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We propose a numerical algorithm for finding optimal measurements for quantum-state discrimination. The
theory of the semidefinite programming provides a simple check of the optimality of the numerically obtained
results. With the help of our algorithm we calculate the minimum attainable error rate of a device discrimi-
nating between three particularly chosen pure qubit states.
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Nonorthogonality of quantum states is one of the basic It is well known[1] that each of Bob’s strategies can be
features of quantum mechanics. Its deep consequences atescribed in terms of aM-component probability operator
reflected in all quantum protocols. For instance, it is wellmeasurePOM) {I1;}, O<II;<1, X;II;=1. Each POM el-
known that perfect discrimination between two nonorthogo-ement corresponds to one output channel of Bob’s discrimi-
nal states cannot be made. This has important implicationgating apparatus. The probability that Bob points his finger at
for the information processing at the microscopic level sincghe kth source while the true sourcejiss given by the trace
it sets a limit on the amount of information that can be en-rule: P(k|j) =Tr p;II; . Taking the prior information into ac-
coded into a quantum system. Although perfect decisionsount, the average probability of Bob’s success in repeated
between nonorthogonal quantum states are impossible, it Bxperiments is
of importance to study measurement schemes performing
this task in the optimum, though imperfect, way. M

Two conceptually different models of decision tasks have Ps= E & Trpill;. (D)
been studied. The first one is based on the minimization of =1
the Bayesian cost function, which is nothing but a general-_.. L ,
ized error ratg1]. In the special case of linearly independents'nce the objective is to keep .BObS error rate as low as
pure states, the second model—unambiguous discriminatio@loss'ble we should maximize this number over the set of all
of quantum states—makes an interesting alternative. The lat- -component POMSs. In compact form the problem reads
ter scheme combines the error-less discrimination with a cer-

tain fraction of inconclusive resulf@—4]. Maximize P subject to constraints:
Ambiguous as well as unambiguous discrimination
schemes have been intensively studied over the past few I1;=0, j=1,... M, 2

years. As a consequence, the optimal measurements distin-

guishing between pair, trine, tetrad states, and linearly inde-

pendent symmetric states are now well understid€l7]. E =1

Many of the theoretically discovered optimal devices have T

already been realized experimentally, mainly with polarized

light [18—21]. As an example of the practical importance of Unfortunately, attacking this problem by analytical means

the optimal decision schemes let us mention their use for thbas a chance to succeed only in the simplest casles Z)

eavesdropping on quantum cryptosystd2i,23). [1], or cases with symmetric or linearly independent states

The purpose of this paper is to develop a universa[5,10,15,17,2b In most situations one must resort to nu-

method for optimizing ambiguous discrimination betweenmerical methods. In the following we will use the calculus of

generic quantum states. Assume that Alice setdugliffer-  variations to derive an iterative algorithi86] that provides

ent sources of quantum systems livingphalimensional Hil-  a convenient way of dealing with the problegi). This ap-

bert space. The complete quantum-mechanical description giroach has already found its use in the optimization of tele-

each source is provided by its density matrix. Alice choosegortation protocol$26], the optimization of completely posi-

one of the sources at random using a chance device aritve maps that approximate some unphysical operafid¥ik

sends the generated quantum system to Bob. Bob is alstnd the maximum-likelihood estimation of quantum states

given M numbers{&;} specifying probabilities that théth [28] and measuremenf9]. We are going to seek the global

source is selected by the chance device. Bob is then requiredaximum of the success functionBl subject to the con-

to tell which of theM sources{p;} generated the quantum straints given in Eq(2). To take care of the first constraint

system he had obtained from Alice. In doing this he shouldve will decompose the POM elements as followk

make as few mistakes as possible. =AJ-TA,- , J=1,... M. The other constrainfcompletenegs
can be incorporated into our model using the method of un-
certain Lagrange multipliers. Putting all things together, the

*Electronic address: rehacek@phoenix.inf.upol.cz functional to be maximized becomes
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: . the length of the iteration step self-adapts in the course of
L= ¢ Tr{p;A; Aj}_Tr[)\Z A Aj]: (3)  iterating—it gets progressively smaller in the neighborhood
) ) of the solution.

