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Spectral asymmetries in ground-state grating and stimulated emission pumping configurations
of two-color resonant four-wave-mixing spectroscopy

A. A. Villaeys*
Institut de Physique et Chimie des Mate´riaux de Strasbourg 23, rue du Loess, 67037 Strasbourg Cedex, France

~Received 16 April 2001; published 10 May 2002!

The recent evolution toward resonant conditions of the two-color resonant four-wave-mixing~TC-RFWM!
spectroscopy has been dictated by the high sensitivity required experimentally. While some models have been
used in different contexts such as light pressure forces in strong polychromatic fields, magnetically assisted
Sisyphus effect, or multiphoton resonances inL atoms, the existence in molecules of additional processes such
as nonradiative transitions and rotational or vibrational dephasings requires the extension of previous models.
For this reason, we give here a general description of the internal dynamics for a molecule undergoing two
strong grating beams, acting either on two different transitions sharing a common level or on the same
transition, and one weak probe beam to reproduce the ground-state grating and stimulated emission pumping
configurations of TC-RFWM spectroscopy. By combining high spectral resolution and strong grating beams,
we show that the TC-RFWM spectrum is very sensitive to the transition constants, dephasing constants, as well
as to the transverse velocity of the molecules in the jet. The last case corresponding to a bichromatic field
acting on a single transition is used to explain the origin of the line-shape asymmetry observed experimentally
on jet-cooled molecules.

DOI: 10.1103/PhysRevA.65.053822 PACS number~s!: 42.65.Hw, 42.65.Ky
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I. INTRODUCTION

While most of the nonlinear optical spectroscopic tec
niques are based on nonresonant excitations to preserv
characteristics of the intrinsic dynamics of the materials
der investigation@1,2#, more recently there was a need
improve the sensitivity of the emitted signals. This is partic
larly true for the detection of traces and transient specie
low-density environments, such as free-jet expansio
Among the resonant methods, resonant four-wave mix
~RFWM! and degenerate four-wave mixing~DFWM! pertain
to a broad class of nonlinear optical processes that have
extensively used in spectroscopy to study the spectral c
acteristics of transient and stable molecules@3–5#. Besides,
the resonant character of these methods offers distinct ad
tages over linear techniques to study the structure and
namics of molecular systems in the gas phase. We note th
is a coherent, background-free technique with favora
signal-to-noise ratios. In addition, because the signal is ba
only on absorption and not on a particular decay mode
detection, any excited state may be probed regardless o
decay mode such as ionization, dissociation, or fluoresce
For this reason, these techniques are very attractive in s
selective spectroscopy@6,7#.

Few years ago, taking advantage of models previou
developed in atomic physics@8–14#, particular schemes like
V and L models have been the starting point of new sp
troscopic techniques. The case of the termed two-color re
nant four-wave mixing~TC-RFWM! is of special interest
and has been used to perform a number of experim
@15,16#. This is particularly the case in the determination
the background-free stimulated emission pumping spect
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of stable NO@17# and the transient species of C3 and HCO
@18#. Due to the weak-field regime adopted in this last e
periment, the theoretical description introduced to test th
experimental results is based on a diagrammatic perturba
theory and spherical tensor analysis. By extending a prev
treatment on DFWM@19#, the authors have established a
expression for the signal intensity for TC-RFWM that a
counts for polarization and relaxation effects. Also, T
RFWM spectroscopy has potential applications to our und
standing of the dynamics of excited states that decay rap
by intramolecular nonradiative processes. In particular,
technique has been used to study predissociating and
toionizing states in nitric oxide@20,21#. The superiority of
TC-RFWM in detecting strongly predissociative states of C
has been clearly demonstrated by characterizing the ba
~0-0! and ~1-0! of the B 2S2 –X 2P transition@22# and the
~1-1! band of theC 2S1 –X 2P transition of CH@23#, using
a ground-state double-resonance scheme in which two t
sitions share the common lower levelX 2P. With the same
theoretical approach previously mentioned, a signal line p
file, observed by probing an isolated quasibound state
scribed by a configuration interaction, has been develo
recently to evaluate the contributions to third-order susce
bility of TC-RFWM @24#. Due to the weak intensities for th
excitation laser beams, most of these experiments have
done in the nonsaturated limit, and have been describe
terms of perturbational expansion. This is also the case in
work done by Williams, Zare, and Rahn@5# to derive expres-
sions via time-independent diagrammatic perturbation the
that account for DFWM polarization, collisional, and velo
ity effects for levels with definite angular momentum. Th
treatment has been extended to the analysis of the de
dence on beam polarizations and rotational branch comb
tions of the TC-RFWM spectra@25,26#.

More recently, DFWM and TC-RFWM techniques hav
been extended to bridge between the weak- and strong-
©2002 The American Physical Society22-1
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regimes. These treatments are mostly based on the Abr
Lind model of DFWM on a nondegenerate homogeneou
broadened two-level system@27–29#. One interesting pecu
liarity of this model is that the DFWM signal is insensitive
collisions when the intensity of the pump field is increas
enough, so that the population difference oscillates at a R
frequency greater than the relaxation and dephasing ra
However, this model is restricted to the case of monoch
matic laser beams of the same polarization state and p
conjugation geometry. This model has been extended
broad-bandwidth lasers whose time dependence can
solved numerically@30#. Also, a more general descriptio
was given for degenerate four-wave mixing with broadba
lasers@31,32#, which exhibits qualitative agreement with e
periments@30#. The first experimental observation of a d
by TC-RFWM was obtained by using two-color lase
induced grating spectroscopy to obtain theS1-S0 excitation
spectra of jet-cooled azulene@33#. Later, a saturation dip ha
been observed in DFWM and TC-RFWM spectra of j
cooled CH generated from laser photolysis of CHBr3 @34#. In
this experiment, the common frequency of two nearly pa
lel grating beams is tuned around the frequency of theB-X
~0-0! vibronic band while the probe beam frequency is h
fixed at the frequency of theA-X ~0-0! transition. For in-
creasing intensities of the grating beams, the spectral lin
the B-X ~0-0! vibronic band becomes broadened and th
develops a dip resulting in a splitting of the line. In additio
it has been clearly established that the threshold for sat
tion dip of various lines in this band correlates with the
greatest absorption cross section. Also, the threshold is
sensitive to the various polarization schemes that can be
in this experiment with theYYYYscheme showing the smal
est saturation threshold. Because the small transverse v
ity component in the jet beam along the direction of the in
laser beams cannot explain the line splitting, the results h
been interpreted by using the theory of DFWM given
Meacher and co-workers with broadband lasers@30–32#.
However, with respect to these recent experimental res
obtained by TC-RFWM and DFWM experiments on je
cooled CH@34#, if this theory simulates correctly the DFWM
lines profiles as well as the depth of the saturation dip
increasing intensity of the laser beam, it fails to describe
asymmetry of the TC-RFWM spectra, as well as to acco
for the polarization effects.

In the present work, we give a general description of
dynamics taking place in a V-orL-like model undergoing
transitions between its excited states, as well as relaxat
and pure dephasings. The first case under investigation in
present work concerns a situation where two strong be
act on two different transitions sharing a common level an
weak beam probing one transition, a method that enable
develop a high selectivity. The second case corresponds
bichromatic beam acting on one transition while the sec
transition is tested by the probe beam. Peculiar features
served on TC-RFWM spectra are recovered.

II. DYNAMICAL EVOLUTION INDUCED
BY THE STRONG GRATING BEAMS ACTING

ON TWO DIFFERENT TRANSITIONS

The traditional interpretation of a TC-RFWM spectro
copy corresponds to the laser-induced grating picture
05382
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such an experiment, shown in Fig. 1, two nearly copropag
ing grating beams nearly resonant with either the same
two different transitions overlap at a small angle on t
sample creating a diffraction grating resulting from the su
sequent spatial modulation. Then a third beam, the pr
beam, with a weaker intensity is scattered by the diffract
grating and creates a four-wave-mixing signal. The stro
stationary grating fieldsEp(r ,t) andEt(r ,t) are described by

Eu~r ,t !5Eu~Vu!exp~2 iVut1 iku•r !1c.c., u5p,t
~2.1!

with frequency Vu and wave vectorku . The quantity
Eu(Vu) accounts for the amplitude and polarization of t
field. Most of the experiments in TC-RFWM require V- o
L-type models @9,12–14# and correspond to the terme
ground-state grating~GSG! and stimulated emission pump
ing ~SEP! configurations, where two strong light beams a
applied on two different transitions sharing a common lev
as represented in Fig. 2. The dynamical evolution induced
the strong grating beams can be treated on the same foo
for both models, since their corresponding dynamical evo
tions differ by the initial conditions only. The basic mod
will be described by a three-level system. For the sake

FIG. 1. Geometry required in a TC-RFWM experiment pe
formed on a molecular jet beam.

