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Atom correlations and spin squeezing near the Heisenberg limit: Finite-size effect and decoherence
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We analyze a model for spin squeezing based on the so-called countertwisting Hamiltonian, including the
effects of dissipation and finite system size. We discuss the conditions under which the Heisenberg limit, i.e.,
phase sensitivity< 1/N, can be achieved. A specific implementation of this model based on atom-atom inter-
actions via quantized photon exchange is presented in detail. The resulting excitation corresponds to the
creation of spin-flipped atomic pairs and can be used for fast generation of entangled atomic ensembles, spin
squeezing, and applications in quantum information processing. The conditions for achieving strong spin
squeezing with this mechanism are also analyzed.
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[. INTRODUCTION defined final states and we will use the concept of spin
squeezing to quantify the amount of quantum correlations
Interacting quantum systems that start in uncorrelate¢hroduced in such a case. As for squeezed states of light,
states generally evolve towards entangled states due to quashecoherence mechanisms and dissipation are acting in such a
tum correlations building up in time. These correlations andvay as to destroy or limit the amount of squeezing achiev-
the form they take depend crucially on the interaction tha@ble in practice. We also analyze the influence of such dissi-
gives rise to them. For example, in parametric down-converpation mechanisms and find relations between the spin-
sion or in the optical parametric oscillatéOPO pairs of  squeezing interaction rate, the dissipation rate, and the
photons can be created in distinct modes of the electromagimount of squeezing achievable in the presence of damping
netic field. The fact thapairs of photons are generated leads mechanisms. The coherent control of the dynamical evolu-
to quantum correlations between the two modes. Since eadion of complex systems such as atomic ensembles may lead
mode is described by a harmonic oscillator, one can think ofo the production of entangled nonclassical states such as
the state of the field as the quantum state of two fictitiousspin-squeezed statd$] (analogous to squeezed states of
particles in harmonic oscillator potentials. The quantum cordight [2]) and correlated collective atomic modgsmilar to
relations correspond to, e.g., the positions of the particletwin photons generated by a nondegenerate OPO
being strongly correlated, in the ideal cas€X; —X,)?>—0 The main result of this paper is that for a collectionNof
and their momenta being anticorrelatéd P, +P,)>—0. atoms with average single atom nonlinearjty(two-atom
For the electromagnetic field modes, the position and mointeraction energyand with single-atom loss ratg, the con-
menta correspond to quadratures of the field modes and it @ition for achieving some spin squeezing is thg¢=I". In
between these that correlations are produfk@]. These order to achieve reduction of uncertainty in shy(see Ap-
correlations are essential to quantum communication, e.gpendix A for a definition of the operatod , , for N two-
quantum teleportation of information from one location tolevel atom$ compared to the uncertainty in the Bloch state
another[3]. Entanglement is also crucial for many schemesJ=N/2,J,=N/2) for which (AJ,)?=N/4 by an amouns
in quantum cryptography and for long-distance quantunii.e., (AJ,)?=N/(4s)] with 1<s<N, one requires thally
communication through lossy channgdd. =sI' and the interaction time needed scales 8s
Since the mechanism for producing correlations in elec—~ (In s)/(Ny) while the maximum number of atoms than can
tromagnetic field modes is at the fundamental level so simplée lost without destroying the squeezing scales Ad$
(photons created in pajrst is natural to wonder if such a ~(N/s)Ins. To achieve Heisenberg-limited precisidie.,
mechanism may lead to entanglement of atoms when thepaximum spin squeezing~N), one needs a large single
are interacting in a similar manner. In complete analogy taatom nonlinearityy=TI". This means that the interaction time
the OPA mechanism, a process that transfeiss of atoms  needed to achieve this strongly correlated statet is
from their ground state to two well-defined final states also~ (In N)/(Ny) and the maximum number of atoms that can be
gives rise to quantum correlations between atoms. When st without compromising this optimal squeezing AN
collection ofN two- |EVE| atoms is thOUght of as an ensemb|e~|n N, i e., avery small number of atoms lost may prevent
of effective spin 3 particles with total pseudo-angular- reaching the Heisenberg limit. This analysis remains valid
momentumJ=N/2, it turns out[5] that the quantum corre- and agrees with a specific implementation based on an effec-
lations produced by an interaction that transfers atoms iive atom-atom interaction via quantized photon exchange in
pairs from the lower state to the upper state show up ag cavity, for which the decoherence mechanism corresponds
reduced fluctuatlons in @ component of the angular momeno spontaneous emission and leakage of photons from the
tum, e.g., AJ —0. We will discuss entanglement of atoms cavity.
with one another in an atomic ensemble for which an effec- The possibility of coherently controlling interacting quan-
tive interaction leads to the transfer of atoms in pairs to well4tum systems has led to many new developments in the field
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of quantum information sciende]. These are expected to on the analogy with the optical parametric oscillator. We also
have an impact in a broad area ranging from quantum conseek to understand the influence of loss processes on the
putation and quantum communicatipr] to precision mea- coherent spin-squeezing interaction and the way in which it
surement$8] and controlled modeling of complex quantum limits the correlations achievable for a given interaction rate.
phenomen#9]. Entangled systems realized in the laboratoryThe model consists of two bosonic modes‘spin-up” state
range in size from few qbitk10], to macroscopic ensemble and a “spin-down” statg with loss rates and a coherent in-
of particles[11]. Controllable coherent interactions betweenteraction that transfers pairs of atoms from one mode to the
atoms[12,13 may also open the way for modeling of com- other. For our simple model, analytical results can be ob-
plex quantum phenomena such as quantum phase transitiof@ned in the perturbative regime of small number of excita-
[9] in which quantum correlations play a crucial role. tions (most atoms in the lower stateand low loss rate. We
Entanglement of a single atomic ensemble, i.e., quantur@stimate the conditions for which Heisenberg-limited spin-
correlations between atoms in the same ensemble, has bes@eezed states can be produced.
shown to be potentially very useful in the field of precision In Sec. 1V, we present a scheme for inducing effective
measurement8]. Certain types of interactions between at- coherent interactions between atoms in an atomic ensemble.
oms lead to entanglement and spin squeezing, characterizé€se coherent interactions lead to massive entanglement of
by reduced variance in an observable and increased fluctuthe ensemble and to characterize the degree of entanglement
tions in the canonically conjugate observable. This reductiofthus obtained, we calculate the squeezing or reduction in
of fluctuations directly translates into an improved accuracyluctuations of one particular observable. The coherent inter-
for measurements sensitive to that observable. A typical figaction is based on Raman scattering into a cavity mode for
ure of merit for spin-squeezed states is the phase accura@yhich the atomic medium is made transparent by electro-
5¢ on estimating accumulated dynamical phase in the Ramnagnetically induced transparen@iT). The slowly propa-
sey interferometric experiment. With all experimental uncer-gating mode is then best described by a polariton: a collec-
tainties controlled below this noise level, the dominanttive excitation that is partly photonic and partly “spin”
source of noise in such experiments is the “quantum projeceXcitation of the atomic ensembfthe up and down states of
tion noise” [8] associated with, e.g., the noise in measureihe spin being two metastable stateBhe overall process
ments of thex component of the Spin of an ensemble of leads to the creation of pairs of excitations, one being a “Spin
two-level atoms(effective spin3) all prepared in the lower flip” created by Raman scattering, the other being a polariton
level (the ||) staté. This noise leads to a lower limit on that can be “steered” into a photon or spin-flip excitation
phase accurac§s=1/JN called the standard quantum limit “On demand.”We find that substantial spin squeezing can be
(SQL), whereN is the number of atoms in the ensemble. Theobtained for atomic gnsemblgs in low fmess_,e cavities, with-
Heisenberg uncertainty principle, however, allows for phas@Ut the strong coupling requirement of cavity QED. In the
accuracies consistent with the basic principles of quanturmit of unity finesse this corresponds to free-space configu-
mechanics, which are as low ag=1/N, called the Heisen- ra_t|on and substantial gorrgla_tlons can _st|II be produced in
berg limit. this case. In the opppsne I|m|t.of hlgh finesse, very strong
We also discuss in more detail a technidaé] based on cor(elanons are obtallned and in partlcular we estimate the
a resonantly enhanced nonlinear process involving Ramaff9ime for which Heisenberg limited spin-squeezed states
scattering into a “slow” optical mod¢15], which creates a aré produced.
pair of spin-flipped atom and slowly propagating coupled
excitation of light and mattefdark-state polariton When Il. RAMSEY SPECTROSCOPY WITH CORRELATED
the group velocity of the polariton is reduced to zgt6,17, ATOMS
this results in pairs of spin-flipped atoms. The dark-state po- i i i i
lariton can be easily converted into corresponding states of N Appendix A, Ramsey spectroscopy is reviewed and in
photon wave packets “on demand17], which makes the partlcular we show how the p_hase accuracy in phase e_stlma-
present approach most suitable for implementing protocols iffon based on the Ramsey fringe signal is, at the maximum
quantum information processing that require a combinatiors€nSitivity point, given by
of deterministic sources of entangled states and long-lived
guantum memory4,18]. AJ,
This paper is divided into five sections. In Sec. Il, we op= |<j >|’ @
discuss Ramsey spectroscopy and the use of spin-squeezed z
states in precision measurements. In particular, we analyze : . .
the situation wher®l two-level atoms with levelfg) and|e) whereAJ, is the variance in tha component of the pseudo-
are prepared in a correlated state and subsequently probed B gular-momenturtof '9”9”‘3= N/2) representing the state
separated fields of frequenay in the Ramsey interferomet- Of N two-level atoms andJ,) is the expectation value of the
ric configuration, which we review in Appendix A. We also Z component of the pseudo-angular-moment(moth the
diSCUSS Spin_squeezed states and deve'op pictoria| represé{@fiance and the expectation value are calculated in the ini-
tation of those states that we compare to squeezed states il state. _ _
light and in Appendix B we introduce the Wigner represen- FOr an uncorrelated state of atoms, e.g., with all atoms in
tation for a particular class of spin-squeezed states. their lower state so that the state of the ensemble is described