where\ is a Hermitian Lagrange operator. This expression is,[i ns:‘n(r:etthsk(t?) rr;nd (62 reﬁreslgntlv(\alnly ahnecketshsary fi?nndlil-
now to be varied with respect #d independent variables; on for the extreme, one should always check the optimality

to yield a necessary condition for the extremal point in theOf the stationary point by verifying the following set of con-

form of a set ofM extremal equations for the unknown POM ditions [1,30:
elements: A=¢pi=0, j=1,... M. (8

gpill=AI;, j=1,...M, (4) It is worth mentioning that this condition can also be derived
from the theory of the semidefinite programmi(8DP [24].
originally derived by Holevo if30]. For our purposes it is SDP tools also provide an alternative means of solving the
advantageous to bring these equations to an explicitly posProblem (2) numerically [34,35. Recently, it has been

tive semidefinite form, pointed out[35] that many problems of the quantum-
information processing can be formulated as SDP problems.
;= ng)\flijjpj)\fl, i=1,... M. (5) To see the link between the quantum discrimination and SDP

theory let us note that the dual problem of SDP is defined as

The Lagrange operator is obtained by summing Eq5) follows: Maximize — TrFyZ subject to constraints:

overj, Z=0, (9)

1/2 — H-
)\:(2 rszpjl_ljp,-) . ® TrFZ=c;, i=1,...m,

J where data aren+1 Hermitian matrice$; and a complex
vectorc e C™, andZ is a Hermitian variable. Our proble(g)
reduces to this dual SDP problem upon the following substi-
tutions:

The iterative algorithm comprised of thé+ 1 equationg5)
and (6) is the main formal result of this paper. One usually
starts from some “unbiased” trial POI‘{/H?}. After plugging

it in Eq. (6) the first guess of the Lagrange operalolis m m
obtained. This operator is, in turn, used in E8). to get the Fo=—D ¢p;, =P 1, (10)
first correction to the initial-guess strategﬁ?} [31]. The j=1 j=1

procedure gets repeated, until, eventually, a stationary point

is attained. Notice that both the positivity and completeness m ) 5

of the initial POM are preserved in the course of iterating. F=@Tr, c=Tr, i=1,...p%
In the many tests we did a monotonic convergence to the =1

true global maximum of the success rétgalways had been

observed, though we have no analytic proof of this behavio

in general. However, by slight modification of the iteration

(5) one can make sure that the Bayes c@stor rate is

reduced in each step. Let us rewrite the right-hand side

Eq. (5) as a perturbation of the old POM element:

ﬁere operatorgI’; ,i=1, ... p?} comprise an orthonormal
operator basis in thp?-dimensional space of Hermitian op-
erators acting on the Hilbert space of our problem['lIF,
of Ok k=1, 2. For simplicity, let us takd"; propor-
tional to the unity operator, then ai| apart fromc, vanish.

In SDP the necessary conditigd) for the maximum of the
functional (3) is called the complementary slackness condi-
tion. When inequalities in E8) hold it can be shown to be
. also sufficient.

where Dj=(&p;—M)A"*. The success rate is changed by  The advantage of the SDP formulation of the quantum-
the amount of6Ps=2; Tr p; 511, which is required to be  state discrimination problem is that there are strong numeri-
positive. If we found thaisPs was negative we would then ¢ tools designed for solving SDP problems, for their review
change the sign of the perturbati@v]: 51— — 611;. This  see[34]. They make use of the duality of SDP problems. The
ensures that the Bayes cost is reduced in each step. Furthgbtimal value is bracketed between the trial maximum of the
notice that the operatof3; are closely related to the gradient gy problem and trial minimum of the primal problem. One
of the functional(3). Our algorithm is an example of a more then hunts the optimal value down by making this interval
general class of gradient-type algorithms of the faaffi*  gradually smaller. SDP tools are much more complicated
=[aP(a")/dai]a[ dP(a')/9a;]. Such algorithms are known than the proposed algorithm but they are guaranteed to con-
to behave well and their applications cover many inverse angerge to the real solution.

