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Quantum wave-packet revivals in circular billiards

R. W. Robinett and S. Heppelmarin
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
(Received 21 February 2002; published 30 May 2002

We examine the long-term time dependence of Gaussian wave packets in a circular infinigeilliaatil)
system and find that there are approximate revivals. For the special case of per@lystatescentral wave
packets with no momentunthe revival time isTﬁg’foESMRz/hTr, whereyu is the mass of the particle, and
the revivals are almost exact. For all other wave packets, we find {Jaf) = (7%/2) T(T=9~5T(1=0) and the
nature of the revivals becomes increasingly approximate as the average angular momentum or namber of
#0 states is increased. The dependence of the revival structure on the initial position, energy, and angular
momentum of the wave packet and the connection to the energy spectrum is discussed in detail. The results are
also compared to two other highly symmetrical two-dimensional infinite well geometries with exact revivals,
namely, the square and equilateral triangle billiards. We also show explicitly how the classical periodicity for
closed orbits in a circular billiard arises from the energy eigenvalue spectrum, using a WKB analysis.
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[. INTRODUCTION in terms of which the classical period, revival, and super-
revival times are given, respectively, by

The connections between the quantized energy eigenvalue
spectrum of a bound state and the classical motions of the 2mh 2mh 2mh
corresponding classical system have become increasingly inTC':|E,(n )|' Trev:|E,,(n )|/2' TsurJer:|Em(n )|/6'
teresting and important as the ability to experimentally probe 0 0 0
the quantum-classical interface has dramatically improved.
Methods such as periodic orbit theof¥,2], for example, Systems with two quantum numbdrl,12), with ener-
provide direct connections between the energy spectrum angles labeled byE(n;,n,), offer richer possibilities for wave-
the closed orbits of the classical system. The study of th@acket revivals and typically the long-term revival structure
time dependence of wave-packet solutions also depends critilepends on three possible times, given by
cally on the energy spectrum, most especially as related to
the existence of revivalgand super-revivajs wherein ini- (ny)
tially localized states that have a short-term, quasiclassical rev
time evolution, can spread significantly over several orbits,
only to re-form later in the form of a quantum revival in

2mh
(1/2)9*E(ny,ny)/on?’

which the spreading reverses itself, the wave packet relocal- (n) _ 2mh 3)
izes, and the semiclassical periodicity is once again evident. rev (1/2)&2E(n1,n2)/ﬁn§’
Such revival phenomena have been observed in a wide vari-
ety of physical systems, especially in Rydberg at¢&jsand and
calculations exist for many other systefds.
The archetype of a one-dimensional model system for 27h
, . e . (n1.ng) _ (4)
guantum revivals is the infinite wellvhere such revivals are rev

2 1
exac) and a number of analys¢5—10 have provided in- "E(n1,n2)/ 91N,

sight into both the short-term and long-term behavior ofgng the revival structure depends on the interplay between
wave packets. Just as with many systems that depend ongese three times.

single quantum number, one typically expands the energy The two-dimensional generalization of the infinite well, or
eigenvalues(assuming integral valugsabout the central the two-dimensional infinite square wefbilliard) of size

value used in the construction of a wave packet via LxL, provides the simplest example of such a two quantum
number system, and in this case the revival times are identi-
1 cal, namely,
E(n)~E(ng) +E’(ng)(n—np) + EE"(F‘O)(n_no)2 - amL2 o
1 re; = ﬁ’iT :Tre% (5)
+~E"(ng)(n—ng)3+ - - 1 _ o

6 (Mo)( o) ' @ with no cross term present. For rectangular infinite wells

with incommensurate sidesL{xL,, Ly/Ly#p/q), the

structure of the revival times may be more compl&k,12.

*Electronic address: rick@phys.psu.edu Another trivially related two-dimensional2D) billiard
TElectronic address: heppel@phys.psu.edu system for which exact quantum revivals are guaranteed is
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an isosceles triangle infinite well with 45° angles. The solu-by these studies, we will focus on the long-term revival

tions for that system can be obtained from the 2D squarstructure of quantum wave packets in a circular billiard ge-

well (cut along the diagonalby taking appropriate linear ometry.

combinations of the form [u(nx)(x)u(ny)(y) Since the revival structure of any system depends on the

—U(nx)(Y)U(ny)(X)]/\/E, which then satisfy the boundary quantum number depe_ndence_ of the quant_ized energy eigen-
values, in Sec. Il we discuss, in some detail, the dependence

conditions along the long sidéypotenusgof the triangle, of the two-dimensional circular infinite well eigenvalues on

as long as, #ny . The energy spectrum, thereforze, EO';S'StSthe radial and angular-momentum quantum numbgrsnd
of one set of 2D square-well energi&g(n, ,n,)=%m(ny

