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Finding optimal strategies for minimum-error quantum-state discrimination
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We propose a numerical algorithm for finding optimal measurements for quantum-state discrimination. The
theory of the semidefinite programming provides a simple check of the optimality of the numerically obtained
results. With the help of our algorithm we calculate the minimum attainable error rate of a device discrimi-
nating between three particularly chosen pure qubit states.
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Nonorthogonality of quantum states is one of the ba
features of quantum mechanics. Its deep consequence
reflected in all quantum protocols. For instance, it is w
known that perfect discrimination between two nonorthog
nal states cannot be made. This has important implicat
for the information processing at the microscopic level sin
it sets a limit on the amount of information that can be e
coded into a quantum system. Although perfect decisi
between nonorthogonal quantum states are impossible,
of importance to study measurement schemes perform
this task in the optimum, though imperfect, way.

Two conceptually different models of decision tasks ha
been studied. The first one is based on the minimization
the Bayesian cost function, which is nothing but a gene
ized error rate@1#. In the special case of linearly independe
pure states, the second model—unambiguous discrimina
of quantum states—makes an interesting alternative. The
ter scheme combines the error-less discrimination with a
tain fraction of inconclusive results@2–4#.

Ambiguous as well as unambiguous discriminati
schemes have been intensively studied over the past
years. As a consequence, the optimal measurements d
guishing between pair, trine, tetrad states, and linearly in
pendent symmetric states are now well understood@5–17#.
Many of the theoretically discovered optimal devices ha
already been realized experimentally, mainly with polariz
light @18–21#. As an example of the practical importance
the optimal decision schemes let us mention their use for
eavesdropping on quantum cryptosystems@22,23#.

The purpose of this paper is to develop a univer
method for optimizing ambiguous discrimination betwe
generic quantum states. Assume that Alice sets upM differ-
ent sources of quantum systems living inp-dimensional Hil-
bert space. The complete quantum-mechanical descriptio
each source is provided by its density matrix. Alice choo
one of the sources at random using a chance device
sends the generated quantum system to Bob. Bob is
given M numbers$j i% specifying probabilities that thei th
source is selected by the chance device. Bob is then requ
to tell which of theM sources$r i% generated the quantum
system he had obtained from Alice. In doing this he sho
make as few mistakes as possible.
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It is well known @1# that each of Bob’s strategies can b
described in terms of anM-component probability operato
measure~POM! $P j%, 0<P i<1, ( jP j51. Each POM el-
ement corresponds to one output channel of Bob’s discri
nating apparatus. The probability that Bob points his finge
thekth source while the true source isj is given by the trace
rule: P(ku j )5Tr r jPk . Taking the prior information into ac-
count, the average probability of Bob’s success in repea
experiments is

Ps5(
j 51

M

j jTr r jP j . ~1!

Since the objective is to keep Bob’s error rate as low
possible we should maximize this number over the set of
M-component POMs. In compact form the problem reads

Maximize Ps subject to constraints:

P j>0, j 51, . . . ,M , ~2!

(
j

P j51.

Unfortunately, attacking this problem by analytical mea
has a chance to succeed only in the simplest cases (M52)
@1#, or cases with symmetric or linearly independent sta
@5,10,15,17,25#. In most situations one must resort to n
merical methods. In the following we will use the calculus
variations to derive an iterative algorithm@36# that provides
a convenient way of dealing with the problem~2!. This ap-
proach has already found its use in the optimization of te
portation protocols@26#, the optimization of completely posi
tive maps that approximate some unphysical operations@27#,
and the maximum-likelihood estimation of quantum sta
@28# and measurements@29#. We are going to seek the globa
maximum of the success functionalPs subject to the con-
straints given in Eq.~2!. To take care of the first constrain
we will decompose the POM elements as followsP j

5Aj
†Aj , j 51, . . . ,M . The other constraint~completeness!

can be incorporated into our model using the method of
certain Lagrange multipliers. Putting all things together,
functional to be maximized becomes
©2002 The American Physical Society01-1
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L5(
j

j j Tr$r jAj
†Aj%2TrH l(

j
Aj

†Aj J , ~3!

wherel is a Hermitian Lagrange operator. This expression
now to be varied with respect toM independent variablesAj
to yield a necessary condition for the extremal point in
form of a set ofM extremal equations for the unknown PO
elements:

j jr jP j5lP j , j 51, . . . ,M , ~4!

originally derived by Holevo in@30#. For our purposes it is
advantageous to bring these equations to an explicitly p
tive semidefinite form,

P j5j j
2l21r jP jr jl

21, j 51, . . . ,M . ~5!

