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Atom correlations and spin squeezing near the Heisenberg limit: Finite-size effect and decoherenc
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We analyze a model for spin squeezing based on the so-called countertwisting Hamiltonian, including the
effects of dissipation and finite system size. We discuss the conditions under which the Heisenberg limit, i.e.,
phase sensitivity}1/N, can be achieved. A specific implementation of this model based on atom-atom inter-
actions via quantized photon exchange is presented in detail. The resulting excitation corresponds to the
creation of spin-flipped atomic pairs and can be used for fast generation of entangled atomic ensembles, spin
squeezing, and applications in quantum information processing. The conditions for achieving strong spin
squeezing with this mechanism are also analyzed.
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I. INTRODUCTION

Interacting quantum systems that start in uncorrela
states generally evolve towards entangled states due to q
tum correlations building up in time. These correlations a
the form they take depend crucially on the interaction t
gives rise to them. For example, in parametric down-conv
sion or in the optical parametric oscillator~OPO! pairs of
photons can be created in distinct modes of the electrom
netic field. The fact thatpairs of photons are generated lea
to quantum correlations between the two modes. Since e
mode is described by a harmonic oscillator, one can think
the state of the field as the quantum state of two fictitio
particles in harmonic oscillator potentials. The quantum c
relations correspond to, e.g., the positions of the partic
being strongly correlated, in the ideal caseD(X12X2)2→0
and their momenta being anticorrelatedD(P11P2)2→0.
For the electromagnetic field modes, the position and m
menta correspond to quadratures of the field modes and
between these that correlations are produced@1,2#. These
correlations are essential to quantum communication, e
quantum teleportation of information from one location
another@3#. Entanglement is also crucial for many schem
in quantum cryptography and for long-distance quant
communication through lossy channels@4#.

Since the mechanism for producing correlations in el
tromagnetic field modes is at the fundamental level so sim
~photons created in pairs! it is natural to wonder if such a
mechanism may lead to entanglement of atoms when
are interacting in a similar manner. In complete analogy
the OPA mechanism, a process that transferspairs of atoms
from their ground state to two well-defined final states a
gives rise to quantum correlations between atoms. Whe
collection ofN two-level atoms is thought of as an ensemb
of effective spin 1

2 particles with total pseudo-angula
momentumJ5N/2, it turns out@5# that the quantum corre
lations produced by an interaction that transfers atoms
pairs from the lower state to the upper state show up
reduced fluctuations in a component of the angular mom
tum, e.g.,DJx

2→0. We will discuss entanglement of atom
with one another in an atomic ensemble for which an eff
tive interaction leads to the transfer of atoms in pairs to w
1050-2947/2002/65~5!/053819~14!/$20.00 65 0538
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defined final states and we will use the concept of s
squeezing to quantify the amount of quantum correlatio
produced in such a case. As for squeezed states of l
decoherence mechanisms and dissipation are acting in su
way as to destroy or limit the amount of squeezing achi
able in practice. We also analyze the influence of such di
pation mechanisms and find relations between the s
squeezing interaction rate, the dissipation rate, and
amount of squeezing achievable in the presence of dam
mechanisms. The coherent control of the dynamical evo
tion of complex systems such as atomic ensembles may
to the production of entangled nonclassical states such
spin-squeezed states@5# ~analogous to squeezed states
light @2#! and correlated collective atomic modes~similar to
twin photons generated by a nondegenerate OPO!.

The main result of this paper is that for a collection ofN
atoms with average single atom nonlinearityx ~two-atom
interaction energy! and with single-atom loss rateG, the con-
dition for achieving some spin squeezing is thatNx*G. In
order to achieve reduction of uncertainty in sayJx ~see Ap-
pendix A for a definition of the operatorsJx,y,z for N two-
level atoms! compared to the uncertainty in the Bloch sta
uJ5N/2,Jz5N/2& for which (DJx)

25N/4 by an amounts
@i.e., (DJx)

25N/(4s)# with 1<s<N, one requires thatNx
*sG and the interaction time needed scales ast
;(ln s)/(Nx) while the maximum number of atoms than ca
be lost without destroying the squeezing scales asDN
;(N/s)ln s. To achieve Heisenberg-limited precision~i.e.,
maximum spin squeezings;N), one needs a large singl
atom nonlinearityx*G. This means that the interaction tim
needed to achieve this strongly correlated state ist
;(ln N)/(Nx) and the maximum number of atoms that can
lost without compromising this optimal squeezing isDN
; ln N, i.e., a very small number of atoms lost may preve
reaching the Heisenberg limit. This analysis remains va
and agrees with a specific implementation based on an e
tive atom-atom interaction via quantized photon exchang
a cavity, for which the decoherence mechanism correspo
to spontaneous emission and leakage of photons from
cavity.

The possibility of coherently controlling interacting qua
tum systems has led to many new developments in the fi
©2002 The American Physical Society19-1
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of quantum information science@6#. These are expected t
have an impact in a broad area ranging from quantum c
putation and quantum communication@7# to precision mea-
surements@8# and controlled modeling of complex quantu
phenomena@9#. Entangled systems realized in the laborato
range in size from few qbits@10#, to macroscopic ensembl
of particles@11#. Controllable coherent interactions betwe
atoms@12,13# may also open the way for modeling of com
plex quantum phenomena such as quantum phase trans
@9# in which quantum correlations play a crucial role.

Entanglement of a single atomic ensemble, i.e., quan
correlations between atoms in the same ensemble, has
shown to be potentially very useful in the field of precisi
measurements@8#. Certain types of interactions between a
oms lead to entanglement and spin squeezing, characte
by reduced variance in an observable and increased fluc
tions in the canonically conjugate observable. This reduc
of fluctuations directly translates into an improved accura
for measurements sensitive to that observable. A typical
ure of merit for spin-squeezed states is the phase accu
df on estimating accumulated dynamical phase in the R
sey interferometric experiment. With all experimental unc
tainties controlled below this noise level, the domina
source of noise in such experiments is the ‘‘quantum pro
tion noise’’ @8# associated with, e.g., the noise in measu
ments of thex component of the spin of an ensemble
two-level atoms~effective spin1

2 ) all prepared in the lower
level ~the u↓& state!. This noise leads to a lower limit on
phase accuracydf51/AN called the standard quantum lim
~SQL!, whereN is the number of atoms in the ensemble. T
Heisenberg uncertainty principle, however, allows for ph
accuracies consistent with the basic principles of quan
mechanics, which are as low asdf51/N, called the Heisen-
berg limit.

We also discuss in more detail a technique@14# based on
a resonantly enhanced nonlinear process involving Ra
scattering into a ‘‘slow’’ optical mode@15#, which creates a
pair of spin-flipped atom and slowly propagating coupl
excitation of light and matter~dark-state polariton!. When
the group velocity of the polariton is reduced to zero@16,17#,
this results in pairs of spin-flipped atoms. The dark-state
lariton can be easily converted into corresponding state
photon wave packets ‘‘on demand’’@17#, which makes the
present approach most suitable for implementing protocol
quantum information processing that require a combina
of deterministic sources of entangled states and long-li
quantum memory@4,18#.

This paper is divided into five sections. In Sec. II, w
discuss Ramsey spectroscopy and the use of spin-sque
states in precision measurements. In particular, we ana
the situation whereN two-level atoms with levelsug& andue&
are prepared in a correlated state and subsequently probe
separated fields of frequencyv in the Ramsey interferomet
ric configuration, which we review in Appendix A. We als
discuss spin-squeezed states and develop pictorial repre
tation of those states that we compare to squeezed stat
light and in Appendix B we introduce the Wigner represe
tation for a particular class of spin-squeezed states.

In Sec. III, we analyze a model for spin squeezing ba
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on the analogy with the optical parametric oscillator. We a
seek to understand the influence of loss processes on
coherent spin-squeezing interaction and the way in whic
limits the correlations achievable for a given interaction ra
The model consists of two bosonic modes~a ‘‘spin-up’’ state
and a ‘‘spin-down’’ state! with loss rates and a coherent in
teraction that transfers pairs of atoms from one mode to
other. For our simple model, analytical results can be
tained in the perturbative regime of small number of exci
tions ~most atoms in the lower state! and low loss rate. We
estimate the conditions for which Heisenberg-limited sp
squeezed states can be produced.