In Sec. lll, we analyze a model for spin squeezing basedy |J,= —N/2), it is found thatAJ,= \JJ/2 and(J,)= —J so
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that 8= \/1/N. In order to improve the phase accuracy, one Ne Ne

must use a state for which the variancéjris reduced while 2 Ne+Ng b) Ne+Ng

(J,) is little changed. Consider therefore a state such as an 1 1

eigenstate oﬁx, for example,|J,=0). Calculating the ex- 067_2 °¢Z§

pectation values and variances we figd)=(J,)=(J,) 0.25 0.25

=0, AJ,=0, and AJ,=AJ,=I(I+1)/2. However, the n o | T ¢

Ramsey signal has an amplitude proportionakdg) and
therefore vanishes for all phase angigswhich means that
even though the noise or fluctuation properties of the signal, Ng/(Ng+Ng) = (N/2+(J,()))/N] vs accumulated phasé
may be improved, its average 1s zt]. Note that this is =(w—wy)T for %a) uncorre<lated ;toms ar(®) correlated atoms in
because we have choséy(¢) as our observable, other ob- 5 spin-squeezed states(a)), for N=100 anda=—1 (error bars
servables such a¥(¢), for example, may lead to nonzero have been magnified by a factor of 10 for clayitiNote how
average signal together with reduced variai£g20. How-  squeezing of the variance improves the phase accuracy.

ever, it turns out that their signal to noise ratio is very much

reduced compared to that of the Ramsey schg20¢ It is  which is of order 1IN. The best phase accuracy is obtained
thus necessary to consider states that lead to a reduced vafisr a—0 in which case the optimal phase accuracyis
anceAJ, while maintaining a large signal amplitude, i.e., a (+ 7/2)=\/2/N. Note that in this case the signal amplitude

large(J,). We therefore consider states such as (=(3,)) becomes vanishingly smdl{J,($))—0 for all ¢]
and also the range of values ¢ffor which improved phase
3=+ —[h=-1) accuracy is achieved becomes vanishingly small arogind
J2 ’ =+ 7/2. For these reasons, the optimally spin-squeezed state
(2 |#(a=0)) may prove impractical. Note, however, that for
finite a, i.e., for |aj]=1, the signal amplitude is large
(~N/4/8) and the phase accuracy is independeng of

FIG. 1. Number of atoms detected in the upper statg (ela-
aﬂ;/e to total number of atomfthe total number isN=N.+ N, and

i|Jy=0)+a

1
|<ﬂ(a)>:\/lTﬁa

wherea is a real number parametrizing the stptéa)). It is
straightforward to calculate the expectation values

~ 1 2
(30 =0, op(p)= =N’ (6)
JJa+1) N
(Jy)=0, ® , . i
i.e., twice the Heisenberg limit.
A 2a J(I+1) In Fig. 2 we show the signal and variance for various
(JZ)=1+a2\/ > spin-squeezed states along with the phase accuiacy).
and the variances Ne
NetNg  4-—09 50

100
M= ol Al o |
X ’ .
1+a? 0.5 : 1
025 | W o

T
N J3+1) " e ¢ oot
AN 1 100

Oggm 1(1)
JA+1) 422 | 025, | L ¢
AJ,= 5 . I S—

(1+a?)?

T ¢ 0.01

100
The signal amplitude that depends ofhz) can thus be 0.75 10
rather large Q[ N]) while the noise amplitude characterized 092'2 o i
by AJ, is minimized ©O[1]). The Ramsey signal and phase ] T 0 0.01
accuracy for such a state is shown in Fi¢b)1 compared to
the case of uncorrelated atoffsg. 1(a)]. FIG. 2. Number of atoms detected in the upper state vs accu-

These states are minimum uncertainty states, i&J,  mulated phase=(w— w()T for correlated atoms in various spin-
X(AJdy)= 1|(3,)| for all values of the paramete. Also, squeezed statdg/(a)), for N=100 anda=—-0.9, a=—1, anda
their phase accuracy is given by =—1.1(error bars have been magnified by a factor of 10 for clar-

ity). Also shown is the phase accuradg($) vs accumulated

1+a2 1 phase(the dashed line represents the standard quantum &ehit
Sp(+ m/2)= /_—, (5) =1/{yN). Note how 8¢(¢) gets to a minimum value of order
2 J3+1) 2/N=0.02.
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Py (m) Py (m) |gl,,,gN>_ﬂ/ﬁi§ [|g...ei...ej...g>], (8)
___________________ A

I
-20 0 +20-20 0 +20 which is the state obtained by lettinif operate on|J,

P, (m) =—J). The simplest Hamiltonian giving rise to this type of
interaction is analyzed in Sec. Il to quantify the squeezing
generated by this mechanism. This form of interaction was

|||II||....... . considered by Kitegawa and Uef] in their classic study

0 0T o of spin squeezing and was dubbed the “two-axis counter-
twisting” interaction.

FIG. 3. Projection of the stathy(a)) onto eigenstates of the
angular-momentum operatodg, J,, andJ, for J=N/2=20 and
a=—1. The P,(m) distribution is sharply peaked since the state
|¢/(2)) is a superposition of then,= —1,0,+1 components only; We now turn to the analysis of the two-axis countertwist-
the Py(m) distribution is broad and symmetric; tig(m) distribu- ing Hamiltonian[5]
tion vanishes fom odd and the even components decrease roughly
exponentially withm.