5 ) , , m. We then present in Sec. Ill, numerical results for the au-
+ny)/2mL*, but is restricted tan,<n,. The purely qua- ocqrrelation function for several classes of initially Gaussian
dratic energy dependence guarantees that all wave packgls, e packets in the circular well,
will have the standard revival time given by E§). Based on both the energy eigenvalue analysis and our

A less obvious case of exact quantum revivals in a novejatailed wave packet simulations, for puraly=0 wave
2D billiard shape exists for the equilateral triangle. The eNpacketsimplying radially symmetric states, with no average
ergy spectrum for this systefi3,14 (with side of lengthL.)  omentun), we find almost exact revivals witd™=2
is given by =8uR?/ %, whereu denotes the mass of the point particle

2l 22 2 in the circular billiard of radius. For wave packets includ-
E(p q):(f) ( 77 ing |[m|#0 components, meaning any component with non-
' 3/ \2mL2 vanishing average momentum or one that is not initially lo-
(6)  calized at the center of the well, there are only approximate
revivals, becoming increasingly so as the angular momentum
with all states being degeneratdue to symmetries about is increased. The revival times in all these casesT&fg
obvious axel except for those witlp=2q. Because of the :(72/2)T§QU=0)%5T§emU=0) due to the seemingly accidental
exact quadratic dependencwith trivially related coeffi-  fact that 104#2=1.013.

cients on the two quantum numbers, there are exact revivals Finally, in Appendix A we point out a similarity between

(p?+09%—qp) with 1=q=<p/2,

with a common revival time given by a pattern of special “accidentally” revival times in the 2D
) circular, square, and equilateral triangle wells, while in Ap-

9mL : - : - L
T = T(@ — TP = @) pendix B, we show explicitly how the classical periodicity

v rev Trev Afiq for closed orbits in the circular well arises directly from

the quantum-mechanical energy spectrum, using a WKB
Given the fact that these two simple geometrical cases cdinalysis.

2D infinite well (billiard) systems exhibit exact quantum re-

vivals, it is of interest to study to what extent, if any, the Il. ENERGY SPECTRUM

circular infinite well will exhibit revival structures. Just as FOR THE CIRCULAR INFINITE WELL

square/rectangularl5] and spherical/circulaf16] billiard ) o

geometries were among the first considered using periodic The problem of a point particlevith mass denoted by,

orbit theory, a comparison of the revival structure in thesd© avoid confusion with the angular-momentum quantum

two distinct systems is appropriate. While qualitatively dif- numberm) confined to a circular infinite well of radiug is

ferent from the equilateral triangle or square wells, one carlefined by the potential

perhaps suggestively describe these geometries as regular

N-sided polygons witiN=3 andN=4, respectively, so that Ve(r)= 0 for r<R, @)
the circular case we will consider here corresponds to o for r=R.
N=oo,

The ability to fabricate such billiard systenfsr analogs 1 he (unnormalizeg solutions of the corresponding 2D
thereoj and experimentally probe the energy spectrum orochralinger equation are given by
time dependence makes such a study of more than academic (r,0) =3y (kr)em? 9)
interest. For example, the energy-level structure and statistics ' Iml '
of microwave cavities/17] provide an analog system to \here the quantized angular-momentum values are given by
probe periodic orbit theory and statistical measures of char —m# for m=0,+1,+2,... and thed),(kr) are the
otic behavior in arbitrarily shaped 2D billiard geometries. (requlay Bessel functions of ordegm|.
Measurements of conductance fluctuations in ballistic micro- The wave numberk is related to the energy vik

structures[18] haye been tentatively useq to identjfy fre- _ \/mzand the energy eigenvalues are quantized by the
quency feat_ures in the power spectrum with specific C|059‘$pp|ication of the boundary conditions at the infinite wall at
orbits in a circularand stadiumbilliard. More recently, the r=R, namely,J;,(z=kR)=0. The quantized energies are
realization of atom-optics billiards 9], with ultracold atoms  an, ,given by, m

in arbitrarily shaped 2D boundaries confined by optical di-

pole potentials, has allowed the study of various chaotic and 12z 12

integrable shapes such as the stadium, ellipse, and circle, (m.ne)

: . : : : , (10
again for short-term, semiclassical propagation. Motivated

E(mn)=

2uR?
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IR@P vs. r

(m,n) =(0,10)

