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Origin of spectral hole burning in Brillouin fiber amplifiers and generators
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We show theoretically that the spectral hole burning recently observed in Brillouin fiber amplifiers and
generators can be interpreted without invoking an inhomogeneous broadening of the Brillouin line. By using
the three-wave model of stimulated Brillouin scatterit®83S, we first investigate the linear response of a
Brillouin fiber amplifier to a weak amplitude modulation of the injected signal wave. The transfer functions
that fully characterize this response are analytically calculated. The fact that they may exhibit a dip is shown
to be due both to the gain saturation and to the coupling between the pump and signal perturbations that
counterpropagate around the steady-state intensity profiles. These transfer functions also appropriately charac-
terize the way through which noisy perturbations are filtered in SBS fiber generators. The spectral hole burning
observed in generators is thus simply connected to spectral hole burning studied in SBS amplifiers.
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[. INTRODUCTION arises from the waveguide interaction of the pump and
Stokes waves. Following their interpretation, there is not
Stimulated Brillouin scatteringSBS is a nonlinear pro- only one Stokes frequency shift as should be the case if the
cess that manifests through the generation of a backwar@®&BS interaction involved plane waves. A continuum of fre-
propagating Stokes wave whose frequency is down-shifteduency shifted Stokes components is generated because a
from that of the pump laséd]. In optical fibers, two experi- single-mode fiber is able to guide a fan of beam directions
mental configurations permit to study this interaction in awithin a small angle. However, this interpretation has been
simple way:(i) the SBS generator anld) the SBS amplifier  disputed by two of u$Randoux and Zemmou(RZ)], hav-
[2]. In the former configuration, great care is taken to avoiding shown that the behaviors reported by Kovalev and Har-
Fresnel reflections from the fiber ends and only one laserison can be simulated without invoking an inhomogeneous
beam is injected into the fiber core. SBS is then initiatedbroadening of the Brillouin ling10]. In particular, RZ have
from thermally excited sound waves, and the intensity of theshown that the hole burning presented in Hé&fl can be
generated Stokes wave is found to exhibit fluctuations of aeproduced by numerically integrating the equations of the
stochastic nature[3—5]. In the amplifier configuration, usual three-wave model of SBS in, which both homogeneous
Fresnel reflections are also eliminated from the fiber ends buiroadening and plane-wave propagation are assumed. Simi-
a strong pump field and a weak signal are now launched inttar numerical results have also been recently reported by Fo-
the fiber. The signal is strongly amplified if its frequency tiadi et al. in Ref. [11]. In the Brillouin fiber amplifier,
falls within the Brillouin gain bandwidth that typically Takushima and Kikuchi have also shown that the occurrence
broadens up to several tens of megahf#iz The linewidth  of spectral gain hole burning can be described by using this
of the Stokes radiation delivered by Brillouin fiber genera-three-wave mode[12]. Nevertheless, some confusion now
tors is also of this order of magnitude]. This spectral surrounds the nature of spectral broadening of SBS in optical
broadening around the exact Stokes frequency arises froffibers, partly because the physical mechanisms responsible
the finite response time={10 ns) of the acoustic wave in- for spectral hole burning of a homogeneously broadened
volved in the SBS interaction. Brillouin line remain unclear. Furthermore, no connection
There is currently a lot of controversy about the exacthas been established between the spectral hole burning found
nature of spectral broadening of SBS in optical fibers. Recenh Brillouin fiber amplifiers and the spectral hole burning
experiments performed both in a Brillouin fiber amplifier and observed in Brillouin fiber generators.