I1l. TWO-AXIS COUNTERTWISTING MODEL

- 5 PO A a A
We can gain a better understanding of the squeezing in the H==1 (L~ L) =Ax(bdy T LY. ©

states(2) |¢(a)) by looking at various representations of
them. The simplest representation is to project the state ontgg argued in the preceding section it is this type of Hamil-

eigenstates of the three components of the angular Momegsnian that most closely parallels squeezed-state generation
tum, for light.
We now present a general theory that allows one to quan-

Pi(m)=[(J;=m[y(2))[?, @) tify atom correlations and takes into account decoherence
. . . and finite system size. Specifically, we consider two bosonic
where|J;=m) is the eigenstate of thiecomponent of angu- modes[such as for a two-component Bose-Einstein conden-
lar momentum with eigenvalue. . sate (BEC) or for an atomic ensemble with two relevant

From Fig. 3 it is clear that the expectation valuesJof  atomic level3 with annihilation operators; and a,. The

andJ, are zero in such a state, whereésr a=—1) the  system is also subject to damping, i.e., loss of atoms at rates
expectation value of, is large and negative, the variances that may depend on the internal state. The equations of mo-

are clearly given by Eq(4). It is interesting to note the tjon for the two modes are thefwith L. =aja; and [ _
similarity of these angular-momentum squeezed states and 2 +2

. o ) =aay),
those of a harmonic oscillatdr.e., squeezed states of light 122)
In both cases, the probability distributions vanish for odd )
number of quanténote that for simplicity we consider o.nly. 512 — 7151+X5J{5§+ |‘:l(t),
N even herg For even number of quanta, the behavior is
nearly exponentiaP,(m)=e™%M*)) for some constant. A . ) o
mechanism for generating such states starting from the un- a,=— yzaz—)(a;a§+ Fo(1), (10
correlated statéJ,= —J) must therefore be one in which
atoms are excited in pairs, i.e., two atoms in the ground stateh £ s lated L . ise f ith
are transferred to the excited stégg|g)—|e)|e). Consider '¢'¢ j(t).are. -corre a}tg angevin noise forces with ap-
the similarities with squeezed states of light: in particular thg®ropriate diffusion coefficient®;; = (F;(t)F;(t)). _
photon number distribution vanishes for odd photon number N order to discuss spin squeezing, it is easier to rewrite
in the case of squeezed vacuum due to the form of th&he equations of motion in terms of the Stokes parameters
squeezing HamiltoniarA = —iy[aT—a?], which creates
and destroys photons in pairs. Since we find a similar can- |:0:N25151+ 5;52,
cellation of the probability of there being odd number of
excitations for the statdg/(a)), the interaction giving rise to

such states starting from all atoms in their lower states must LX=(aZa1+ alaz)/Z,

likewise create and destroy excitations in pairs and thus be of

the form H=—i%y[L2—L2]. This process can also be L (11)
viewed as a coherent collision mechanism. Moreover, for the L,=(ala;—ala,)/2i,

whole atomic ensemble to become entangleot just par-
ticular atom pairy this process must occur completely sym-
metrically for all atoms. It should not be two particular atoms
that get transferred to the excited state, rather it should be
two collective excitations that get created, for which the equations are

L= (ala,-alay/2,
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i.e., the variance of thg& component of the pseudo-angular-
momentum is squeezed while that of tiiecomponent is
antisqueezed. Plugging these back in the equation of motion

Lo=— 2T Lo+ 4yl ,+Eq(t),

Lx=—2F L+ x(LyLz+L L) +Fy(1), of I, we obtainl,(t)=—N/2+ (cosh Nyt—1)/2+O['/y].
N ~ o . (12)  This equation predicts growth f without bound, however,
Ly=—2ILy—x(LyL+L,Ly)+Fy(t), we know that becausk is the z component of an angular-
] momentum vector, we must halle| <N/2. The phase space
L,=—2IL,+yLo—2x(Li-LO)+F (1), of this angular-momentum vector is the Bloch sphere and in

essence we have neglected the small curvature of the Bloch
where T'=(y,+ ¥2)/2, y=(y1—¥,)/2 andF(t) are new sphere(of radiusR=N/2) and have approximated the phase
s-correlated noise forces associated with the damping.  space by the flat planar phase space of a harmonic oscillator.
Since Egs.(12) are nonlinear operator equations, in the We call this approximation the bosonic approximation, since

equations of motion for the first-order momeréfs) there it predicts infi_nitg sq_ueezi_ng_ in the long-time limit and in the
are terms that depend on those first-order moments but al@PSence of dissipation, similar to the case of squeezed light.
terms depending on the second-order moméinis; ). Simi- Formally, this is equivalent to assuming

larly the equations of motion for the second-order moments
depend on themselves and also on the third-order moments,
and so on, leading to the Bogoliubov-Born-Green-Kirkwood- « ga ] )
Yvon (BBGKY) hierarchy of equations of motion for the I-€- the operat08+_=a2al/\/ﬁ obeys bosonic commutation
expectation values of operator products. In order to solve thiselations. Under this approximation the Hamiltoniéh be-
set of equations, the hierarchy must be truncated at sonfe®mes H=—i(fxN/2)(S;—S~) that is identical to the
order[21]. Keeping the first- and second-order moments, weHamiltonian describing squeezing of ligfg].

[aja,,a1a,]=aja,~aja,=—N, (16

truncate the BBGKY hierarchy by the approximation In order to take into account the curvature of phase space
and the nonbosonic nature of the angular-momentum opera-
<|‘_i|‘_j|‘_k>%<|‘_i|‘_j><|‘_k>+<|‘_J.|‘_k><|‘_i>+<|“_k|‘_i><|“_j> tors, we use the following transformation:
= 2(LiN LY. (13 N=Nhy,
The equations of motion for the expectation valles ¢ — /NP
! ation v&l L,= VNh,,
=(L;) and the second-order moments;=(L;L;+L;L;) 17)
—2(L;)(L;) are then obtained from E412). We are inter- L= NR
ested in the case when all atoms start in mode 1,1,€0) y v
=N,1,(0)=1,(0)=0l,0)=—N/2 and A,,(0)=A4,,(0) N
=N/2 (all other second moments vanjsiind for simplicity |:Z: ﬁz_ Eﬁo’

we takey;=vy,=I", y=0. Writing only the relevant equa-
tions and omitting vanishing termsuch as those propor-
tional to A,, and Ay, that are zero for all timgswe have
(after some algebja

in terms of which the commutation relations become

. [hey.z.No]=0,
oA [y 1= < a9
I,= —2T1,— x(Axx—Ayy), :
Ag=—4T A +Tlo+4x1 A, (19 (A h-]= NZ_F‘O’
Ayy=—A4T A+ Tlo—4x1,A,,, whereh. =h,*ih,. In the limit N—c these commutation

relations become those of bosonic operators, i.e.,
andl,(t)=1,(t)=0. These equations are _nonllnear and can{im,,_.[hy,h,,h, ,h_]=[1,a'a,a’,a], a process formally
not be solved analytically nor perturbatively IVx. For  known as a group contractig@?2]. The linear transformation

short enough times, the number of excitations into mode 2 igf operators(17) does not introduce any extra approxima-
small andl,=—N/2, so that plugging this in Eq14) we tion.

have The Hamiltonian(9) can be reexpressed as

~E — 2Nt A An A a hE o,
Ax(t)= 5 X+ O[Ty, A=axN(h+hf) =15 (A2 -F), (19

(15
where we have defineg= yN. We can now obtain equations

N
~ _ a2Nxt ~
Ayt 2° +OL/x], of motion for the expectation valuek;=(h;) and the
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second-order momentss;; = (h;h;)—2(h;}(h;) from Eq.
(14). Letting 7=Nyt=¢t be a rescaled timex=1"/(Ny)
=I'/¢ be the rescaled dissipation rate and writieg 1/N
andx=dx/dr, we have

hoz _2Kh0,

h,=—2kh,— (84— 8yy),

| 20
Oyx= — 4K Syyt KhO_ 2h05xx+ 4Ehz‘sxx ,

8yy= — 4K+ kho+2h 8,y — 4e€h, 8, .