FIG. 1. Plot of the lowest-
lying Z(mn,) Z€ros of the Bessel
function, determined (numeri-
AVAVAVATAVAVAVAVAYA [yt i
scaled as 2(m,nr)/77_3/2- Zeros
corresponding to fixed values of

|

! (mxn) = (10,5) the combination B,+|m| are
I shown connected, not “fit” to
|
|

N
o
e data. Shown on the right are plots
T y of the radial probability density
cﬁé | /\A/\ P(r)=r|R(r)|? vsr for the three

1

states shown with a “circle” for
min which a value of &,+|m|=20 is

(m,n) = (20,0) : fixed. The value of Ry;,/R

' | =|m|/z suggested by Eq14) is

: also indicated by a vertical dashed

line.

r=0 R _./R r=R

where Z(mn,) denotes the zeros of the Bessel function ofcorresponding to constant, integral values of 2 |m| if the

order |m| and n, counts the number of radial nodes. The result in Eq.(12) were exact. For three such states, we also
energy spectrum is doubly degenerate for#0 corre- illustrate the'correspondmg radial probability densny.and
sponding to the equivalence of clockwise and counterclockDote that for increasing values pfi, there are fewer radial
wise (m>0 andm<0) motion. Because the quantum num- hodes so that the appropriate valueszefkR used in the
ber dependence of the energy eigenvalues is the determinifpundary condition are smaller and the approximation used
factor in the structure of wave-packet revivals, we wish toin Ed. (12 becomes worse.
examine them,n, dependence of th&y, n)*[Zmn,)]? in We see that the approximation is only a good one for
detail Im[~0 with obvious quadratic corrections. Instead of at-
As a first approximation, one can look at the lambe- tempting to evaluate Bessel function zeros to higher preci-

havior of the Bessel function solutiof20] for fixed values sion using more elaporate *handbook” expansions]@{(_z)
of |m|, namely, for large z, we note that the result of E412), and the im-

portant and necessary corrections to it, can be obtained in a
5 m straightfqrward and accessible way by using the WKB ap-
Jjm(2)— /—cos( ) (11)  proximation. _ _ _
nZ If we first quantize the angular variable to find that angu-
lar momentum is given by.,=m#A, we can note that in the
radial direction the particle moves freely up to the infinite
ml = - vyaII gtrz R, but is subjzect to2 an effezctive gentrifugal poten—
e —~(2n,+ 1)E or tial given byVes(r)= LZ/Z,ur.=(mﬁ). 12pure. Th_e classical
particle cannot penetrate this centrifugal barrier and has an
associated inner radiuglistance of closest approacgiven

7— —— —

2 4

With this approximation, the zeros would be given by

m 3} _ by
Z(mn)~ nr+—2 +Z T=2zo(m,n,), (12
Veit(Rmin) —mZﬁz E R |mi#: (13
) . )= = or in= .
where we define the functiom,(m,n,) for future reference. efflRmin ZMermn min \/Z,u_E

If this result were exact, the quantized energies would de-
pend on two quantum numbers in at most a quadratic mann
and there would be exact wave-packet revivals, just as fo
the 2D square or equilateral triangle billiards. ) s

To see to what extent this approximation is, in fact, valid _ _|mj where E— h°z
for various values ofm,n,, we evaluate(numerically a min— ' _ZMRZ’
large number of the lowest-lying “exact” Bessel function

Zeros, zmn ). We then plot, in Fig. 1, the combination more directly in terms of the desired dimensionless variable
22(mynr)/7r—3/2 vs m, which would yield horizontal lines z which is equivalent to the energy eigenvalue. In Fig. 1, we

e can also write this in the useful form

(14
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have also indicated the value Bf,;,/R=|m|/z for several m2 7 4

m
of the radial probability densities, to compare to the fully zq,,,=2z¢(m,n,;)— - =
quantum-mechanical results. ' 2zo(m,ny)  241z(m,n)]3
The WKB quantization condition on the radial variable 6 8
is then given by _ E m — 6944m 4.
240[zo(m,n)]°  1344Qz(m,n)]"
R
f k/(r)dr=(n,+C_+Cg)m, wWhere (21

min

which we have confirmed numerically is an increasingly
2 good approximation, especially for,>1. For the study of
Z/LE Rmin . . .
Ke(r)= / N/ 1——mn (15) wave-packet revivals, we only require the energy eigenvalue
h? r? dependence om,n, to second order, but higher-order terms
such as those above might be useful for super-revivals and
The matching coefficientf21] are given byC,=1/4 and even longer-term time-dependence stud@smore detailed
Cr=1/2, which are appropriate for “linear” boundariéat  analytic periodic orbit theory studies of the circular vell
the inner centrifugal barrigrand “hard” or “infinite wall” For the special case oh=0, we find no improvement
boundariegsuch as at =R), respectively. The WKB energy using this WKB technique, but motivated by the form of the
guantization condition for the quantized energies, in terms oéxpansion in Eq(21), we fit the first 50 lowest-lyingn=0
n, explicitly and |m| implicitly, via both theE and R,,;,  zeros to a similar form and find the result
terms, can then be written in the form