FIG. 2. Energetic level structures associated with the V mo
andL model for the SEP spectroscopy~bottom! and GSG spectros
copy, respectively. Here, the grating beams act on different tra
tions. The transitions excited by the grating beams and the pr
beams are shown in the figure. The system can support nonradi
processes.
2-2
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simplicity, we will refer to the stateu1& as the ground state
and statesu2& and u3& as the excited states, but this is only
matter of convenience. In contradiction to models previou
developed, the model must be able to account for differ
relaxation and dephasing constants, which is not the cas
atomic physics@9–12#, and must support transition pro
cesses. The general evolution of the populations and co
ences are given by

dr11

dt
5

i

\
m12•Ep~r ,t !r212

i

\
r12m21•Ep~r ,t !

1
i

\
m13•Et~r ,t !r312

i

\
r13m31•Et~r ,t !2G1111r11

2G1122r222G1133r33,

dr22

dt
5

i

\
m21•Ep~r ,t !r122

i

\
r21m12•Ep~r ,t !2G2211r11

2G2222r222G2233r33,

dr33

dt
5

i

\
m31•Et~r ,t !r132

i

\
r31m13•Et~r ,t !2G3311r11

2G3322r222G3333r33,

dr12

dt
5@ iv212G1212#r121

i

\
m12•Ep~r ,t !@r222r11#

1
i

\
m13•Et~r ,t !r32,

dr13

dt
5@ iv312G1313#r131

i

\
m13•Et~r ,t !@r332r11#

1
i

\
m12•Ep~r ,t !r23,

dr23

dt
5@ iv322G2323#r231

i

\
m21•Ep~r ,t !r13

2
i

\
r21m13•Et~r ,t !, ~2.2!

where d/dt[]/]t1v(]/]r ). Of course, the ratesG i i j j are
algebric quantities according to the closure relationG i i i i 5
2S j Þ iG i i j j ensuring the incoherent balance of populatio
between the levels of the systems. In the following, we
troduce the notationv i j 5v i2v j and assume that the nea
resonant conditions

uVp2v21u!v21,v31,uv212v31u,

uV t2v31u!v21,v31,uv212v31u ~2.3!

are satisfied. Also, we have the usual relationG i j i j

51/2@G i i i i 1G j j j j #1G i j
(d) between the dephasing constan

total decay rates, and pure dephasing constants. Notice
the transition constants are related by the detailed bala
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2\v32 /kT. For near-resonant fields, th

rotating-wave approximation can be used and the co
sponding radiation-matter interaction takes the form

Vp,mn
RWA ~ t !52mmn•Ep~«mnVp!exp@2 i«mn~Vpt2kp•r !#,

Vt,mn
RWA~ t !52mmn•Et~«mnV t!exp@2 i«mn~V tt2kt•r !#,

~2.4!

where the symbol«mn is equal to11 or 21 depending on
whether the energy gap between the statesum& and un&, cor-
responding to (vm2vn), is positive or negative, respec
tively. Also, we have the relation between the field amp
tudes,Eu(2Vu)5Eu* (Vu). In the following, we introduce
the new variables

s125r12exp~2 iVpt1 ikp•r !,

s135r13exp~2 iV tt1 ikt•r !,

s235r23exp@ i ~Vp2V t!t2 i ~kp2kt!•r #,

s i i 5r i i ; i 51, 2, 3, ~2.5!

as well as the Rabi frequencies

\VR~12,p!5m12•Ep* ~Vp!, \VR~13,t !5m13•Et* ~V t!,

~2.6!

which are assumed real. Notice that because of the b
geometry very often adopted in these experiments, with g
ing beams almost perpendicular to the molecular-beam a
we haved/dt[]/]t1vz(]/]z). Also, the ground state is
stable,G111150, and transitions from the ground state to t
excited states are not allowed spontaneously by the
rounding medium, so thatG22115G331150. This implies that
we emphasize more on the GSG configuration, but the S
configuration can be obtained along the same lines w
G222250. Finally, in terms of the population differences

h215s222s11,

h315s332s11, ~2.7!

the probability conservationS i 51
3 s i i 51 gives

s225
2
3 h212

1
3 h311

1
3 ,

s3352 1
3 h211

2
3 h311

1
3 . ~2.8!

Then, the set of Eqs.~2.2! takes the form

]h21

]t
522iVR~12,p!s2112iVR~21,p!s122 iVR~13,t !s31

1 iVR~31,t !s132~G22222G1122!@
2
3 h212

1
3 h311

1
3 #

2~G22332G1133!@2 1
3 h211

2
3 h311

1
3 #,
2-3
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]h31

]t
52iVR~31,t !s1322iVR~13,t !s311 iVR~21,p!s12

2 iVR~12,p!s212~G33222G1122!@
2
3 h212

1
3 h311

1
3 #

2~G33332G1133!@2 1
3 h211

2
3 h311

1
3 #,

]s12

]t
5@ i ~v212Vp1kpzvz!2G1212#s121 iVR~12,p!h21

1 iVR~13,t !s32,

]s13

]t
5@ i ~v312V t1ktzvz!2G1313#s131 iVR~13,t !h31

1 iVR~12,p!s23,

]s23

]t
5@ i ~v321Vp2V t2kpz1ktz!2G2323#s23

1 iVR~21,p!s132 iVR~13,t !s21, ~2.9!

where, as usual, thez dependence of the variouss i j has been
neglected. We first define the real and imaginary parts of
coherences by the expression

smn~ t !5sRemn~ t !1 is Im mn~ t !. ~2.10!

To solve the set of Eqs.~2.9!, we introduce for each rea
quantity h21(t), h31(t), sRe 12(t), s Im 12(t), sRe 13(t),
s Im 13(t), sRe 23(t), ands Im 23(t), the Fourier series

u~ t !5 (
n52`

`

u~n!~v!einvt. ~2.11!

They give, in turn, the set of equations

~ inv1a1!h21
~n!~v!5a2h31

~n!~v!2a3dn,024VR~21,p!

3s Im 12
~n! ~v!22VR~31,t !s Im 13

~n! ~v!,

~ inv1b1!h31
~n!~v!5b2h21

~n!~v!2b3dn,024VR~31,t !

3s Im 13
~n! ~v!22VR~21,p!s Im 12

~n! ~v!,

~ inv1G1212!sRe 12
~n! ~v!52~v212Vp1kpzvz!s Im 12

~n! ~v!

1VR~13,t !s Im 23
~n! ~v!,

~ inv1G1212!s Im 12
~n! ~v!5~v212Vp1kpzvz!sRe 12

~n! ~v!

1VR~12,p!h21
~n!~v!

1VR~13,t !sRe 23
~n! ~v!,
05382
e

~ inv1G1313!sRe 13
~n! ~v!52~v312V t1ktzvz!s Im 13

~n! ~v!

2VR~12,p!s Im 23
~n! ~v!,

~ inv1G1313!s Im 13
~n! ~v!5~v312V t1ktzvz!sRe 13

~n! ~v!

1VR~13,t !h31
~n!~v!

1VR~12,p!sRe 23
~n! ~v!,

~ inv1G2323!sRe 23
~n! ~v!52~v322V t1Vp1ktzvz

2kpzvz!s Im 23
~n! ~v!

2VR~21,p!s Im 13
~n! ~v!

2VR~13,t !s Im 12
~n! ~v!,

~ inv1G2323!s Im 23
~n! ~v!5~v322V t1Vp1ktzvz

2kpzvz!sRe 23
~n! ~v!

