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Ground-state energies for helium, HÀ, and PsÀ
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A triple basis set in Hylleraas coordinates is used to obtain improved variational bounds for the nonrelativ-
istic energy and other properties of He, H2, and Ps2. The accuracy, numerical stability, and computational
efficiency are compared with recent work based on quasirandom basis sets. The Kato cusp conditions are used
to assess the accuracy of the wave functions at short distances.
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I. INTRODUCTION

Calculations of the ground-state energies for helium, H2,
and Ps2 by variational and other means continue to prov
benchmark tests of the relative accuracies and efficiencie
various methods of calculation. Traditionally, the best res
have been obtained by variational calculations in Hyller
coordinates in which the trial wave function is written in th
form

C~r1 ,r2!5 (
i , j ,k

i 1 j 1k<V

ai jkr 1
i r 2

j r 12
k exp~2ar 12br 2!

6~exchange!, ~1!

where r 125ur12r2u is the interelectron coordinate, theai jk
are linear variational parameters determined by matrix dia
nalization, anda andb are nonlinear scale factors that ca
be separately varied to minimize the energy. The size of
basis set is typically controlled by progressively increas
the value ofV. Calculations of increasing size and sophis
cation~sometimes including logarithmic terms and fraction
powers! have been done by many authors since the e
days of quantum mechanics@1–13#, resulting in progres-
sively lower upper bounds on the ground-state energy.
best results so far have been obtained with ‘‘double’’ ba
sets in which each combination of powers$ i , j ,k% is included
twice with different exponential scale factorsa1 , b1 and
a2 , b2 @10#.

There has recently been considerable interest in a ra
different kind of trial function which can be expressed in t
form @14–17#

C~r1 ,r2!5(
i

N

aiexp~2a i r 12b i r 22g i r 12!

6~exchange!, ~2!

where $a i , b i , g i% are triplets of numbers~including com-
plex g i) that are chosen in a quasirandom fashion. The re
is a kind of Monte Carlo calculation with a random distrib
tion of exponential scale factors and no powers of the ra
coordinates at all. Recent refinements to the quasiran
distribution of scale factors have yielded an improved up
bound to the ground-state energy of various three-body
tems@16#.
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The purpose of this Brief Report is to extend our previo
results for double basis sets in Hylleraas coordinates@10,13#
to triple basis sets. For sufficiently large basis sets, it
comes advantageous to include each combination of pow
$ i , j ,k% in Eq. ~1! three times with three independently op
mized sets of exponential scale factors. This strategy yie
better convergence and lower eigenvalues for a given siz
basis set than simply increasingV to include more powers
The result is a new lowest upper bound for the ground s
of three-body systems.

The stability and computational efficiency of the meth
will be compared with the quasirandom method. The Ka
cusp conditions will be used to test the accuracy of the w
function itself at short distances. As has recently been
cussed@18#, an accurate variational energy does not nec
sarily guarantee an accurate wave function at short dista
for the calculation of relativistic and QED effects.

II. CALCULATIONS

For a triple basis set, the complete trial function becom

C~r1 ,r2!5a0f0~Z,r1!f0~Z21,r2!

1 (
p51

3

(
i , j ,k

i 1 j 1k<V

ai jk
(p)r 1

i r 2
j r 12

k

3exp~2a (p)r 12b (p)r 2!6~exchange!, ~3!

where the sum overp covers the three sets of nonlinear p
rametersa (1), b (1), a (2), b (2), and a (3), b (3) for the
asymptotic, intermediate, and short-range sectors, res
tively. The screened hydrogenic term for nuclear chargeZ is
included for completeness on the right-hand side since
important for Rydberg states. However, it makes little diffe
ence for the ground state of helium, and it must be omit
for the negative ions where it is not defined.

If all terms with i 1 j 1k<V were included in each sec
tor, then the number of terms per sector would beV
11)(V12)(V13)/6. However, since the optimize
a (p), b (p) pairs are nearly equal, terms withi , j can and
should be omitted in order to preserve numerical stabil
The number of terms in thep th sector havingV5Vp is then
the integer closest to

N~Vp!5 1
12 ~Vp11!~Vp1 7

2 !~Vp13! ~4!
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for both even and oddVp . In addition, we employed a form
of truncation first suggested by Kono and Hattori@19# in
which terms withi 1 j 1k1u i 2 j u.Vp andk> k̄ are omitted
in sectors 2 and 3~the intermediate and short-range sector!.
This is not an absolute truncation—the omitted terms ev
tually reappear asV increases. With the definitionV̄p5Vp

2 k̄, the number of terms omitted for a givenV̄p is

N̄~V̄p!5H 1
24 V̄p~V̄p12!~V̄p14! for V̄p even

1
24 ~V̄p11!~V̄p12!~V̄p13! for V̄p odd.