The Lagrange operatorl is obtained by summing Eq.~5!
over j,

l5S (
j

j j
2r jP jr j D 1/2

. ~6!

The iterative algorithm comprised of theM11 equations~5!
and ~6! is the main formal result of this paper. One usua
starts from some ‘‘unbiased’’ trial POM$P j

0%. After plugging
it in Eq. ~6! the first guess of the Lagrange operatorl is
obtained. This operator is, in turn, used in Eq.~5! to get the
first correction to the initial-guess strategy$P j

0% @31#. The
procedure gets repeated, until, eventually, a stationary p
is attained. Notice that both the positivity and completen
of the initial POM are preserved in the course of iterating

In the many tests we did a monotonic convergence to
true global maximum of the success rate~1! always had been
observed, though we have no analytic proof of this behav
in general. However, by slight modification of the iteratio
~5! one can make sure that the Bayes cost~error rate! is
reduced in each step. Let us rewrite the right-hand side
Eq. ~5! as a perturbation of the old POM element:

P j
i 115~11D j

†!P j
i ~11D j !5P j

i 1dP j , ~7!

where D j5(j jr j2l)l21. The success rate is changed
the amount ofdPs5( j Tr r jdP j , which is required to be
positive. If we found thatdPs was negative we would the
change the sign of the perturbation@37#: dP j→2dP j . This
ensures that the Bayes cost is reduced in each step. Fu
notice that the operatorsD j are closely related to the gradie
of the functional~3!. Our algorithm is an example of a mor
general class of gradient-type algorithms of the formak

i 11

5@]P(ai)/]ak
i #ak

i @]P(ai)/]ak
i #. Such algorithms are known

to behave well and their applications cover many inverse
optimization problems such as image processing@32#, posi-
tron emission tomography@33#, or optimization over com-
pletely positive maps@26,27#. Finally notice that the norm o
the perturbationdP j decreases as the POM$P j% approaches
the POM of the optimal discrimination apparatus. In this w
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the length of the iteration step self-adapts in the course
iterating—it gets progressively smaller in the neighborho
of the solution.

Since Eqs.~5! and ~6! represent only a necessary cond
tion for the extreme, one should always check the optima
of the stationary point by verifying the following set of con
ditions @1,30#:

l2j jr j>0, j 51, . . . ,M . ~8!

It is worth mentioning that this condition can also be deriv
from the theory of the semidefinite programming~SDP! @24#.
SDP tools also provide an alternative means of solving
problem ~2! numerically @34,35#. Recently, it has been
pointed out @35# that many problems of the quantum
information processing can be formulated as SDP proble
To see the link between the quantum discrimination and S
theory let us note that the dual problem of SDP is defined
follows: Maximize2TrF0Z subject to constraints:

Z>0, ~9!

Tr FiZ5ci , i 51, . . . ,m,

where data arem11 Hermitian matricesFi and a complex
vectorcPCm, andZ is a Hermitian variable. Our problem~2!
reduces to this dual SDP problem upon the following sub
tutions:

F052 %
j 51

m

j jr j , Z5 %
j 51

m

P j , ~10!

Fi5 %
j 51

m

G i , ci5Tr G i , i 51, . . . ,p2.

Here operators$G i ,i 51, . . . ,p2% comprise an orthonorma
operator basis in thep2-dimensional space of Hermitian op
erators acting on the Hilbert space of our problem: TrG jGk
5d jk , j ,k51, . . . ,p2. For simplicity, let us takeG1 propor-
tional to the unity operator, then allci apart fromc1 vanish.
In SDP the necessary condition~4! for the maximum of the
functional ~3! is called the complementary slackness con
tion. When inequalities in Eq.~8! hold it can be shown to be
also sufficient.