1VR~21,p!sRe 13
~n! ~v!

2VR~13,t !sRe 12
~n! ~v!,

~2.12!

with d i j the Kronecker symbol. We finally get the previou
equation in the general form

M ~n!~v!S~n!~v!5Ldn,0 , ~2.13!

whereS( l )(v) andL stand for the vectors with componen

S~ l !~v!5$~h21
~ l !~v!,h31

~ l !~v!,sRe 12
~ l ! ~v!,s Im 12

~ l ! ~v!,

3sRe 13
~ l ! ~v!,s Im 13

~ l ! ~v!,sRe 23
~ l ! ~v!,s Im 23

~ l ! ~v!%,

L5$a3 ,b3,0,0,0,0,0,0%. ~2.14!

Also, the additional notations

3a152~G22222G1122!2~G22332G1133!,

3a25~G22222G1122!22~G22332G1133!,

3a35~G22222G1122!1~G22332G1133!,

3b152~G33222G1122!12~G33332G1133!,

3b2522~G33222G1122!1~G33332G1133!,

3b35~G33222G1122!1~G33332G1133!, ~2.15!

have been introduced. The matrixM (n)(v) corresponds to
2-4
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M ~n!~v!51
inv2a1 a2 0 24VR~21,p! 0 22VR~31,t ! 0 0

b2 2 inv2b1 0 22VR~21,p! 0 24VR~31,t ! 0 0

0 0 2 inv2G1212 2v211Vp8 0 0 0 VR~13,t !

VR~12,p! 0 v212Vp8 2 inv2G1212 0 0 VR~13,t ! 0

0 0 0 0 2 inv2G1313 2v311V t8 0 2VR~12,p!

0 VR~13,t ! 0 0 v312V t8 2 inv2G1313 VR~12,p! 0

0 0 0 2VR~13,t ! 0 2VR~21,p! 2 inv2G2323 2v321V t82Vp8

0 0 2VR~13,t ! 0 VR~21,p! 0 v322V t81Vp8 2 inv2G2323

2 ~2.16!
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if the symbolsVu85Vu2kuzvz with u5p, t are introduced.
The evaluation of the density matrix elementsr i j (t) requires
the solution of Eq.~2.12! for the various values ofn. We first
consider the termsn50. Here, we are left with the inhomo
geneous linear system

M ~0!~v!S~0!~v!5L, ~2.17!

and the solution for thekth componentSk
(0)(v) takes the

form

Sk
~0!~v!5detN~k!

~0!~v!/detM ~0!~v!, ~2.18!

where the matrixN(k)
(0)(v) is defined by

N~k!i j
~0! ~v!5Mi j

~0!~v! ; i and ; j Þk,

N~k!i j
~0! ~v!5L i ; i with j 5k. ~2.19!

We come now to the termsnÞ0. In that case, we are lookin
for the solutions of an homogeneous linear equation sys
whose trivial solution is

S~n!~v!50. ~2.20!

Notice that this solution corresponds to the steady-state
often encountered in the literature, implying no time dep
dence for the populations and coherences evolving with
frequencies of the fields. This is the direct consequence
the rotating-wave approximation introduced at the beginn
of the calculation. If this assumption is relaxed, we neces
ily have a coupling between different values ofn, whose
corresponding contributions are generated recurrently f
the termn50 in the form of a continued fraction expansio
@8,11,35#.

III. DESCRIPTION OF THE PROBING PROCESS
AND THE RESULTING DYNAMICS

The probe beam introduced to test the diffraction grat
has a much weaker intensity than the grating beams. It
be described using similar notations previously used for
strong grating beams, and can be expressed as

Es~r ,t !5Es~Vs!exp~2 iVst1 iks•r !1c.c. ~3.1!

This beam will be applied on theu1&→u3& transition as
shown in Fig. 2 and will be treated perturbatively. From t
dynamical point of view, the system described as a V mo
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excited by two strong beamsEp(r ,t) andEt(r ,t), each one
being applied on a different transition, is now tested by
weak probe beamEs(r ,t). Therefore, besides the dynamic
induced by the two strong beams, which are accounted
rigorously and have been described in the preceding sec
we must introduce the additional weak probe beam pertu
tively. First, we describe the dynamical equations for t
zero- and first-order contributions to the density matrixr(t).
They correspond tor (0)(t) andr (1)(t) and are solutions of

dr~0!~ t !

dt
52

i

\
@H01V~0!,r~0!#2Gr~0!,

dr~1!~ t !

dt
52

i

\
@H01V~0!,r~1!#2

i

\
@V~1!,r~0!#2Gr~1!.

~3.2!

In the particular case of a V model, the first equation h
been solved previously. Then, we are left with the resolut
of the second equation giving the first-order contributio
For the various matrix elementsr i j

(1)(t), we get

dr11
~1!

dt
52

i

\
@V12

~0!r21
~1!2r12

~1!V21
~0!1V13

~0!r31
~1!2r13

~1!V31
~0!

1V13
~1!r31

~0!2r13
~0!V31

~1!#2G1122r22
~1!2G1133r33

~1! ,

dr22
~1!

dt
52

i

\
$V21

~0!r12
~1!2r21

~1!V12
~0!%2G2222r22

~1!2G2233r33
~1! ,

dr33
~1!

dt
52

i

\
$V31

~0!r13
~1!2r31

~1!V13
~0!1V31

~1!r13
~0!2r31

~0!V13
~1!%

2G3322r22
~1!2G3333r33

~1! ,

dr12
~1!

dt
52

i

\
$~E12E2!r12

~1!1V12
~0!~r22

~1!2r11
~1!!1V13

~0!r32
~1!

1V13
~1!r32

~0!%2G1212r12
~1! ,

dr13
~1!

dt
52

i

\
$~E12E3!r13

~1!1V13
~0!~r33

~1!2r11
~1!!1V12

~0!r23
~1!

1V13
~1!~r33

~0!2r11
~0!!%2G1313r13

~1! ,
2-5
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dr23
~1!

dt
52

i

\
$~E22E3!r23

~1!1V21
~0!r13

~1!2r21
~1!V13

~0!2r21
~0!V13

~1!%

2G2323r23
~1! . ~3.3!

The probability conservation to first-order contributions im
plies now

(
i 51

3

r i i
~1!~ t !50. ~3.4!

Therefore, as done previously, we introduce the first-or
terms of the population differencesh i j

(1)5r i i
(1)2r j j

(1) , which
give in turn

r22
~1!5 2

3 h21
~1!2 1

3 h31
~1! ,

r33
~1!5 2

3 h31
~1!2 1

3 h21
~1! . ~3.5!

Also, we define the new first-order variables by the relatio

s12
~1!5r12

~1! exp~2 iVpt1 ikp•r !,

s13
~1!5r13

~1! exp~2 iV tt1 ikt•r !,

s23
~1!5r23

~1! exp@ i ~Vp2V t!t2 i ~kp2kt!•r #,

s i i
~1!5r i i

~1! exp; i 51,2,3. ~3.6!

Finally, with these changes of variables and notations,
equation set~3.3! takes the form

]h21
~1!

]t
52iVR~21,p!s12

~1!22iVR~12,p!s21
~1!1 iVR~31,t !s13

~1!

2 iVR~13,t !s31
~1!1 iVR~31,s!exp@2 i ~Vs2V t!t

1 i ~ks2kt!•r #s13
~0!2 iVR~13,s!exp@ i ~Vs2V t!t

2 i ~ks2kt!•r #s13
~0!2a1h21

~1!1a2h31
~1! ,

]h31
~1!

]t
52iVR~31,t !s31

~1!22iVR~13,t !s31
~1!1 iVR~21,p!s12

~1!

2 iVR~12,p!s21
~1!12iVR~31,s!exp@2 i ~Vs2V t!t

1 i ~ks2kt!•r #s13
~0!22iVR~13,s!exp@ i ~Vs2V t!t

2 i ~ks2kt!•r #s31
~0!2b1h31

~1!1b2h21
~1! ,

]s12
~1!

]t
5~ iv212 iVp1 ikpzvz2G1212!s12

~1!1 iVR~12,p!h21
~1!