In Sec. IV, we present a scheme for inducing effect
coherent interactions between atoms in an atomic ensem
These coherent interactions lead to massive entangleme
the ensemble and to characterize the degree of entangle
thus obtained, we calculate the squeezing or reduction
fluctuations of one particular observable. The coherent in
action is based on Raman scattering into a cavity mode
which the atomic medium is made transparent by elec
magnetically induced transparency~EIT!. The slowly propa-
gating mode is then best described by a polariton: a col
tive excitation that is partly photonic and partly ‘‘spin
excitation of the atomic ensemble~the up and down states o
the spin being two metastable states!. The overall process
leads to the creation of pairs of excitations, one being a ‘‘s
flip’’ created by Raman scattering, the other being a polari
that can be ‘‘steered’’ into a photon or spin-flip excitatio
‘‘on demand.’’ We find that substantial spin squeezing can
obtained for atomic ensembles in low finesse cavities, w
out the strong coupling requirement of cavity QED. In t
limit of unity finesse this corresponds to free-space confi
ration and substantial correlations can still be produced
this case. In the opposite limit of high finesse, very stro
correlations are obtained and in particular we estimate
regime for which Heisenberg limited spin-squeezed sta
are produced.

II. RAMSEY SPECTROSCOPY WITH CORRELATED
ATOMS

In Appendix A, Ramsey spectroscopy is reviewed and
particular we show how the phase accuracy in phase est
tion based on the Ramsey fringe signal is, at the maxim
sensitivity point, given by

df5
DJx

u^Ĵz&u
, ~1!

whereDJx is the variance in thex component of the pseudo
angular-momentum~of lengthJ5N/2) representing the stat
of N two-level atoms and̂Ĵz& is the expectation value of th
z component of the pseudo-angular-momentum~both the
variance and the expectation value are calculated in the
tial state!.

For an uncorrelated state of atoms, e.g., with all atoms
their lower state so that the state of the ensemble is descr
by uJz52N/2&, it is found thatDJx5AJ/2 and^ Ĵz&52J so
9-2
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ATOM CORRELATIONS AND SPIN SQUEEZING NEAR . . . PHYSICAL REVIEW A65 053819
thatdf5A1/N. In order to improve the phase accuracy, o
must use a state for which the variance inĴx is reduced while

^Ĵz& is little changed. Consider therefore a state such as
eigenstate ofĴx , for example,uJx50&. Calculating the ex-
pectation values and variances we find^Ĵx&5^Ĵy&5^Ĵz&
50, DJx50, and DJy5DJz5AJ(J11)/2. However, the
Ramsey signal has an amplitude proportional to^Jz& and
therefore vanishes for all phase anglesf, which means that
even though the noise or fluctuation properties of the sig
may be improved, its average is zero@19#. Note that this is
because we have chosenĴz(f) as our observable, other ob
servables such asĴz

2(f), for example, may lead to nonzer
average signal together with reduced variance@27,20#. How-
ever, it turns out that their signal to noise ratio is very mu
reduced compared to that of the Ramsey scheme@20#. It is
thus necessary to consider states that lead to a reduced
anceDJx while maintaining a large signal amplitude, i.e.,
large ^Ĵz&. We therefore consider states such as

uc~a!&5
1

A11a2 S i uJx50&1a
uJx511&2uJx521&

A2
D ,

~2!

wherea is a real number parametrizing the stateuc(a)&. It is
straightforward to calculate the expectation values

^Ĵx&50,

^Ĵy&50, ~3!

^Ĵz&5
2a

11a2
AJ~J11!

2
,

and the variances

DJx5
a

A11a2
,

DJy5
1

A11a2
AJ~J11!

2
, ~4!

DJz5AJ~J11!

2 F12
4a2

~11a2!2G 1/2

.

The signal amplitude that depends on^Ĵz& can thus be
rather large (O@N#) while the noise amplitude characterize
by DJx is minimized (O@1#). The Ramsey signal and phas
accuracy for such a state is shown in Fig. 1~b!, compared to
the case of uncorrelated atoms@Fig. 1~a!#.

These states are minimum uncertainty states, i.e., (DJx)
3(DJy)5 1

2 u^Ĵz&u for all values of the parametera. Also,
their phase accuracy is given by

df~6p/2!5A11a2

2

1

AJ~J11!
, ~5!
05381
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which is of order 1/N. The best phase accuracy is obtain
for a→0 in which case the optimal phase accuracy isdf
(6p/2)5A2/N. Note that in this case the signal amplitud
(}^Ĵz&) becomes vanishingly small@^Ĵz(f)&→0 for all f#
and also the range of values off for which improved phase
accuracy is achieved becomes vanishingly small arounf
56p/2. For these reasons, the optimally spin-squeezed s
uc(a50)& may prove impractical. Note, however, that fo
finite a, i.e., for uau51, the signal amplitude is large
(;N/A8) and the phase accuracy is independent off,

df~f!5
1

AJ~J11!
.

2

N
, ~6!

i.e., twice the Heisenberg limit.
In Fig. 2 we show the signal and variance for vario

spin-squeezed states along with the phase accuracydf(f).

FIG. 1. Number of atoms detected in the upper state (Ne) rela-
tive to total number of atoms@the total number isN5Ne1Ng and
thus Ne /(Ne1Ng)5„N/21^Jz(f)&…/N# vs accumulated phasef
5(v2v0)T for ~a! uncorrelated atoms and~b! correlated atoms in
a spin-squeezed stateuc(a)&, for N5100 anda521 ~error bars
have been magnified by a factor of 10 for clarity!. Note how
squeezing of the variance improves the phase accuracy.

FIG. 2. Number of atoms detected in the upper state vs ac
mulated phasef5(v2v0)T for correlated atoms in various spin
squeezed statesuc(a)&, for N5100 anda520.9, a521, anda
521.1 ~error bars have been magnified by a factor of 10 for cl
ity!. Also shown is the phase accuracydf(f) vs accumulated
phase~the dashed line represents the standard quantum limitdf
51/AN). Note how df(f) gets to a minimum value of orde
2/N50.02.
9-3
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We can gain a better understanding of the squeezing in
states~2! uc(a)& by looking at various representations
them. The simplest representation is to project the state
eigenstates of the three components of the angular mom
tum,

Pi~m!5u^Ji5muc~a!&u2, ~7!

whereuJi5m& is the eigenstate of thei component of angu-
lar momentum with eigenvaluem.

From Fig. 3 it is clear that the expectation values ofĴx

and Ĵy are zero in such a state, whereas~for a521) the
expectation value ofĴz is large and negative, the varianc
are clearly given by Eq.~4!. It is interesting to note the
similarity of these angular-momentum squeezed states
those of a harmonic oscillator~i.e., squeezed states of light!.
In both cases, the probability distributions vanish for o
number of quanta~note that for simplicity we consider onl
N even here!. For even number of quanta, the behavior
nearly exponentialPz(m)}e2c(m1 j ) for some constantc. A
mechanism for generating such states starting from the
correlated stateuJz52J& must therefore be one in whic
atoms are excited in pairs, i.e., two atoms in the ground s
are transferred to the excited stateug&ug&→ue&ue&. Consider
the similarities with squeezed states of light: in particular
photon number distribution vanishes for odd photon num
in the case of squeezed vacuum due to the form of
squeezing HamiltonianĤ52 ix@ â†22â2#, which creates
and destroys photons in pairs. Since we find a similar c
cellation of the probability of there being odd number
excitations for the statesuc(a)&, the interaction giving rise to
such states starting from all atoms in their lower states m
likewise create and destroy excitations in pairs and thus b
the form Ĥ52 i\x@ L̂1

2 2L̂2
2 #. This process can also b

viewed as a coherent collision mechanism. Moreover, for
whole atomic ensemble to become entangled~not just par-
ticular atom pairs!, this process must occur completely sym
metrically for all atoms. It should not be two particular atom
that get transferred to the excited state, rather it should
two collective excitations that get created,

FIG. 3. Projection of the stateuc(a)& onto eigenstates of the
angular-momentum operatorsĴx , Ĵy , and Ĵz for J5N/2520 and
a521. The Px(m) distribution is sharply peaked since the sta
uc(a)& is a superposition of themx521,0,11 components only;
the Py(m) distribution is broad and symmetric; thePz(m) distribu-
tion vanishes form odd and the even components decrease roug
exponentially withm.
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N~N21!(i . j
@ ug•••ei•••ej•••g&], ~8!

which is the state obtained by lettingĴ1
2 operate onuJz

52J&. The simplest Hamiltonian giving rise to this type o
interaction is analyzed in Sec. III to quantify the squeez
generated by this mechanism. This form of interaction w
considered by Kitegawa and Ueda@5# in their classic study
of spin squeezing and was dubbed the ‘‘two-axis coun
twisting’’ interaction.