~5!

For helium, we setV15V25V35V and, after some experi
mentation, found that one can setk̄54 without significantly
affecting the convergence. The total number of terms for
triple basis set is thenNtot53N(V)22N̄(V24). For H2

and Ps2 we found that relatively few terms are needed
sector 3, but thatk̄ should be increased to 7. We therefore
V15V25V, V35V28, and k̄57. The total number of
terms is then 2N(V)1N(V28)2N̄(V27)2N̄(V215).

Having constructed the basis set, the principal compu
tional step is to solve the generalized eigenvalue prob

TABLE I. Convergence study for the nonrelativistic energy
the ground state of`He ~infinite nuclear mass!. V is the highest
power in the triple basis set, andN is the total number of terms
Units are atomic units.

V N E(V) Ratioa

8 269 22.903 724 377 029 560 058 400
9 347 22.903 724 377 033 543 320 480
10 443 22.903 724 377 034 047 783 838 7.90
11 549 22.903 724 377 034 104 634 696 8.87
12 676 22.903 724 377 034 116 928 328 4.62
13 814 22.903 724 377 034 119 224 401 5.35
14 976 22.903 724 377 034 119 539 797 7.28
15 1150 22.903 724 377 034 119 585 888 6.84
16 1351 22.903 724 377 034 119 596 137 4.50
17 1565 22.903 724 377 034 119 597 856 5.96
18 1809 22.903 724 377 034 119 598 206 4.90
19 2067 22.903 724 377 034 119 598 286 4.44
20 2358 22.903 724 377 034 119 598 305 4.02
Extrap. 22.903 724 377 034 119 598 311(1)
b 2200 22.903 724 377 034 119 598 296
c 22.903 724 377 034 119 598 306(10)
d 8066 22.903 724 377 034 119 593 82
e 24497 22.903 724 377 034 119 589(5)
f 476 22.903 724 377 034 118 4

aRatio is the ratio of successive differences@E(V21)2E(V
22)#/@E(V)2E(V21)#.
bKorobov variational bound@16#.
cKorobov extrapolation@16#.
dGoldman variational bound@12#.
eBürgerset al. variational bound@11#.
fBakeret al. variational bound@7#.
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H2EO50, whereH is the Hamiltonian matrix andO is the
overlap matrix. The matrix elements ofH can be easily cal-
culated from the explicitly Hermitian form given by Eq
~11.33! of Ref. @20#. The optimization of thea (p), b (p) is
efficiently accomplished by simultaneously calculating t
energy derivatives

]E

]a (p)
522

^Cu~H2E!r 1uC (p)&

^CuC&
, ~6!

whereC (p) denotes the part of the wave function that d
pends explicitly ona (p), and similarly for theb (p) deriva-
tive. There is no contribution from terms arising fro
]ai jk

(q)/]a (p) or ]ai jk
(q)/]b (p) because of the variational stabi

ity of the wave function. The final step is then to change
a (p)s andb (p)s in the directions indicated by the derivative
resolve the generalized eigenvalue problem, recalculate
derivatives, and locate their zeros by Newton’s method.

All calculations were done in quadruple precision~about
32 decimal digit! arithmetic on a Compaq alpha workstatio
For the largest basis sets~about 2300 terms!, a complete
iteration, incuding the calculation of derivatives, takes ab
1 h. Since good starting values for thea (p) and b (p) are
always available from previous calculations with smaller b
sis sets, only a few iterations are required.

III. RESULTS

Tables I, II, and III show the convergence pattern for t
ground states of`He, `H2, and Ps2, and comparisons with
other calculations. The numbers in the last column of e
table give the values of the ratios of successive differen
defined by

R~V!5
E~V21!2E~V22!

E~V!2E~V21!
. ~7!

If R(V) were a constant, then the series would be a geom
ric series with the limit

E~`!5E~V!1
E~V!2E~V21!

R21
. ~8!

Since the actual values ofR(V) show some scatter and ten
to decrease withV, we fit them to the functional forma/Vb

and sum the series of differences numerically to obtain
extrapolated value. The uncertainty is derived from the
certainty in the values of the fitting parametersa and b. In
each of the three cases, the largest basis set gives the lo
upper bound obtained so far, and the extrapolated resu
more accurate than Korobov’s result@16# by about an order
of magnitude. However, it is satisfying that all the resu
agree to within their estimated accuracies, even though t
were obtained with quite different strategies for the constr
tion of basis sets.