1 iVR~13,t !s32
~1!1 iVR~13,s!exp@ i ~Vs2V t!t

2 i ~ks2kt!•r #s32
~0! ,
05382
r

s

e

]s13
~1!

]t
1vz

]s13
~1!

]z
5~ iv312 iV t1 iktzvz2G1313!s13

~1!

1 iVR~12,p!s23
~1!1 iVR~13,t !h31

~1!

1 iVR~13,s!exp@ i ~Vs2V t!t

2 i ~ks2kt!•r #h31
~0! ,

]s23
~1!

]t
1vz

]s23
~1!

]z
5~ iv321 iVp2 iV t2 ikpzvz1 iktzvz

2G2323!s23
~1!1 iVR~21,p!s13

~1!

2 iVR~13,t !s21
~1!2 iVR~13,s!exp@ i ~Vs

2V t!t2 i ~ks2kt!•r #s21
~0! , ~3.7!

where the rotating-wave approximation has been used.
previously mentioned, the Rabi frequencies are assumed
Because of our variable change, we are left with a set
differential equations with coefficients oscillating at a sing
frequency and single wave vector. Then, a double Fou
series expansion in terms of this single frequencyDV5Vs
2V t and wave vectorDk5ks2kt can be introduced for the
first-order population differences as well as for the coh
ences into the form

u~1!~r ,t !5 (
r 52`

`

(
q52`

`

u~1!~r ,q!~DV ,Dk!

3exp~ ir DVt1 iqDk•r !. ~3.8!

Finally, owing to the real and imaginary parts of the coh
ences, as done for the zero-order contributions, we get

0524VR~21,p!s Im 12
~1!~r ,q!~DV ,Dk!22VR~31,t !s Im 13

~1!~r ,q!

3~DV ,Dk!2~ ir DV1a1!h21
~1!~r ,q!~DV ,Dk!1a2h31

~1!~r ,q!

3~DV ,Dk!1 iVR~31,s!s13
~0!d r ,21dq,1

2 iVR~13,s!s31
~0!d r ,1dq,21 ,

0524VR~31,t !s Im 13
~1!~r ,q!~DV ,Dk!22VR~21,p!s Im 12

~1!~r ,q!

3~DV ,Dk!2~ ir DV1b1!h31
~1!~r ,q!~DV ,Dk!1b2h21

~1!~r ,q!

3~DV ,Dk!12iVR~31,s!s13
~0!d r ,21dq,1

22iVR~13,s!s31
~0!d r ,1dq,21 ,

05~2 ir DV2G1212!sRe 12
~1!~r ,q!~DV ,Dk!2~v212Vp

1kpzvz!s Im 12
~1!~r ,q!~DV ,Dk!1VR~13,t !s Im 23

~1!~r ,q!~DV ,Dk!

1
i

2
VR~13,s!d r ,1dq,21s32

~0!2
i

2
VR~13,s!d r ,21dq,1s23

~0! ,
2-6
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05~2 ir DV2G1212!s Im 12
~1!~r ,q!~DV ,Dk!1~v212Vp

1kpzvz!sRe 12
~1!~r ,q!~DV ,Dk!1VR~12,p!h21

~1!~r ,q!~DV ,Dk!

1VR~13,t !sRe 23
~1!~r ,q!~DV ,Dk!1 1

2 VR~13,s!d r ,1dq,21s32
~0!

1 1
2 VR~13,s!d r ,21dq,1s23

~0! ,

05~2 ir DV2 iqDkzvz2G1313!sRe 13
~1!~r ,q!~DV ,Dk!2~v312V t

1ktzvz!s Im 13
~1!~r ,q!~DV ,Dk!2VR~12,p!s Im 23

~1!~r ,q!~DV ,Dk!

1
i

2
VR~13,s!@d r ,1dq,212d r ,21dq,1#h31

~0! ,

05~2 ir DV2 iqDkzvz2G1313!s Im 13
~1,q!~r !~DV ,Dk!1~v312V t

1ktzvz!sRe 13
~1!~r ,q!~DV ,Dk!1VR~12,p!sRe 23

~1!~r ,q!~DV ,Dk!

1VR~13,t !hRe 31
~1!~r ,q!~DV ,Dk!1 1

2 VR~13,s!@d r ,1dq,21

1d r ,21dq,1#h31
~0! ,

05~2 ir DV2 iqDkzvz2G2323!sRe 23
~1!~r ,q!~DV ,Dk!2~v321Vp

2V t2kpzvz1ktzvz!s Im 23
~1!~r ,q!~DV ,Dk!

2VR~21,p!s Im 13
~1!~r ,q!~DV ,Dk!2VR~13,t !

3s Im 12
~1!~r ,q!~DV ,Dk!2

i

2
VR~13,s!@d r ,1dq,21s21

~0!
tw
ns

05382
2d r ,21dq,1s12
~0!#,

05~2 ir DV2 iqDkzvz2G2323!s Im 23
~1!~r ,q!~DV ,Dk!1~v321Vp

2V t2kpzvz1ktzvz!sRe 23
~1!~r ,q!~DV ,Dk!

1VR~21,p!sRe 13
~1!~r ,q!~DV ,Dk!2VR~13,t !

3sRe 12
~1!~r ,q!~DV ,Dk!2 1

2 VR~13,s!@d r ,1dq,21s21
~0!

1d r ,21dq,1s12
~0!#, ~3.9!

if we remember that to zero-order, implying the V syste
and the two strong beams, the population differencesh i j

(0)

and the coherencess i j
(0) are not depending on time. O

course, the density matrix elementsr i j
(0) are time dependent

As usual this equation set can be recast into a matrix form
gives

W~r ,q!~DV ,Dk!S~1!~r ,q!~DV ,Dk!

5VR~13,s!@Lr ,qd r ,1dq,211Lr ,qd r ,21dq,1#,

~3.10!

where the vectorS(1)(r ,q)(DV ,Dk) is built up from the first-
order Fourier components as:
S~1!~r ,q!5$h21
~1!~r ,q!,h31

~1!~r ,q! ,sRe 12
~1!~r ,q! ,s Im 12

~1!~r ,q! ,sRe 13
~1!~r ,q! ,s Im 13

~1!~r ,q! ,sRe 23
~1!~r ,q! ,s Im 23

~1!~r ,q!%, ~3.11!
i-
where, for the sake of simplicity, theDV andDk dependences
have been omitted in the components. Also, the other
vectorsL1,21 andL21,1 can be expressed with the relatio
sRe ij

(0) 5sRe ji
(0) ands Im ij

(0) 52sIm ji
(0) in the form

L1,215H is31
~0!,2is31

~0! ,2
i

2
s32

~0! ,2
1

2
s32

~0! ,2
i

2
h31

~0! ,

2
1

2
h31

~0! ,
i

2
s21

~0! ,
1

2
s21

~0!J ,

L21,15H 2 is13
~0! ,22is13

~0! ,
i

2
s23

~0! ,2
1

2
s23

~0! ,
i

2
h31

~0! ,
o 2
1

2
h31

~0! ,2
i

2
s12

~0! ,
1

2
s12

~0!J , ~3.12!

by using the simplifying notation previously introduced. F
nally, the matrixW(r ,q) corresponds to

W~r ,q!5S W1
~r ,q! W2

~r ,q!

W3
~r ,q! W4

~r ,q!D , ~3.13!

where the various submatricesWj
(r ,q) with j 51 – 4 corre-

spond to
2-7
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W1
~r ,q!5S ir DV2a1 a2 0 24VR~21,p!

b2 2 ir DV2b1 0 22VR~21,p!

0 0 2 ir DV2G1212 2v211Vp8

VR~12,p! 0 v212Vp8 2 ir DV2G1212

D ,

W2
~r ,q!5S 0 22VR~31,t ! 0 0

0 24VR~31,t ! 0 0

0 0 0 VR~13,t !

0 0 VR~13,t ! 0

D ,

W3
~r ,q!5S 0 0 0 0

0 VR~13,t ! 0 0

0 0 0 2VR~13,t !