Note that these equations are formally equivalent to Eq

(14), no approximation has been made from E(&}) to

(20). Letting e—0 reproduces the results of the bosonic ap-

proximation obtained above in the limit bf= —N/2. Terms

of order e and higher represent corrections to the bosoni¢
approximation and, as shown below, they give rise to a limit

to the amount of squeezing achievable.
Solving Eq.(20) to first order ine and « we obtain, writ-
ing only the relevant terms,

5XX(T)=%[e*ZT+(K+e/2)+---], (21)

PHYSICAL REVIEW A 65 053819

FIG. 4. Energy level scheme for the effective coherent interac-
tion leading to the creation of pairs of atort® in different final
states(“nondegenerate” schemeand (b) in identical final states
(“degenerate” version

number also corresponds to the maximum number of par-
ficles that can be lost from the ensemble and do not destroy
squeezing at the Heisenberg-limit level. Clearly the more
squeezed the state of the atoms is, the more sensitive it be-
omes to atom loss and in general to any form of dissipation.

IV. COHERENT ATOM INTERACTIONS VIA
SLOW LIGHT

We now describe a technique to induce effective coherent
interactions between atoms in metastable sthid$. The
technique is based on a resonantly enhanced nonlinear pro-
cess involving Raman scattering into a “slow” optical mode
[15], which creates a pair of spin-flipped atom and slowly

which shows that the variandel,= (N/2) 6y is squeezed. propagating coupled excitation of light and matigark-state
Second-order terms ik and e come multiplied by an expo- polaritor). When the group velocity of the polariton is re-
nentially growing terme?” so that as a function of time, the duced to zerd 16,17, this results in pairs, of spin-flipped
variance reaches a minimum valdg,~max «,€] at a time  atoms. The fact, that pairs of atomic excitations are created
e~ *~maX k, €], after which it grows exponentially and the in this process can also be viewed as a coherent interaction
squeezing is lost. Note that this behavidk,(t) reaches a between atoms, i.e., a controlled “collision” leading to en-
minimum value and then increases adaitso occurs when tanglement of the state of each atom with that of every other
x—0, indicating that it is a generic feature of the finite sys-atom in the ensembile.

tem size. This model predicts that a variangg~ e=1/N A number of proposals have been made for generating
—>AJ)2(~1 is achievable as long as losses are small enouglentangled states of atomic ensembles and resulting in so-
i.e., k<€, which in terms ofy andI" means called spin-squeezed states. Some are based on interatomic
interactions at ultracold temperaturg3], whereas others
involve mapping the states of nonclassical light fields into
atoms[24], quantum nondemolition measurements of spins
r*[25] with light or dipole blockade for Rydberg atonh26].

Also note the recent experiments on humber-phase-squeezed
: | states and the Mott insulator phase in BEXZ]. In contrast

sary {0 havex=1, i.e., Nx=T'. In the regimeNy>1" very to some of these mechanismgthe present approach does not

strong cor'relati.ons can 'be obtaingd. Note that the Singler'equire coherence of the atomic motion or sources of non-
atom_nonllnearlty can still be relatively weak compared ©¢|assical light and is completely deterministic thereby sig-
the single particle loss ratev(<I'). For example, when the  pigeanty simplifying possible experimental realizations. We
dissipation rate is such thak~./e, i.e., VNx~T, the  fyher show that the present technique can be made robust
amount of squeezing obtained K1) is 8y~ 1/VN. Ittakes  \yith respect to realistic decoherence processes such as spon-
a timee™ %"~ \/e to reach this state and the number of par-taneous emission and leakage of slow photons from the me-
ticles lost during that time IQAN~NX2x 7~ JYNInNN. This  dium.
number can therefore also be thought of as the maximum We consider a system & atoms[Fig. 4a)] interacting
number of particles that can be lost from the ensemble withwith two classical driving fields2; , and one quantized
out destroying squeezing beyowd,~ 1/\N. modea of a running wave cavity that is initially in a vacuum

In order to reach the Heisenberg limit it is required thatstate. Note that we consider a cavity configuration for ease of
the single-atom nonlinearity be larger than the decay rate theoretical treatment; the results of this analysis, however,
I'. Note that in this case, the number of atoms lost by theemain valid in the limit of unity finesse, i.e., in free space
time the optimal squeezing is achievedA8l~In N, which  configuration. Relevant atomic sublevels include two mani-
indicates that a very small number of atoms is lost. Thisfolds of metastable statés.g., hyperfine sublevels of elec-

x=I' or &=NI, (22

wherey corresponds to the single-atom nonlinear interactio
rate andl’ represents the single-atom loss rate.
In order to achieve any squeezing,(<1/2) it is neces-
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W/\ detunings from thég)—|b,) and|g)—|b,) transitions, re-
g oo bi spectively, as shown in Fig. 4.
\HLH%?\ In the limit of large detuning\ and ignoring two-photon
g e b2 detunings for the moment, .the Hamilton.i&h;am describes' .
W ' off-resonant Raman scattering. We take into account realistic
decoherence mechanisms such as spontaneous emission from

the excited states in all directions and decay of the cavity
FIG. 5. Diagram illustrating coherent atom-atom interaction me-mode with a ratec. The evolution of atomic operators is then

diated by a dark-state polariton, leading to the creation of a pair otlescribed by Heisenberg-Langevin equations,
spin-flipped atoms.

. i

tronic ground stateand excited states that may be accessed 2= T YRt ﬁ[H’E’”H Fuv (25
by optical transitions. The atoms are initially prepared in
their ground statefg). One of the classical fields, of Rabi wherevy,, is a decay rate of coherenge—v andF ,, are
frequency(),, is detuned from the atomic resonance by anassociated noise forces. The latter have zero average and are
amount roughly equal to the frequency splitting betweend correlated with associated diffusion coefficients that can be
ground-state manifolds. The other field of Rabi frequefigy ~ found using the Einstein relations.
is resonant with an atomic transiti¢b2>_>|a2>_ The quan- After a canonical transformation corresponding to adia-
tized field can be involved in two Raman transitions corre-batic elimination of the excited statsee Appendix C for
sponding to Stokes and antiStokes processes. Whereas t#etails, Hg.m becomes equivalent to the effective Hamil-
former corresponds to the usual Stokes scattering in the foonian
ward direction, the latter establishes an EIT and its group - o
velocity is therefore substantially reduced. Hram=%xa'S[+H.c., (26)

The pair excitation can be viewed as resulting from quan- ~
tized photon exchange between atofRgy. 5) in a two-step  where Sl=Egbl/\/N and X=gl\/NQ’1‘/A. This effective
process. The first flipped spin is created due to Stokes Rama#amiltonian thus describes the process in which a Stokes
scattering, which also results in photon emission in a correphoton is emitted necessarily accompanied by a spin flip.
sponding Stokes mode. In the presence of EIT, this photon i$he quantum state of the Stokes mode is thus perfectly cor-
directly converted into a dark-state polariton that becomeselated with the state of the atomic spin-flip mode.
purely atomic when the group velocity is reduced to zero. The resonant part of the Hamiltonid,.s is best ana-