2u1E
hZ

1

1
R RZ_ (O,nr) 0 r 87 (0,n ) 5 3
1- dr=(n,+3M4)7. (16 olONr) 24z4(0n;)]
R re (22

min

We cannot unambiguously fit to any higher-order terms, as

The integral on the left can be evaluated in the form much of the nonlinear spacing information is contained in
. the lowest few zeros.
R _Rmind - PR -R 4 R Using Egs.(21) and (22), we can evaluate the energy
Rmin r = min~ Rmin S€C Rmin eigenvalues to quadratic orderin,m in order to probe the
revival structure of wave packets. For the special casa of
=R[V1—x*—xsec }(1x)], (17 =0, we find that
where we defink=R,;,/R=|m|/z. This result |ca|n be ex- c ﬁz[z(ovnr)]2 5252 312 1 -
panded for small values of (i.e., Ryin/R<1 or |m|/z<1) on) = ' S et 7] T
to obtain 2pR 2pR 4l am
- 1y o X 2 . 4 X «6 . 5y while for the more general case with+ 0, we find
V1—x2—xsec X)=1— —+ =+ —=+—+-—
2 2 24 80 896 - ~ ﬁz[z(m’nr)]2 ~ 522 Iml 3|2 m?
+ ..., (18) (m,n) ™ 2,LLR2 - 2/.LR2 r 7 Z _; !
(24)

The WKB quantization condition in Eq.16) can then be

written, in terms ofz, in the form The fact that these energies depend on nonintegral values

of the effective quantum numbers is reminiscent of the case
of Rydberg wave packets in alkali-metal atoms due to quan-
tum defects[22], and methods similar to those used there
might prove useful. In what follows, however, we simply

If we keep only the first two terms on the left-hand side, weexamine the time dependence of typica=0 and m#0
find that wave packets directly.

t——t | =(n+34) 7. (19

z~(n,+|m|/2+3/4) m=2z5(m,n,), (20) lll. GAUSSIAN WAVE PACKETS AND REVIVALS

which is the lowest-order result obtained directly from the. Any wave .packey in the circular billiard can be expanded
. . in the normalized eigenstates of the form
limiting form of the wave function.

To improve on this result, we simply keep successively 1
higher-order terms, solving iteratively at each level of ap- r 0)=IN Jia(k r gime
proximation using a lower-order result farand we find the Yy (1) [ (miag Jmi (K, )] V2 ’
much improved approximation (25
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where 52 %
R (Px)o=Pox - <p o= pOx 2b ) APOZE,
[N(m,nr)]ZJO r[Jjm(kr)]2dr=1, (26) (36)
ith , Hicients di b with similar results fory. So long as the initial location
ith expansion coefficients given by ; ;
0> 1
w (X0,Yo) is well away from the edges of the potential well
_ . such a Gaussian form can be easily and reproducibly ex-
A(mn) = (T, 0= 0)|¢h(mn) (27) panded in terms of eigenstates. The expectation value of total
which satisfy energy 1s
2
(E)= <p +pg)= [(po) +(Po )2 . (37
S5 et 29 am P58~ 7| Por (2

. o _ ~In this central potential, angular momentum is conserved
The expectation value of the energy in this potential well isand we also have the specific results for this Gaussian form,
given by A A A A A
(L2)=(xPy =~y Pyx) = (X)(Py) = (¥){Px) = XoPoy— YoPox

[ (m,n )] 38
<E>_ E 2 |a(mn)| (— ) (29) ( )
and
and the expectation values of powers of angular momentum . ) b2 ) )
are also easily evaluated to give (L3)=(XoPoy— YoPox)“+ - L(Po) ™+ (Poy)7]
+ oo 2] ﬁz
i ky 2 k

(0= 2, 2 lag mh)" (30 + 00+ (0] (39)