The complete wave functions can be immediately reg
erated from the values of the optimized scale factorsa (p) and
b (p) listed in Table IV for `He and Ps2. The optimization
produces a natural partition of the basis set into three dist
1-2



-

e
rl

t

de
rte

e
, t
p

om

ai

ac-
n-
the

act

are
s
by

ns

of

of

1
3
4
2
5
2
8
4
3
5
3

d

99
38
25
19
04
08
03
19
64
89
99
34
77

72
07
36
13
18
18
54
68
84
77
92
83
55

BRIEF REPORTS PHYSICAL REVIEW A 65 054501
distance scales witha (1), b (1) describing the asymptotic be
havior of the wave function,a (2), b (2) the intermediate
range behavior, anda (3), b (3) the short-range behavior. Not
that the latter two continue increasing approximately linea
with V such that the functionr Vexp@2a(V)r# peaks at abou
the same distancer 5V/a(V), independent ofV. These sets
of functions can be thought of as spreading inwards to
scribe complex correlation effects at progressively sho
distance scales. This linear increase withV is essential in
order to avoid problems with numerical linear dependenc
the basis set. Provided that this precaution is observed
method has good numerical stability with standard quadru
precision arithmetic. In comparison, the quasirand
method used by Korobov@16# and Frolov@21# required up to
60-figure extended precision arithmetic in order to maint
numerical stability.

TABLE II. Convergence study for the nonrelativistic energy
`H2 ~infinite nuclear mass!. Units are atomic units.

V N E(V) Ratio

10 324 20.527 751 016 537 120 298 160
11 411 20.527 751 016 543 123 297 506
12 512 20.527 751 016 544 190 011 531 5.63
13 630 20.527 751 016 544 351 706 935 6.60
14 764 20.527 751 016 544 373 661 892 7.36
15 918 20.527 751 016 544 376 556 281 7.59
16 1089 20.527 751 016 544 377 083 777 5.49
17 1283 20.527 751 016 544 377 173 607 5.87
18 1495 20.527 751 016 544 377 191 103 5.13
19 1733 20.527 751 016 544 377 195 175 4.30
20 1990 20.527 751 016 544 377 196 198 3.98
21 2276 20.527 751 016 544 377 196 503 3.34
Extrap. 20.527 751 016 544 377 196 613(22)

TABLE III. Convergence study for the nonrelativistic energy
Ps2, with mass polarization~specific mass shift! included. Units are
atomic units.

V N E(V) Ratio

10 324 20.262 005 070 206 699 500 141
11 411 20.262 005 070 227 775 783 440
12 512 20.262 005 070 232 069 520 272 4.9
13 630 20.262 005 070 232 832 810 937 5.6
14 764 20.262 005 070 232 959 187 559 6.0
15 918 20.262 005 070 232 977 195 563 7.0
16 1089 20.262 005 070 232 979 519 328 7.7
17 1283 20.262 005 070 232 980 001 224 4.8
18 1495 20.262 005 070 232 980 080 426 6.0
19 1733 20.262 005 070 232 980 101 597 3.7
20 1990 20.262 005 070 232 980 106 481 4.3
21 2276 20.262 005 070 232 980 107 412 5.2
22 2528 20.262 005 070 232 980 107 627 4.3
Extrap. 20.262 005 070 232 980 107 696(12)
Korobov @16# 20.262 005 070 232 980 107 4
Extrap.@16# 20.262 005 070 232 980 1077(3)
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The Kato cusp conditions provide a useful test of the
curacy of the variational wave function near the electro
electron and electron-nucleus coalescence points. With
definition

n i j 5
^d~r i j !~]/]r i j !&

^d~r i j !&
~9!

the exact cusp values are@22#

n i j
(0)5qiqj

mimj

mi1mj
, ~10!

whereqi andqj are the charges andmi andmj the masses of
the particles. The quantityCi j 512n i j /n i j

(0) then measures
the relative departure of the calculated value from the ex
value. The results for the electron-nucleus cusp areCen
50.1, 0.9, and 2 ppb~parts per billion! for He, H2, and Ps2,
respectively. For the electron-electron cusp, the values
Cee58, 100, and 200 ppb, respectively. The values for P2

are about a factor of 100 smaller than those reported
Frolov @23#. They indicate that the present wave functio

TABLE IV. Optimized scale factors for`He and Ps2. Units are
mZ/(ma0), wherea0 is the Bohr radius,Z is the nuclear charge, an
m is the reduced electron mass.

