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Spectral asymmetries in ground-state grating and stimulated emission pumping configurations
of two-color resonant four-wave-mixing spectroscopy
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The recent evolution toward resonant conditions of the two-color resonant four-wave-riEGrRBFWM)
spectroscopy has been dictated by the high sensitivity required experimentally. While some models have been
used in different contexts such as light pressure forces in strong polychromatic fields, magnetically assisted
Sisyphus effect, or multiphoton resonancegiatoms, the existence in molecules of additional processes such
as nonradiative transitions and rotational or vibrational dephasings requires the extension of previous models.
For this reason, we give here a general description of the internal dynamics for a molecule undergoing two
strong grating beams, acting either on two different transitions sharing a common level or on the same
transition, and one weak probe beam to reproduce the ground-state grating and stimulated emission pumping
configurations of TC-RFWM spectroscopy. By combining high spectral resolution and strong grating beams,
we show that the TC-RFWM spectrum is very sensitive to the transition constants, dephasing constants, as well
as to the transverse velocity of the molecules in the jet. The last case corresponding to a bichromatic field
acting on a single transition is used to explain the origin of the line-shape asymmetry observed experimentally
on jet-cooled molecules.
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. INTRODUCTION of stable NO[17] and the transient species of @d HCO
[18]. Due to the weak-field regime adopted in this last ex-
While most of the nonlinear optical spectroscopic tech-periment, the theoretical description introduced to test their
niques are based on nonresonant excitations to preserve tBgperimental results is based on a diagrammatic perturbation
characteristics of the intrinsic dynamics of the materials untheory and spherical tensor analysis. By extending a previous
der investigation[1,2], more recently there was a need to treatment on DFWM19], the authors have established an
improve the sensitivity of the emitted signals. This is particu-expression for the signal intensity for TC-RFWM that ac-
larly true for the detection of traces and transient species igounts for polarization and relaxation effects. Also, TC-
low-density environments, such as free-jet expansionsRFWM spectroscopy has potential applications to our under-
Among the resonant methods, resonant four-wave mixingtanding of the dynamics of excited states that decay rapidly
(RFWM) and degenerate four-wave mixit@FWM) pertain by intramolecular nonradiative processes. In particular, this
to a broad class of nonlinear optical processes that have beggchnique has been used to study predissociating and au-
extensively used in spectroscopy to study the spectral chatoionizing states in nitric oxid¢20,21). The superiority of
acteristics of transient and stable molecUlgs5]. Besides, TC-RFWM in detecting strongly predissociative states of CH
the resonant character of these methods offers distinct advanas been clearly demonstrated by characterizing the bands
tages over linear techniques to study the structure and dy9-0) and (1-0) of the B 23, ~—X 21 transition[22] and the
namics of molecular systems in the gas phase. We note that(it-1) band of theC 23" —X 2II transition of CH[23], using
is a coherent, background-free technique with favorabley ground-state double-resonance scheme in which two tran-
signal-to-noise ratios. In addition, because the signal is basegitions share the common lower lew¢l2I1. With the same
only on absorption and not on a particular decay mode fotheoretical approach previously mentioned, a signal line pro-
detection, any excited state may be probed regardless of itge, observed by probing an isolated quasibound state de-
decay mode such as ionization, dissociation, or fluorescencecribed by a configuration interaction, has been developed
For this reason, these techniques are very attractive in stateecently to evaluate the contributions to third-order suscepti-
selective spectroscod$,7]. bility of TC-RFWM [24]. Due to the weak intensities for the
Few years ago, taking advantage of models previouslgxcitation laser beams, most of these experiments have been
developed in atomic physi¢8—14], particular schemes like done in the nonsaturated limit, and have been described in
V and A models have been the starting point of new specierms of perturbational expansion. This is also the case in the
troscopic techniques. The case of the termed two-color resavork done by Williams, Zare, and Rafi§] to derive expres-
nant four-wave mixing(TC-RFWM) is of special interest sions via time-independent diagrammatic perturbation theory
and has been used to perform a number of experimenthat account for DFWM polarization, collisional, and veloc-
[15,16]. This is particularly the case in the determination ofity effects for levels with definite angular momentum. This
the background-free stimulated emission pumping spectrurtreatment has been extended to the analysis of the depen-
dence on beam polarizations and rotational branch combina-
tions of the TC-RFWM spectrg25,2§.
*FAX: 33 3 88 10 72 50. More recently, DFWM and TC-RFWM techniques have
Email address: albert.villaeys@ipcms.u-strasbg.fr been extended to bridge between the weak- and strong-field
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regimes. These treatments are mostly based on the Abrams- Z
Lind model of DFWM on a nondegenerate homogeneously
broadened two-level systef@7—29. One interesting pecu-
liarity of this model is that the DFWM signal is insensitive to

collisions when the intensity of the pump field is increased

Probe beam
Molecular beam

enough, so that the population difference oscillates at a Rabi -~ py
frequency greater than the relaxation and dephasing rates. Mg had X
However, this model is restricted to the case of monochro- - -

matic laser beams of the same polarization state and phase
conjugation geometry. This model has been extended to Gratine b Grating beam

broad-bandwidth lasers whose time dependence can be rating beam g

solved numerically{30]. Also, a more general description

was given for degenerate four-wave mixing with broadband

laserg[31,32), which exhibits qualitative agreement with ex- ~ FIG. 1. Geometry required in a TC-RFWM experiment per-
periments[30]. The first experimental observation of a dip formed on a molecular jet beam.

by TC-RFWM was obtained by using two-color laser-

induced grating spectroscopy to obtain BeS, excitation ~ such an experiment, shown in Fig. 1, two nearly copropagat-
spectra of jet-cooled azulef®3]. Later, a saturation dip has ing grating beams nearly resonant with either the same or
been observed in DFWM and TC-RFWM spectra of jet-two different transitions overlap at a small angle on the
cooled CH generated from laser photolysis of CEHIE4]. In  sample creating a diffraction grating resulting from the sub-
this experiment, the common frequency of two nearly paralsequent spatial modulation. Then a third beam, the probe
lel grating beams is tuned around the frequency ofBR¢  beam, with a weaker intensity is scattered by the diffraction
(0-0) vibronic band while the probe beam frequency is heldgrating and creates a four-wave-mixing signal. The strong
fixed at the frequency of th&-X (0-0) transition. For in-  stationary grating field&,(r,t) andE(r,t) are described by
creasing intensities of the grating beams, the spectral line of

the B-X (0-0) vibronic band becomes broadened and then E,(r,t)=E,(Q )exp —iQ t+ik,-r)+c.c., u=p,t
develops a dip resulting in a splitting of the line. In addition, 2.1

it has been clearly established that the threshold for satura-

tion dip of various lines in this band correlates with their with frequency ), and wave vectork,. The quantity
greatest absorption cross section. Also, the threshold is veifg,({2,) accounts for the amplitude and polarization of the
sensitive to the various polarization schemes that can be usdiéld. Most of the experiments in TC-RFWM require V- or
in this experiment with th&YYYscheme showing the small- A-type models[9,12-14 and correspond to the termed
est saturation threshold. Because the small transverse veloground-state gratingGSG and stimulated emission pump-
ity component in the jet beam along the direction of the inputing (SEP configurations, where two strong light beams are
laser beams cannot explain the line splitting, the results havgpplied on two different transitions sharing a common level,
been interpreted by using the theory of DFWM given Dy ag represented in Fig. 2. The dynamical evolution induced by
Meacher and co-workers with broadband 1asg36-32.  he strong grating beams can be treated on the same footing
However, with respect to these recent experimental resultg, otk models, since their corresponding dynamical evolu-
obtained by TC-RFWM and DFWM experiments on jet- yjons differ by the initial conditions only. The basic model