III. TWO-AXIS COUNTERTWISTING MODEL

We now turn to the analysis of the two-axis countertwi
ing Hamiltonian@5#

Ĥ52 i
\x

2
~ L̂1

2 2L̂2
2 !5\x~ L̂xL̂y1L̂yL̂x!. ~9!

As argued in the preceding section it is this type of Ham
tonian that most closely parallels squeezed-state genera
for light.

We now present a general theory that allows one to qu
tify atom correlations and takes into account decohere
and finite system size. Specifically, we consider two boso
modes@such as for a two-component Bose-Einstein cond
sate ~BEC! or for an atomic ensemble with two releva
atomic levels# with annihilation operatorsâ1 and â2. The
system is also subject to damping, i.e., loss of atoms at r
that may depend on the internal state. The equations of
tion for the two modes are then~with L̂15â2

†â1 and L̂2

5â1
†â2),

ȧ̂152g1â11xâ1
†â2

21F̂1~ t !,

ȧ̂252g2â22xâ2
†â1

21F̂2~ t !, ~10!

whereF̂ j (t) ared-correlated Langevin noise forces with a
propriate diffusion coefficientsDi j 5^F̂ i(t)F̂ j (t)&.

In order to discuss spin squeezing, it is easier to rew
the equations of motion in terms of the Stokes paramete

L̂05N̂5â1
†â11â2

†â2 ,

L̂x5~ â2
†â11â1

†â2!/2,

~11!

L̂y5~ â2
†â12â1

†â2!/2i ,

L̂z5~ â2
†â22â1

†â1!/2,

for which the equations are

ly
9-4
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L̇̂0522GL̂014gL̂z1F̂0~ t !,

L̇̂x522GL̂x1x~ L̂xL̂z1L̂zL̂x!1F̂x~ t !,
~12!

L̇̂ y522GL̂y2x~ L̂yL̂z1L̂zL̂y!1F̂y~ t !,

L̇̂z522GL̂z1gL̂022x~ L̂x
22L̂y

2!1F̂z~ t !,

where G5(g11g2)/2, g5(g12g2)/2 and F̂ j (t) are new
d-correlated noise forces associated with the damping.

Since Eqs.~12! are nonlinear operator equations, in t
equations of motion for the first-order moments^L̂ i& there
are terms that depend on those first-order moments but
terms depending on the second-order moments^L̂ i L̂ j&. Simi-
larly the equations of motion for the second-order mome
depend on themselves and also on the third-order mome
and so on, leading to the Bogoliubov-Born-Green-Kirkwoo
Yvon ~BBGKY! hierarchy of equations of motion for th
expectation values of operator products. In order to solve
set of equations, the hierarchy must be truncated at s
order@21#. Keeping the first- and second-order moments,
truncate the BBGKY hierarchy by the approximation

^L̂ i L̂ j L̂k&'^L̂ i L̂ j&^L̂k&1^L̂ j L̂k&^L̂ i&1^L̂kL̂ i&^L̂ j&

22^L̂ i&^L̂ j&^L̂k&. ~13!

The equations of motion for the expectation valuesl i

[^L̂ i& and the second-order momentsD i j [^L̂ i L̂ j1L̂ j L̂ i&
22^L̂ i&^L̂ j& are then obtained from Eq.~12!. We are inter-
ested in the case when all atoms start in mode 1, i.e.,l 0(0)
5N,l x(0)5 l y(0)50,l z(0)52N/2 and Dxx(0)5Dyy(0)
5N/2 ~all other second moments vanish! and for simplicity
we takeg15g25G, g50. Writing only the relevant equa
tions and omitting vanishing terms~such as those propor
tional to Dxz and Dyz that are zero for all times!, we have
~after some algebra!

l̇ 0522G l 0 ,

l̇ z522G l z2x~Dxx2Dyy!,

~14!
Ḋxx524GDxx1G l 014x l zDxx ,

Ḋyy524GDyy1G l 024x l zDyy ,

and l x(t)5 l y(t)50. These equations are nonlinear and c
not be solved analytically nor perturbatively inG/x. For
short enough times, the number of excitations into mode
small andl z.2N/2, so that plugging this in Eq.~14! we
have

Dxx~ t !.
N

2
e22Nxt1O@G/x#,

~15!

Dyy~ t !.
N

2
e2Nxt1O@G/x#,
05381
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i.e., the variance of thex component of the pseudo-angula
momentum is squeezed while that of they component is
antisqueezed. Plugging these back in the equation of mo
of l z , we obtainl z(t).2N/21(cosh 2Nxt21)/21O@G/x#.
This equation predicts growth ofl z without bound, however,
we know that becausel z is the z component of an angular
momentum vector, we must haveu l zu<N/2. The phase spac
of this angular-momentum vector is the Bloch sphere and
essence we have neglected the small curvature of the B
sphere~of radiusR5N/2) and have approximated the pha
space by the flat planar phase space of a harmonic oscill
We call this approximation the bosonic approximation, sin
it predicts infinite squeezing in the long-time limit and in th
absence of dissipation, similar to the case of squeezed l
Formally, this is equivalent to assuming

@ â2
†â1 ,â1

†â2#5â2
†â22â1

†â1.2N, ~16!

i.e., the operatorŜ15â2
†â1 /AN obeys bosonic commutatio

relations. Under this approximation the Hamiltonian~9! be-
comes Ĥ52 i (\xN/2)(Ŝ1

2 2Ŝ2
2 ) that is identical to the

Hamiltonian describing squeezing of light@2#.
In order to take into account the curvature of phase sp

and the nonbosonic nature of the angular-momentum op
tors, we use the following transformation:

N̂5Nĥ0 ,

L̂x5ANĥx ,

~17!

L̂y5ANĥy ,

L̂z5ĥz2
N

2
ĥ0 ,

in terms of which the commutation relations become

@ ĥx,y,z ,ĥ0#50,

@ ĥz ,ĥ6#56ĥ6 , ~18!

@ ĥ1 ,ĥ2#52
ĥz

N
2ĥ0 ,

whereĥ65ĥx6 i ĥy . In the limit N→` these commutation
relations become those of bosonic operators, i
limN→`@ ĥ0 ,ĥz ,ĥ1 ,ĥ2#5@ 1̂,â†â,â†,â#, a process formally
known as a group contraction@22#. The linear transformation
of operators~17! does not introduce any extra approxim
tion.

The Hamiltonian~9! can be reexpressed as

Ĥ5\xN~ ĥxĥy1ĥyĥx!52 i
\j

2
~ ĥ1

2 2ĥ2
2 !, ~19!

where we have definedj5xN. We can now obtain equation
of motion for the expectation valueshj5^ĥ j& and the
9-5
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second-order momentsd i j 5^ĥi ĥ j&22^ĥi&^ĥ j& from Eq.
~14!. Letting t5Nxt5jt be a rescaled time,k5G/(Nx)
5G/j be the rescaled dissipation rate and writinge51/N
and ẋ5dx/dt, we have

ḣ0522kh0 ,

ḣz522khz2~dxx2dyy!,
~20!