in a Brillouin fiber generator have indeed revealed features The aim of this paper is to study theoretically the mecha-
that are usually observed as a laser radiation resonantly imisms inducing the emergence of spectral hole burning in a
teracts with an atomic medium in which absorption lines areBrillouin line that is supposed to be homogeneously broad-
inhomogeneously broadengd]. Actually, hole burning has ened. By using the three-wave model of SBS, we will show,
been observed in the gain spectrum of a Brillouin fiber am4n particular, that these mechanisms are identical both in the
plifier [8] and in the spectrum of intensity fluctuations of the Brillouin fiber amplifier and in the Brillouin fiber generator.
Stokes light emitted by a Brillouin fiber generat®]. As  This paper is organized in the following way. The three-wave
spectral hole burning usually typifies the interaction of lasermodel of SBS is briefly presented in Sec. Il. The origin of
radiation with an inhomogeneously broadened system, all thepectral gain hole burning in Brillouin fiber amplifiers is
features experimentally observed have been attributed to atudied in Sec. Ill. In particular, we investigate the linear
inhomogeneous broadening of the Brillouin line. Accordingresponse of the Brillouin fiber amplifier to a weak amplitude
to Kovalev and Harrison who performed experiments in amodulation of the injected signal. Analytical expressions for
Brillouin fiber generatof9], this inhomogeneous broadening the transfer functions that fully characterize this response are
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determined for three different amplification regimes. The re<hastic fluctuations of the Stokes intensity are completely
sults obtained are then used in Sec. IV to explain the occurshaped by the randomness of spontaneous scat{&igin
rence of hole burning in the spectrum of intensity fluctua-Brillouin fiber amplifiers, two counterpropagating laser fields
tions of Brillouin fiber generators. We thus show that theare launched into the fiber, and the dynamics no longer re-
noisy perturbations propagating in generators are simply filmains noise dominated but becomes purely deterministic
tered by the transfer functions determined for the amplifier.[14]. In typical experiments, Brillouin amplifiers operate in a
stable fixed state in which the signal wave is strongly and
Il. THE THREE-WAVE MODEL OF SBS monotonically amplified6]. The influence of the noise term
i i f(¢,7) is then commonly fully neglecteld 2,16
The theoretical study presented throughout this paper en- The normalized parameters used throughout this paper are
ters within the framework of the three-wave model of SBS,g: 10.98 andB8, = 18.22. They are computed from SBS cou-
Wh{ch_is commonly used_tp describe the dynamics of BriI-p”ng constants commonly found in the literat(iiés, 17 and
louin fiber laser$13], amplifiers[14], and generatofig]. Let  from physical values corresponding to typical optical-fiber
us recall that this model is derived by assuming that theyperiments. The fiber length is supposed to be 60 m and its
nonlinear interaction does not alter the mode characteristicsyre diameter is equal to §&m. At a pumping wavelength
of the guide, so that the transverse evolution of the opticals 1550 nm,A vg is estimated to be 20 MHES]. The maxi-
fields can be decoupled from their longitudinal one. As the, m pump fieldE,, chosen for the normalization is 2.27
SBS process is then supposed to involve infinite plane waveg/m and corresponds to an injected pump power of 500
propagating collinearly along the fiber axis, the theoretical,w 1o clearly precise the relation between our reduced
treatment is greatly simplified. In particular, this means thay, 5 japles and physically measurable quantities, a normalized
only one phase-matching relation is verified and that th ump intensity|e ,(¢=0)|2 equal to unity corresponds to a
mechanisms of inhomogeneous broadening by the guidin ump power of %OO mW injected inside the fiber core. A
suggested in Ref9] cannot be described by using such anp,q majized time variation of unity corresponds to 0.2%

