note how the information about the classical closed~or peri-
odic! orbits in this system is encoded in the energy eig
value spectrum, especially since most of the experiment
observed 2D circular billiard systems@18,19# have made
measurements that are relevant for short-term, quasiclas
ballistic propagation. Such closed orbits are also the one
06210
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relevance to periodic orbit theory@17# measurements of suc
billiard systems.

For a system with two quantum numbers, there are t
classical periods@11#, which in our case are given by

Tcl
(nr )[

2p\

]E/]nr
and Tcl

(m)[
2p\

]E/]m
, ~B1!

and the two periods can beat against each other to prod
the classical periodicity (Tcl

po) for closed or periodic orbits if
they satisfy

pTcl
(nr )5Tcl

(po)5qTcl
(m) ~B2!

with p.2q for this geometry. We can then use this forma
ism to understand how these conditions can give rise to
classical expressions for the minimum radius and p
lengths in Eq.~50!. Instead of using the approximate expre
sion in Eq.~45! for the (m,nr)-dependent energies, we mak
use of the WKB condition in Eq.~16! and simply take partial
derivatives of both sides with respect tonr and m, respec-
tively. We thus obtain the conditions

A m

2\2F ERmin

R dr

AE2m2\2/2mr 2G S ]E

]nr
D5p, ~B3!
3-9
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A m

2\2F ERmin

R dr

AE2m2\2/2mr 2 S ]E

]nr
2

umu\2

mr 2 D G50.

~B4!

The condition to be satisfied for periodic orbits can then
written as

q

p
5

Tcl
(nr )

Tcl
(m)

5
~]E/]m!

~]E/]nr !
5S umu\

pA2mE
D F E

Rmin

R dr

rAr 22Rmin
2 G .

~B5!

Evaluating the integral and usingRmin[umu\/A2mE, we
find that

q

p
5

1

p
sec21S R

Rmin
D or Rmin~p,q![Rmin5R cosS pq

p D
~B6!

is the condition on periodic orbits, as expected. To find
classical period for such closed orbits, we note that
m
ol-

u
.

y
h.

n,

se
ly
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Tcl
(po)5pTcl

(nr )5
2p\p

~]E/]nr !

5~2pAR22Rmin
2 !A m

2E
5

@2pRsin~pq/p!#

v0

5
L~p,q!

v0
, ~B7!

where we identifyv05A2E/m with the classical speed.
The classical periods for the closed orbits for the 2D a

nular well mentioned above can also be obtained from
WKB approximation in the same way, including those for t
features corresponding to ‘‘bounces’’ off the inner infini
wall whenRmin is replaced byRinner in the integrations. The
classical periods for the closed orbits for the 2D square
equilateral triangle billiards can, of course, also be obtain
in an identical manner, using the exact results for their en
gies.
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