The subsequent time dependence of the wave packet & that
then given by

(Am)A=AL,
+ o o
P, 00= 2 > agmn)¥mny(r,0) e Emnth b2 h?
m= e =0 (M M) = \/ 5 [(Pox) 2+ (Poy) 21+ —5 [ (X0)2+ (¥0)?].
(31) 2b
and the standard autocorrelation functi@3] is given by (40)
As a check on the numerical evaluation of the expansion
A(t)z(¢(r,6;t)|¢(r,9,0) coefficients, it is useful to be able to compare the general
results for(E) and (L{*?) in Egs. (29) and (30) with the
2 Z |am,ny |2 Ema/h, (32)  specific results for the Gaussian in E¢37)—(39).
m=—c n =0 We begin by focusing on the special case of zero-

For definiteness, we will use a standard Gaussian wave momentum wave packets centered at the origin, namely, with
anishing values off{yy, and (g, in which case the
packet of the form 9 fox . Poy) Xo,Yo)

initial wave packet is radially symmetric and, therefore, has
B Y:t=0) = tho(X: X0 PoxsD) ¥o(Y: Yo Pov.b)s (33 an expansion in purmm=0 angular-momentum statgJhis
1 ) 1 1 X1 ) ’ y 1 1
where =Am=0 for this state]

is consistent with the result in Eq40), which hasAL
For such states, where only the=0 eigenstates contrib-

ute, we can write the energy eigenvalues from in the
1 iP oy (X—Xo)/fi 4= (X—X) 2/2b2 ite th | I f &g inth
Po(X; X0, Pox D) = —==5 €PN e™ "0 form
Vo(m)™?
(34) ) h2a? ( 3 2+ ‘o 1 )
n,)= n,+— — S ——
with a similar expression fogy(Y;Yo,Poy.b). The initial 2uR? 4/ 4x? (n,+3/4)
expectation values for thevariables are given by h22 4
o
~ 8n,(2n,+3)+| 9+ —
LS b 32R? r(2n, ?
(X)o=Xg, (X )o=X5+ o> AXg=—= (35
\/E 2,2
L YA 41)
and 4ur2] 7\ 8 242) ]
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M 0.25 FIG. 2. Plot of the autocorrelation function
|A(t)|? vst, in units of T,=2uR%#x. The nu-
merical values of Eq(44) are used along with
Yo=0 and po,=po,=0. The results fofA(t)|*
vs t, as one varies the, of the initial wave

N Mm‘hmm . packet away from the center of the circular bil-

liard, are shown on the horizontal axes.

AP vs. t/T,

where I(n,)=n,(2n,+3) is an integer(neither even nor states to ensure that the appropriate conditions, such as Egs.
odd, in general The last term in the square brackets is in-(28)—(30), are all satisfied to better than 1baccuracy.
dependent oh, and will make the same, constant, overall Using the expansion coefficients for this state, we plot the
phase contribution to the autocorrelation function, so we fomodulus squared of the autocorrelation functi@t)|? in

cus on thel (nr) term. Since this integer has no Specia| the bottom p|OtS of both FIgS 2 and 3, with time “measured”
evenness/oddness properties, its contribution to the phase & units of To. The almost exact revival structure at integral

each|a, , )|2 term in Eq.(32) will be identically unity at a multiples of 4T, is evident. As a further check, we can
. N evaluate the phase éf(t) at each revival and find that to an
revival time given by

excellent approximation it is given by nFar as in Eq.(43).
272\ T(M=0) [Z/J,RZ

If one decrease@ncreasesthe value ofb, so that the initial
=27 or T V=4
4uR?

}E 4T,. wave packet is narrowdwider), the energy eigenvalues re-

7 rev quired to construct the packet are then largenalley [from

(42 Eq. (37)] and are, therefore, generally mofiess evenly
spacedfrom Eq.(22)] and we indeed confirm this with our

Thus, at integral multiples of &, we expect nearly perfect numerical simulations; the eventual, long-term decrease

revivals because of the almost regularly spaced structure ¢A(nT,)| with increasingn is faster (sloweyp for smaller

them=0 Bessel function zeros. At these recurrences, we caflargel values ofb.

also predict the overall phase corresponding to the last term We next move away from the special case of the zero-

in Eg. (41), namely, momentum central wave packet by considering individually
Y ) _ ) the case oky#0 andpgy#0 (but not both. In each case,
g T IAuR(4T0) (9/8+ 1/2m%) — g =2 (9/8+ 1/2m7) the average angular momentum of the state is still vanishing
' ‘ ) _ [from Eq. (38)], but m#0 values of the expansion coeffi-
=g 2mg 27 (UB+12m) = g=imF cients are now required. We must now use the more general

case for the energies, which to second ordenia0,n,, are

(43 given by Eq.(24),

whereF = 1/4+ 1/7%~0.351.