approach. The acoustic damping being supposed uniform i,y 5 normalized angular frequeneyof 27 corresponds to

the fiber, the three-wave model of SBS is, furthermore, es: ;
. ’ . SO 2 ' h I lar f fi2< 3.4x 10° rad/s.
tablished by assuming that the Brillouin line is homoge—a physical anguiar frequency o radrs

neously broadened. Assuming linear polarization for the light ||| SPECTRAL GAIN HOLE BURNING IN BRILLOUIN
beams and slowly varying envelopes for all the waves, ne- FIBER AMPLIFIERS

glecting the weak attenuation of the fiber and the perturba-

tive optical Kerr effect, the dimensionless equations describ- The aim of this section is to study the mechanisms re-
ing the SBS interaction read sponsible for the emergence of hole burning in the gain
bandwidth of Brillouin fiber amplifiers. In Sec. Il A, we first

%p ﬁ: —gBes, (1a  recall the approach adopted in Rgf2] by Takushima and

Jr I Kikuchi who have proposed a configuration in which spec-
tral hole burning is evidenced by injecting three optical

% _ % =gB*e (1b) waves into a Brillouin fiber amplifier. After a brief discussion

ar  d¢ P about the relation between this approach and pump-probe

studies performed in atomic systems, we show that this
1 three-wave configuration is equivalent to a two-wave con-
EE+B_spss+f(§’T)' (19 figuration in which the amplitude of the signal wave is
weakly modulated. This permits to greatly simplify the the-
£p, €5, andB represent, respectively, the complex envelopesretical treatment, since only the equations governing the
of the pump, Stokes, and acoustic waves. The timenor-  evolution of the field amplitudes have to be considered.
malized to the transit time of the light inside the fibéris ~ These amplitude equations are linearized and the problem is
the space coordinate that is normalized to the fiber lehgth reduced to the determination of transfer functions character-
The fieldse, ande are measured in units of the maximum izing the way through which the amplitude modulation is
pump fieldE,,,, available at the entrance end of the filgr. filtered by the amplifier. These transfer functions fully char-
is the normalized SBS coupling constagl, , which repre-  acterize the linear response of the amplifier and they are
sents the normalized damping rate of the acoustic wave, ignalytically calculated for three different regimes ranging
equal torAvgnl/c, wherec/n and Avg are the phase ve- from unsaturated to saturated amplification. By using appro-
locity of light inside the fiber and the Brillouin spontaneous priate approximated expressions for the stationary pump and
linewidth, respectively. Full details concerning the adoptedsignal intensity profiles, Sec. Il B, Il C, and lll D are thus
normalization are given in Ref15]. devoted to the theoretical treatment of the weak interaction,
f(Z,7) is a weak noise term describing the random therthe weak saturation, and the strong saturation regimes,
mal fluctuations of density occurring inside the fiber. As it respectively.
represents spontaneous scattering, its relative importance is
much weaker than that of the termpes associated with
stimulated Brillouin scattering. However, its influence cannot  In Ref. [12], Takushima and Kikuchi consider that the
be neglected in Brillouin fiber generators, in which the sto-Brillouin amplifier operates in a stable fixed state obtained

A. Theoretical approach and approximations
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(a) of a strong wave may indeed cause the absorption line to
=0 =1 Depleted appear to be “hole burned” when probed by a second wave,
Pump(Vp) Pump(Vp) . :
- _— even though the broadening mechanisms are homogeneous

Optical Fiber

- - [18]. This phenomenon has been studied in the 1980s. It
Amplified Signal (Vs ) arises from a periodic modulation of the ground-state popu-

Signal (Vs ) lation at the beat frequency between the pump and probe
fields [19,20. From this brief summary of spectral hole
burning in atomic systems, it appears that the mechanisms

(b) Depleted responsible for the emergence of a dip in the Brillouin gain

Pump (Vp) &0 &l Pump spectrum may be subtle and that no simple conclusion can be

- > Optical Fiber - > drawn straightforwardly from the observation of such a phe-

Amplified Signal nomenon. o . .
Signal Probe Probe After this qualitative discussion, let us now examine how
Vs Vst AV 4vJ_vls?Av the theoretical treatment of spectral hole burning in Brillouin

fiber amplifiers can be further developed. To describe the
FIG. 1. Two possible configurations for studying Brillouin fiber behavior of the Brillouin fiber amplifier represented in Fig.
amplifiers.(a) Usual two-wave configuration studied in R¢t4]. 1(b), Egs.(1) must be completed by the following boundary

(b) Three-wave configuration studied in Rgt2]. conditions:

by injecting two counterpropagating laser beams into the fi- ep({=07)=p, (2a)
ber[see Fig. 18)]. A strong pump fieldweak signal field N

oscillating at an optical frequency, (vs) is launched into ef({=17)=a(1+ae™™). (2b)

the fiber at{=0 ({=1). The frequency detuning,— v
between the two fields is equal to the Brillouin shift in silic ; : LT ) e
so that the signal is strongly and resonantly amplified. Addi-""mpl'wd‘:“_Of the_ signal field injected into the_ ampllﬂen_s
tionally, a probe field osciliating at a frequenay+A v is a small dlmenS|onIess. parameter determining the _rgmo be-
launched in the fiber af=1 [see Fig. 1b)]. WhateverZ, the twee.n the prope and signal amphtudenm(ap(/asz 1079).
amplitudea,, (¢) of this field is much weaker than that of the AQ) is proportional to the frequency detuning between the

pump and signal fields. The gaity,,=ap,({=0)/ay(¢ signal and the probe fieldA(Q=27AvnL/c). By consid-
=1) experienced by the probe in the amplifier is then mea

ering that <1, the intensityl({=1,7) and the phase
sured as a function af v. If the intensity of the signal wave #s(¢=1.7) of the complex fielde({=1,7) can be easily