This implies that atomic spins are always flipped in pairs. Inlyzed in terms of dark and bright-state polaritd@s)],
Fig. 4(a) the two final states involved in Raman transitions

are different and atomic pairs in different states are created. 0,a—g,YNS,

In Fig. 4(b) the final states of the two Raman processes are Po=——=

identical, in which case atomic pairs in the same state result. 92N+ Q3

The analysis of this “degenerate” version of the scheme is (27)
similar to the “nondegenerate” case and we will consider p _gz\/ﬁa+9252

only the latter case here. B \/m

For conceptual simplicity we assume that the quantized

field corresponds to a single mode of a running-wave cavityyhich are superpositions of photonic and atomic excitations
with a creation operata’ and atom-field coupling constants 3 and S=3gp /YN. In particular,H,.s has an important
0, andg,. The interaction Hamiltonian for the system Igf family of dark étates,
atoms and light can be split into two pals=Hg .+ Hes
corresponding to the Stokes Raman process and the anti- |D”>~(PTD)“|g>|vac>, (28)
Stokes process, respectively,
with zero eigenenergies. This means that once in the dark
state, the system stays in the dark state. Note that all other
eigenstates dfl, . have, in general, nonvanishing interaction
+[ﬁ012alg+hgla2albl+ H.cl], (23 energy. Under conditions of Raman resonance and suffi-
ciently slow excitation“adiabatic condition,” see Appendix
H o —h8S, o +hSS D for detaily the Stokes photons emitted by Raman scatter-
res 25byb, 2% a3, ing, Eq.(26), will therefore couple solely to the dark states
Eq. (28). In this case the coherent part of the evolution of the
T17G28%,0 T 7 Q2245 TH.Cl, (24) entire system is described by an effective Hamiltonian,

Hram= — ﬁAEalal_ ﬁ‘slzb

1b1

wheres. ,,=3;|w);i(v| are collective atomic operators cor- Her= —ihé&(PLSI— S, Pp), (29)
responding to transitions between atomic stages|v), A

is the detuning of the classical field, from the single- with £=(0,0,/A)g, N/ \/gzzNHIZ2 (without loss of gen-
photon transitior|g)—|a;), &; and &, are the two-photon erality, ¢ was chosen imaginary here for simplified calcula-
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tions). The Hamiltonian(29) describes the coherent process
of generation of pairs of excitations involving polaritons and
spin-flipped atoms. Note that for small number of excitations
the spin waves and polaritons obey bosonic commutation
relations and this Hamiltonian is formally equivalent to that
describing optical parametric amplificatioci©PA) of two
modes[2]. In the nonbosonic limit, this Hamiltonian is also
analogous to the “countertwisting” model of E(R). In Ap-
pendix D we show that the coupled equations for the polar-
iton Py and the spin flipgS; are given by

No.excitation

1000 10
100
10 1
oi 0.1
lg4/2 0.01 g 0ol 3%
af 01 0 5 0 1

1= a0~ 161 S+HEPLHFL (1), (30) b
92| FIG. 6. (a) Quadrature varianc&Y? vs single-photon detuning
. ) - A and interaction timet, (b) same forA=A,; and §;= 8, show-
Po=—(xln+ v+ yo+i8)Pp+£S]+Fp(t), (3D ing maximum squeezing\Y2=0.01 (for \g?N/y«=100), (c)
number of excitations pumped in the system vs t{s@me condi-
tions as in(b)], and (d) AY,(t*)2 vs two-photon detunings
=(61—8,)/2 for A=A, and wherd* gives maximum squeezing.

where the polariton decay rate includes an atomic part
+ 7y, and a photonic part/ » due to leakage of photons out
of the medium (at a rate reduced by the factop

— 2 2 7 H i
=92/ "N/|2,|* equal to the ratio of vacuum light velocity to resent optically induced process can exceed that of weak

the group velocity of slowly propagating Stokes pholons inieratomic interactions by several orders of magnitude.
The spin-flip operator equatiai30) is seen to contain both @ Therefore the present work may open up interesting new

decay term and a gain term due to spontaneous emission infyssipilities for studying many-body phenomena of strongly
the bright polariton mode. Note that this apparent decrease ihteracting atoms.

dissipation is, however, accompanied by increased fluctua- 14 quantify the resulting correlations established between
tions denoted by the new noise force operdtg[(t). The  the polariton modeP, and the pure spin-flip mods,, we
effective detuning between the polariton and spin-flip modentroduce the quadratures of both modesich are bosonic

is seen to correspond to the difference in two-photon detunfor small number of excitationsin direct analogy to the
ings 61— 0,. optical parametric case. We define the quadraties(S;

We now consider the scenario in which the system is+Sf)/\/§, Y1=i(81—81’)/\/§ and similarly for the polari-
evolving for a time r under the HamiltoniarHq¢¢, after  tion mode; these can be measured, e.g., by converting spin
which both fields are turned off. If the procedure is adiabaticexcitations to light. Correlations between the modes appear
upon turn off of the coupling field§), , the polaritons are due to dynamical evolution and squeezing is found in certain
converted into pure spin excitatio®,—S,. Hence the en- quadratures of the sum and difference modés=(X;
tire procedure will correspond to the following state of the —Xp)/2 and Y. =(Y;+Yp)y2. In the language of har-

system: monic oscillators, the positions in mode 1 anerR are
1 1 correlated K;=Xp), while the momenta are anticorrelated
Py — tanhém" — (P (sHm g lvac (le—YD). For small number of excitations the sum a_nd
v) coshgrin:( £7) n!( p)"(S1)"g)lvag difference modes obey standard commutation relations

[Xe,Ypl=—16,4, wherea,,8=2 +,— or 1D. A quadrature
n Y. is squeezed wherdY.(t)°<1/2 and the Heisenberg
; (tanhé) Inbl,nb2>|vac>. 32 limit corresponds ta\ Y. (t)2~ 1/N.
We find that squeezing is optimal under conditions of
Here|n, ,n,,)=1/n!(S;)"(S;)"|g) are Dicke-like symmet- four-photon resonances(=4,) and in the limit of 7>1
ric states of atomic ensemble and we assumgd, <N.  (Fig. 6). Evolution leads to squeezing df, andX_, anti-
For nonzeroér this state describes an entangled ‘state, fosqueezing ofY _ and X, . The squeezing irY, reaches a
which relative fluctuations between the two modes decreasdé®inimum value at=t* after which the growing fluctuations
exponentially to values well below the SQL corresponding ton X.. give rise to increased noise i, . Note that the total
uncorrelated atoms. number of excitationgboth modeyin the system, equal to
The present technique can also be viewed as a mechanigrxi +X2 +Yi +Y2_), grows exponentially with timéFig.
for coherent “collisions”[13] between atoms mediated by 6(c)]. Specifically, in the casg,=g,=g and thusy,;=1y,
light. In particular, the case when atomic pairs are excited= vy, for {&t>1, we have
into two different levelgas, e.g., in Fig. @)] closely re-
sembles coherent spin-changing interactions that occur in de- 2kl n+5y +4y
generate atomic samplg29], whereas the case when atomic 4¢
pairs are stimulated into the identical stdféig. 4(b)] is )
reminiscent of dissociation of a molecular condengat. N ( Kkl n+ 7L) ezgt}
To put this analogy in perspective we note that the rate of the 4¢ '