ḋxx524kdxx1kh022h0dxx14ehzdxx ,

ḋyy524kdyy1kh012h0dyy24ehzdyy .

Note that these equations are formally equivalent to
~14!, no approximation has been made from Eqs.~14! to
~20!. Letting e→0 reproduces the results of the bosonic a
proximation obtained above in the limit ofl z.2N/2. Terms
of order e and higher represent corrections to the boso
approximation and, as shown below, they give rise to a li
to the amount of squeezing achievable.

Solving Eq.~20! to first order ine andk we obtain, writ-
ing only the relevant terms,

dxx~t!5
1

2
@e22t1~k1e/2!1•••#, ~21!

which shows that the varianceDJx5A(N/2)dxx is squeezed.
Second-order terms ink ande come multiplied by an expo
nentially growing terme2t so that as a function of time, th
variance reaches a minimum valuedxx;max@k,e# at a time
e2t

* ;max@k,e#, after which it grows exponentially and th
squeezing is lost. Note that this behavior@dxx(t) reaches a
minimum value and then increases again# also occurs when
k→0, indicating that it is a generic feature of the finite sy
tem size. This model predicts that a variancedxx;e51/N
→DJx

2;1 is achievable as long as losses are small enou
i.e., k&e, which in terms ofx andG means

x*G or j*NG, ~22!

wherex corresponds to the single-atom nonlinear interact
rate andG represents the single-atom loss rate.

In order to achieve any squeezing (dxx<1/2) it is neces-
sary to havek&1, i.e.,Nx*G. In the regimeNx@G very
strong correlations can be obtained. Note that the sin
atom nonlinearity can still be relatively weak compared
the single particle loss rate (x!G). For example, when the
dissipation rate is such thatk;Ae, i.e., ANx;G, the
amount of squeezing obtained Eq.~21! is dxx;1/AN. It takes
a timee22t;Ae to reach this state and the number of p
ticles lost during that time isDN;N32kt;ANln N. This
number can therefore also be thought of as the maxim
number of particles that can be lost from the ensemble w
out destroying squeezing beyonddxx;1/AN.

In order to reach the Heisenberg limit it is required th
the single-atom nonlinearityx be larger than the decay ra
G. Note that in this case, the number of atoms lost by
time the optimal squeezing is achieved isDN; ln N, which
indicates that a very small number of atoms is lost. T
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number also corresponds to the maximum number of p
ticles that can be lost from the ensemble and do not des
squeezing at the Heisenberg-limit level. Clearly the mo
squeezed the state of the atoms is, the more sensitive i
comes to atom loss and in general to any form of dissipat

IV. COHERENT ATOM INTERACTIONS VIA
SLOW LIGHT

We now describe a technique to induce effective coher
interactions between atoms in metastable states@14#. The
technique is based on a resonantly enhanced nonlinear
cess involving Raman scattering into a ‘‘slow’’ optical mod
@15#, which creates a pair of spin-flipped atom and slow
propagating coupled excitation of light and matter~dark-state
polariton!. When the group velocity of the polariton is re
duced to zero@16,17#, this results in pairs, of spin-flipped
atoms. The fact, that pairs of atomic excitations are crea
in this process can also be viewed as a coherent interac
between atoms, i.e., a controlled ‘‘collision’’ leading to e
tanglement of the state of each atom with that of every ot
atom in the ensemble.

A number of proposals have been made for genera
entangled states of atomic ensembles and resulting in
called spin-squeezed states. Some are based on intera
interactions at ultracold temperatures@23#, whereas others
involve mapping the states of nonclassical light fields in
atoms@24#, quantum nondemolition measurements of sp
@25# with light or dipole blockade for Rydberg atoms@26#.
Also note the recent experiments on number-phase-sque
states and the Mott insulator phase in BEC@27#. In contrast
to some of these mechanisms the present approach doe
require coherence of the atomic motion or sources of n
classical light and is completely deterministic thereby s
nificantly simplifying possible experimental realizations. W
further show that the present technique can be made ro
with respect to realistic decoherence processes such as s
taneous emission and leakage of slow photons from the
dium.

We consider a system ofN atoms@Fig. 4~a!# interacting
with two classical driving fieldsV1,2 and one quantized
modeâ of a running wave cavity that is initially in a vacuum
state. Note that we consider a cavity configuration for eas
theoretical treatment; the results of this analysis, howe
remain valid in the limit of unity finesse, i.e., in free spa
configuration. Relevant atomic sublevels include two ma
folds of metastable states~e.g., hyperfine sublevels of elec

FIG. 4. Energy level scheme for the effective coherent inter
tion leading to the creation of pairs of atoms~a! in different final
states~‘‘nondegenerate’’ scheme! and ~b! in identical final states
~‘‘degenerate’’ version!.
9-6
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tronic ground state! and excited states that may be acces
by optical transitions. The atoms are initially prepared
their ground statesug&. One of the classical fields, of Rab
frequencyV1, is detuned from the atomic resonance by
amount roughly equal to the frequency splitting betwe
ground-state manifolds. The other field of Rabi frequencyV2
is resonant with an atomic transitionub2&→ua2&. The quan-
tized field can be involved in two Raman transitions cor
sponding to Stokes and antiStokes processes. Wherea
former corresponds to the usual Stokes scattering in the
ward direction, the latter establishes an EIT and its gro
velocity is therefore substantially reduced.

The pair excitation can be viewed as resulting from qu
tized photon exchange between atoms~Fig. 5! in a two-step
process. The first flipped spin is created due to Stokes Ra
scattering, which also results in photon emission in a co
sponding Stokes mode. In the presence of EIT, this photo
directly converted into a dark-state polariton that becom
purely atomic when the group velocity is reduced to ze
This implies that atomic spins are always flipped in pairs.
Fig. 4~a! the two final states involved in Raman transitio
are different and atomic pairs in different states are crea
In Fig. 4~b! the final states of the two Raman processes
identical, in which case atomic pairs in the same state re
The analysis of this ‘‘degenerate’’ version of the scheme
similar to the ‘‘nondegenerate’’ case and we will consid
only the latter case here.

For conceptual simplicity we assume that the quanti
field corresponds to a single mode of a running-wave ca
with a creation operatorâ† and atom-field coupling constan
g1 andg2. The interaction Hamiltonian for the system ofN
atoms and light can be split into two partsH5HRam1Hres
corresponding to the Stokes Raman process and the
Stokes process, respectively,

HRam52\DSa1a12\d1Sb1b1

1@\V1Sa1g1\g1aSa1b1
1H.c.#, ~23!

Hres5\d2Sb2b2
1\d2Sa2a2

1@\g2aSa2g1\V2Sa2b2
1H.c.#, ~24!

whereSmn5( i um& i i ^nu are collective atomic operators co
responding to transitions between atomic statesum&,un&, D
is the detuning of the classical fieldV1 from the single-
photon transitionug&→ua1&, d1 and d2 are the two-photon

FIG. 5. Diagram illustrating coherent atom-atom interaction m
diated by a dark-state polariton, leading to the creation of a pa
spin-flipped atoms.
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detunings from theug&→ub1& and ug&→ub2& transitions, re-
spectively, as shown in Fig. 4.

In the limit of large detuningD and ignoring two-photon
detunings for the moment, the HamiltonianHRam describes
off-resonant Raman scattering. We take into account real
decoherence mechanisms such as spontaneous emission
the excited states in all directions and decay of the ca
mode with a ratek. The evolution of atomic operators is the
described by Heisenberg-Langevin equations,

Ṡmn52gmnSmn1
i

\
@H,Smn#1Fmn , ~25!

wheregmn is a decay rate of coherencem→n and Fmn are
associated noise forces. The latter have zero average an
d correlated with associated diffusion coefficients that can
found using the Einstein relations.

After a canonical transformation corresponding to ad
batic elimination of the excited state~see Appendix C for
details!, HRam becomes equivalent to the effective Ham
tonian

H̃Ram5\xâ†Ŝ1
†1H.c., ~26!

where Ŝ15Sgb1
/AN and x5g1ANV1* /D. This effective

Hamiltonian thus describes the process in which a Sto
photon is emitted necessarily accompanied by a spin
The quantum state of the Stokes mode is thus perfectly
related with the state of the atomic spin-flip mode.