cooled CH[34], if this theory simulates correctly the DFWM i "he qescribed by a three-level system. For the sake of
lines profiles as well as the depth of the saturation dip for

increasing intensity of the laser beam, it fails to describe the

asymmetry of the TC-RFWM spectra, as well as to account

11>

for the polarization effects. Grating \
In the present work, we give a general description of the beams '\\_Pmbe beam
dynamics taking place in a V-oA-like model undergoing 25

transitions between its excited states, as well as relaxations
and pure dephasings. The first case under investigation in the
present work concerns a situation where two strong beams
act on two different transitions sharing a common level and a

weak beam probing one transition, a method that enables to
develop a high selectivity. The second case corresponds to a
bichromatic beam acting on one transition while the second

transition is tested by the probe beam. Peculiar features ob-
served on TC-RFWM spectra are recovered.

12>

7
Grating #— Probe beam
beams

11>

II. DYNAMICAL EVOLUTION INDUCED
BY THE STRONG GRATING BEAMS ACTING
ON TWO DIFFERENT TRANSITIONS

FIG. 2. Energetic level structures associated with the V model
and A model for the SEP spectroscoflyottom and GSG spectros-
copy, respectively. Here, the grating beams act on different transi-
tions. The transitions excited by the grating beams and the probe

The traditional interpretation of a TC-RFWM spectros- beams are shown in the figure. The system can support nonradiative
copy corresponds to the laser-induced grating picture. lprocesses.
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simplicity, we will refer to the statél) as the ground state equationl 3g,,= 53 "“32’KT. For near-resonant fields, the
and stateg?) and|3) as the excited states, but this is only arotating-wave approximation can be used and the corre-
matter of convenience. In contradiction to models previouslysponding radiation-matter interaction takes the form
developed, the model must be able to account for different

relaxation and dephasing constants, which is not the case inV V%An(t) — Mon Ep(emnQp)exd —iemn(Qpt—ky-1)],
atomic physics[9-12], and must support transition pro-

cesses. The general evolution of the populations and coher- VRWA(t)_ Henn: Ed(&mn Q) exd —iemn(Qit—ke-1) ],

ences are given by (2.4

dPll | | . .
CEL (1t _ CE (1t where the symbot,,,, is equal to+1 or —1 depending on
Tt 7 Mz BN P2 ooz By(r Y whether the energy gap between the stamsand |n), cor-
i i responding to ¢,— w,), iS positive or negative, respec-
+ =My E((r,t)par— & PisHiar E(r,t) =T 110011 tively. Also, we ha\ie the relation betwgen the _f|eld ampli-
tudes,E,(— Q) =E](Q,). In the following, we introduce

—Ty1o90— T 115933, the new variables

dpzz i i 012=plzexﬂ—iﬂpt+ikp~r),
dt = g#zr Ep(r-t)p12_ %pZWlZ' Ep(rat)_rzzupll
o137 p13€XP —iQet+ike 1),
=1 2200020= ' 223933,
0'23=p23exr{i(ﬂp—ﬂt)t—i(kp—kt)-r],
dps3

i i
—_= -Ei(r,t - = -Ei(r,t)—-T
dt ﬁﬂ31 (rt)pas hP31!‘13 f(r,t) 331111 si=pi V i=1, 2, 3, 2.5

-I -I . .
3320227 ° 33333 as well as the Rabi frequencies

dp
dtlz_[lel F121ﬂ1012+ 7 Mz Ep(r,t)[p22—p1d] hQR(12p)= o Ef (Qp), hQR(131) = pys EF (L),
. (2.6)
i
+gﬂ13' Ei(r,t)pso, which are assumed real. Notice that because of the beam

geometry very often adopted in these experiments, with grat-
dp ing beams almost perpendicular to the molecular-beam axis,
13 _ .
i — = =[iwa;—T1a19p1+ ﬁMlB E.(r,t)[ pas— p11] we haved/dt—a/at+vz(a/§z). Also, the ground state is
stable,I'1;1,= 0, and transitions from the ground state to the
excited states are not allowed spontaneously by the sur-
o(r,1)p2s, rounding mt_adium, so thdt,y11=1'3311= 0 This_ implies that
we emphasize more on the GSG configuration, but the SEP
configuration can be obtained along the same lines with

dgtzg—[lwsz F2323]923+ o E( D)1 I'»555=0. Finally, in terms of the population differences

[
tymzE

i 721~ 0227 011,

~ 7 P2tz Ei(r,1), (2.2

7731~ 0337 011, 2.7
where d/dt=4d/dt+v(d/ar). Of course, the ratek;;;; are
algebric quantities according to the closure relatlgp =
—2.il'jj; ensuring the incoherent balance of populations

the probability conservatioEi?’=1 ;=1 gives

2, _1 1
between the levels of the systems. In the following, we in- 022= 37217 3 a1t 3,
troduce the notatiomw;; = w; — w; and assume that the near-
.. J J __1 2 1
resonant conditions 033= —3M21t 5731t 5. (2.8
|Qp— w1 <wp1,w31,| 01— w3y, Then, the set of Eqg2.2) takes the form
|~ wg1 < wa1, 031, | 021~ w3y 2.3 d
%21: —2iQR(12p) 01+ 2i1Q(21p) 01— 1 QR(131) 031
are satisfied. Also, we have the usual relatidhy;
_ (d) .
=12 Ty + Ty 1+ between thg dephasing constants, +iOr(311) 015~ (T opor— T1199[ 2 21— & 71+ 1]
total decay rates, and pure dephasing constants. Notice that
the transition constants are related by the detailed balance —(Topa— 1139 — 2 o1t 3931+ 51,
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J
%31:2iQR(311)013—2iQR(13,t)031+iQR(Zl,p)crlz
—iQr(12P) 021~ (T332~ T1122[ 5 721~ 5 731+ 5]
—(T3333 T1139[ — 5721+ 3 ma1t 31,
dop . )
T:D(&)zl_ﬂp*' Kpv2) —T1212l 012+ 1QR(120) 1791
+iQR(13,t)O'32,
Jdoz . )
7:[l(w31_ﬂt+ktzvz)_rl312;|0-13+|QR(13vt)7731

+iQg(12p)o,3,

(?0'23

i [i (w35 Qp=Q—=Ky, 1+ Kiz) =303 023

Ti1QR(21p) 03— 1 Qr(131) 021, 2.9
where, as usual, thedependence of the variows; has been
neglected. We first define the real and imaginary parts of the
coherences by the expression

with &;; the Kronecker symbol. We finally get the previous
equation in the general form

(2.10

Onn(1) = 0remn(t) +101m mn(1).