1
- coshér

[AY+(t)]2=1/2( e 26y

(33
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where we have neglected terms of higher order i ( of Y:i(S—ST)/\/f. The analysis for this configuration is
+ vo)/ & and k/(7n€). The maximum amount of squeezing is very similar to the nondegenerate version, in particular the
obtained after an interaction tim& such thate 2" maximum amount of squeezing achievable is also given by
= (k/ n+ y,)/4¢ and is given by an expression of the forit86).
We can now obtain a condition for achieving Heisenberg-
limited spin-squeezed states, i.eA\(ﬂ,pt)Z: 1/N. We see

Akl g+ Ty +4dvy, from Eq. (34) that this requires
—— (34

i.e., of the order of the damping rate divided by the coherent . . .
interaction rate. ping y where I'=(4k/p+ 7y +4vy)/4 is the effective damping

Since both the interaction parameteand the relaxation rate of the system. This_ Is in compl_ete agreement with the
rate of the polaritonyp=1y,+yo+«/7 depend on the estimate based on our simple bosonic model of Se¢28).

single-photon detunind [Fig. 6@)], we find that squeezing In terms of the single-photon Rabi frequengythe cavity
is optimized for decay ratex, the spontaneous emission rateand the num-

ber of atoma\, the condition for achieving some squeezing,
ie., (AY,)?=<12is

101N /[ yon o
- g/°N=«kvy, (39
Aopt Y 4|Qz|2 . 1+ P (35

which can be easily achieved in the laboratory since it sim-
and with this optimal value of the detuning, the squeezingdly corresponds to the condition that the density length prod-
reaches a minimum value of uct multiplied by the cavity finesse be larger than one. In the
cavity QED regime of strong coupling|?~ kv, very strong
quantum correlations, i.e.A(Y.)?~1/JN between atoms
YK 7 You can be produced. In order to obtain Heisenberg-limited spin-
(AY, op)?= |g|2NX Z( 1+T)' (36)  squeezed states, i.e.AY.)?>~1/N, one requires a more

stringent condition

(AY.)?
£=NT, (39)

Note that the factog®N/«y is equal to the atomic density- 19|2=Nxy (40)
length product multiplied by the empty cavity finesse and '

can easily exceed i(bvgn for modest values of the density- \yhich can be fulfilled only in the strong coupling regime of
length product and cavity finesse. The facige/ « is small  cayity QED for a limited number of atoms. Note that this
as long as the effective group delay« is smaller that the  yegime has been achieved experimentally by several groups
ground-state relaxation timeql4, which is easily achievable. [31] and would allow for Heisenberg-limited spin squeezing
Furthermore, although a cavity configuration was used fofg, a5 many as- 10° atoms. We have analyzed in this paper
simplicity, the results of the present analysis remain qualitathe sjtuation of a running-wave cavity, so that all atoms
tively valid in the limit (_)f unity finesse, e, free space. couple equally apart from a possible phase to the cavity
We consider a possible implementation of our degeneratgode irrespective of their position. In order to fulfill the
sczheme[Flg. 4b)]: levels |92 and |b) correspond to the cayity QED regime, small cavity volume is needed, i.e.,
37 Sy, F=1,me=1 and 5°S,,, F=2,me=1 levels in  standing-wave cavities. For atoms in such a cavity the cou-
Rb (i.e., D, line) and level|a) to the 5Py, F=2,mc  pling to the cavity mode is position dependent and it be-
=2 level. With all fieldso " polarized and atoms prepared in comes necessary to localize atoms accurately at the antinodes
state 5°S;;,, F=1,me=1 by optical pumping or magnetic of a trapping mode. Note that significant experimental
state selection in atom traps, this implements the scheme @fogress has been made towards this direction by several
Fig. 4(b). For these conditions the typical generation rategroups[32]. Once the atoms are well localized in the cavity,
resulting in optimal squeezin@,(,/A, can easily be of the interaction can proceed via a neighboring mbde.g.,
the order of fraction of megahertz. In such a case other degifferent from the trapping moda) so that for atoms local-
coherence mechanisms are negligible. Doppler shifts cajyed within a small region in the cavity the two modes have
also be disregarded as long as all fields are copropagatingessentially the same wavelength and atoms would, therefore,

~ For the “degenerate” version of the interactifire., with  couple equally to thés mode as well, irrespective of their
identical final states for the spin flips, see Figb{4, the position.

effective Hamiltonian can be written as
V. DISCUSSION AND CONCLUSION

Her= i1 E(ST2—8?), (37 We have reviewed Ramsey spectroscopy and the use of
spin-squeezed states in precision measurements of this type.
where the limit»>1 has been used to wriff,=—S, with  With the experimental motivation of minimizing the phase
S= 1/\/NEgb the spin-flip operator. In this case the correla-accuracy in phase estimation with Ramsey fringes, we intro-
tions lead to squeezing of=(S+S")/\/2 and antisqueezing duced a particular class of squeezed states. These states lead
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ing to the type of interaction that gives rise to squeezing. W
are thus led to consider the so-called “countertwisting”
Hamiltonian that has been shown to lead to maximal spin APPENDIX A: RAMSEY SPECTROSCOPY

squeezing. We have studied this model for spin squeezing in |, Ramsey spectroscof$], a collection ofN two-level

the presence of a dissipation mechanism and analyzed th§,ms are made to interact with two separated fiéifdtime
effect of damping and finite system size on the amount oy, i, spaceé The lower and upper stategeferred to as
squeezing achievable with such an interaction. The analysig;oynd and excited statesave an energy differencew,
was based on a decorrelation approximation to the BBGKY;,4 atoms will thus acquire a different dynamical phase
hierarchy of equations of motion, followed by the use of ag-iEva depending on which state they are in. The effect of

linear transformation that in the limit of large number of ,,herly chosen electromagnetic fields is to perform a trans-
atoms 1N—0 “contracts” the angular-momentum operators tqrmation that prepares the atoms in a superposition of the
onto bosonic operators. This allows for the systematic incluy,,q statedg) and|e). The different parts of the wave func-
sion of f|n|_te system size effects. It appears that Heisenberg;on of atoms (corresponding to the ground and excited
limited spin squeezed states may be produced when th§aiey acquire a relative phase due to dynamical evolution
single-atom nonlinearity exceeds the single-atom loss rate. I9q \hen the inverse transformation is applied, an interfer-
this case the maximum number of atoms that can be l0{ce effect is obtained. An exact parallel with the Mach-
before quantum correlations are destroyed to the point 0yender interferometer can be drafig]: the transformation
compromising the spin squeezing is of the ord&~InN.  yreparing atoms in a superposition of ground and excited
For spin squeezing at a more modest level than the Heiselyaies is equivalent to the transformation that lets a photon
berg limit, larger number of atoms may be lost without com-jncident on a beam splitter explore the two arms of an inter-
promising the squeezing, indicating the stronger sensitivitferometer. The relative phase acquired in the two atomic
of spin-squeezed states to dissipation for larger amounts Qfates during free evolution of duratidris the equivalent of
squeezing. , , the relative phase acquired by photons traveling in the arms
. We have also presented in detail a scheme based on thg he interferometer. Finally, the second pulse that performs
interaction of coherent classical light with an optically densqhe inverse transformation on atoms is the equivalent of the
ensemble of atoms that leads to an effective coherent spinacombination of signals from the two interferometer arms
changing interaction involving pairs of atoms. Atoms may bey, 4 heam splitter. At the end of this sequence, the number of
transferred to the same final state leading to spin squeezing,ms in either state, equivalent to the number of photons
(analogous to squeezing of light by degenerate DBIO0  rom ejther output of the final beam splitter, is measured. In
different final states in this case leading to quantum correlag,ig way, the signal measured depends on the acquired rela-
tions between different atomic mode@malogous to quantum tjye phase, which can thus be estimated with some accuracy.
correlations between electromagnetic modes by nondegener- \yie will now quantify this more precisely: let the fre-