' ' o . ﬁ2’772 |m| 3 2 m2
To investigate these predictions numerically, we have Emm)= —— (nr+_+_) _
used a Gaussian of the form in E@®3) with the specific T 2uR? 2 4] g
values
hlm?
1 = 5| (16n7+24n,+16lm[n,)
2m=#=R=1 and b:ﬁ' SZMR
16m?
so that +4[m{([m[+3)~ 2
AXOZAyOZO.OS. (44) fL2’7T2 ~ - 1 2
. . . . = 8l (n,)+8l(|m|)— +9]|, (45
Using the normalized eigenstates, we numerically evaluate 32uR? (no) (Jmi) 49
the overlap integrals to obtain the,,), using enough h
r where
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XO t/TO pOy
5 10 15 20 25
T | T T T T | T T T T I T T T T | T T T T I 70
[ i . i e J desde 60
[ T VRTRUN DR | ottt J beas 50
<
g
¢ | RTTRDRTRY SHURD SR RO T [T A 40 FIG. 3. Same as Fig. 2, but withy=y,=0
N andpo,=0, as one increasqx, .
e Y L ool e taaasd N " ,L.. . 30
<
.._.AL._A..L.A (IR YT WA I W [PV TS " Ao ;L... i 20

T(nr)Enr(an+3+2|m|) and I_(|m|)E|m|(|m|+3)/2 For the particular numerical val_ues used in IE414) the
spread in angular momentum required from &) is given

(46) by
Aszl(% +(10%p)2=Am (49

(sincefi=1), so that thex#0 andpg,#0 values used in
Figs. 2 and 3 actually correspond to the same setloffor
each horizontal case shown.

We note that this “lifting” of a seemingly “accidental”
degeneracy in the pattern of revival times is somewhat simi-
lar to the special case of a zero-momentum Gaussian wave
packet in a 2D square or triangular billiard, initially placed at
the center, cases that we briefly discuss in Appendix A.

This pattern of revival times depending on two distinct
quantum numbers is also somewhat reminiscent of that en-
countered in a rectangular billiard with differing sides of
_ o ) _ . lengthL,,L,, where if the sides are incommensurate one
which depends om explicitly and which, therefore, elimi- \would expect a less elaborate revival structure. Since the
nates the revivals, increasingly so, as the wave packet igvival times typically scale a8, L2, the appearance of a
dominated bym#0 terms. However, because of a seeming;2 scale factor that can give rise to very close to an integer
numerical accident, at integral multiples oT&,"”=20To,  ratio 102~1 (to within 1.3%) is appropriate: in this case,
we recover approximate revivals due to the fact that Sthe relevant length scales for the radial quantum number and
X (2/7*)=1.013. We thus find approximate revivals for the azimuthal quantum numbers are most likely multiplesRof
more generam#0 case given byT{M*9=(72/2)T{"=%  4nd 2R, respectively, so that relative factors of in the
~5TIm=01 revival times can appear naturally.

This effect is illustrated in greater detail in Figs. 2 and 3, The presence of tham=#0 revivals becomes increas-
where we plofA(t)|? vst as we move away from the central ingly less obvious as the average angular momentum is in-
zero-momentum wave packet by first moving away from thecreased away from zer@vith both x, andpy, now nonvan-
origin (Xo# 0 in Fig. 2 or from wave packets having non- ishing), since the required energy eigenvalues are in a region
zero momentum valueg,#0 in Fig. 3. In each case, as of large|m|/z, where the lowest-order approximatiginom
we increase the parametexo(or po,), we necessarily in- Eq.(20)] of evenly spaced values becomes worse. We also
clude more and morém|+0 eigenstates. For even a small note that even with|:>=0, as we increasgy, , the spread in
mix of such states, th&'g, © revival periods at most inte- m values required also increages in Eq.(40)], so that the
gral multiples of 4ry disappear, while evidence for the more overall number of states required to reproduce the initial

generalT{M* %= 20T, revivals remains. Gaussian, and which have to “beat” against each other ap-

are both integers, again, with no special even or oddness
properties. We can then write these energies in the form