optimization problems such as image proces$B®], posi- We have carried out extensive tests of our numerical al-
tron emission tomographf33], or optimization over com- gorithm on discriminations involving up to four pure or
pletely positive map§26,27]. Finally notice that the norm of mixed states in Hilbert spaces of dimensions two, three, and
the perturbatiordIl; decreases as the POM;} approaches four. In all these cases a monotonic convergence to the glo-
the POM of the optimal discrimination apparatus. In this waybal optimum has been observed.
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FIG. 1. A cut through the Bloch sphere showing the states to be iteration

discriminated. FIG. 3. Accuracy of the calculated error rate of the optimal

) B ) ) POM vs the number of iterations. Convergence of the proposed
Let us illustrate the utility of our algorithm on a simple, ajgorithm is shown for three different prior§:=0.6 (squarey &

albeit nontrivial example of discriminating between three co-= 0.8 (triangles, and¢= 0.9 (circles. The ordinate is labeled by the
planar pure qubit states. The geometry of this problem isgrecision in decimal digits.
shown in Fig. 1., and¥, are equal-prior stateg;=¢&,
=¢/2, symmetrically placed around tizeaxis; the third state  jgnored and the optimum POM has three nonzero elements.
lies in the direction ofx or y. A similar configuration(with  Simple calculation yields
V¥, lying alongz) has recently been investigated by Ander-

ssonet al. [17]. Exploiting the mirror symmetry of their 1
problem the authors derived analytic expressions for POMs = (11)
minimizing the average error rate. For a given angl¢he " 1+sing cose

optimum POM turned out to have two or three nonzero ele-
ments depending on the amount of the prior informatfon  for the threshold value of the prior. However, whérbe-

Our problem is a bit more complicated one due to the lackcomes still smallefregion |, the optimum POM will even-
of the mirror symmetry. Let us see whether the transitiontually become a two-element POM again—the optimal strat-
from the mirror-symmetric configuration to a nonsymmetricegy now being the optimal discrimination between statgs
one has some influence on the qualitative behavior of thand ¥;. This last regime is absent in the mirror-symmetric
optimal POMs. Minimal error rates calculated using the pro-case. The transition between regions | and Il is governed by
posed iterative proceduréEgs. (5) and (6)] for the fixed a much more complicated expression than @d), and will
angle of¢= /16 are summarized in Fig. 2. The conclusionsnot be given here.
that can be drawn from the numerical results partly coincide The convergence properties of the algorithm are shown in
with that of Ref.[17]. For large¢ (region Ill) the optimum  Fig. 3 for three typical prior probabilities representing re-
strategy consists of the optimal discrimination between stategions |, Il, and Il of Fig. 2. After a short transient period an
¥, and ¥,. When ¢ becomes smaller than a certain exponentially fast convergence sets in. Sixteen-digit preci-
¢-dependent thresholgdegion 1I), stateW; can no longer be sion in the resulting error rate is usually obtained after less

than 100 iterations. Let us close the example noting that

' | - ' ] already a few iterations are enough to determine the opti-
mum discriminating device to the precision the elements of
TN the realistic experimental setup can be controlled with in the

04 -
laboratory.
In this paper we derived a simple iterative algorithm for

] finding optimal devices for quantum-state discrimination.
Utility of our procedure was illustrated on a nontrivial ex-
ample of discriminating between three pure qubit states.
I I I From the mathematical point of view, the problem of
gquantum-state discrimination is a problem of the semidefinite
programming. Such correspondence is a good news since
there exist robust numerical tools designed to deal with SDP
' : O!6 : 0{8 : f problems. These could substitute our iterative algorithm in
£ the very few exceptional cases where it might converge too

slowly.

Error rate
=

(3]

I

|

FIG. 2. Average error rate (1Pg) in dependence on Bob's .
prior information &, ¢=m/16. Regions |, Il, and Il are regions This work was supported by Grant No. LNOOAO15 and

where the optimum discriminating device has two, three, and twgoroject CEZ:J14/98 “Wave and particle optics” of the Czech
output channels, respectively. Ministry of Education.
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