To solve the set of Eq92.9), we introduce for each real

quantity 721(t), 731(t), ore1dt), Timi1At), oTre1dl),
om13(t), ore 24t), ando, 23(t), the Fourier series

0

ut)= > uM(w)emt,

n=-—w

(2.1

They give, in turn, the set of equations
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(iNw+T 1319050 1 ©) = = (w31— Qi+ K ,) ol 15 @)

—Qr(12p) ol @),

(iNw+T 1319 0i 14 @) = (51— O+ kv ) o 1 @)
+Qr(131) P (@)

+Qr(12p) o f o),

(iNw+T 539 o0 pf 0) = — (03— O+ Qp+Kev,
- kpzv 2) 0'|(rtr11)23( o)
—Qg(21p) iy 15 @)

—Qr(131) a1 w),

(iNw+T 559 i o @) = (03— Qi+ Qp+ kv,
~Kp ) ol o4 ©)
+QR(21p) oy 1{ 0)
—Qr(131) ol 1{ w),
(2.12

MW ()2 M (w)=A8, 0, (2.13

where3()(») and A stand for the vectors with components

3V(0)={(75)(w), 73] (w),08) 1d @), 0ih 1 ),

I I [ [
XO'(Rt)a 14“’)#7% 13(‘0)’0'(R22:«(w)a0'|(n% (o)},

A={a3,B3,0,0,0,0,0,0. (2.149
(inw+ay) 757 ()= a, 7§} (©) — azd, o— 4Qr(21p) Also, the additional notations
X ofi) 1o 0) = 2Q(311) o)1 w),
a1 =2(I 32001120 — (I'2235I'1139),
(iNw+B1) 75) (0) = B215) (@) = B38, 0~ 4QR(311)
o 2 " Bay= (22011120 = 2(I' 22351139,
X o\ )= 2Qr(21p) ol w),
Baz=(I"20007 T 1120 + (22351139,
(iNw+T ) ohe 1 f0)=— (01— Qp+ kpzvz)(Tfr?q)lz(w)
+QR(13D) 0\ (), 3B1= —(I'3320 1129 + 2(T'3333— '1139),
. 3B2= = 2(I'3300= T'1129) + (I'3333— '1139,
(INo+T 121 011 0) = (01— Qp+Kp0,) oY 1 )
+Qr(12p) S} (@) 3B3=(Ta3r T1120 +(N3zssTazdy (219
+Qr(131) oy 1 ), have been introduced. The math&™(w) corresponds to
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inw—a, @ 0 —40(21p) 0 —204(311) 0 0
B —inw—p; 0 —204(21p) 0 —40R(31}) 0 0
0 0 —ino-Tpp  —ontQ) 0 0 0 Qx(131)
MO ()= Qg(12p) 0 w1~ Q) —inw—T151, - 0 0 Qg(131) 0 (2.16
0 0 0 0 —inw—T313 —wz5+Q 0 —Qg(12p)
0 QR(131) 0 0 w3~ —ino—T133 Qg(12p) 0
0 0 0 —0R(131) 0 “0R(21p)  —ino-Trms  —wpt Q-0
0 0 —Qg(13}) 0 Qr(21p) 0 w3 Q) —ino— Ty

if the symbols() ;= Q,—kyv, with u=p, t are introduced. excited by two strong beants,(r,t) andEq(r,t), each one
The evaluation of the density matrix elemeptgt) requires  being applied on a different transition, is now tested by a
the solution of Eq(2.12) for the various values af. We first ~ weak probe beark(r,t). Therefore, besides the dynamics
consider the terma=0. Here, we are left with the inhomo- induced by the two strong beams, which are accounted for

geneous linear system rigorously and have been described in the preceding section,
© ©) we must introduce the additional weak probe beam perturba-
MP ()X (w) = A, (217 tively. First, we describe the dynamical equations for the

zero- and first-order contributions to the density mapix).

i (0)
and the solution for théth components”(w) takes the They correspond tp©(t) and p)(t) and are solutions of

form
39 (w)=detN'9(w)/detM O (w) (2.18 dp©(t) i 0) (0) (0)
“ (* ' gr = 7 [Hot V@ p®]=Tp®,
where the matrisN{))(w) is defined by
(0) (0) i i dp'V(1) i 0 W1_ Ly 1)
Nigij(@) =M (w) V i andV j#k, T:_%[HO’LV( ). p! ]_5[\/( ), p91-TpY.

N (@)=A; ¥ i with j=k. 2.19 32
We come now to the terms=0. In that case, we are looking In the particular case of a V model, the first equation has

for the solutions of an homogeneous linear equation systef@€€n solved previously. Then, we are left with the resolution
whose trivial solution is of the second equation giving the first-order contributions.

For the various matrix elementg®)(t), we get
3 (w)=0. (2.20

dp'V
Notice that this solution corresponds to the steady-state case P
often encountered in the literature, implying no time depen- dt
dence for the populations and coherences evolving with the + V50 _ O\ _T GO_r (1)
frequencies of the fields. This is the direct consequence of 13P31~ P13 Varl~Tiowsy ~Tawss
the rotating-wave approximation introduced at the beginning 1
of the calculation. If this assumption is relaxed, we necessar- “P22 _

i
_ 0) (1 1)y /(0 0) (1 1)y /(0
=T [V(lz)P(zl) - P(12)V(21) + V(13)P(31) - P(13)V(31)

i
0) (1 1)y /(0 1 1
- g{V(zl)P(lz) - P(21)V(12)} - Fzzzao(zz) - 1ﬂ22330<33) )

ily have a coupling between different values mf whose dt
corresponding contributions are generated recurrently from
the termn=0 in the form of a continued fraction expansion dpl i
_ 0 (1 1)\/(0 1) (0 0)y /(1
[8.11.35 oo == VIR~ PV VY - V)

IIl. DESCRIPTION OF THE PROBING PROCESS

- Fsszzo(zlz) - Fsssaog? ,
AND THE RESULTING DYNAMICS

The probe beam introduced to test the diffraction grating dp!Y

i
has a much weaker intensity than the grating beams. It will —g; =~ 7 1(E1~ E2)pi3 + Vi (ps —pi7) +ViZ o5
be described using similar notations previously used for the
strong grating beams, and can be expressed as +V PN T 1005
Eq(r,t)=Eg(Qg)exp —iQgt+iks-r)+c.c. (3.0 JER i
P13 _ ! _ (D) (O (D) (1) (0) (1)
This beam will be applied on th&l)—|3) transition as gt~ 7 (B Ba)ps tVig(psy —pa) +Viz P2
shown in Fig. 2 and will be treated perturbatively. From the Dy (©)_ (0 D
dynamical point of view, the system described as a V model +Vi3(psg —p12)} —Tia1013
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1

dpas : (1) 4 \(0) (1) (I\0) _ (O /(1) doiy ool O (1)
T g{(Ez_ Es)pzs + Vo1 pis —pu1 Vis — P21 Vis) ot +UZT =(lwg—1Q+ikv,— Tz 073
~T a3 - (33 +iQr(12p) o +1QR(131) 75)

The probability conservation to first-order contributions im- Ti0QR(13s)exd (25— Oyt
plies now —i(ks—ky) 1175,

3

> pi(H=0. (3.4 dosy dosy)

=1

3 . . . . .
= JerT=(|a)3,2+|Qp—|Qt—|kvaZ+|ktzvZ

Therefore, as done previously, we introduce the first-order

—Tyg9 055 +1Qr(21p) oty
terms of the population differenceg = p"'— p(1, which 2 e

give in turn —iQR(131)0sy — i Qr(13s)exd i (Qs
—Qt—i(ks—ky)-r]os, 3.
P =2 b1, Dt—i(ks—ky)-r]oy; (3.7
W_2 (1)_1._(1) 3 where the rotating-wave approximation has been used. As
P33 =3M31 3721 - (3.5

previously mentioned, the Rabi frequencies are assumed real.