27h 2

~ — 2m-= 9
Emn)= 27, |(nr)+|(|ml)—?+§. 47

At integral multiples of them=0 revival time,ty=N(4T,),
the first two terms givee N7 =1 phases to eachr(n,)
term in the autocorrelation function, while the last term gives
an overall, (nn;)-independent phase, just as in the=0
case. The other term, however, gives a contribution

e—(zwi)(mZN)(zlwz), (48)
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propriately, increases as well, making revivals more difficultbits that bounce off the “hard” inner wall, one must use
to produce. The increasingly large number of states requireth,+1) in place of f,+3/4) in Eg. (16).] While m=0
to construct the Gaussian wave packets for larger values aftates are allowed, the special central, zero-momentum initial

(L) can also be seen during the collapsed phase, when thiékc”r:lntfo)is not, and whether a pattern of something like the
“average value” of| A(t)|?, name|y,2m'nr|a(m]nr)|4, becomes Te, ~ revivals is supported is currently under study.
increasingly small as the fixed probabilifgonstrained via

2 mnl8mny|?=1) is spread over more and more states. ACKNOWLEDGMENT
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short-time features inA(t)|, corresponding to short-term,

semiclassical _closed orbits ig al_so apparent. Such trajectories APPENDIX A
are characterizefl16] by periodic orbits with path lengths
and minimum radii(distances of closest approadiven by We briefly consider the special case of a Gaussian wave

packet[of the form in Eq.(33)] with vanishing momentum,

and initially located at the center of a two-dimensional

square infinite wellor billiard) of dimensionL X L. Because
(500  the problem is entirely separable, the autocorrelation func-
o ) o tion for the 2D problem will be a product of the individual
with integral values of §f,q) (with p>2q) describing the 1p yajyes, namelyA(t) = A,(t)A,(t), so it suffices to con-

number of “hits” on the wall and the number of “revolu- gjger the 1D case. The energy eigenstates and eigenvalues
tions” for one complete orbit, respectively. If, for example, gre given as

we place Gaussian wave packets Wi =0 andpg,>0 at

locations given by Xg,Yo) = (Rmin(P,d),0), we find obvious 2 [{nmwx

peaks in the autocorrelation function at times given by Un(X) = [Sin(

Ta(p.a)=L(p.q)/(poy/m) corresponding to classical

closed orbits(This structure is evident, of course, only when n=1234... (A1)

the expected classical periods are less than the wave-packet

spreading time\t; this can be estimated using the result for [over the range (Q,)] and the general revival time is given

a free Gaussian ast=2mAx3/#.) We discuss in Appendix by T,e,=4mL%/% . For an initial Gaussian with vanishing

B exactly how the classical closed orbit periodicity is repro-momentum po,=0) and located at the center of the well

duced from the quantum-mechanical energy spectrum, using,=L/2), the 1D expansion coefficients, simplify since

the WKB approximation of Eq(16). the “odd” parity stateslhere meaningn=2,4, . ..)make no
Variations of the problem of a circular infinite well can contributions to the wave packet and the energies can be

also be examined for their possible revival structure. Thewritten in the form

“half-circular” well, with an infinite wall added along a di-

ameter, is exactly soluble with linear combinationsetft’

ande™'™? solutions being able to satisfy the new boundary EHZZmLz

condition for m#0, while them=0 solutions are not al-

lowed. The energy spectrum then consists of one copy of thgr as

E(m=on,) values for the circular well, with a resulting revival

. 7q mq
L(p,q)=2pRS|n(? and Rmmcho{?),

h2m’n?
and E,=—— with
2m

L

772

(2n—1)? with n=1,23... (A2

behavior consistent with{T*% | since nom=0 states are hEm s

allowed. En_ZmL2[4n 4n+1]—2mL2[8n(n 1)/2+1]
Another variant would be an annular circular billiard,

with an inner infinite wall atr=R;,,,<R. The energy [ 27h|

eigenstates can also be derived using Bessel function solu- Trew 8[N(n)+1/8], (A3)