0 0 2VR~13,t ! 0

D ,

W4
~r ,q!5S 2 ir DV2 iqDk2G1313 2v311V t8 0 2VR~12,p!

v312V t8 2 ir DV2 iqDk2G1313 VR~12,p! 0

0 2VR~21,p! 2 ir DV2 iqDk2G2323 2v322Vp81V t8

VR~12,p! 0 v321Vp82V t8 2 ir DV2 iqDk2G2323

D . ~3.14!

From Eq.~3.10!, the solution can easily been obtained from simple algebra. First, the equation has to be solved for the
componentr 50 as indicated in the preceding section to get the vectorsL1,21 and L21,1. Next, the Fourier component
S(1)(1,21) andS(1)(21,1) can be determined along the same lines. Of course, from the homogeneous system obtained
other combinations of (r ,q), we conclude that their Fourier components cancel identically. From the structure of Eq.~3.10!,
the contribution to the polarization in the directionks of the probe beam is obtained straightforwardly. The general expres
of the ks component of the polarization takes the form

P~1!~ks ,Vs ,t !5r13
~1!~ks ,Vs ,t !m311r31

~1!~ks ,Vs ,t !m13's13
~1!~1,21!~DV ,Dk!m31exp~ iVst2 iks•r !, ~3.15!

if we reject highly oscillating terms whose contributions are negligible. From our calculation, it can be put into an explic
as

P~1!~ks ,Vs ,t !5m31VR~13,s!eiVst2 iks•r
1

detW~1,21! 5 U
•••• L1,21~1! ¯

•••• L1,21~2! ¯

•••• L1,21~3! ¯

]]]] ] ]]]

•••• L1,21~7! ¯

•••• L1,21~8! ¯

U1 iU ••••• L1,21~1! ••

••••• L1,21~2! ••

••••• L1,21~3! ••

]]]]] ] ]]

••••• L1,21~7! ••

••••• L1,21~8! ••

U 6 .

~3.16!
th

en

u-
us

flu-
M

eir
oid
the
try
Notice that all the dots in the determinants correspond to
matrix elements taken from matrix~3.13! for the correspond-
ing values ofr and q, and that the valuesL r ,q( j ) are the
components of vectorsL1,21 . If we are interested in the
determination of the integrated signal obtained experim
tally, we have

I ~ks ,Vs!5
1

T E
2T/2

T/2

dtuP~1!~ks ,Vs ,t !u2. ~3.17!
05382
e

-

This quantity will be the starting point of a number of n
merical simulations to illustrate the influence of the vario
dynamical constants on the TC-RFWM spectra.

To emphasize these analytical results, as well as the in
ence of the various physical processes on the TC-RFW
spectra, we will present some numerical simulations. Th
implementation is realized by using formal algebra to av
the explicit development of the determinants. Otherwise,
evaluation is straightforwardly done. All along, the geome
will be defined by the angle between the wave vectorkp and
2-8
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kt of the grating fields and thez axis. They correspond to
up52u t52p/180 rad, respectively. The probe beam
counterpropagating along thez axis so thatf5p rad. For
the present model of two beams acting on two different tr
sitions sharing a common level, we first analyze the infl
ence of the grating field amplitudes chosen equal for simp
ity. The variations are represented on Fig. 3, where
various spectra have been normalized. When the grating
amplitudesEp(Vp) andEt(V t) increase, the true states e
perimentally accessible are the dressed molecular state
sulting from the diagonalization of the radiation-matter int
action in the zero-order field and molecule states@36#. When
the grating field amplitudes are strong enough, the transit
between dressed molecular states notably differ from th
between the molecular states and we observe a line spli
of the molecular resonance. As long as the molecular ve
ity is neglected, the TC-RFWM spectra is symmetric@29#.
Here, because the spectra is observed in the frequency r
of the 1-3 transition frequency, the main feature consists
two lines resulting from the line splitting of the 1-3 res
nance. However, we really have a three-level system and
diagonalization has to be done in the full space. This imp
additional molecular dressed states with respect to the t
level system. Consequently, transitions between th
dressed states give rise to additional resonances, which
pear on the shoulder of the spectrum obtained
VR(12,p)5VR(13,t)51. Of course, their contributions ar
small due to their nonresonant excitation. Next, we anal
in Fig. 4 the role played by the transition constantsG2233 and
G3322. These constants result from the coupling between
two configurations involving the molecular statesu1& or u3&
associated with a manifold of bath states. Of course, acc

FIG. 3. We exhibit the probe field frequency dependence of
TC-RFWM spectra for various values of the Rabi frequencies c
sen equal for the grating beams so thatVR(12,p)5VR(13,t) in the
GSG spectroscopy. The values of the Rabi frequencies for the
ing beams are indicated in the inset. Other values are for the t
sition and field frequenciesv315V t523 460.96 cm21, v215Vp

525 818.90 cm21, for the total decay ratesG22225G3333

50.35 cm21, for the transition constantG223350, for the pure
dephasing constantsG i j i j

(d) 50 ; ~i,j!, for the probe Rabi frequency
VR(12,s)50.005 cm21, and finally for the transverse velocityvz

50.
0538
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ing to the bath temperature, we have a distribution pop
tion effect between these configurations, which is accou
for by the well-known detailed balance equationG3322
5exp(2\v32/kT)G2233between direct and reverse transiti
constants. As expected, for increasing values ofG2233, we
note a strong reduction of the dip due to the rapid tran
between the levels 2 and 3. For higher values ofG2233, the
spectrum will look like to a single resonance with a sha
strongly temperature dependent through the coeffic
exp(2\v32/kT) relating the transition constantsG3322 and
G2233.

Of course, at very low grating field intensities, the d
namical equation corresponds to the linearization of
Liouville equation~3.2! with respect to the grating field am
plitudes and we recover all the results previously establis
in the low-field regime.

IV. DYNAMICS INDUCED BY A BICHROMATIC FIELD
AND PROBED ON A DIFFERENT TRANSITION

In the present section, we consider the case of a V oL
system with one side driven by a bichromatic field, while
other one is tested by a weak probe field, as shown in Fig
Again, like in the preceding section, we will emphasize m
on the V structure but, as previously mentioned, with sm
changes the other situation can be handled as well.
bichromatic field responsible for the diffraction grating a
the probing field are described by their corresponding e
tric fields

Ep~r ,t !5Ep~Vp!exp@2 i ~Vpt2kp•r !#@11ae2 i Dk•r#1c.c.,

Es~r ,t !5Es~Vs!exp@2 i ~Vst2ks•r !#1c.c. ~4.1!

by using the same notations previously introduced. Here
quantity Es(Vs) stands for the amplitude of the probe fie
with wave vectorks , and Ep(Vp) and aEp(Vp) are the
amplitudes for the bichromatic field associated with the w
vectorskp and kp2Dk , respectively. The dynamical evolu
tion induced by the grating beam applied on theu1&→u2&
transition, and the probing beam acting on theu1&→u3& tran-
sition, is again introduced by using the rotating-wave
proximation. This basic description of bichromatic fields a
ing on a three-level system has been done for a large num
of problems as different as coherent effects in the V mo
@9#, light pressure forces in intense polychromatic fie
@11,37#, or multiphoton Raman resonances inL atoms@12#.
The evolution of the populations and coherences corresp
to

dr22

dt
5F2

i

\
m12•Ep~Vp!exp@ i ~Vpt2kp•r !#@11ae2 i Dk•r#

3r211c.c.G2G2211r112G2222r222G2233r33,

e
o-

at-
n-
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dr33

dt
5F2

i

\
m13•Es~Vs!exp@ i ~Vst2ks•r !#r311c.c.G

2G3311r112G3322r222G3333r33,

dr12

dt
5@ iv212G1212#r121

i

\
m12•Ep~Vp!

3exp@ i ~Vpt2kp•r !#@11ae2 i Dk•r#@r222r11#

1
i

\
m13•Es~Vs!exp@ i ~Vst2ks•r !#r32,

dr13

dt
5@ iv312G1313#r131

i

\
m12•Ep~Vp!

3exp@ i ~Vpt2kp•r !#@11ae2 i Dk•r#r23

1
i

\
m13•Es~Vs!exp@ i ~Vst2ks•r !#@r332r11#,

dr23

dt
5@ iv322G2323#r231

i

\
m21•Ep* ~Vp!