Also, we define the new first-order variables by the relation Because of our v arlabl_e change_, we are Ief_t with a set of

' Yifferential equations with coefficients oscillating at a single
frequency and single wave vector. Then, a double Fourier
series expansion in terms of this single frequedgy= Q4
—, and wave vectod,=k;—k; can be introduced for the
oy =p exp(—iQt+ik,r), first-order population differences as well as for the coher-

ences into the form

o'y =piy exp —iQut+ik, 1),

o5y =p5y expli(Qp—Qt—i(k,—ko)-r],

(1 = (1)(r,q)
o= pl expri=1,2,3. (3.6 uD(r )= > X uPrDAg Ay

r=—ow q=—o

Finally, with these changes of variables and notations, the Xexpir Agt+iqa-r). 3.8
equation sef3.3) takes the form

Finally, owing to the real and imaginary parts of the coher-
(1)

anty ences, as done for the zero-order contributions, we get
= 210R(21p) o'~ 21 Qp(12p) oy +1QR(3L1) oY
, . , 0=—40r(21p) 013 (Mg A ~ 2QR(3L1) i3
—iQR(131) sy +iQr(318)exd —i(Qs— Qt o -
X(Aq,A)—(irAg+aq)psy "V (Ag,A) +arysy
Fi(ke—ko) - 11049 — i Qr(135)expli(Qe— Q) e “ 1(0)21 R
) X(Aq,A)+iQR(31S)05 0 161
—i(ks—kp)-r]o%y — s nby + ap , o
_|QR(13S)0315r,15q,—1:
7751 2i0R(311) 0 —2iQR(131) oy +iQR(21p)
gt AOREIOs A0 o FIOREIRTE oo — 40,310 0{)5V (Mg A —20R(21p) o{E (57
~iQr(12p) 0oty +2i Qp(3Ls)exd —i(Qs— Qt X (Mg, A= (ir Ao+ B0 ns "V (Aq A+ By Y
+i(ks— ko) -r]o'% —2iQr(13s)exdi(Qs— Qt X(Ag,AY)+2iQg(318) 01 8 15,1
—i(ks—ky)-r]os) = Bimsy + Bamsy —2iQp(138)0%5) 5 18 -1,
doty A @)(r,q) o
atlz:(iwzl_iQp+ikpzvz_rlzlz)(f(llz)JfiQR(lzap)ﬂ(zll) 0=(~irda=T12190re 15" (Ao A~ (@21~ (p

_ . _ +kp ) ol 5V (A g, A+ QR(131) 0155V (A, Ay
+iQr(131) o5 +1QR(13s)exdi(Qs— Ot

i [
0 0
—i(ke—ky) 1109, +5QR(135) 8 10q,- 1059 — 5Qr(139) 8185105,
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0=(—irAg—T 11905V (A A + (w1~ Q,
ko ) oRd BV (A, A + Qr(12p) 757"V (A g ,AY)
+Qr(131) 05V (A g , A + 3QR(138) 8, 18, - 105

+30R(135)8, 184105 ,

0=(—irAg—igqAp,—T 13190k 13V (A A — (w3~ O

+kew ) o5V (A g ,A) — Qr(12p) ofm 55V (A A

[
+ 5 0R(135)[ 618, -1~ &, -104.4 757

0=(—irAg—iqAp,~ 1319 o{m 34" (Ao , A + (w3~ O
ki) ok 3 (A, A + Qr(12p) 053V (Ao A
+Qr(131) 7kd 5 (A A + 3 QR(138)[ 8,184, —1

0
+ 5r,715q,]_—| 77(31) )

0=(—irAg—igAwv,— T 0kd %" (A A = (w3+ Q)
— Q¢ —kKpp,tKev,) oim S5 (Aq Ay

—Qr(21p) o) 5V (A ,A) — QR(131)

i
X ol 1380 A — 5 Qr(138)[ 8 18,1057
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0
- 5r,—15q,10'§|,2)]v

0=(—irAq—iqAxp,— g of) S5V (Ag , Ap) + (wzt Q,
— Q=Ko+ K)o/ 5V (A g, AY)
+QR(21p) ol 15" (Aq Ay — Qr(131)

X ke 3V (A, AY) — 3QR(139)[ 8, 184 - 10

+ 81841091, (3.9

if we remember that to zero-order, implying the V system
and the two strong beams, the population differengﬁpé
and the coherence&i(jo) are not depending on time. Of
course, the density matrix element$’ are time dependent.

As usual this equation set can be recast into a matrix form. It
gives

WD (Ag,A)EP D (A, Ay
= QR(lss)[Ar,q‘sr,l‘sq,—l—i_ Ar,qé)‘r,—lfsq,l:ly
(3.10

where the vectoEM 9 (A,,A)) is built up from the first-
order Fourier components as:

1)(r,q) — g, (1)(r, 1)(r, 1)(r, )(r, )(r, 1)(r, 1)(r, )(r,
SO0I= {0, 50D o oY G AR TR o), 31
T
where, for the sake of simplicity, the, andA, dependences 1 i 1
DI o K 0) 0 = (0
have been omitted in the components. Also, the other two T2 T 50125012 () (3.12

vectorsA; _; andA_, ; can be expressed with the relations

o=, and ol ;= —of%; in the form

o

i 1
0
& 27731,

— Z 50

_li (0) 5 (0
Al,l_[lo-(Sl)zla-(m)’ 27327 5032,

1 i 1
0 0 0
_577(31)15(’(21)50(21) )

i 1 i
_l_: (0 - (0 0 0 0
A—1,1—[_"7(13):_2'0(13)a§‘7(23>v_50(23)577%1):

by using the simplifying notation previously introduced. Fi-
nally, the matrixW("9 corresponds to

r, r,
V\/(1 q) Vv(2 q)

3.1
Wg&l) MF,Q) (3.13

W(HJ);(

|

where the various submatrica8("% with j=1-4 corre-
spond to
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A. A. VILLAEYS
irAQ—al (¢ %) 0 _4QR(21’p)
Ba —irAg—p 0 —2Qg(21p)
W(l’,Q): ]
1 0 0 _|rAQ_F1212 _C()21+Q,’) ’

Qr(12p) 0 w1~ Qp —irAg—"T121

0 —20g(311) 0 0
—4Q0R(31}) 0 0
W(W): ’

2 0 0 0 QR(13}1)
0 0 Qx(131) 0
0 0 0 0
0 Qg(13}) 0 0

W(T,Q):

3 0 0 0 —Qg(131) |’

0 0 —Qr(131) 0
—irAg—iqAg—T313 —wgtQ 0 —Qg(12p)
Wi w31~ —irAg—iqAx—T1313 | QR(.12-p) 0 o (3.14
0 —Qg(21p) —irAg—iqAx—T323 — 03— 0+
Qr(12p) 0 wapt Qp— QO —irAg—iqAg—T323

From Eq.(3.10, the solution can easily been obtained from simple algebra. First, the equation has to be solved for the Fourier
componentr =0 as indicated in the preceding section to get the vecfars; and A_, ;. Next, the Fourier components
3ME-1) gnd 3M1Y can be determined along the same lines. Of course, from the homogeneous system obtained for the
other combinations ofr(q), we conclude that their Fourier components cancel identically. From the structure (8.9,

the contribution to the polarization in the directikgof the probe beam is obtained straightforwardly. The general expression

of the kg component of the polarization takes the form
PP (ks Qs,t) = p13 (Ks, Qs t) par+ St (Ks, Q) prag= o'ty V(A , A pag Xl Ot —iKs- 1), (3.15

if we reject highly oscillating terms whose contributions are negligible. From our calculation, it can be put into an explicit form
as