ate OPQ. We lha}ve shown that this process is robust withquency of the applied electromagnetic pulsessbeand the
respect to realistic decoherence mechanisms and can resultj|p,e delay between the two zones of interactionThélhe

rapid generation of correlatetspin-squeezgdatomic en-  qration and strength of the applied fields are chosen so as to
sembles. The amount of correlations created by this effectivg,; 4 to /2 pulses, i.e., transformation of the atomic state
interaction can be simply expressed in terms of the Singleéccording to ’ ’

photon Rabi frequencyg, the atomic spontaneous emission

rate y, and the cavity decay rate. We find that the genera- le)— M,

tion of spin-squeezed states requigfN~ «y, which can V2

easily be achieved in low finesse cavities with, e.g., room- le)+ilg) (A1)
temperature atomic vapors. Very strongly correlated states lg)— )

can be produced when the strong coupling regirhe vy of V2

cavity QED is achieved and the generation of Heisenberg-

limited spin-squeezed states requigfs~N«ky. The effec- During their free evolution between the two zones, atoms

tive interaction rateé=Q,Q,/A that depends on the Rabi in the ground and excited states acquire a relative pkase
frequency of two applied classical fielés, , and a detuning  which, in a frame rotating with the frequency of the applied
from an atomic transitiolA can be fast and is controllable. field, is ¢=(w— w()T.

Furthermore, the resulting spin excitations can be easily con- Before entering the first interaction zone, the atoms are
verted into photons on demand, which facilitates applicationgrepared in their lower statg) and at the exit of the second
in quantum information processing. Possible applications inzone, the number of atoms in state$ and|g) is measured.
volving high-precision measurements in atomic clocks can For simplicity, we consider the case when the first zone

also be foreseen. leads to amr/2 pulse and the second one-arr/2 pulse. The
Note added Recently, closely related results were ob- picture of angular momentum is particularly well suited to
tained in Ref[33]. discuss the Ramsey interferometric scheme and leads to an
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intuitive pictorial representation of the scheme. The AJ ()
Schwinger angular-momentum operators are defined as Sp(Pp)= — = (A7)
HIo($))

3= (S egt340/2, d¢
P , For states such thdfl,)=0 (all the states we will con-
Jy=(Zeg=2ge)/2, (A2) sider in this paper are of this typethe sensitivity
A o4 R |0(3,(p)) d| is maximal for =+ 7/2 and the phase ac-
3= (Xeem2gg)/2, curacy can be expressed as

whereiwzzj“:ﬂ,u)”(ﬂ are collective operators. In terms Jy

of these, a singler/2 pulse(Al) is represented by a rotation op(xml2)= I (A8)
of the pseudo-angular-momentum vector around Xtexis (321
by an angler/2. For a single atom we have the correspon-
dence|T)=|e) and||)=|g). Under aw/2 rotation about the

x axis, the state]) transforms to |J,=—1/2)=(|1)
—i|i>)/\/§ as indicated in Eq(Al). For N atoms, we can
think of theN individual spin3 particles combining to form

a pseudo-angular-momentum vector of lengthN/2. The
state of the collection ol atoms can then be represented by

appropriate superpositions of the statdsM) where —J . :
<M=J. Of course, only states within the completely sym- Consider the case of uncorrelated atoms for which all at-
oms have been prepared in the lower stafe sometimes

metric subspace of the full®dimensional Hilbert space can led a Bloch state. The state of the atomi bl
be represented in this way, which is justified since the coher(-:ﬁ1 N ba och s %e.' €s a? orthe a omlcfe?]sem ”e can
ent interaction of the electromagnetic fields with the atoms:[ us be expressed In terms of eigenstates of the collective
couple only to this symmetric subspacee., all atoms angular-momentum operators as
couple equally to the fields N

Free evolution in the rotating frame corresponds to rota- H 19)i=|9=N/2,3,= —N/2) (A9)
tion of the angular momentum around thaxis at an angular j=1 oY me '
velocity w — wg. The whole Ramsey scheme can then be rep-
resented by the sequencef2 rotation abouk axis, ¢ rota-  whereJ=N/2 since there arél two-level atoms, equivalent
tion about thez axis, and— /2 rotation about thex axis.  to N spin 3 particles. For such a state, the expectation value
This is the transformation performed by the unitary operatoof the angular-momentum operators and their variances are

calculated to be (J,)=(J,)=0, (J)=—J, AJ=AJ,

SinceAJ, and(J,) depend on the initial state, we see that
different initial states lead to different phase accuracies. Of
particular importance is the accuracy achievable when all
atoms are prepared in the same initial state. In this case the
state of the atomic ensemble is a pure state, but it is, how-
ever, an uncorrelated state of the atomic enseiftilge it can
be factorized W) =TI}L | ;).

O(¢)=e Pxg143zg=im23 (A3)  =.J/2 andAJ,=0. The signal and its variance are thus
where ¢=(w— wg) T as before. At the end of the scheme, (3(¢))=—J cosg,
the number of atoms in statés) and |g) is measured, or (A10)
equivalently their differencé,(¢) where AJ,(¢)=+II2sin¢.
3()=0(4)13,0(¢)=3,cos¢—3,sing.  (Ad) The maximum sensitivity is achieved at= = 7/2,
The Ramsey signal is thus Sd(+ml2)= ! L (Al11)

& W

which is the SQL. Performing the experiment WMrindepen-
dent atoms all prepared in the same initial state is thus
equivalent to repeating the experiment on one akbtimes
and leads to an expectedyN factor of improvement in

accuracy over the one atom resiis, /(S,)=1. This is the
X sing((3,,+3,3,) — 2(I, NI NV, (A6)  best accuracy achievable with atoms all prepared in the same
initial pure quantum state. The number of atoms detected in

where the variance is defined as4)%=(A?)—(A)2. From the upper state, given b{N, (¢))=N/2+(J,(4)), and its

the signal one wants to estimate the phgsand thus the variance are shown in Fig(a.

frequency differences— wo. The phase accuracy achievable ~There is a lower bound on the phase accuracy, set by
from such a measurement is related to the signal variancleisenberg’s uncertainty principIeAJiAsz%K[Ji NN

(the “noise”) by wherei,j=x,y,z. It is straightforward to show that

(3())=(3,)cosp—(J,)sin, (A5)
and its variance\J,(¢) is

AJ(P)=[(AJ,)%coS ¢+ (AJ,)?sir? ¢p—cose
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, (A12)

Z|

o=

which is known as the Heisenberg limit.

We now see from Eq(A8) that in order to surpass the
SQL, the atomic ensemble must be prepared in a state such X
that AJ, /|(J,)|<1/JN, which is a necessary and sufficient
condition for entanglement of an atomic ensenil@@). It is
thus important to have a state for which the variaadg is
reduced compared to its value for the uncorrelated $f¢
while maintaining a large value f¢d,) so that the amplitude
of the signal(J,(¢))=(J,)cos¢ is not compromised20].
Such states that have reduced uncertainty in one observable |G, 7. Wigner function representation of the sthtga)) with
AJ, (at the expense of the conjugate observable having  a=—1. Plotted is the surface(6, ) =W(#6, $), showing the large
increased fluctuationdhave been called spin-squeezed stateand negative value dfl,), reduced variancAJ,, and correspond-
[5]. ingly increased variancaJ, .