3exp@2 i ~Vpt2kp•r !#@11a* ei Dk•r#r13

2
i

\
r21m13•Es~Vs!exp@ i ~Vst2ks•r !#, ~4.2!

where the definition of the time derivative and the assum
tions ~2.3! are still valid. For the present purpose, it is co
venient to introduce the change of variables

r215e2 iVpt@speikp•r1r pe2 ikp•r#,

r315e2 iVst@sse
iks•r1r se

2 iks•r#,

FIG. 4. We represent the influence of the nonradiative proce
taking place between levels 2 and 3 on the TC-RFWM spe
obtained from GSG spectroscopy. The probe frequency depend
is drawn for the three different values ofG2233 indicated in the inset.
The Rabi frequencies for the grating beams areVR(12,p)
5VR(13,t)50.45 cm21, kT/v3250.05, all the other values bein
kept identical to those of Fig. 3.
05382
-

r235e2 i ~Vp2Vs!t@s2 exp@2 i ~kp2ks!•r #

1r 2 exp@ i ~kp2ks!•r #1s1 exp@ i ~kp1ks!•r #

1r 1 exp@2 i ~kp1ks!•r ##. ~4.3!

From the set of equations~4.2!, by identifying the variousk
components, we get for the coherences

ṡp* 5@ i ~v212Vp1kpzvz!2G1212#sp* 1
i

\
m12•Ep~Vp!

3@11ae2 i Dk•r#~r222r11!1
i

\
m13•Es~Vs!r 2* ,

ṙ p* 5@ i ~v212Vp2kpzvz!2G1212#r p* 1
i

\
m13•Es~Vs!r 1* ,

ṡs* 5@ i ~v312Vs1kszvz!2G1313#ss* 1
i

\
m12•Ep~Vp!r 2

1
i

\
m13•Es~Vs!~r332r11!,

ṙ s* 5@ i ~v312Vs2kszvz!2G1313#r s* 1
i

\
m12•Ep~Vp!s1 ,

ṙ 25@ i $v321Vp2Vs2~kpz2ksz!vz%2G2323#r 2

1
i

\
m21•Ep* ~Vp!@11a* ei Dk•r#ss* 2

i

\
m13•Es~Vs!sp ,

ṡ15@ i $v321Vp2Vs2~kpz1ksz!vz%2G2323#s1

1
i

\
m21•Ep* ~Vp!@11a* ei Dk•r#r s* . ~4.4!

This equation set can be solved easily. Indeed, a quick
amination of the fourth and sixth equalities shows that th
constitute an homogeneous equation set, so thatr s* 5s1

50. To solve the equation set for the remaining coefficien
we first need the solutions for the populations. If the pro

es
a
ce

FIG. 5. Energetic level structures analogous to those previo
shown in Fig. 2, except for the grating beams, which act, here
the same transition.
2-10
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field Es(r ,t) is weak enough, it suffices to calculate th
populations to zero order on the probe beam and this
proximation will be also true for the evaluation of the coe
ficient sp* participating in the dynamical evolution of th
populations. Therefore, if we remember that the populat
conservation requiresS jr j j 51, we obtain

ṙ22
~0!5

i

\
m21•Ep* ~Vp!@11a* ei Dk•r#sp

~0!* 2
i

\
m12•Ep~Vp!

3@11ae2 i Dk•r#sp
~0!2G2222r22

~0!2G2233r33
~0! ,

ṙ33
~0!52G3333r33

~0!2G3322r22
~0! ,

ṡp
~0!* 5@ i ~v212Vp1kpzvz!2G1212#sp

~0!* 1
i

\
m12•Ep~Vp!

3@11ae2 i Dk•r#~2r22
~0!1r33

~0!21!. ~4.5!

FIG. 6. Influence of the pure dephasing processesG12
(d) andG13

(d)

on the grating beam frequency dependence of the TC-RFWM s
tra. The basic difference comes from the fact that the transitions
and 1-3 are driven by a strong field and a weak field, respectiv
The values of the pure dephasing constants are given on the i
and are equal to zero if not indicated. Other values are for
transition constantG223350, for the Rabi frequenciesVR

12

50.075 cm21, VR
1350.005 cm21, for the transverse velocityvz5

21.431027 cm s21 with c the light velocity, and finally for the
field parametersa51 andx51. Other values are kept identical t
those of Fig. 3.
05382
p-

n

Introducing the Fourier series expansion

u~ t !5 (
n52`

1`

u~n!~v!einvt ~4.6!

and the notationsp
(0)5sp(r )

(0) 1 isp( i )
(0) standing for the real and

imaginary parts as well asVR
12 andVR

13 for the Rabi frequen-
cies of the grating~p! and probe~s! fields, we get

invr22
~0!~n!~v!52G2222r22

~0!~n!~v!2G3333r33
~0!~n!~v!

12VR
12@11a cos~Dk•r !#sp~ i !

~0!~n!~v!

22VR
12a sin~Dk•r !sp~r !

~0!~n!~v!,

invr33
~0!~n!~v!52G3333r33

~0!~n!~v!2G3322r22
~0!~n!~v!,

invsp~r !
~0!~n!~v!52G1212sp~r !

~0!~n!~v!1~v212Vp1kpzvz!

3sp~ i !
~0!~n!~v!12VR

12a sin~Dk•r !@r22
~0!~n!~v!

1r33
~0!~n!~v!#2VR

12a sin~Dk•r !,

invsp~ i !
~0!~n!~v!52G1212sp~ i !

~0!~n!~v!2~v212Vp1kpzvz!

3sp~r !
~0!~n!~v!22VR

12@11a cos~Dk•r !#

3@r22
~0!~n!~v!1r33

~0!~n!~v!#1VR
12@1

1a cos~Dk•r !#. ~4.7!

The solutions are

r22
~0!~n!~v!5r33

~0!~n!~v!5sp~r !
~0!~n!~v!5sp~ i !

~0!~n!~v!50

for nÞ0, ~4.8!

while for n50, with the notation

c-
-2
y.
ets
e

FIG. 7. We present the grating beam frequency dependenc
the TC-RFWM spectra for different values of the transverse vel
ity indicated in the inset. The physical parameters areG i i i i

50.35 cm21 for i 52, 3, G12
(d)5G13

(d)50, G223350, and finallyVR
12

50.085 cm21, VR
1350.005 cm21. Other values are identical to

those of Fig. 6.
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D~n!5U 2 inv2G2222 2G2233 22VR
12a sin~Dk•r ! 2VR

12@11a cos~Dk•r !#

2G3322 2 inv2G3333 0 0

2VR
12a sin~Dk•r ! VR

12a sin~Dk•r ! 2 inv2G1212 v212Vp1kpzvz

22VR
12@11a cos~Dk•r !# 2VR

12@11a cos~Dk•r !# 2v211Vp2kpzvz 2 inv2G1212

U ,

~4.9!

we have

r22
~0!~0!~v!5

1

D~0!U 0 2G2233 22VR
12a sin~Dk•r ! 2VR

12@11a cos~Dk•r !#

0 2G3333 0 0

VR
12a sin~Dk•r ! VR

12a sin~Dk•r ! 2G1212 v212Vp1kpzvz

2VR
12@11a cos~Dk•r !# 2VR

12@11a cos~Dk•r !# 2v211Vp2kpzvz 2G1212

U ,

r33
~0!~0!~v!5

1

D~0!U 2G2222 0 22VR
12a sin~Dk•r ! 2VR

12@11a cos~Dk•r !#

2G3322 0 0 0

2VR
12a sin~Dk•r ! VR

12a sin~Dk•r ! 2G1212 v212Vp1kpzvz

22VR
12@11a cos~Dk•r !# 2VR

12@11a cos~Dk•r !# 2v211Vp2kpzvz 2G1212

U ,

sp~r !
~0!~0!~v!5

1

D~0!U 2G2222 2G2233 0 2VR
12@11a cos~Dk•r !#

2G3322 2G3333 0 0

2VR
12a sin~Dk•r ! VR

12a sin~Dk•r ! VR
12a sin~Dk•r ! v212Vp1kpzvz

22VR
12@11a cos~Dk•r !# 2VR

12@11a cos~Dk•r !# 2VR
12@11a cos~Dk•r !# 2G1212

U ,

sp~ i !
~0!~0!~v!5

1

D~0!U 2G2222 2G2233 22VR
12a sin~Dk•r ! 0

2G3322 2G3333 0 0

2VR
12a sin~Dk•r ! VR

12a sin~Dk•r ! 2G1212 VR
12a sin~Dk•r !