(1 .... Al,—l(l) T Al,—l(l)
Al,—l(2) P N Al,—l(z)
. y 1 . Al,—1(3) NIEEEEE A1,71(3)
PG Qs D=9 g | e M
Al,—1(7) R Al,—l(?)
Ul Aasae | Aicig |

(3.1

Notice that all the dots in the determinants correspond to th&@his quantity will be the starting point of a number of nu-
matrix elements taken from matr{8.13 for the correspond- merical simulations to illustrate the influence of the various
ing values ofr and g, and that the valued, o, are the dynamical constants on the TC-RFWM spectra. .
components of vectord; ;. If we are interested in the To emphasize these analytical results, as well as the influ-

determination of the integrated signal obtained experimenence of the various physical processes on the TC-RFWM
tally, we have spectra, we will present some numerical simulations. Their

implementation is realized by using formal algebra to avoid
1 (2 the explicit development of the determinants. Otherwise, the
I (ke, Q)= = f dt|P(kg,Qs,t)|2 (3.17 eyaluation_ is straightforwardly done. All along, the geometry

TJ)-12 will be defined by the angle between the wave vektpand
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o i2p)ma(13p) < 10" ing to the bath temperature, we haye a dist_ribqtion popula-
; Q“(12‘p)=g“(13‘p)=45X10_2 tion effect between these conflguratlons, which |s'accounted
Q:“Z:p)=gz(13:p)=1 for by the well-known detailed balance equatidfss,,
=exp(—hwz/KT)I 533 between direct and reverse transition
constants. As expected, for increasing valued gf;;, we
note a strong reduction of the dip due to the rapid transfer
between the levels 2 and 3. For higher valued efs3, the
spectrum will look like to a single resonance with a shape
strongly temperature dependent through the coefficient
‘ , O exp(—fws3,/KT) relating the transition constani$;s,, and
| __‘._“,.._.-"— ’ ‘/' N -‘::_-._.._._ F2233.
Of course, at very low grating field intensities, the dy-
2ause | 23a8 | 2aiso | cais2 | zads4 23456 2aass  hamical equation corresponds to the linearization of the

v (om™) Liouville equation(3.2) with respect to the grating field am-
plitudes and we recover all the results previously established

FIG. 3. We exhibit the probe field frequency dependence of thdn the low-field regime.
TC-RFWM spectra for various values of the Rabi frequencies cho-
sen equal for the grating beams so that(12p) = z(131) in the
GSG spectroscopy. The values of the Rabi frequencies for the grat-;\y pyNAMICS INDUCED BY A BICHROMATIC FIELD
ing beams are indicated in the inset. Other values are for the tran- AND PROBED ON A DIFFERENT TRANSITION
sition and field frequencies»s;= ;=23 460.96 cr?, W=,
=25818.90cm?!, for the total decay ratesI',y=1"3333 In the present section, we consider the case of a W or
=0.35cm’!, for the transition constanf ,,3=0, for the pure  system with one side driven by a bichromatic field, while the
dephasing constants{i) =0 V (i), for the probe Rabi frequency other one is tested by a weak probe field, as shown in Fig. 5.
Qg(125)=0.005 cm' %, and finally for the transverse velocity,  Again, like in the preceding section, we will emphasize more
=0. on the V structure but, as previously mentioned, with small
changes the other situation can be handled as well. The
bichromatic field responsible for the diffraction grating and
the probing field are described by their corresponding elec-
tric fields

TC-RFWM Intensity (arbitrary units)

k; of the grating fields and the axis. They correspond to
0,=—6,=—m/180rad, respectively. The probe beam is
counterpropagating along treaxis so that¢= = rad. For
the present model of two beams acting on two different tran-

sitions sharing a common level, we first analyze the influ- _ i k. —iAT

ence of the grating field amplitudes chosen equal for simplic-Ep(r’t) Ep(p)exid —1(Qt—kp-0)][1+ae ] +cc,
ity. The variations are represented on Fig. 3, where the
various spectra have been normalized. When the grating field
amplitudesE,(£2,) andE({},) increase, the true states ex-
perimentally accessible are the dressed molecular states re-
sulting from the diagonalization of the radiation-matter inter-
action in the zero-order field and molecule std&&. When
the grating field amplitudes are strong enough, the transitio
between dressed molecular states notably differ from thos
between the molecular states and we observe a line splitti

Eq(r,t)=Eg(Qg)exd —i(Qgt—kg-r)]+c.c. (4.2

by using the same notations previously introduced. Here, the
uantity E¢(€)¢) stands for the amplitude of the probe field
ith wave vectorks, and E,({2p) and aEy(Q,) are the
Smplitudes for the bichromatic field associated with the wave
r‘\gectorskp andk,— Ay, respectively. The dynamical evolu-
Son induced by the grating beam applied on {i¢—|2)
transition, and the probing beam acting on fthe—|3) tran-
gﬁon, is again introduced by using the rotating-wave ap-

ity is neglected, the TC-RFWM spectra is symmefi28].
Here, because the spectra is observed in the frequency ran

of the 1-3 transition frequency, the main feature consists 0proximation. This basic description of bichromatic fields act-

Lv;?mégne:orvsz\eglrngvefznr);lIthﬁal\llleastpr)nl;tetg-?e\c/)gltzestle S] ;?]Sdo,;hing on a three-level system has been done for a large number
) N y i ystem and g problems as different as coherent effects in the V model
diagonalization has to be done in the full space. This implie

” : 9], light pressure forces in intense polychromatic fields
additional molecular dressed states V\_/l_th respect to the tw 11,37, or multiphoton Raman resonancesAratoms[12].
level system. Consequently, transitions between the

dressed states give rise to additional resonances, which he evolution of the populations and coherences corresponds

pear on the shoulder of the spectrum obtained for
Qr(12p)=0g(13}t)=1. Of course, their contributions are

small due to their nonresonant excitation. Next, we anaIyzed i
in Fig. 4 the role played by the transition constahjs;; and P2 _ [ — 7 M Ep(Qp)exdi(Qpt—ky-r)][1+ ae Ak

I'335,. These constants result from the coupling between the dt
two configurations involving the molecular statés or |3)

associated with a manifold of bath states. Of course, accord- X portC.Cl =T 20190117 o020 19039033,
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z 11>
S =1 : .
> =8 Grating +— Probe beam
AY
g =20 beams Ton \
< 2> e
E 7 P F2233
[} K
c 1 iy ‘ !
[ p \ (v
2 ; :
E - P Z‘
s ;
E ] I, ‘ T —_— 3>
3 P > ‘/1" /
e et S Grating 25« Probe beam
e 2 EE T e ,
beams /
T T T T T T T 1 | 1>
23456 23458 23460 23462 23464 23466
v (cm™)

FIG. 5. Energetic level structures analogous to those previously
FIG. 4. We represent the influence of the nonradiative processe¥0wn in Fig. 2, except for the grating beams, which act, here, on

taking place between levels 2 and 3 on the TC-RFWM spectrdhe same transition.
obtained from GSG spectroscopy. The probe frequency dependence

is drawn for the three different values B§,5;indicated in the inset. pag=e s exg —i (kp—ks)-r]

The Rabi frequencies for the grating beams dig(12)p) . .