is sufficiently low, the gain of the amplifier is not saturated détermined and read,
and a bell-shaped curve is recorded. On the other hand, the N _ 2 .2
functionG,,,(Av) is found to exhibit a dip around »=0 as l({=17)=|es({=17)[*=ag[1+2a cogAQ )],

a M is a dimensionless pump parameter agdepresents the

gain saturation is reached. The theoretical analysis performed (3a
by Takushima and Kikuchi enters within the framework of _ o
the three-wave model presented in Sec. Il. Equatidéhsire tar ¢({=1,7)]=asin(A€7). (3D)

linearized by assuming that the probe field generates Wea{ﬁ

perturbations that propagate around the stationary profiles these expressions show that addmg_a weqk prpbe f'?'d e
the pump and signal fields. This leads to four differential™ frequency detuned to a resonant signal field is equivalent

equations governing the longitudinal evolution of the com—t0 Wgakly modulating both the amphtude anq the phase of
. . . o the signal wave. Let us now examine how this simple result
plex amplitudes of various sidebands oscillating-af v.

: . : . can be used to simplify the theoretical analysis, and let us
Finally, these equations are numerically integrated and thﬁrst transform the complex variables of Eq#) to modulus-
functionG,,(Av) is plotted for increasing values of the sig-

nal intensity. phase form. By neglecting the noise tef(¢, ) of Eq. (10),

The approach adopted by Takushima and Kikuchi is quiteWe obtain
analogous to that used in pump-probe studies performed in A A
atomic systems. In standard pump-probe experiments, the —p+—p=—gAaAscose, (4a)
pump beam “prepares” the atomic system, which is subse- ar ¢
quently monitored by the probe beam. In Rdf52,8], the
pump and signal beams “prepare” the Brillouin fiber ampli- dAs IAs AA o
fier in a stationary state, which is subsequently monitored by or  gr 9a pCOS0, (4b)
the probe beam. In inhomogeneously broadened atomic sys-
tems, it is well known that a dip is observed in the probe 1 a
absorption profile as the pump beam saturates one segment B—FJFAa:ApAsCOSQ, (40)
of the absorption line. However, the emergence of spectral A
hole burning at the frequency of the pump laser must not be
interpreted straightforwardly as being a signature of an inho- A + 9P _ _ g Aa ASSin P (4d)
mogeneous broadening of the absorption line. The presence JT 4 Ap ’
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dps  dbs AaAp . Pump Depleted
F—&—g——g A. sing, (4¢ | Pump

Vp &=0 E=1 Vo
1 d¢, ApAs . ’ Optical Fiber
— 2 TP %ging, (4f) P —— -
B A or A a

Amplified Sienal
) ) Signal | g |
whereA,; and ¢, (i=p,s,a) represent, respectively, the am-

V.

plitudes and phases of the pump, Stokes, and acoustic waves. Vs ’

The variabled({,7) is a function of the phases, which is FIG. 2. Schematic representation of a Brillouin fiber amplifier

equal t0 ¢s(£,7)+ ba({,7)— dp(¢,7). The amplitude and submitted to a weak amplitude modulation of the signal. This con-

the phase of the signal wave &t1 being weakly modu- figuration is equivalent to that presented in Figb)1

lated, one can consider that the amplitudes and the phases of

all the waves involved in the SBS interaction will weakly SAL({=1,7)=acogAQT). (7b)

fluctuate around their steady state. In these conditions, solu-

tions of Egs.(4) can be sought under the following form:  With these boundary conditions, the spectra of the various
fields at the input and output ends of the fiber consist of

A1) =AN+ AL (i=p.sa), (53  carriers and weak sidebands. This is schematically repre-
sented in Fig. 2, which shows the spectral components in-
di(L,1)=¢2(0)+64i(¢,7) (i=p,s,a).  (Bb)  volved in a Brillouin fiber amplifier submitted to a weak

amplitude modulation of the injected signal wave. Let us

The functionsA2(¢) [ ()] are the steady-state profiles of emphasize that this configuration is equivalent to that studied

the field amplitudegdphases$ calculated in Ref[14]. The by Takushima and Kikuchi in Ref12] [see also Fig. (b)].