The advantage of the SDP formulation of the quantu
state discrimination problem is that there are strong num
cal tools designed for solving SDP problems, for their revi
see@34#. They make use of the duality of SDP problems. T
optimal value is bracketed between the trial maximum of
dual problem and trial minimum of the primal problem. On
then hunts the optimal value down by making this interv
gradually smaller. SDP tools are much more complica
than the proposed algorithm but they are guaranteed to
verge to the real solution.

We have carried out extensive tests of our numerical
gorithm on discriminations involving up to four pure o
mixed states in Hilbert spaces of dimensions two, three,
four. In all these cases a monotonic convergence to the
bal optimum has been observed.
1-2
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Let us illustrate the utility of our algorithm on a simple
albeit nontrivial example of discriminating between three c
planar pure qubit states. The geometry of this problem
shown in Fig. 1.C1 and C2 are equal-prior states,j15j2
5j/2, symmetrically placed around thez axis; the third state
lies in the direction ofx or y. A similar configuration~with
C3 lying alongz) has recently been investigated by Ande
sson et al. @17#. Exploiting the mirror symmetry of their
problem the authors derived analytic expressions for PO
minimizing the average error rate. For a given anglew the
optimum POM turned out to have two or three nonzero e
ments depending on the amount of the prior informationj.

Our problem is a bit more complicated one due to the la
of the mirror symmetry. Let us see whether the transit
from the mirror-symmetric configuration to a nonsymmet
one has some influence on the qualitative behavior of
optimal POMs. Minimal error rates calculated using the p
posed iterative procedure@Eqs. ~5! and ~6!# for the fixed
angle ofw5p/16 are summarized in Fig. 2. The conclusio
that can be drawn from the numerical results partly coinc
with that of Ref.@17#. For largej ~region III! the optimum
strategy consists of the optimal discrimination between st
C1 and C2. When j becomes smaller than a certa
w-dependent threshold~region II!, stateC3 can no longer be

FIG. 1. A cut through the Bloch sphere showing the states to
discriminated.

FIG. 2. Average error rate (12Ps) in dependence on Bob’s
prior information j; w5p/16. Regions I, II, and III are regions
where the optimum discriminating device has two, three, and
output channels, respectively.
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ignored and the optimum POM has three nonzero eleme
Simple calculation yields

j II,III 5
1

11sinw cosw
~11!

for the threshold value of the prior. However, whenj be-
comes still smaller~region I!, the optimum POM will even-
tually become a two-element POM again—the optimal str
egy now being the optimal discrimination between statesC1
and C3. This last regime is absent in the mirror-symmet
case. The transition between regions I and II is governed
a much more complicated expression than Eq.~11!, and will
not be given here.

The convergence properties of the algorithm are show
Fig. 3 for three typical prior probabilities representing r
gions I, II, and III of Fig. 2. After a short transient period a
exponentially fast convergence sets in. Sixteen-digit pre
sion in the resulting error rate is usually obtained after l
than 100 iterations. Let us close the example noting t
already a few iterations are enough to determine the o
mum discriminating device to the precision the elements
the realistic experimental setup can be controlled with in
laboratory.

In this paper we derived a simple iterative algorithm f
finding optimal devices for quantum-state discriminatio
Utility of our procedure was illustrated on a nontrivial e
ample of discriminating between three pure qubit stat
From the mathematical point of view, the problem
quantum-state discrimination is a problem of the semidefin
programming. Such correspondence is a good news s
there exist robust numerical tools designed to deal with S
problems. These could substitute our iterative algorithm
the very few exceptional cases where it might converge
slowly.

This work was supported by Grant No. LN00A015 an
project CEZ:J14/98 ‘‘Wave and particle optics’’ of the Cze
Ministry of Education.
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FIG. 3. Accuracy of the calculated error rate of the optim
POM vs the number of iterations. Convergence of the propo
algorithm is shown for three different priors:j50.6 ~squares!, j
50.8 ~triangles!, andj50.9 ~circles!. The ordinate is labeled by the
precision in decimal digits.
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