=0g(134)=0.45 cn !, kT/wz,=0.05, all the other values being +r_exgi(kp—Ke)-r]+s, expgi(kp+ks)-r]

kept identical to those of Fig. 3. +r, ex;{—i(karkS) 1. 4.3
dpas i ) From the set of equationg.2), by identifying the variouk
gt | T 7 M Es(Qexri(Qst—Ks ) ]psrtC.C. components, we get for the coherences

-r -T -T , e i
3311P117 1 33220227 1 3339933 S; =[i(wn—Qptkyy) —Flzlﬂs’,; + e Ep(Q,)

dpiz ;
= r + 7 QO - I
dt =li0z=Tazialpaz n 2 Ep((2p) X[1+ae " (po—pry) + 7 Mz E{(Qgr*,

X expi(Qpt—Kp 1) ][1+ e €[ poo—pui]

i ' iy =[1(0n=Qp=Ko,) T 121l + — iz Eg(Q9ry,
+ g B Q9 X2~k 1) ]paz, P P A o

R i
dpi3 8 =li(@a1= QstKspz) ~TiaralSS + 7 o Ep(Qp)r -
at =[iwg— 1ﬂ1:313]1113+ﬁlulz Ep(Qp)
i
Xexdi(Qpt—Ky 1) ][1+ae 4 py, + 7 iz Es(Qs)(psz—p1n),
i .
+ — i3 E«(Qo)exdi(Qgt—Kg 1 — , . . |
i 113 S(Qo)exdi(€s s Plpaspual Ps=[i(w3— Qs Ksp,) ~Tygialrs + 7 M2 Ep(Qp)sy,
dP% ' F_=[i{wap+ Qp— Qs (Kp,—Ksp)v,} — Togodll
=[1 wz— I p30al P23t 7 M1 Ep (Qp) p s A%pz RszTz
A [ o [
Xexg —i(Qpt—ky 1) [1+a* e p, -+gﬁer;GhJHﬂwfe“k152—%¢Q3E4995w
i . .
~ 7 Ptz Es(Qgexdi(Qgt—Kkg )], (4.2 S, =[l{wzpt Q= Qs— (Kp, Ks)v } —TpgoalS
i :
where the definition of the time derivative and the assump- + o por R (Qp)[1+a* elders. (4.4
tions (2.3 are still valid. For the present purpose, it is con-
venient to introduce the change of variables This equation set can be solved easily. Indeed, a quick ex-
_ ) _ amination of the fourth and sixth equalities shows that they
par=e "Ml s,ee 1 e ke, constitute an homogeneous equation set, so thats,
_ _ _ =0. To solve the equation set for the remaining coefficients,
pa=e sl[selks T+ e ks ], we first need the solutions for the populations. If the probe
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FIG. 7. We present the grating beam frequency dependence of
the TC-RFWM spectra for different values of the transverse veloc-
ity indicated in the inset. The physical parameters &rg;
=0.35cm ! fori=2, 3,I9=T{%=0, I'),33=0, and finally Q12
=0.085cm?, QF= 00050 1 Other values are identical to
those of Fig. 6

Introducing the Fourier series expansion

TC-RFWM Intensity (arbitrary units)

+ oo
] u)= 2 uM(w)en (4.6
n=-—«x
25816 25é17 ' 25&18 l 25;&19 ‘ 25520 l 25;’:21 ' 25522 ) 0) ()
v (em™) and the notatiors, ' = sy, +isyj) standing for the real and

imaginary parts as well 822 andO X for the Rabi frequen-

i (d)
FIG. 6. Influence of the pure dephasing procedgdsandI{3 &Ies of the gratlngp ) and probe(s) flelds, we get

on the grating beam frequency dependence of the TC-RFWM spe
tra. The basic difference comes from the fact that the transitions 1-2

i - _ 0)(n) (0)(n)
and 1-3 are driven by a strong field and a weak field, respectively. nwps™ ()= ~T o)™ (0) ~ 353053 " (@)
The values of the pure dephasing constants are given on the insets +20 2[1+ a CO Ay r)]S (w)
and are equal to zero if not indicated. Other values are for the R p(')
transition constantI',,3,=0, for the Rabi frequenciesQ%f —ZQ a SIN(Ay- r)sp(,(”)(w)

=0.075cm?, Q}3=0.005 cm'}, for the transverse velocity,=
—1.4x10"7 cms ! with ¢ the light velocity, and finally for the
field parameterge=1 andx=1. Other values are kept identical to
those of Fig. 3.

inwp ™ (0)=—T33505 ()~ 330059 " (o),

- 0
IanE)(?()n)(a)) _F12128p(r (@) + (01— Qpt+kpvz)

field E¢(r,t) is weak enough, it suffices to calculate the (0)(n) (0)(n)

N ' . X Sy +20 SIN(Ay-r
populations to zero order on the probe beam and this ap- p) (@) asin(ANipzz (@)
proximation will be also true for the evaluation of the coef- +p<3%><“>(w)]_gé2a Sin(Ay- 1),

ficient s’p* participating in the dynamical evolution of the
populations. Therefore, if we remember that the population |nw5<0>(”>(w)— —r121§(0> “w 0) = (0~ Qp+Ky,)

p(i)
conservation requirel p;; =1, we obtain
1 X SOM()— 208 1+ @ cog A, 1)]
r) R

_ [ o [

Ph2 =7, Mar B (Qp)[ 1+ a* @ I8 — oy By(Q) X053 (@) + M (0)]+ QR 1
><[1+ae_iAk'r]SE)O)*Fzzzp(zg)*rzzsg)ég), + a COgAy-1)]. 4.7

The solutions are

Ps —_F3333033 1ﬂ3322022 )

P52 "(0)=p" (@) =" () =5l (0) =0

. . i
S(pO)* — [I (le_Qp+ kpzvz) _ FlZlﬂSE)O)* + g Mo Ep(Qp) for n#0 (4 8)

X[1+ae M T](2p5) +p2 —1). (4.5  while for n=0, with the notation
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—ino—T 5 —T 033 —202asin(A-r) 2031+ acogA-1)]
An)= —T'332 —inw—T3333 0 0
B 208 sin(Ay-T) QFa sin(Ay-r) —inw—T 1515 wn—Qptkop, |
—20F1+acodAr-1)] —QF(1+acodA )]  —wut+Qp—Kyv, —inw—T 1515
4.9
we have
0 —T 33 —2QFasinAg-r) 2081+ acodAy-1)]
ot 1 0 — 3333 0 0
P2 %@ AO)|  QFasinA,T) Qa sin(Ag1) . wu—Qptkow, |
—QF(1+acogA¢1)] —QFI1+acogAc1)]  —wut+Q,—kyp, —T 10
—Tpopn 0 —20asin(Ar) 2031+ acodA-1)]
_F3322 O 0 O
W)= —~C . . ]
P53 (@) A(0) 208 sin(Ag-r) QF2a sin(Ay-r) —T 10 wa1— Qp ko,
—20F(1+acogAp1)] —QRI1+acogA1)]  —wutQp—Kyw, —T 10
=020 —I'5033 0 20 11+ a cogAy-1)]
S(O)(O)(a))_ _F3322 _F3333 0 0
A(O) 20Fa sin(A-1) QLo sin(Ay-r) QL0 sin(A,-r) w1~ Qptkpv, |’
—208 1+ acodA-1)] — Q1+ acogA1)] — Q1+ acogA.-1)] —T o0
=222 —I'2033 —2Q0Fasin(A-1) 0
SO0 ) 1 BLEE) — 3333 0 0
p(i) A(0) 20 a sin(A-1) QR sin(Ag-r) —T 1510 QR sin(Ag-r)
—20F 1+ acodAp-1)] —QF[1+acodAc )] —wutQp—kyw, —QRI1+acogA,r)]
(4.10
[
From the knowledge of the quantitiess)®(w), With the partition in real and imaginary parts feg