V a (1) b (1) a (2) b (2) a (3) b (3)

`He
8 1.217 77 1.200 01 1.850 16 1.979 43 4.252 38 4.312
9 1.236 88 1.195 68 2.182 50 1.996 95 6.101 87 5.002
10 1.239 62 1.218 20 2.446 11 2.137 63 5.865 17 5.932
11 1.275 02 1.227 72 2.610 05 2.267 21 6.407 23 6.437
12 1.292 48 1.239 26 2.753 48 2.455 20 6.890 81 6.894
13 1.312 07 1.237 79 3.065 98 2.573 49 9.144 84 9.166
14 1.326 60 1.285 16 2.883 97 3.171 26 11.193 73 11.806
15 1.344 79 1.288 21 2.961 36 3.415 83 12.262 94 12.341
16 1.363 22 1.289 98 3.104 55 3.797 91 14.283 26 15.384
17 1.382 93 1.300 11 3.309 33 4.076 78 17.851 99 18.233
18 1.385 38 1.299 74 3.456 05 4.364 01 19.090 64 21.023
19 1.400 27 1.299 38 3.865 36 4.671 14 22.556 58 24.475
20 1.464 90 1.328 37 3.996 03 4.773 19 25.820 43 26.855

Ps2

10 0.980 16 0.585 21 1.801 09 1.825 99 7.329 04 8.990
11 0.997 19 0.589 42 1.810 85 2.070 86 6.306 88 8.208
12 1.024 35 0.603 03 1.884 22 2.074 95 7.436 22 5.615
13 1.037 41 0.604 80 1.963 75 2.263 43 8.901 18 8.781
14 1.035 58 0.607 73 2.210 21 2.295 53 9.506 35 9.430
15 1.055 91 0.610 78 2.235 47 2.367 37 11.442 20 11.435
16 1.067 87 0.612 37 2.455 20 2.317 69 11.564 88 11.550
17 1.098 08 0.619 87 2.482 91 2.352 36 11.466 37 11.700
18 1.113 71 0.630 00 2.565 25 2.498 72 13.624 88 14.222
19 1.164 67 0.643 19 2.807 25 2.611 76 15.991 27 15.816
20 1.157 96 0.640 01 2.807 31 2.713 50 15.779 60 16.359
21 1.184 57 0.656 01 2.681 27 2.694 34 16.530 15 17.160
22 1.192 26 0.663 33 2.861 82 2.879 15 17.552 19 18.039
1-3
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are well suited to the calculation of expectation values
the highly singular operators appearing in relativistic a
QED corrections.

Finally, the expectation values of various operators
listed in Table V for Ps2, including their uncertainties ob
tained from the convergence pattern with increasingV. In
several cases, the last one or two figures quoted by Fr
@23# are in disagreement with the present results. Howe
no uncertainty estimates are given by Frolov. A similar ta
of high precision expectation values for`He and `H2 has
been published previously@20#.

IV. DISCUSSION

The results presented here demonstrate that a triple b
set in Hylleraas coordinates is capable of exceeding the

TABLE V. Expectation values of various operators for Ps2 in
atomic units.

Operator Expectation value

^1/r 1
2& 0.279 326 542 225 011~6!

^1/r 1& 0.339 821 023 059 220 350~25!

^r 1& 5.489 633 252 359 448 7~27!

^r 1
2& 48.418 937 226 238 5~5!

^1/r 12
2 & 0.036 022 058 454 577~10!

^1/r 12& 0.155 631 905 652 480 400~25!

^r 12& 8.548 580 655 099 182 7~7!

^r 12
2 & 93.178 633 847 981 1~4!

^r1•r2& 1.829 620 302 247 297~8!

^1/r 1r 2& 0.060 697 690 288 582 15~5!

^1/r 1r 12& 0.090 935 346 529 989 425~13!

^d(r 1)& 0.020 733 198 005 165~13!

^d(r 12)& 0.000 170 996 756 79~10!
. A

s.
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curacy of recent calculations for three-body systems ba
on quasirandom Monte Carlo methods, while using basis
of about the same size. The excellent numerical stability
sulting from the use of multiple basis sets obviates the n
for extended precision arithmetic beyond standard quadru
precision, at least up to current levels of accuracy. In addit
to its numerical stability, the current method is computatio
ally much more efficient than the ‘‘booster’’ form of the qua
sirandom method recently employed by Frolov@17#, and it
provides a well-defined convergence pattern that can be u
to assess the accuracy of the results. In addition, the s
table of optimized scale factors in Table IV provides suf
cient information to regenerate the entire sequence of p
gressively larger wave functions.

The 22-figure accuracy of the present nonrelativistic
genvalues of course goes well beyond the accuracy w
ranted by the uncertainty in the Rydberg constant its
However, this extraordinary accuracy is a consequence o
variational stability of the energy eigenvalue. As illustrat
by the Kato cusp conditions, other quantities are typica
accurate to less than half as many significant figures, and
for the determination of these and other quantities relate
relativistic and QED effects that the present results are ph
cally important.

Note added in proof.We have recently learned of two ne
calcuations for helium by V.I. Korobov~unpublished! and
J.H. Sims and S.A. Hagstrom~unpublished!. The former ob-
tains an improved variational bound by extending the wo
in @16# to larger basis sets.
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