functions 6A;(Z,7) [6¢;({,7)] represent the slight devia- However, it should be noted that Takushima and Kikuchi

tions of these amplitudefphase$ from their steady-state directly linearize the set of Eq$l) to obtain a set of four

profiles. If the frequency of the signal wave is preciselycomplex differential equations, which is solved only numeri-

tuned to the center of the Brillouin gain bandwidth, all the cally. On the other hand, our theoretical treatment can now

stationary phase profileg’(¢) are uniformly equal to zero be further developed and, as shown hereafter, analytical so-

[14] and the variabled(¢,7) then slightly fluctuates around lutions can be found from the unsatured to the saturated am-

zero. The term caspresent in Eqs(4a—(4c) only brings  plification regimes.

second-order terms that are neglected when the linearization The next step of our theoretical analysis consists in taking

is performed by substituting Eq¢5) into Egs.(4). To the the Fourier transforms of Eqg6). We then obtain two

first order, amplitude fluctuations are thus decoupled frontoupled differential equations governing the spatial evolu-

phase fluctuations. As we are mainly interested in determintions of the Fourier transforméA,({,») and 6A¢({,w) of

ing the gain experienced by the probe wave, we will ignorethe functionsch\JAp(g,r) and'8A((¢, 7). They read
the phase equations and only consider the equations govern-

ing the spatiotemporal evolution of the amplitude fluctua- 6’3\/5\5(4&’) gl,(0) N
tions. ﬂ—ZZiw 3 +iw+1 0A(¢,w)
By introducing relative amplitude fluctuations defined as A
AL, 7)=6A(L,7)IAX({), we obtain Ba | —
' | ' 910|145 | Rt (80
PRy TRy () (T TR, (60
or | or 9 P ORaT M) IOR,({,) Ba |~
—; —=—09l()| 1+ — | 0As({, )
~ ~ (9( ,8A+Ia)
e g1y(0) (Pt e BRS, (6D
_ =g - , I ~
gr 9 TP PR e +iw< 9L —1)5Ap(§,w). (8b)
BA+|(U
1 00R, ~ ~ ~ _ o . . .
/3_ - Ayt 6As— 6A,, (6c)  With our normalization, the steady-state intensity profiles of
A

the pump and signal waves calculated in R&#l] read
where the function:#,i(g):[A?(g)]2 (i=p,s) represent the

steady-state intensity profiles of the pump and signal waves ()= M, (9a)
inside the Brillouin fiber amplifier. These equations must be 1-rexp—y{)

completed by boundary conditions, expressing that the am-

plitude of the pump laser is constant whereas the amplitude (D)= l,(0)r(1—r) (@b
of the signal field is sinusoidally modulated. They read S exp(yd)—r

5A,({=0,7)=0, (78 with
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_140) , —4Bag%1,(0)14(0)
10 (103 R R a4
y=291,(0)(1—r). (10b) In the weak-interaction regime, the signal intensity is so

weak that the problem can be examined to the lowest order
For small values of the parametefi.e.,r<10 %), the am- in I4(0). ThecoefficientsI"; and Qf are thus considered as
plifier operates in the weak-interaction regime. Pump deplebeing equal to zero and E(L3) then simply becomes
tion can be ignored and the signal wave is exponentially
amplified. In other words, the stationary pump and signal azﬁs(g,w) . a’ys(g’w)

profiles can be approximated to T FO&—§+Q§%S(§,(D)=O (15
J
1p(0)=15(0), (113 _
with
1S(5)=r1p(0)exp—70) (11b
02=0? 1+ L0 (16)
with y=2g1,(0). Forvalues ofr ranging approximately be- 0= @ Batio)’

tween 102 and 10 3, the Brillouin fiber amplifier operates

in the weak saturation regime. Pump depletion is then notaking the spatial Fourier transform of Ed.5), we obtain a
very pronounced and it can be ignored. EquatiGt®y are  polynomial equation of degree 2 for the wave numbehar-
still adequate buty can no longer be approximated 10 gcterizing the propagation of the perturbatioh, inside the