PR o), si(w), andsP®(w) previously established, =Ss(r)*iSsi) andr_=r_,+ir_ and introducing a Fou-
we calculate the quantitss from the third and fifth equalities fier series expansion for these quantities, we obtain
of Eq. (4.4). This is all that we need to calculate the coher-

ence termpa(t). We get In“"s(r)(w) _r1313s(s?r))(w)+(w3l_ﬂs+ kszvz)s(s?i))(w)
le (—n()l (LO),

i
5¢ =[i(wz— Qs+ kszvz)_rlmﬁs;_"gﬂl? Ep(Qp)r - -
iNwsg (w)__F1313Ss(|)(w) (w31= Qstksp7) s(r)(w)

b EQ9(2p9 09— 1), — ORI (@) + QRN 2p5] — pl + 1),

inor" (0)=—T 239 " (@) ~[ w3+ Q= Q= (Kp,
_ksz)Uz]r(f()i)(w)‘Fng)

i . i
+ 7 Mor E;(Qp)[l—’_ a* e"‘k"]S’Q g Mz Es(Qg)sp. X[1+ a cogAy- r)]S(ni))(w)

r—:[i(“932"'9;)_95_(kpz_ Ks2vz) = pz09]r -

(4.11) QR e sin( Ay 1)sY) () + QRS
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inwr(f()i)(w)z _Fzszs{(—n()i)(w)+[w32+9p_95_(kpz Again, we have the solutions

—ks)v Ir'" () + QF

0 0
r (@) =1 (@) =s\" (0)=s0(w)=0 for n#0,

X[1+acogAy-r)]s (r)(w (4.13
+QFasin(Ag-1)sy) (o) — QRS ) -
(4.12  while for n=0, with the additional notation
J
A(n)
—ino—T313 031~ Qs Ksp, 0 —QF
— w31+ Q=Ko —inw—Tya3 —Q0¥ 0
| —0asinAcr) QX 1+acogAT)] —inw—T 33 — w3— QpF+ Qe+ (Kp,— ks )v,| |
Ot 1+ acogAy-1)] QR sin(Ag-r) w3+ Q= Qs— (Kp,—Ks)v, —inw—T 3
(4.14
we have
1
(0)(0) _
=0 ()= 1)
0 w31— Qst ke, 0 -Qf
QR(2p% +p5 — 1) EEE -0F 0
—08syi,  OFl+acodAcr)] —T 323 — w3~ Qpt+ Qo+ (Kp— ksp)v,
QRS0 QRasinAcT) gt Q= Qs (K ksv, ~ T3
(4.15
and
1
~Ti313 0 0 -0¥
— w31+ Qs Ksp, (ZP(O) (0)_1) _Q%{Z 0
X . .
_Q%eza SiN(Ay-r) _QRSp(i) —T2323 — w3~ Qp+ Qs+ (Ky—Ks)v,
Q11+ acog Ay 1)] Q%fsp(r) w3+ Q= Q= (Ky,—Ks)v, — 323
(4.16

If we consider the case where no nonradiative transition occurs, sbthat I"33,,= 0, then with our previous approximation,
we have a constant population in Ievelp’g?;):N’, and Eqgs(4.5) reduce to

Py =—T pp3y + 20K 1+ a cog Ay 1) Isiy) — 2Q Far Sin(Ay - 1)y
501, = TS+ (01— Qp+kpv ) sl + QFa sin( A1) (2p5) + N’ —1),
0 —_r O +Kpv,)s? — QX1+ Ac1)](2p9+N"—1) (4.17)
Spii) lZlZSp(|) (w21 Qp+Kp2)Sp ) R @ cog A 1)](2p2; . .
Therefore, the zero-order population of ley2l takes the form
o_ 2(QF)T12141-N")[1+ a®+2a cog Ay 1)] 418
P2z Fzzzirizlz+(w21_9p+ kszz)2]+4(Q%e2)2F1212[1+ a?+2a cogAy-1)]’ '
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Similarly, with the same approximation on the probe beam we obtain, for the real and imaginary parts of theyfactor
=Sy tiSp(), the expressions

(0 _ T222ARN' = D{Tsn SIA- 1) — (01~ Qpt k) [14 @ cOS A1)}
P(r) F222i[€212+(w21_9p+ kpzvz)2]+4(9%e2)2F1212[1+012+ 2a COg A1)

0 T22oR (L= N )T 121 1+ @ CO A1) ]+ (@51~ Qp Ky ) a sin(A- 1)}
p() Fzzzz[r%uz*'(wzl_ﬂp"‘kszz)2]+4(Q%<2)2F121il+az"‘ZQCOS(Ak'r)]'

(4.19

From the knowledge 0p) ands(®’ previously established, when the nonradiative constants cancel. These quantities are
the coefficients, is straightforwardly obtained. This is all exactly what is required to fit the experimental data on the
that we need to calculate the coherence tepg&) required  TC-RFWM signal intensity. Of course, other geometries can
for the evaluation of the TC-RFWM spectrum. Its expressionbe€ treated along the same lines.

will enable us to discuss the influence of the dynamical con- Like in the preceding section, we come now to some nu-
stants on the spectra and to elucidate the origin of the asyninerical simulations to illustrate the peculiar features ob-
metry recently observed in the TC-RFWM spectra in jet-Served in this spectroscopic configuration. First of all, we
cooled CH[34]. Also, we will fit the experimental data to want to emphasize the influence of the pure dephasing pro-
determine the corresponding total decay rates and dephasingsses described H}43 andT'(% and acting on the transi-
constants. The evaluation of the signal intensity lies on thdions 1-2 and 1-3, respectively. The variations are shown in
evaluation of the polarizatioR, ({}5) along the direction of Fig. 6. We begin with the pure dephasing processes acting on

the probe beark, for the transition|1)—|3). Therefore, the the transition 1-2 driven by th_e strong grating fields. Here,
corresponding intensity can be straightforwardly deduced@cause we are in the strong-field regime, the pure dephasing

from the expression constantl’{9 contributes to the generalized Rabi frequency
by increasing it, and consequently increases the line splitting.
1(Qp) :|PkS(QS)|2: |pai(Ks, Qo) p14 %= |s(s‘()r>)+ is(s?i))|2, This is why we note an increase of the dip with the increase

of T{9. However, concerning the influence of the pure
(4.20 dephasing processes accounted foﬂ&? and acting on the

where p3;(ks, Q) corresponds, to first order on the probe 1-3 transition driven by the weak probe field, the increase of
beam, to the Fourier component of the density matrix in thghe pure dephasing constant tends to wash out the dip struc-
ks direction for the transition1)—|3). Notice that both ture. It can be mentioned that in supersonic molecular jet
quantitiess(s(()r)) andsg(()i)) depend o'y, SEJ(EZ)' andSEJ??) pre- beams, the microscopic processes accounted for by the
viously evaluated and given by Eg&t.10 in the general dephasing constants correspond mainly to elastic collisions
case. Their expressions reduce to E¢s18 and (4.19