The resonant part of the HamiltonianHres is best ana-
lyzed in terms of dark and bright-state polaritons@28#,

PD5
V2a2g2ANS2

Ag2
2N1V2

2
,

~27!

PB5
g2ANa1V2S2

Ag2
2N1V2

2
,

which are superpositions of photonic and atomic excitatio
â and S25Sgb2

/AN. In particular,Hres has an important
family of dark states,

uDn&;~PD
† !nug&uvac&, ~28!

with zero eigenenergies. This means that once in the d
state, the system stays in the dark state. Note that all o
eigenstates ofHres have, in general, nonvanishing interactio
energy. Under conditions of Raman resonance and s
ciently slow excitation~‘‘adiabatic condition,’’ see Appendix
D for details! the Stokes photons emitted by Raman scat
ing, Eq. ~26!, will therefore couple solely to the dark state
Eq. ~28!. In this case the coherent part of the evolution of t
entire system is described by an effective Hamiltonian,

He f f52 i\j~PD
† S1

†2S1PD!, ~29!

with j5(V1V2 /D)g1AN/Ag2
2N1V2

2 ~without loss of gen-
erality, j was chosen imaginary here for simplified calcu

-
f
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A. ANDRÉ AND M. D. LUKIN PHYSICAL REVIEW A 65 053819
tions!. The Hamiltonian~29! describes the coherent proce
of generation of pairs of excitations involving polaritons a
spin-flipped atoms. Note that for small number of excitatio
the spin waves and polaritons obey bosonic commuta
relations and this Hamiltonian is formally equivalent to th
describing optical parametric amplification~OPA! of two
modes@2#. In the nonbosonic limit, this Hamiltonian is als
analogous to the ‘‘countertwisting’’ model of Eq.~9!. In Ap-
pendix D we show that the coupled equations for the po
iton PD and the spin flipS1 are given by

Ṡ1
†5S ug1u2

ug2u2
gL2gL2g02 id1D S1

†1jPD1F̃S1

† ~ t !, ~30!

ṖD52~k/h1gL1g01 id2!PD1jS1
†1F̃D~ t !, ~31!

where the polariton decay rate includes an atomic partgL
1g0 and a photonic partk/h due to leakage of photons ou
of the medium ~at a rate reduced by the factorh
5ug2u2N/uV2u2 equal to the ratio of vacuum light velocity t
the group velocity of slowly propagating Stokes photon!.
The spin-flip operator equation~30! is seen to contain both
decay term and a gain term due to spontaneous emission
the bright polariton mode. Note that this apparent decreas
dissipation is, however, accompanied by increased fluc
tions denoted by the new noise force operatorF̃S1

(t). The
effective detuning between the polariton and spin-flip mo
is seen to correspond to the difference in two-photon de
ings d12d2.

We now consider the scenario in which the system
evolving for a timet under the HamiltonianHe f f , after
which both fields are turned off. If the procedure is adiaba
upon turn off of the coupling fieldsV1,2 the polaritons are
converted into pure spin excitationsPD→S2. Hence the en-
tire procedure will correspond to the following state of t
system:

uC&5
1

coshjt (
n

~ tanhjt!n
1

n!
~PD

† !n~S1
†!nug&uvac&

→ 1

coshjt (
n

~ tanhjt!nunb1
,nb2

&uvac&. ~32!

Hereunb1
,nb2

&51/n!(S2
1)n(S1

1)nug& are Dicke-like symmet-

ric states of atomic ensemble and we assumednb1 ,b2
!N.

For nonzerojt this state describes an entangled state,
which relative fluctuations between the two modes decrea
exponentially to values well below the SQL corresponding
uncorrelated atoms.

The present technique can also be viewed as a mecha
for coherent ‘‘collisions’’ @13# between atoms mediated b
light. In particular, the case when atomic pairs are exci
into two different levels@as, e.g., in Fig. 4~a!# closely re-
sembles coherent spin-changing interactions that occur in
generate atomic samples@29#, whereas the case when atom
pairs are stimulated into the identical state@Fig. 4~b!# is
reminiscent of dissociation of a molecular condensate@30#.
To put this analogy in perspective we note that the rate of
05381
s
n
t

r-

to
in
a-

e
n-

s

c

r
es
o

sm

d

e-

e

present optically induced process can exceed that of w
interatomic interactions by several orders of magnitu
Therefore the present work may open up interesting n
possibilities for studying many-body phenomena of stron
interacting atoms.

To quantify the resulting correlations established betwe
the polariton modePD and the pure spin-flip modeS1, we
introduce the quadratures of both modes~which are bosonic
for small number of excitations! in direct analogy to the
optical parametric case. We define the quadraturesX15(S1

1S1
1)/A2, Y15 i (S12S1

1)/A2 and similarly for the polari-
tion mode; these can be measured, e.g., by converting
excitations to light. Correlations between the modes app
due to dynamical evolution and squeezing is found in cert
quadratures of the sum and difference modesX25(X1

2XD)/A2 and Y15(Y11YD)A2. In the language of har
monic oscillators, the positions in mode 1 and 25D are
correlated (X1.XD), while the momenta are anticorrelate
(Y1.2YD). For small number of excitations the sum an
difference modes obey standard commutation relati
@Xa ,Yb#52 ida,b , wherea,b51,2 or 1,D. A quadrature
Y6 is squeezed whenDY6(t)2,1/2 and the Heisenberg
limit corresponds toDY6(t)2;1/N.

We find that squeezing is optimal under conditions
four-photon resonance (d15d2) and in the limit of h@1
~Fig. 6!. Evolution leads to squeezing ofY1 andX2 , anti-
squeezing ofY2 and X1 . The squeezing inY1 reaches a
minimum value att5t* after which the growing fluctuations
in X1 give rise to increased noise inY1 . Note that the total
number of excitations~both modes! in the system, equal to
^X1

2 1X2
2 1Y1

2 1Y2
2 &, grows exponentially with time@Fig.

6~c!#. Specifically, in the caseg15g25g and thusg15g2
5g, for jt.1, we have

@DY1~ t !#251/2H e22jt1
2k/h15gL14g0

4j

1S k/h1gL

4j D 2

e2jtJ , ~33!

FIG. 6. ~a! Quadrature varianceDY1
2 vs single-photon detuning

D and interaction timejt, ~b! same forD5Dopt andd15d2 show-
ing maximum squeezingDY1

2 .0.01 ~for Ag2N/gk5100), ~c!
number of excitations pumped in the system vs time@same condi-

tions as in ~b!#, and ~d! DY1(t* )2 vs two-photon detuningd̄
[(d12d2)/2 for D5Dopt and wheret* gives maximum squeezing
9-8
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ATOM CORRELATIONS AND SPIN SQUEEZING NEAR . . . PHYSICAL REVIEW A65 053819
where we have neglected terms of higher order in (gL
1g0)/j andk/(hj). The maximum amount of squeezing
obtained after an interaction timet* such that e22jt*

5(k/h1gL)/4j and is given by

~DY1!25
4k/h17gL14g0

8j
, ~34!

i.e., of the order of the damping rate divided by the coher
interaction rate.

Since both the interaction parameterj and the relaxation
rate of the polaritongD5gL1g01k/h depend on the
single-photon detuningD @Fig. 6~a!#, we find that squeezing
is optimized for

Dopt5gA7uV1u2

4uV2u2
ugu2N

gk YA11
g0h

k
, ~35!

and with this optimal value of the detuning, the squeez
reaches a minimum value of

~DY1opt!
25A gk

ugu2N
3A7

4 S 11
g0h

k D . ~36!

Note that the factorg2N/kg is equal to the atomic density
length product multiplied by the empty cavity finesse a
can easily exceed 104 even for modest values of the densit
length product and cavity finesse. The factorg0h/k is small
as long as the effective group delayh/k is smaller that the
ground-state relaxation time 1/g0, which is easily achievable
Furthermore, although a cavity configuration was used
simplicity, the results of the present analysis remain qual
tively valid in the limit of unity finesse, i.e., free space.