2g15(0), and Eq.(10b) must be used to describe the weak amplifier. The two roots of the polynomial provide two dis-
gain reduction that occurs in this regime. For valuesr of persion relations that read

between 102 and 1, the amplifier operates in the strong

saturation regime in which pump depletion cannot be ig- gl,(0)

nored. For moderate values of(i.e., r<0.1), an approxi- Ki=o| 1+ 21, (179
mate expression of the pump intensity profile can be found Batiw

by expanding Eq(9a) to the first order irr. It reads

Ip($)=1p(0){1—r[1—exp(— ¥} (12)
The solution of Eq(15) can then simply be written as
It can be easily seen that the exponential term of @&)
does not play an important role for values ofreater than SAL({,w)=Cexpik,{) + Coexplik,0), (18
1/y=0.1. The signal amplification thus remains nearly expo-
nential even in the strong saturation regime. As long as whereC, andC, are integration constants that must be de-
does not exceed 0.1, Eqd1b) and(12), therefore, describe termined from the boundary conditions. In particular, the
intensity profiles that are very close to the exact solutiongombination of Eq.(7a) with Eq. (8a) permits to obtain a
given by Egs.(9). By using the approximated intensity pro- condition showing tha€, is equal to zero. Taking into ac-
files given above, Secs. Il B, 1l C, and Il D are devoted to count this last result and substituting H@8) into Eq. (8a)
the analytical resolution of the set of Ed8) in the weak- yieIdsIST\ ({,w)=0. Therefore, in the weak-interaction re-
interact@on, weak saturation and strong saturation, regime@ime, theppump wave is much stronger than the signal wave
respectively. and it remains unaffected by the amplitude modulation ap-
plied to the signal at=1. Moreover, it is worth noticing
B. Weak-interaction regime that the propagation of the signal perturbation is supported

By using Eqs(11), the set of Eqs(8) is first transformed Y Only one of the two possible wave vectoS,=0). The
into a second-order differential equation that reads gain experienced by a signal perturbation oscillating at an
angular frequencyw can thus be directly determined from
2R L, w) IR L, ) the imaginary part ok; and it simply reads
74

+2(Fp+Ie 7
Py (Fo+T'1e7)

+[w?+2iw(ly

|Go(w)|=

A (gzo,w):eXp( ~gl,(0)w?

,5\/5\5({:1,(0)‘ Bi—i—wz ) (19

—Te7 ")+ 0% "|5A4({,0)=0 (13)

with The function|Gy(w)| is plotted in Fig. 8a) and its analytical
. . expression can be directly connected to the usual expression
_ ~lagly(0) _ ~legly(0) of the gain of a Brillouin amplifief2,12]. When pump deple-
07 2(Batiw)’ 1 2(Batio)’ tion is ignored, the gaiGampi(w) experienced by a signal
wave that is detuned by from the center of the Brillouin
and bandwidth indeed reads

053812-5



L. STiEPIEN, S. RANDOUX, AND J. ZEMMOURI PHYSICAL REVIEW A65 053812

T T T which admits the solution
SAL(U,0)=[C1IA(BU)+ CHYA(Bu)Julo’?, (23

where J5(B\u) and Y,(B+u) are Bessel functions of the
first and second kinds, respectivgé®1]. The coefficientsA
andB are given by

2\I'5—Q} 20,

A=—"—" and B=—. (24)
y y

The integration constant€; and C;, must be determined
from the boundary conditions. From their expressions, it is,
in particular, possible to derive the analytical expressions of
two transfer function$G(w)| and|H(w)| defined as

SA({=0,0) OA,({=1,w)
|G(w)|= ~——" and |H(w)|= ~—
. . . 0As({=1w) 0As({=1w)
FIG. 3. Transfer functions characterizing the linear response of (25
the Brillouin fiber amplifier in the weak-interaction regime. The )
parameters used age=10.98,8,=18.22,1,(0)=1, r=10"°. |G(w)| [|H(w)|] relates the amplitude fluctuations of the

signal at{=0 [the pump atf= 1] to the amplitude fluctua-
tions of the signal applied af=1. Their analytical forms

)- (20) involve complicated combinations of Bessel functions that
are given in Appendix A.

Normalizing this last expression with respect to the maxi- L€t us now discuss the modifications affecting the func-
mum gain, exf2gl (0)], and taking the square root of the tions |G(w)| and|H(w)| asr increases. First of all, it is
obtained result simply leads to EL9). This means that all worth naoticing that there is no significant difference between
the configurations presented in Figs. 1 and 2 provide resulté3(®)| and|Go(w)| when the Stokes intensity(0) is much

that are qualitatively analogous about the gain bandwidth ifveaker than the pump intensity(0). This is illustrated in
the weak-interaction regime. Fig. 3(a which shows that the two functions are identical in