APPENDIX C: ADIABATIC ELIMINATION OF THE

APPENDIX B: SPIN-SQUEEZED STATES—WIGNER EXCITED STATE IN RAMAN SCATTERING

FUNCTION REPRESENTATION

) , i ) From the Hamiltonian(23), we obtain the equations of
We now consider the Wigner function representation Ofpqtion for the cavity mode and the ground-state coherence
the states|¢(a)). The Wigner distribution of general

angular-momentum statg35] is obtained from an expansion gby
of the density operator in terms of the multipole operators

a=—ka—igiSp 4, ~ 1953 ga, + Falb), (C1)
J  +k )
;)22 E quTA_kqu (Bl) Egbl:_(')’O_i51)Egbl+i012albl_ig?Lcangaﬁ'ngl(t),
k=0 g=—-k (CZ)
where the multipole operators are and the optical polarizations associated with Stokes emission
evolve according to
+J +J )
T 2 2 Spa, = [y—1(A=81)]2p 0, — 1212 g—i918(2p b,

m=-Jm==-3
- Zalal) + Fblal(t)a (C3)

(—1))"™2k+1

J
2 mm

(B2)

Ealg: —(7+iA)Ealg—iQ’{(Ealal—Egg)Jrig*{aszlg

+Fay(t), (C4
and S .
where we assume that population in the excited dtati
decays towardib,) at a ratey,, towards|g) at a ratey, and
J k J ;
we assume a dephasing ratg for ground-state coherences
[y= (71t 72)/2 and y> y,].

We proceed by adiabatic elimination of optical polariza-
is the usual Wigner B symbol. The Wigner distribution is tions associated with Stokes emission. To this end we assume
then given by large single-photon detuniny>y and to first order ira we

obtain € g4~N)

-m g m

20 +k

W(0,¢p)= Yo, , B3 Q Ly Fpa,(t)
wherepyq=(Tyq) =T pTiql andY(6,¢) are the spherical Q* v\ Fag(t)
harmonics. In Fig. 7, the Wigner function for the state Ealg=TN<1+iK —i N (Co)

|##(—1)) clearly shows the way in which this state has a

large negative expectation value fiyy, reduced variance in - which we substitute in EqIC2) and obtain for the ground-
Jx and increased variance Iy . state spin-flip operat(fBl:Egbl/\/N,
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ATOM CORRELATIONS AND SPIN SQUEEZING NEAR . ..

) * INQ _
S= (ot y)—i(63+ 618~ = p—a"+Fg (1),
)

where y_=7|Q,|?/A? is an optical pumping rates;
=|Q4|%/A is the light shift, andFg (t) is a modified noise
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the picture of dark and bright polaritons, only the bright po-
lariton is coupled to the excited state through the optical
coherencel ¢, .

Under adiabatic conditions, the bright polariton evolves
slowly (on a typical time scal@) and we can solve pertur-

batively in 1. Equations(D4) and (D5) are of the formx

force. Light shifts can be incorporated in a redefinition of the_ _, Xty S

energies and we ignore them in the remainder of this pape

The newd-correlated noise forces have correlations

(FsOFL )= 270+ Zn |81, (CB
FLOF,) =" nat—t). (€9

APPENDIX D: ADIABATIC ELIMINATION OF THE
BRIGHT POLARITON

After adiabatic elimination of the excited stdi@,), the
relevant equations of motion are

Sl=—(m+ 70+i51)31+iXa+E£1(t),

a=—ka—ix*S|—ig}Sga +Fa(l),
(D1)

O3 _
5= = (7 + y0+18,)S-1 J—gzgaﬁsz(t),

Sga,= — (YHi8)3 g0 —1Q, NS, —igoNa+Fyq (1),

whereS,=34, /YN,
From Egs.(D1) and(27) and in the limit of large ratio of

where x is the vector Pg,24,), M is a
5><2 matrix andy is a source term

d Pg ( K igz\/ﬁ) Pg
dt igaz IgZ\/N r igaz
K
~iX*S;— —=Pp+F()
+ V7 . (D6)
Fga, ()

where we have used>(y_+ y,)/ 7 and whereFg(t) and
?gaz(t) are appropriate noise forces. These equations can be
solved easily to first order by(®)(t)=M ~*.y, higher-order
approximations yielding™(t)=M ~*.[y—x""(t)].

We can rewrite

[ARN

Ky

N 2)

37T(VL)\ F, (D7)
i.e., the density length product multiplied by the cavity fi-
nesse, so that with densities corresponding to room-
temperature atomic vapors, optical wavelengths and finesse
of order 100 this quantity is already of orderl0*. We can
thus assume thdg,|?N/(xy)>1 and solve in powers of
K< ¥I(|g2|*N).

We see from Eq.(D6) that x("(t) is of order
[ky/(|g2|>N)]™* V) and thus solving to lowest order we find

speed of light in vacuum to group velocity of Stokes photons

7=|9,|>N/|Q,|?>>1, we obtain the equations of motion in

terms of bright and dark polaritons,

ot ; T Po T
Si==(yL+yotid)S+ix PB+\/_77 +Fs (),
(D2)
By — (ki TpPo—i 28— 12 r (1)
p= —(kinTly)Pp—l—=9— —=—FgTFpll),
V7 V7
(D3)

- . K_Fz X ~
Pe=—(xk+T,/n)Pg—ix*S|——="Pp—ig, /NS,

Vn

+Fg(t), (D4)

igazz_I‘igaz_igz\/NPB'Fﬁgaz(t)a (D5)

wherel',=y + yo+i8,, T=y+i6,, andSg, =3g, /N

and noise forces were modified appropriately. Note that in

I’

8= | —ITX*SI——=Pp+'F(t)~igaVNFgs (1)
|92/°N ' \/; 9%
(D8)
so that whenp>1,
Pp Pp
a=-—+Pg=—+———[—ilx*SI+T'Fg(t
n BT, |92|2N[ X =1 B(t)
—igoVNFga (D], (D9)

The coupled equations of motion for the dark-state polar-
iton (D3) and the spin flipD2) then become

. |91|2 X ~
Sl=| =Sy —n—rv—i8|Si+i=Pp+FL (1),
|g,|? \/; '
(D10)
) x* -
Po=—(x/ 7+ v+ yo+i8)Pp—i =S+ Fp(1),
Vn
(D11)
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whererzgl(t) andF(t) are modified noise forces with cor-
relations

(Fo(OFL(t))=

2k Yo }
—+ 2yt —y |8(t—t"),
y Tevet o (t—t")
(D12)

(FO(OFp(t))=0, (D13)

<'~:sl(t)|~:gl(t')>:{27’o+%745('[—'['), (D14)

71 9417
v YL 2 YL

(FS(OFs (t))= o

s(t—t'),
(D15)
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fix

Vn

Heff: SlPD+H.C., (D16)

where the interaction rate jg/ 7= (91/9,)Q1Q,/A.

We note in Eq(D11) that cavity losses are strongly sup-
pressed in the limity>1. Indeed, subsequent to the large
group-velocity reductioi15], the polariton is almost purely
atomic and the excitation leaks very slowly out of the me-
dium. The equation of motion for coheren6§ (D10) con-
tains a loss ternidue to isotropic spontaneous emisgiand
a linear gain terntdue to emission into bright polaritpriThe
two can compensate each other. However, the linear phase-
insensitive amplification is also accompanied by correspond-
ingly increased fluctuationgD15), represented by new

. ~ -~ + _
and all other correlations can be neglected. The coherent parngevin forceskp(t),Fs (t). In the case thag, =g, and
of the interaction can thus be obtained from an effectivevhen all Rabi frequencies are taken to be real, we have the

Hamiltonian

interaction ratet= y/\7=Q,Q,/A.
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