22VR
12@11a cos~Dk•r !# 2VR

12@11a cos~Dk•r !# 2v211Vp2kpzvz 2VR
12@11a cos~Dk•r !#

U
~4.10!
,

er
From the knowledge of the quantitiesr22
(0)(0)(v),

r33
(0)(0)(v), sp(r )

(0)(0)(v), andsp( i )
(0)(0)(v) previously established

we calculate the quantityss from the third and fifth equalities
of Eq. ~4.4!. This is all that we need to calculate the coh
ence termsr31(t). We get

ṡs* 5@ i ~v312Vs1kszvz!2G1313#ss* 1
i

\
m12•Ep~Vp!r 2

1
i

\
m13•Es~Vs!~2r33

~0!1r22
~0!21!,

ṙ 25@ i ~v321Vp2Vs2~kpz2ksz!vz!2G2323#r 2

1
i

\
m21•Ep* ~Vp!@11a* ei Dk•r#ss* 2

i

\
m13•Es~Vs!sp .

~4.11!
05382
-

With the partition in real and imaginary parts forss
5ss(r )1 iss( i ) and r 25r 2(r )1 ir 2( i ) and introducing a Fou-
rier series expansion for these quantities, we obtain

invs~r !
~n! ~v!52G1313ss~r !

~n! ~v!1~v312Vs1kszvz!ss~ i !
~n! ~v!

2VR
12r 2~ i !

~n! ~v!,

invss~ i !
~n! ~v!52G1313ss~ i !

~n! ~v!2~v312Vs1kszvz!ss~r !
~n! ~v!

2VR
12r 2~r !

~n! ~v!1VR
13~22r33

~0!2r22
~0!11!,

invr 2~r !
~n! ~v!52G2323r 2~r !

~n! ~v!2@v321Vp2Vs2~kpz

2ksz!vz#r 2~ i !
~n! ~v!1VR

~12!

3@11a cos~Dk•r !#ss~ i !
~n! ~v!

2VR
12a sin~Dk•r !ss~r !

~n! ~v!1VR
13sp~ i ! ,
2-12
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invr 2~ i !
~n! ~v!52G2323r 2~ i !

~n! ~v!1@v321Vp2Vs2~kpz

2ksz!vz#r 2~r !
~n! ~v!1VR

12

3@11a cos~Dk•r !#ss~r !
~n! ~v!

1VR
12a sin~Dk•r !ss~ i !

~n! ~v!2VR
13sp~r ! .

~4.12!
05382
Again, we have the solutions

r 2~ i !
~n! ~v!5r 2~r !

~n! ~v!5ss~r !
~0!~n!~v!5ss~ i !

~0!~n!~v!50 for nÞ0,
~4.13!

while for n50, with the additional notation
,

L~n!

5U 2 inv2G1313 v312Vs1kszvz 0 2VR
12

2v311Vs2kszvz 2 inv2G1313 2VR
12 0

2VR
12a sin~Dk•r ! VR

12@11a cos~Dk•r !# 2 inv2G2323 2v322Vp1Vs1~kpz2ksz!vz

VR
12@11a cos~Dk•r !# VR

12a sin~Dk•r ! v321Vp2Vs2~kpz2ksz!vz 2 inv2G2323

U ,

~4.14!

we have

ss~r !
~0!~0!~v!5

1

L~0!

3U 0 v312Vs1kszvz 0 2VR
12

VR
13~2r33

~0!1r22
~0!21! 2G1313 2VR

12 0

2VR
13sp~ i ! VR

12@11a cos~Dk•r !# 2G2323 2v322Vp1Vs1~kpz2ksz!vz

VR
13sp~r ! VR

12a sin~Dk•r ! v321Vp2Vs2~kpz2ksz!vz 2G2323

U
~4.15!

and

ss~ i !
~0!~0!~v!5

1

L~0!

3U 2G1313 0 0 2VR
12

2v311Vs2kszvz VR
13~2r33

~0!1r22
~0!21! 2VR

12 0

2VR
12a sin~Dk•r ! 2VR

13sp~ i ! 2G2323 2v322Vp1Vs1~kpz2ksz!vz

VR
12@11a cos~Dk•r !# VR

13sp~r ! v321Vp2Vs2~kpz2ksz!vz 2G2323

U .

~4.16!

If we consider the case where no nonradiative transition occurs, so thatG22335G332250, then with our previous approximation
we have a constant population in level 3,r33

(0)5N8, and Eqs.~4.5! reduce to

ṙ22
~0!52G2222r22

~0!12VR
12@11a cos~Dk•r !#sp~ i !

~0! 22VR
12a sin~Dk•r !sp~r !

~0! ,

ṡp~r !
~0! 52G1212sp~r !

~0! 1~v212Vp1kpzvz!sp~ i !
~0! 1VR

12a sin~Dk•r !~2r22
~0!1N821!,

ṡp~ i !
~0! 52G1212sp~ i !

~0! 2~v212Vp1kpzvz!sp~r !
~0! 2VR

12@11a cos~Dk•r !#~2r22
~0!1N821!. ~4.17!

Therefore, the zero-order population of levelu2& takes the form

r22
~0!5

2~VR
12!2G1212~12N8!@11a212a cos~Dk•r !#

G2222@G1212
2 1~v212Vp1kpzvz!

2#14~VR
12!2G1212@11a212a cos~Dk•r !#

. ~4.18!
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Similarly, with the same approximation on the probe beam we obtain, for the real and imaginary parts of the fasp
5sp(r )1 isp( i ) , the expressions

sp~r !
~0! 5

G2222VR
12~N821!$G1212a sin~Dk•r !2~v212Vp1kpzvz!@11a cos~Dk•r !#%

G2222@G1212
2 1~v212Vp1kpzvz!

2#14~VR
12!2G1212@11a212a cos~Dk•r !#

,

sp~ i !
~0! 5

G2222VR
12~12N8!$G1212@11a cos~Dk•r !#1~v212Vp1kpzvz!a sin~Dk•r !%

G2222@G1212
2 1~v212Vp1kpzvz!

2#14~VR
12!2G1212@11a212a cos~Dk•r !#

. ~4.19!
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From the knowledge ofr22
(0) andsp

(0) previously established
the coefficientss is straightforwardly obtained. This is a
that we need to calculate the coherence termsr31(t) required
for the evaluation of the TC-RFWM spectrum. Its express
will enable us to discuss the influence of the dynamical c
stants on the spectra and to elucidate the origin of the as
metry recently observed in the TC-RFWM spectra in j
cooled CH@34#. Also, we will fit the experimental data to
determine the corresponding total decay rates and depha
constants. The evaluation of the signal intensity lies on
evaluation of the polarizationPks

(Vs) along the direction of

the probe beamks for the transitionu1&→u3&. Therefore, the
corresponding intensity can be straightforwardly dedu
from the expression

I ~Vp!5uPks
~Vs!u25ur31~ks ,Vs!m13u25uss~r !

~0! 1 iss~ i !
~0! u2,

~4.20!

where r31(ks ,Vs) corresponds, to first order on the prob
beam, to the Fourier component of the density matrix in
ks direction for the transitionu1&→u3&. Notice that both
quantitiesss(r )

(0) andss( i )
(0) depend onr22

(0) , sp(r )
(0) , andsp( i )

(0) pre-
viously evaluated and given by Eqs.~4.10! in the general
case. Their expressions reduce to Eqs.~4.18! and ~4.19!

FIG. 8. Influence of the transverse velocity distribution on t
TC-RFWM spectra for different values of the distribution widths
given in the inset. The frequency of the probe beam is resonant
the 1-3 transition frequency. Other values are similar to those
Fig. 7.
05382
n
-
-

-

ing
e

d

e

when the nonradiative constants cancel. These quantities
exactly what is required to fit the experimental data on
TC-RFWM signal intensity. Of course, other geometries c
be treated along the same lines.