We consider a possible implementation of our degene
scheme@Fig. 4~b!#: levels ug& and ub& correspond to the
5 2S1/2, F51,mF51 and 52S1/2, F52,mF51 levels in
87Rb ~i.e., D1 line! and levelua& to the 52P1/2, F52,mF
52 level. With all fieldss1 polarized and atoms prepared
state 52S1/2, F51,mF51 by optical pumping or magneti
state selection in atom traps, this implements the schem
Fig. 4~b!. For these conditions the typical generation ra
resulting in optimal squeezingV1V2 /Dopt can easily be of
the order of fraction of megahertz. In such a case other
coherence mechanisms are negligible. Doppler shifts
also be disregarded as long as all fields are copropagati

For the ‘‘degenerate’’ version of the interaction@i.e., with
identical final states for the spin flips, see Fig. 4~b!#, the
effective Hamiltonian can be written as

He f f5 i\j~Ŝ†22Ŝ2!, ~37!

where the limith@1 has been used to writePD.2S, with
S51/ANSgb the spin-flip operator. In this case the corre
tions lead to squeezing ofX5(S1S†)/A2 and antisqueezing
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of Y5 i (S2S†)/A2. The analysis for this configuration i
very similar to the nondegenerate version, in particular
maximum amount of squeezing achievable is also given
an expression of the form~36!.

We can now obtain a condition for achieving Heisenbe
limited spin-squeezed states, i.e., (DY1opt)

2.1/N. We see
from Eq. ~34! that this requires

j*NG, ~38!

where G5(4k/h17gL14g0)/4 is the effective damping
rate of the system. This is in complete agreement with
estimate based on our simple bosonic model of Sec. III~22!.
In terms of the single-photon Rabi frequencyg, the cavity
decay ratek, the spontaneous emission rateg, and the num-
ber of atomsN, the condition for achieving some squeezin
i.e., (DY1)2&1/2 is

ugu2N*kg, ~39!

which can be easily achieved in the laboratory since it s
ply corresponds to the condition that the density length pr
uct multiplied by the cavity finesse be larger than one. In
cavity QED regime of strong couplingugu2;kg, very strong
quantum correlations, i.e., (DY1)2;1/AN between atoms
can be produced. In order to obtain Heisenberg-limited sp
squeezed states, i.e., (DY1)2;1/N, one requires a more
stringent condition

ugu2*Nkg, ~40!

which can be fulfilled only in the strong coupling regime
cavity QED for a limited number of atoms. Note that th
regime has been achieved experimentally by several gro
@31# and would allow for Heisenberg-limited spin squeezi
for as many as;103 atoms. We have analyzed in this pap
the situation of a running-wave cavity, so that all atom
couple equally apart from a possible phase to the ca
mode irrespective of their position. In order to fulfill th
cavity QED regime, small cavity volume is needed, i.
standing-wave cavities. For atoms in such a cavity the c
pling to the cavity mode is position dependent and it b
comes necessary to localize atoms accurately at the antin
of a trapping mode. Note that significant experimen
progress has been made towards this direction by sev
groups@32#. Once the atoms are well localized in the cavi
the interaction can proceed via a neighboring modeb ~e.g.,
different from the trapping modea) so that for atoms local-
ized within a small region in the cavity the two modes ha
essentially the same wavelength and atoms would, there
couple equally to theb mode as well, irrespective of thei
position.

V. DISCUSSION AND CONCLUSION

We have reviewed Ramsey spectroscopy and the us
spin-squeezed states in precision measurements of this
With the experimental motivation of minimizing the pha
accuracy in phase estimation with Ramsey fringes, we in
duced a particular class of squeezed states. These state
9-9
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A. ANDRÉ AND M. D. LUKIN PHYSICAL REVIEW A 65 053819
to Heisenberg-limited phase accuracy and we develo
various pictorial representations for them. The strong si
larities of these representations of spin-squeezed state
those of squeezed states of light suggests an analogy ex
ing to the type of interaction that gives rise to squeezing.
are thus led to consider the so-called ‘‘countertwistin
Hamiltonian that has been shown to lead to maximal s
squeezing. We have studied this model for spin squeezin
the presence of a dissipation mechanism and analyzed
effect of damping and finite system size on the amount
squeezing achievable with such an interaction. The anal
was based on a decorrelation approximation to the BBG
hierarchy of equations of motion, followed by the use o
linear transformation that in the limit of large number
atoms 1/N→0 ‘‘contracts’’ the angular-momentum operato
onto bosonic operators. This allows for the systematic inc
sion of finite system size effects. It appears that Heisenb
limited spin squeezed states may be produced when
single-atom nonlinearity exceeds the single-atom loss rate
this case the maximum number of atoms that can be
before quantum correlations are destroyed to the poin
compromising the spin squeezing is of the orderDN; ln N.
For spin squeezing at a more modest level than the Hei
berg limit, larger number of atoms may be lost without co
promising the squeezing, indicating the stronger sensiti
of spin-squeezed states to dissipation for larger amount
squeezing.

We have also presented in detail a scheme based on
interaction of coherent classical light with an optically den
ensemble of atoms that leads to an effective coherent s
changing interaction involving pairs of atoms. Atoms may
transferred to the same final state leading to spin squee
~analogous to squeezing of light by degenerate OPO! or to
different final states in this case leading to quantum corr
tions between different atomic modes~analogous to quantum
correlations between electromagnetic modes by nondege
ate OPO!. We have shown that this process is robust w
respect to realistic decoherence mechanisms and can res
rapid generation of correlated~spin-squeezed! atomic en-
sembles. The amount of correlations created by this effec
interaction can be simply expressed in terms of the sin
photon Rabi frequencyg, the atomic spontaneous emissio
rateg, and the cavity decay ratek. We find that the genera
tion of spin-squeezed states requiresg2N;kg, which can
easily be achieved in low finesse cavities with, e.g., roo
temperature atomic vapors. Very strongly correlated sta
can be produced when the strong coupling regimeg2;kg of
cavity QED is achieved and the generation of Heisenbe
limited spin-squeezed states requiresg2;Nkg. The effec-
tive interaction ratej5V1V2 /D that depends on the Rab
frequency of two applied classical fieldsV1,2 and a detuning
from an atomic transitionD can be fast and is controllable
Furthermore, the resulting spin excitations can be easily c
verted into photons on demand, which facilitates applicati
in quantum information processing. Possible applications
volving high-precision measurements in atomic clocks c
also be foreseen.

Note added. Recently, closely related results were o
tained in Ref.@33#.
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APPENDIX A: RAMSEY SPECTROSCOPY

In Ramsey spectroscopy@8#, a collection ofN two-level
atoms are made to interact with two separated fields~in time
or in space!. The lower and upper states~referred to as
ground and excited states! have an energy difference\v0
and atoms will thus acquire a different dynamical pha
e2 iEt/\ depending on which state they are in. The effect
properly chosen electromagnetic fields is to perform a tra
formation that prepares the atoms in a superposition of
two statesug& and ue&. The different parts of the wave func
tion of atoms ~corresponding to the ground and excite
states! acquire a relative phase due to dynamical evolut
and when the inverse transformation is applied, an inter
ence effect is obtained. An exact parallel with the Mac
Zender interferometer can be drawn@34#: the transformation
preparing atoms in a superposition of ground and exc
states is equivalent to the transformation that lets a pho
incident on a beam splitter explore the two arms of an int
ferometer. The relative phase acquired in the two atom
states during free evolution of durationT is the equivalent of
the relative phase acquired by photons traveling in the a
of the interferometer. Finally, the second pulse that perfor
the inverse transformation on atoms is the equivalent of
recombination of signals from the two interferometer ar
on a beam splitter. At the end of this sequence, the numbe
atoms in either state, equivalent to the number of phot
from either output of the final beam splitter, is measured.
this way, the signal measured depends on the acquired
tive phase, which can thus be estimated with some accur

We will now quantify this more precisely: let the fre
quency of the applied electromagnetic pulses bev, and the
time delay between the two zones of interaction beT. The
duration and strength of the applied fields are chosen so a
lead to p/2 pulses, i.e., transformation of the atomic sta
according to

ue&→
ue&2 i ug&

A2
,

~A1!
ug&→

ue&1 i ug&

A2
.