/ —a— 5 = 2x10°
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FIG. 9. Fit on the TC-RFWM spectrum of th® (2) line of the
FIG. 8. Influence of the transverse velocity distribution on theB-X (0-0) vibronic band obtained for &YYYpolarization scheme
TC-RFWM spectra for different values of the distribution width  and a total energy of the grating beam of 1@Din the ground-state
given in the inset. The frequency of the probe beam is resonant witgrating configuration. The experimental points correspond to the
the 1-3 transition frequency. Other values are similar to those oquares and the solid line represents our predictions from the
Fig. 7. model.
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occuring between the molecules in the jet. We note that thevell characterized and correspond to the model staje),
residual TC-RFWM signal is always present in this experi-and|3), respectively. The more important features appearing
ment, since we are tuning the grating beams at fixed prob# the TC-RFWM spectra are certainly the line splittings ob-
field frequency and detecting the signal resulting from thetained for increasing values of the grating beam intensities,
polarization of the 1-3 transition. The TC-RFWM signal de- and the asymmetry, which is again more likely observed for
pends orl'{? far from resonance. In addition, we can men-intense grating beams. Notice that this asymmetry still re-
tion that the asymmetry of the spectra result from a nonzerénains even at low grating beam intensities, but of course,
molecular transverse velocity as will be discussed in the folwith & much smaller magnitude. While the line splitting has
lowing. Next, we analyze the influence of the transverse mobeen interpreted on the basis of a theory developed for
lecular velocity of the jet-cooled beam on the TC-RFWM DFWM by Meacher and co-workef80-33, a theory ini-
spectrum. The Doppler shift, resulting from the transversdially based on the Abrams-Lind modg27-29, or even by
molecular motion, alters the diffraction of the probe beam byusing the concept of anharmonic gratirigd,45, they failed
the grating created by the two fields,. According to the !0 explain the spectral asymmetry. Notice that all these pre-
sign of the velocity component, this modification results inVious theories predict the same double-resonance spectral
constructive or destructive interferences, depending ogtructure symmetric with respect to the central dip. Of
whether the frequency of the grating beams is higher ofourse, their results are recovered by the present model when
lower than the transition frequency. To emphasize this pointthe transverse molecular velocity goes to zero. In our model,
the spectra have been drawn for different values of the trandts €valuation results strictly from the dynamical evolution of
verse velocity component. First of all, we note that the specthe moving molecules with nonzero transverse velocity and
tra obtained for opposite values of this velocity componengdescribed by a three-level model excited by the grating fields
are symmetric with respect to the frequency of the 1-2 tran@pplied on thd1)—|2) transition, while the probe field acts
sition. Of course, for zero value of the velocity, the spectrumPn the|1)—|3) transition. While the present model can be
recovers a complete symmetry independently of the relaxapplied to any experimental geometry, the experimental data
ation and dephasing constants. As the grating beams are i jet-cooled CH have been obtained with identical grating
tense enough to split the spectral line, all the constants afeams except for the direction of their wave vectors, as in-
symmetrized. This clearly shows that no asymmetry can bélicated previously. In Fig. 9, we fit the experimental data
expected from the internal structure of the three-level modelobtained for a total grating beam intensity of 120. The fit
as previously mentioned. The corresponding variations of thef the experimental data obtained for a total grating beam
spectra are shown in Fig. 7. They show that positive valueitensity of 10 and 50 uJ gave the valuel';y,
of the velocity component give constructive interferences for=0.35 cn *. Not much is known about total decay rates or
Q,<w,; and vice versa. It is interesting to note that thedephasing constants for these transitions, making any specu-
influence of the transverse velocity on the TC-RFWM spec/ation on this value quite difficult. Notice thaty,,, is char-
trum appears yet at small values of the component. Besideggteristic from the CH rotational structure and has nothing to
due to the experimental setup, the molecules can have @0 with the photolysis process producing the CH molecule.
transverse velocity distribution in the jet. Then, a Gaussiarf\lso, we have to mention that the fit is less sensitive to the
function can be used to model the transverse velocity distrivalue ofI'3333. For this reason, it has been chosen equal to
bution and to evaluate the average TC-RFWM spectrum. A$'222,. Finally, due to the strong influence of the transverse
we can see from Fig. 8, the main consequence of this distrivelocity on the spectra, the influence of the pure dephasing
bution is to wash out the double resonance structure angrocesses are masked and their corresponding constants have
simultaneously to partially reduce the spectral asymmetry. been set to zero. Of course, for smaller values of the trans-
Finally, we take advantage of our description to fit theverse velocity or more precise experimental data, which im-
experimental data obtained on a jet-cooled CH produced bplies controlling the distribution of ,, the determination of
the photolysis of CHBy, using GSG spectroscog4]. In  the dephasing constants could be realized. Finally, from the
this experiment, th& YY Ypolarization scheme has been cho-fit shown in Fig. 9, we obtain a velocity component wf
sen because it shows the least threshold energy for satura=—42 m/s, a value that seems quite reasonable for this type
tion. In this experiment two nearly parallel grating beams,of experiment. The fact that only the negative value pfs
which cross at a small angle of about 1°, propagate nearljound in the experiment indicates that the laser beam was
perpendicularly to the jet-cooled CH. The probe beam propamainly focused on the jet zone, where the expansion gives a
gates in the opposite direction and crosses the grating bearir@nsverse molecular velocity in the opposite sense to the
at a small angle to match the phase. The experimental georgrating beam propagation. Notice that a situation involving
etry is shown in Fig. 1. The TC-RFWM spectrum investi- both positive and negative values ®f will have contribu-
gated in this experiment corresponds to By¢2) line of the  tions that will restore the symmetry of the spectral line.
B-X (0-0) vibronic band. To this end, the common frequency
of both grating beams is tuned around eX (0-0) transi-
tion corresponding to 25 818.90 crh while the fixed probe
beam frequency is resonant with t#e X (0-0) transition In this work, we have presented a general description of
frequency of 23460.96 cnt. The spectroscopic properties TC-RFWM valid for V- andA-type models. These models
of the CH radical have been widely studig@8—43. The previously applied in atomic physics have been generalized
low-lying configurationsX 2I1, B 23—, andA A of CH are  to account for nonradiative transitions between the molecular

V. CONCLUSION
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excited states as well as rotational or vibrational dephasing®f the TC-RFWM spectrum to parameters such as transition
Here, the dephasings are not necessarily the same for botlonstants and pure dephasing constants. However, as the
transitions, a simplification previously introduced in the in- grating beams are intense enough to split the spectral line,
ternal dynamics induced by a bichromatic fields acting on thehese constants, which drive the internal dynamics, are redis-
V model, to get an analytical solutid®]. For convenience, tributed and the TC-RFWM spectrum remains symmetric.

because experimental data exist for molecular V models, thi$his is not the case for the transverse velocity, which exhib-

model has been treated explicitly. However, the extension tits a great influence on the diffraction grating created by the

A-type models is straightforward with small changes. In adpumping beams and responsible for the strong asymmetry of
dition, our description is valid for any intensity regime of the the TC-RFWM spectrum. Yet notice that this transverse Dop-

grating fields. The present analysis shows a high sensibilitpler effect is efficient at small velocities.
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