tions [now including the “irregular” or divergenty |y (kr)
terms since the particle is kept explicitly away from the ori-\whereN(n)=n(n—1)/2 is an integefneither even nor odd,
gin by the inner wall with the energy eigenvalues resulting in general. Just as with then=0 case of the circular well, in
from the condition this very special alignment, t?e mr)odulus Aft) is unity
_ _ with a reduced revival time of‘s¢"'®" =T, /8, with a pre-
Jimi(KR)Yjm (KRinner) = Jjm (KRinner) Yjm (kR)=0. dictable phase factdidue to the constant 1/8 teymat inte-
(51) : (centep ;
gral multiples ofT;¢;" "’ . If one moves away from this spe-
WKB-type expansions for the quantized energies are alsoial case by having#L/2 or pg#0, this special revival
useful in this case. The qualitatively different featuresstructure is lost and only théstill exach T,e, revivals are
present in this geometry include not only classical orbitsevident.
(bouncing off the inner wallbut also diffraction features, as We illustrate this in Fig. 4 for the case of a central, no-
seen in periodic orbit theory analysg4] of such systems. momentum solutior{a) and for xy# L/2 (b) and p,=0 (c)
[For the WKB analysis of the energies corresponding to orcases. We also show in the bottoid) of Fig. 4, another
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FIG. 4. Plots of the one-dimensional autocorrelation funcAgt) vst, for various Gaussian wave packets in a one-dimensional infinite
well defined over the length (0). For casga), wherex,=L/2 andpy=0, there are special revivals &t,,/8 due to the extra symmetries
forcing all even expansion coefficients to vanish. The valugsgfare shown directly to the right, with arrows indicating those that vanish
identically for symmetry reasons. Cagbgand(c), respectively, show the effect of changingandp, slightly away from the values in case
(@, illustrating how only the “true” revival time is maintained. In cagd, we show another special casg € L/3), where certaim, vanish
(every third one in this cagdor symmetry reasons, also giving accidental revival times.

special case where certain expansion coefficients vanish faelevance to periodic orbit theof$7] measurements of such

symmetry reasons in the no-momentum cagg=(2L/3, billiard systems.

where every thirda, is zerg with exact revivals at integral For a system with two quantum numbers, there are two

multiples of T,¢,/3. Thus, a no-momentum 2D Gaussian classical period$11], which in our case are given by

wave packet moved slightly away from, sayxq(Yo)

=(2L/3,L/3) would experience the same kind of “broken”

revival time symmetry, as one moved from the center. TET')E
A similar set of “accidental” or “symmetry” revival

times exists for the equilateral triangle billiard. For example, ) )
for a zero-momentum state placed at the geometrical cente?"d the two periods can beat against each other to produce

the revival time isT,e,/9, whereT,q, is the exact revival the classical periodicity ) for closed or periodic orbits if
time in Eq.(7). Similar “symmetry” points exist at distances they satisfy

of \/3L/12 from the center in the direction of each vertex

where the revival times ar€,,/4. Not surprisingly, we find pTW =T =g (B2)
no such additional “symmetry” pointéesides the centein
the circular case.

2mh
and T(W= (B1)

with p>2q for this geometry. We can then use this formal-
ism to understand how these conditions can give rise to the
APPENDIX B classical expressions for the minimum radius and path
lengths in Eq(50). Instead of using the approximate expres-
While we have focused on the longer-term, revival depension in Eq.(45) for the (m,n,)-dependent energies, we make
dence of wave packets in the circular well, it is interesting touse of the WKB condition in Eq16) and simply take partial
note how the information about the classical clogedperi-  derivatives of both sides with respect 9 and m, respec-
odic) orbits in this system is encoded in the energy eigentively. We thus obtain the conditions
value spectrum, especially since most of the experimentally

observed 2D circular billiard systen{d48,19 have made R dr JE
measurements that are relevant for short-term, quasiclassical N - (_) =7, (B3
ballistic propagation. Such closed orbits are also the ones of 212 JRninVE—m?A2/2ur? |\ Ny
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o R dr JE |m|ﬁ2 T(PO) — T(nr)_ 2mhp
— —_—| =0. o =Pl = GEn)
th Rmin\/E_I’nzfl/2/2,uzr2 anr ILLrZ r
(B4) i
1 [2pRsin(mq/p)]
= (2pJR2—R2. =
The condition to be satisfied for periodic orbits can then be (2p min) 2E Vo
written as
L(p,a)
(nr) = ; (B7)
a Tg"  (6E/om) [ |m|h fR dr Vo
p T (JE/n)  \ 7\2uE]| JRuat VF2—R2,,]
(B5) where we identifyv o= y2E/x with the classical speed.
Evaluating the integral and usinBn,=|m|%/2uE, we The classical periods for the closed orbits for the 2D an-
find that nular well mentioned above can also be obtained from the

WKB approximation in the same way, including those for the
7q features corresponding to “bounces” off the inner infinite
or  Rpyin(P.q)=Rmin=Rcog — ; i i ;
Rmin p wall whenR,;,, is replaced byR;,¢; in the integrations. The
classical periods for the closed orbits for the 2D square and
(B6) . . o .
equilateral triangle billiards can, of course, also be obtained
is the condition on periodic orbits, as expected. To find thén an identical manner, using the exact results for their ener-
classical period for such closed orbits, we note that gies.
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