During their free evolution between the two zones, ato
in the ground and excited states acquire a relative phasf,
which, in a frame rotating with the frequency of the appli
field, is f5(v2v0)T.

Before entering the first interaction zone, the atoms
prepared in their lower stateug& and at the exit of the secon
zone, the number of atoms in statesue& andug& is measured.

For simplicity, we consider the case when the first zo
leads to ap/2 pulse and the second one a2p/2 pulse. The
picture of angular momentum is particularly well suited
discuss the Ramsey interferometric scheme and leads t
9-10



he

s
n

n

by

-
n
e

m

ta

ep

to

e,

le
n

-

at
Of
all
the

ow-

at-

can
tive

t
lue
are

hus

ame
d in

by

ATOM CORRELATIONS AND SPIN SQUEEZING NEAR . . . PHYSICAL REVIEW A65 053819
intuitive pictorial representation of the scheme. T
Schwinger angular-momentum operators are defined as

Ĵx5~Ŝeg1Ŝge!/2,

Ĵy5~Ŝeg2Ŝge!/2i , ~A2!

Ĵz5~Ŝee2Ŝgg!/2,

whereŜmn5( j 51
N um& j j ^nu are collective operators. In term

of these, a singlep/2 pulse~A1! is represented by a rotatio
of the pseudo-angular-momentum vector around thex axis
by an anglep/2. For a single atom we have the correspo
denceu↑&5ue& andu↓&5ug&. Under ap/2 rotation about the
x axis, the state↑& transforms to uJy521/2&5(u↑&
2 i u↓&)/A2 as indicated in Eq.~A1!. For N atoms, we can
think of theN individual spin 1

2 particles combining to form
a pseudo-angular-momentum vector of lengthJ5N/2. The
state of the collection ofN atoms can then be represented
appropriate superpositions of the statesuJ,M & where 2J
<M<J. Of course, only states within the completely sym
metric subspace of the full 2N-dimensional Hilbert space ca
be represented in this way, which is justified since the coh
ent interaction of the electromagnetic fields with the ato
couple only to this symmetric subspace~i.e., all atoms
couple equally to the fields!.

Free evolution in the rotating frame corresponds to ro
tion of the angular momentum around thez axis at an angular
velocity v2v0. The whole Ramsey scheme can then be r
resented by the sequence:p/2 rotation aboutx axis,f rota-
tion about thez axis, and2p/2 rotation about thex axis.
This is the transformation performed by the unitary opera

Û~f!5eip/2Ĵxe2 if Ĵze2 ip/2Ĵx, ~A3!

wheref5(v2v0)T as before. At the end of the schem
the number of atoms in statesue& and ug& is measured, or
equivalently their differenceĴz(f) where

Ĵz~f!5Û~f!†ĴzÛ~f!5 Ĵz cosf2 Ĵx sinf. ~A4!

The Ramsey signal is thus

^Ĵz~f!&5^Ĵz&cosf2^ Ĵx&sinf, ~A5!

and its varianceDJz(f) is

DJz~f!5@~DJz!
2cos2 f1~DJx!

2sin2 f2cosf

3sinf~^ĴxĴz1 ĴzĴx&22^Ĵz&^Ĵx&!#1/2, ~A6!

where the variance is defined as (DA)25^Â2&2^Â&2. From
the signal one wants to estimate the phasef and thus the
frequency differencev2v0. The phase accuracy achievab
from such a measurement is related to the signal varia
~the ‘‘noise’’! by
05381
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df~f!5
DJz~f!

U]^Ĵz~f!&
]f

U . ~A7!

For states such that^Ĵx&50 ~all the states we will con-
sider in this paper are of this type!, the sensitivity
u]^Ĵz(f)&/]fu is maximal forf56p/2 and the phase ac
curacy can be expressed as

df~6p/2!5
DJx

u^ Ĵz&u
. ~A8!

SinceDJx and^Ĵz& depend on the initial state, we see th
different initial states lead to different phase accuracies.
particular importance is the accuracy achievable when
atoms are prepared in the same initial state. In this case
state of the atomic ensemble is a pure state, but it is, h
ever, an uncorrelated state of the atomic ensemble~i.e., it can
be factorizeduC&5) j 51

N uc& j ).
Consider the case of uncorrelated atoms for which all

oms have been prepared in the lower stateug&, sometimes
called a Bloch state. The state of the atomic ensemble
thus be expressed in terms of eigenstates of the collec
angular-momentum operators as

)
j 51

N

ug& j5uJ5N/2,Jz52N/2&, ~A9!

whereJ5N/2 since there areN two-level atoms, equivalen
to N spin 1

2 particles. For such a state, the expectation va
of the angular-momentum operators and their variances
calculated to be ^Ĵx&5^ Ĵy&50, ^Ĵz&52J, DJx5DJy

5AJ/2 andDJz50. The signal and its variance are thus

^ Ĵz~f!&52J cosf,
~A10!

DJz~f!5AJ/2sinf.

The maximum sensitivity is achieved atf56p/2,

df~6p/2!5
1

A2J
5

1

AN
, ~A11!

which is the SQL. Performing the experiment onN indepen-
dent atoms all prepared in the same initial state is t
equivalent to repeating the experiment on one atomN times
and leads to an expected 1/AN factor of improvement in
accuracy over the one atom resultDSx /^Ŝz&51. This is the
best accuracy achievable with atoms all prepared in the s
initial pure quantum state. The number of atoms detecte
the upper state, given bŷN̂1(f)&5N/21^Ĵz(f)&, and its
variance are shown in Fig. 1~a!.

There is a lower bound on the phase accuracy, set
Heisenberg’s uncertainty principle,DJiDJj>

1
2 u^@ Ĵi ,Ĵ j #&u

wherei , j 5x,y,z. It is straightforward to show that
9-11
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df>
1

N
, ~A12!

which is known as the Heisenberg limit.
We now see from Eq.~A8! that in order to surpass th

SQL, the atomic ensemble must be prepared in a state
that DJx /u^Jz&u<1/AN, which is a necessary and sufficie
condition for entanglement of an atomic ensemble@23#. It is
thus important to have a state for which the varianceDJx is
reduced compared to its value for the uncorrelated state~A9!
while maintaining a large value for^Jz& so that the amplitude
of the signal^Ĵz(f)&5^Ĵz&cosf is not compromised@20#.
Such states that have reduced uncertainty in one observ
DJx ~at the expense of the conjugate observableDJy having
increased fluctuations! have been called spin-squeezed sta
@5#.

APPENDIX B: SPIN-SQUEEZED STATES—WIGNER
FUNCTION REPRESENTATION

We now consider the Wigner function representation
the states uc(a)&. The Wigner distribution of genera
angular-momentum states@35# is obtained from an expansio
of the density operator in terms of the multipole operator

r̂5 (
k50

2J

(
q52k

1k

rkqT̂kq , ~B1!

where the multipole operators are

T̂kq5 (
m52J

1J

(
m852J

1J

~21!J2mA2k11S J k J

2m q m8
D uJ,m&^J,m8u,

~B2!

and

S J k J

2m q m8
D

is the usual Wigner 3j symbol. The Wigner distribution is
then given by

W~u,f!5 (
k50

2J

(
q52k

1k

Yk
q~u,f!rkq , ~B3!

whererkq5^T̂kq&5Tr@ r̂T̂kq# andYk
q(u,f) are the spherica

harmonics. In Fig. 7, the Wigner function for the sta
uc(21)& clearly shows the way in which this state has
large negative expectation value forĴz , reduced variance in
Ĵx and increased variance inĴy .
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APPENDIX C: ADIABATIC ELIMINATION OF THE
EXCITED STATE IN RAMAN SCATTERING

From the Hamiltonian~23!, we obtain the equations o
motion for the cavity mode and the ground-state cohere
Sgb1

,

ȧ52ka2 ig1* Sb1a1
2 ig2* Sga2

1Fa~ t !, ~C1!