the weak-interaction regime for=10°. The analytical
forms of |Gy(w)| and |G(w)| differ because they are not
) ] ) ) built from the same basis functions. The approach used to
In the weak saturation regime, the parametirapproxi-  gptain the expression ¢6,(w)| is indeed very simple and
mately between 10° and 10°%. In these conditions’; can  permits to obtain a solution that reads as a linear combina-
still be neglected with respect &, in Eq. (13). On the other  tjon of exponential functiongEq. (18)]. This means that the
hand, the tern){ clearly plays a role that cannot be ignored propagation modes authorized for the signal perturbation in-
for values ofw that are sufficiently loWsee expressiorid4)  side the amplifier are progressive sine waves that are expo-
and the third term of the left-hand side of EQ3)]. These nentially damped. As the boundary condition for the pump
considerations being taken into account, our working equawave [Eqg. (7a)] imposes that only one of these propagation

1s({=0) 2g1,(0) 3
Camoil )= (=1) :exp( Fro?

C. Weak saturation regime

tion becomes modes is excited, the gajGy(w)| experienced by the signal
ey — perturbation is the simple exponential function given by Eqg.
9°6As({, ) LT 90A({,w) (19). On the other hand, the approach leading to the analyti-
aL? 0 al cal expression ofG(w)| [Eq. (A2)] is much less restrictive
than the previous one. The solution is also much more com-
+(Q3+Q%e ") 6A({,0)=0. (21)  plicated and reads as a linear combination of Bessel func-

o . _ tions[Eq. (23)]. This means that the propagation of the sig-
One of the coefficients of Eq21) being a function of, the  nal perturbation inside the amplifier still involves two
treatment already performed for E@.5 cannot be applied. propagation modes, but they do not remain simple progres-
In particular, it is not possible to derive two dispersion rela-sive sine waves. Moreover, it should be noted that both of
tions for the propagation of the signal perturbation. Neverthem are excited even in the weak-interaction regir@$ (
theless, the solution of E¢21) can be found by introducing - ¢+ 0). Figure 3b) shows thatH(w)| is a bell-shaped
the new variablei=exp(-y{). This yields the equation function characterized by a peak value that is very small
(=r=10"°) in the weak-interaction regime. This means that

7,2u2w+ yu(y— ZFO)M the signal fluctuation propagates inside the amplifier without
au? Ju significantly perturbating the pump amplitude. This result
— was also found in Sec. Ill B by treating E(.3) to the lowest
+(Q5+Qfu)5A(u,0) =0, (22)  order inl4(0).
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shown in Fig. %b), the shape of the transfer functigid ()|
is comparable to that df5(w)| but it should be noticed that
its peak value has further increased to a value=@ 0095.
Summarizing our results, the central value of the ¢&i(0)|
is approximately the ratio between the saturated and the un-
saturated gain. Increasimdeads to a decrease [ (0)| and
to an increase of the weight taken by the transfer function
|H(w)| whose peak value is always closertdrherefore the
emergence of spectral gain hole burning in the Brillouin fiber
amplifier is due both to the gain saturation and to the cou-
pling between the signal and pump perturbations. Gain satu-
ration induces a flattening of the transfer functj@{w)| but
the intensity of the signal wave is so high then that the cou-
pling between the signal and pump perturbations cannot be
0_10 5 0 5 10 neglected. Contrary to the weak-interaction regime, the per-
) turbation applied to the signal =1 is not only carried by
] o ] the signal wave but is also seen by the pump wave. For a
e St o e e vt s Prca fequency ange, e couping sirengih beteen the
. o : signal and pump perturbations is maximum and the two per-
function|Go(w)| plotted by the dashed line is shown for rEference'turbations reinforce each other. This results in an increase of
The parameters used age=10.98, Bo=18.22, 1,(0)=1, r=2 ) . T .
% 10-3. the gain|G(w)| in spectral domains that are symmetrically
placed around»=0. Therefore, the emergence of a dip in

) ] 3. the gain profile can be seen rather as the growth of sidebands
Increasing to a numerical value of 210"~ firstleads to  than as the birth of a spectral hole.

a weak gain saturation. This is illustrated in Figa/which

shows that the functionG(w)| deviates from the simple

exponential form presented in Fig(a3. It flattens out and D. Strong saturation regime
saturates to a constant value of 0.96 at low frequencies. This . .
value is simply found to be the ratio between the saturated For vaIlZJes of the parametgrrapgmg appr'ommately be'-
gain expg) and the unsaturated gain ¢2gl,(0)]. The func- t\r/1veen 10 and 1_, the B_r|IIOL_J|n flber amplifier operates in
tion |H(w)| presents a shape that is comparable to that o e strong saturation regime in which pump depletion cannot