Like in the preceding section, we come now to some n
merical simulations to illustrate the peculiar features o
served in this spectroscopic configuration. First of all,
want to emphasize the influence of the pure dephasing
cesses described byG12

(d) and G13
(d) and acting on the transi

tions 1-2 and 1-3, respectively. The variations are shown
Fig. 6. We begin with the pure dephasing processes actin
the transition 1-2 driven by the strong grating fields. He
because we are in the strong-field regime, the pure depha
constantG12

(d) contributes to the generalized Rabi frequen
by increasing it, and consequently increases the line splitt
This is why we note an increase of the dip with the increa
of G12

(d) . However, concerning the influence of the pu
dephasing processes accounted for byG13

(d) and acting on the
1-3 transition driven by the weak probe field, the increase
the pure dephasing constant tends to wash out the dip s
ture. It can be mentioned that in supersonic molecular
beams, the microscopic processes accounted for by
dephasing constants correspond mainly to elastic collisi

th
f

FIG. 9. Fit on the TC-RFWM spectrum of theR1(2) line of the
B-X ~0-0! vibronic band obtained for aYYYYpolarization scheme
and a total energy of the grating beam of 100mJ in the ground-state
grating configuration. The experimental points correspond to
squares and the solid line represents our predictions from
model.
2-14
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SPECTRAL ASYMMETRIES IN GROUND-STATE . . . PHYSICAL REVIEW A 65 053822
occuring between the molecules in the jet. We note that
residual TC-RFWM signal is always present in this expe
ment, since we are tuning the grating beams at fixed pr
field frequency and detecting the signal resulting from
polarization of the 1-3 transition. The TC-RFWM signal d
pends onG13

(d) far from resonance. In addition, we can me
tion that the asymmetry of the spectra result from a nonz
molecular transverse velocity as will be discussed in the
lowing. Next, we analyze the influence of the transverse m
lecular velocity of the jet-cooled beam on the TC-RFW
spectrum. The Doppler shift, resulting from the transve
molecular motion, alters the diffraction of the probe beam
the grating created by the two fieldsEp . According to the
sign of the velocity component, this modification results
constructive or destructive interferences, depending
whether the frequency of the grating beams is higher
lower than the transition frequency. To emphasize this po
the spectra have been drawn for different values of the tra
verse velocity component. First of all, we note that the sp
tra obtained for opposite values of this velocity compon
are symmetric with respect to the frequency of the 1-2 tr
sition. Of course, for zero value of the velocity, the spectr
recovers a complete symmetry independently of the re
ation and dephasing constants. As the grating beams ar
tense enough to split the spectral line, all the constants
symmetrized. This clearly shows that no asymmetry can
expected from the internal structure of the three-level mo
as previously mentioned. The corresponding variations of
spectra are shown in Fig. 7. They show that positive val
of the velocity component give constructive interferences
Vp,v21 and vice versa. It is interesting to note that t
influence of the transverse velocity on the TC-RFWM sp
trum appears yet at small values of the component. Besi
due to the experimental setup, the molecules can hav
transverse velocity distribution in the jet. Then, a Gauss
function can be used to model the transverse velocity dis
bution and to evaluate the average TC-RFWM spectrum
we can see from Fig. 8, the main consequence of this di
bution is to wash out the double resonance structure
simultaneously to partially reduce the spectral asymmetr

Finally, we take advantage of our description to fit t
experimental data obtained on a jet-cooled CH produced
the photolysis of CHBr3 , using GSG spectroscopy@34#. In
this experiment, theYYYYpolarization scheme has been ch
sen because it shows the least threshold energy for sa
tion. In this experiment two nearly parallel grating beam
which cross at a small angle of about 1°, propagate ne
perpendicularly to the jet-cooled CH. The probe beam pro
gates in the opposite direction and crosses the grating be
at a small angle to match the phase. The experimental ge
etry is shown in Fig. 1. The TC-RFWM spectrum inves
gated in this experiment corresponds to theR1(2) line of the
B-X ~0-0! vibronic band. To this end, the common frequen
of both grating beams is tuned around theB-X ~0-0! transi-
tion corresponding to 25 818.90 cm21, while the fixed probe
beam frequency is resonant with theA-X ~0-0! transition
frequency of 23 460.96 cm21. The spectroscopic propertie
of the CH radical have been widely studied@38–43#. The
low-lying configurationsX 2P, B 2S2, andA 2D of CH are
05382
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well characterized and correspond to the model statesu1&, u2&,
and u3&, respectively. The more important features appear
in the TC-RFWM spectra are certainly the line splittings o
tained for increasing values of the grating beam intensit
and the asymmetry, which is again more likely observed
intense grating beams. Notice that this asymmetry still
mains even at low grating beam intensities, but of cour
with a much smaller magnitude. While the line splitting h
been interpreted on the basis of a theory developed
DFWM by Meacher and co-workers@30–32#, a theory ini-
tially based on the Abrams-Lind model@27–29#, or even by
using the concept of anharmonic gratings@44,45#, they failed
to explain the spectral asymmetry. Notice that all these p
vious theories predict the same double-resonance spe
structure symmetric with respect to the central dip.
course, their results are recovered by the present model w
the transverse molecular velocity goes to zero. In our mo
its evaluation results strictly from the dynamical evolution
the moving molecules with nonzero transverse velocity a
described by a three-level model excited by the grating fie
applied on theu1&→u2& transition, while the probe field act
on the u1&→u3& transition. While the present model can b
applied to any experimental geometry, the experimental d
on jet-cooled CH have been obtained with identical grat
beams except for the direction of their wave vectors, as
dicated previously. In Fig. 9, we fit the experimental da
obtained for a total grating beam intensity of 100mJ. The fit
of the experimental data obtained for a total grating be
intensity of 10 and 50 mJ gave the value G2222
50.35 cm21. Not much is known about total decay rates
dephasing constants for these transitions, making any sp
lation on this value quite difficult. Notice thatG2222 is char-
acteristic from the CH rotational structure and has nothing
do with the photolysis process producing the CH molecu
Also, we have to mention that the fit is less sensitive to
value ofG3333. For this reason, it has been chosen equa
G2222. Finally, due to the strong influence of the transve
velocity on the spectra, the influence of the pure dephas
processes are masked and their corresponding constants
been set to zero. Of course, for smaller values of the tra
verse velocity or more precise experimental data, which
plies controlling the distribution ofvz , the determination of
the dephasing constants could be realized. Finally, from
fit shown in Fig. 9, we obtain a velocity component ofvz
5242 m/s, a value that seems quite reasonable for this t
of experiment. The fact that only the negative value ofvz is
found in the experiment indicates that the laser beam
mainly focused on the jet zone, where the expansion give
transverse molecular velocity in the opposite sense to
grating beam propagation. Notice that a situation involvi
both positive and negative values ofvz will have contribu-
tions that will restore the symmetry of the spectral line.

V. CONCLUSION

In this work, we have presented a general description
TC-RFWM valid for V- andL-type models. These model
previously applied in atomic physics have been generali
to account for nonradiative transitions between the molec
2-15
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excited states as well as rotational or vibrational dephasi
Here, the dephasings are not necessarily the same for
transitions, a simplification previously introduced in the i
ternal dynamics induced by a bichromatic fields acting on
V model, to get an analytical solution@9#. For convenience
because experimental data exist for molecular V models,
model has been treated explicitly. However, the extensio
L-type models is straightforward with small changes. In a
dition, our description is valid for any intensity regime of th
grating fields. The present analysis shows a high sensib
y
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of the TC-RFWM spectrum to parameters such as transi
constants and pure dephasing constants. However, as
grating beams are intense enough to split the spectral
these constants, which drive the internal dynamics, are re
tributed and the TC-RFWM spectrum remains symmet
This is not the case for the transverse velocity, which exh
its a great influence on the diffraction grating created by
pumping beams and responsible for the strong asymmetr
the TC-RFWM spectrum. Yet notice that this transverse D
pler effect is efficient at small velocities.
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