Ṡgb1
52~g02 id1!Sgb1

1 iV1Sa1b1
2 ig1* a†Sga1

1Fgb1
~ t !,
~C2!

and the optical polarizations associated with Stokes emis
evolve according to

Ṡb1a1
52@g2 i ~D2d1!#Sb1a1

2 iV1Sb1g2 ig1a~Sb1b1

2Sa1a1
!1Fb1a1

~ t !, ~C3!

Ṡa1g52~g1 iD!Sa1g2 iV1* ~Sa1a1
2Sgg!1 ig1* a†Sb1g

1Fa1g~ t !, ~C4!

where we assume that population in the excited stateua1&
decays towardsub1& at a rateg1, towardsug& at a rateg2 and
we assume a dephasing rateg0 for ground-state coherence
@g5(g11g2)/2 andg@g0#.

We proceed by adiabatic elimination of optical polariz
tions associated with Stokes emission. To this end we ass
large single-photon detuningD@g and to first order inâ we
obtain (Sgg;N)

Sb1a1
5

V1

D S 12 i
g

D DSb1g1 i
Fb1a1

~ t !

D
, ~C5!

Sa1g5
V1*

D
NS 11 i

g

D D2 i
Fa1g~ t !

D
, ~C6!

which we substitute in Eq.~C2! and obtain for the ground
state spin-flip operatorS15Sgb1

/AN,

FIG. 7. Wigner function representation of the stateuc(a)& with
a521. Plotted is the surfacer (u,f)5W(u,f), showing the large
and negative value of̂Ĵz&, reduced varianceDJx , and correspond-
ingly increased varianceDJy .
9-12
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S1̇52@~g01gL!2 i ~d11dL!#S12 i
g1* ANV1

D
a†1F̄S1

~ t !,

~C7!

where gL5guV1u2/D2 is an optical pumping rate,dL

5uV1u2/D is the light shift, andF̄S1
(t) is a modified noise

force. Light shifts can be incorporated in a redefinition of t
energies and we ignore them in the remainder of this pa
The newd-correlated noise forces have correlations

^F̄S1
~ t !F̄S1

† ~ t8!&5F2g01
g2

g
gLGd~ t2t8!, ~C8!

^F̄S1

† ~ t !F̄S1
~ t8!&5

g1

g
gLd~ t2t8!. ~C9!

APPENDIX D: ADIABATIC ELIMINATION OF THE
BRIGHT POLARITON

After adiabatic elimination of the excited stateua1&, the
relevant equations of motion are

Ṡ1
†52~gL1g01 id1!S1

†1 ixa1F̄S1

† ~ t !,

ȧ52ka2 ix* S1
†2 ig2* Sga2

1Fa~ t !,

~D1!

Ṡ252~gL1g01 id2!S22 i
V2*

AN
Sga2

1F̄S2
~ t !,

Ṡga2
52~g1 id2!Sga2

2 iV2ANS22 ig2Na1Fga2
~ t !,

whereS25Sgb2
/AN.

From Eqs.~D1! and~27! and in the limit of large ratio of
speed of light in vacuum to group velocity of Stokes photo
h5ug2u2N/uV2u2@1, we obtain the equations of motion i
terms of bright and dark polaritons,

Ṡ1
†52~gL1g01 id1!S1

†1 ixS PB1
PD

Ah
D 1FS1

† ~ t !,

~D2!

ṖD52~k/h1G2!PD2 i
x*

Ah
S1

†2
k2G2

Ah
PB1FD~ t !,

~D3!

ṖB52~k1G2 /h!PB2 ix* S1
†2

k2G2

Ah
PD2 ig2ANS̃ga2

1FB~ t !, ~D4!

Ṡ̃ga2
52GS̃ga2

2 ig2ANPB1F̃ga2
~ t !, ~D5!

whereG25gL1g01 id2 , G5g1 id2, andS̃ga2
5Sga2

/AN

and noise forces were modified appropriately. Note tha
05381
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s
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the picture of dark and bright polaritons, only the bright p
lariton is coupled to the excited state through the opti
coherenceSga2

.
Under adiabatic conditions, the bright polariton evolv

slowly ~on a typical time scaleT) and we can solve pertur
batively in 1/T. Equations~D4! and ~D5! are of the formẋ

52M•x1y, where x is the vector (PB ,S̃ga2
), M is a

232 matrix andy is a source term

d

dt F PB

S̃ga2

G52S k ig2AN

ig2AN G
D F PB

S̃ga2

G
1F 2 ix* S1

†2
k

Ah
PD1FB~ t !

F̃ga2
~ t !

G , ~D6!

where we have usedk@(gL1g0)/h and whereFB(t) and
F̃ga2

(t) are appropriate noise forces. These equations ca

solved easily to first order byx(0)(t)5M21
•y, higher-order

approximations yieldingx(n)(t)5M21
•@y2 ẋ(n21)(t)#.

We can rewrite

ug2u2N

kg
;3pS N

V
Ll2DF, ~D7!

i.e., the density length product multiplied by the cavity
nesse, so that with densities corresponding to roo
temperature atomic vapors, optical wavelengths and fine
of order 100 this quantity is already of order;104. We can
thus assume thatug2u2N/(kg)@1 and solve in powers o
kg/(ug2u2N).

We see from Eq. ~D6! that x(n)(t) is of order
@kg/(ug2u2N)# (n11) and thus solving to lowest order we fin

PB5
1

ug2u2N
F2 iGx* S1

†2
kG

Ah
PD1GFB~ t !2 ig2ANFga2

~ t !G
~D8!

so that whenh@1,

a.
PD

h
1PB.

PD

h
1

1

ug2u2N
@2 iGx* S1

†1GFB~ t !

2 ig2ANFga2
~ t !]. ~D9!

The coupled equations of motion for the dark-state po
iton ~D3! and the spin flip~D2! then become

Ṡ1
†5S ug1u2

ug2u2
gL2gL2g02 id1D S1

†1 i
x

Ah
PD1F̃S1

† ~ t !,

~D10!

ṖD52~k/h1gL1g01 id2!PD2 i
x*

Ah
S1

†1F̃D~ t !,

~D11!
9-13
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whereF̃S1

† (t) and F̃D(t) are modified noise forces with cor

relations

^F̃D~ t !F̃D
† ~ t8!&5F2k

h
12g01

g2

g
gLGd~ t2t8!,

~D12!

^F̃D
† ~ t !F̃D~ t8!&50, ~D13!

^F̃S1
~ t !F̃S1

† ~ t8!&5F2g01
g2

g
gLGd~ t2t8!, ~D14!

^F̃S1

† ~ t !F̃S1
~ t8!&5Fg1

g
gL12

ug1u2

ug2u2
gLGd~ t2t8!,

~D15!

and all other correlations can be neglected. The coherent
of the interaction can thus be obtained from an effect
Hamiltonian
s
tin

t

05381
art
e

He f f5
\x

Ah
S1PD1H.c., ~D16!

where the interaction rate isx/Ah5(g1 /g2)V1V2 /D.
We note in Eq.~D11! that cavity losses are strongly sup

pressed in the limith@1. Indeed, subsequent to the larg
group-velocity reduction@15#, the polariton is almost purely
atomic and the excitation leaks very slowly out of the m
dium. The equation of motion for coherenceS1

1 ~D10! con-
tains a loss term~due to isotropic spontaneous emission! and
a linear gain term~due to emission into bright polariton!. The
two can compensate each other. However, the linear ph
insensitive amplification is also accompanied by correspo
ingly increased fluctuations~D15!, represented by new
Langevin forcesF̃D(t),F̃S1

1 (t). In the case thatg15g2 and
when all Rabi frequencies are taken to be real, we have
interaction ratej5x/Ah5V1V2 /D.
tt.

v.
,

v.
,

tt.
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