G see Fig. . However, its peak value that remains € ignqreq. The. set of Eq&8) has_ bee_n anglyticglly solved
|of (tﬁgj E)rder cﬂ‘rql;);s nowW increasped te-1.9x 10-3. As by Fotiadi et al. in Ref. [22] for situations in which pump

- : : depletion is especially pronouncéce., forr=1). As shown
shown in Fig. %a), further increase in the parameteleads . . . )
to the emergence of a dip in the gain pr(%i(é(wﬂ. Forr n deta!l in Appendix B, Eqs(8) can also be analytu_:ally
—0.01, the central value of the ga|@(0)| has fallen to solved in the strong saturation regime for values tdnging

0.824. This value remains close to the ratio between the Sat&pproxmate_:ly between 16 _and 0.1 The _S|mpl|f|_ed an_alytl-
cal expressions of the stationary intensity profiles given by

rated and the unsaturated gain, which is equal to 0.802. AEqs.(llb) and (12) are thus used and the set of E@ is
transformed into a second-order differential equation. Con-
trary to the weak saturation regime, the solution of this equa-
tion is no longer a sum of Bessel functions but of Whittaker
functions[see Eq.(B4)] [21]. As shown in Fig. 6 obtained
for r=0.1, the transfer functio&(w)| and|H (w)| that are
determined from the analytical solutipEgs.(B6) and(B8)]
exhibit a dip that is much deeper than that in the weak-
interaction regime. Moreover, the two transfer functions are
of the same order of magnitude and both of them exhibit a
multipeak structure. Let us note that the validity of the ana-
lytical solution given in Appendix B has been tested by nu-
merically integrating Eqg6) and(7). The relative difference
between the analytical and the numerical solutions is lower
than 1% as long as does not exceed 0.1. For valuesrof
greater than 0.1, the stationary intensity profiles can no
longer be approximated by Egg€llb) and (12) so that the
quantitative disagreement between the analytical and nu-

|G(w)|

0.002

0.0015

0.001

[H(w)]

0.0005

0.01

0.0075

0.005

IH(w)|

0.0025

0

10 S (?) 5 10 merical solutions becomes significant. In very saturated am-
plification regimes, numerical simulations must, therefore, be
FIG. 5. Same as Fig. 4, but with=10"2. used to characterize the linear response of the amplifier. The
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fiber amplifier, even though there is no mirror at the bound-
aries. This feature only arises from the fact that two coupled
perturbations obeying well-defined boundary conditions
counterpropagate in the amplifier. In the strong saturation
regime, the pump and signal perturbations propagating
around the stationary intensity profiles are of the same order
of magnitude. These counterpropagating perturbations are
coupled by the SBS interactigsee Eqs(6a and(6b)] and
they must obey precise boundary conditions given by Egs.
(7). The combination of wave counterpropagation, SBS cou-
pling, and boundary conditions is sufficient to give rise to
resonances separated by an angular frequency difference ap-
proximately equal tor. This is shown in Appendix C in
which very rough approximations are performed to simplify
the problem and to show that the considered effect is only
due to the presence of the three ingredients previously
mentioned.

It should be noticed that it is very difficult to avoid feed-

FIG. 6. Transfer functions characterizing the linear response oback from the boundaries in an optical-fiber medium. It is,
the Brillouin fiber amplifier in the strong saturation regime. The furthermore, well established that the presence of weak
function|Go(w)| plotted by the dashed line is shown for reference. Fresnel reflections at the fiber ends gives rise to periodic
The parameters used age=10.98, B4=18.22,1,(0)=1,r=0.1.  gelf-oscillations of the Stokes intensif§,28,29. In such a

configuration, the system is no longer a simple amplifier but

transfer functions that are plotted in Fig. 7 fo=0.5 have is termed a Brillouin fiber laser. The period of the observed
thus been numerically computed. steady oscillations is twice the transit time of the light in the

For >0, Figs. 6 and 7 show that the angular frequencyfiber. In other words, the normalized angular frequency char-
difference Aw between two consecutive peaks of a givenacteristic of the Stokes self-oscillations is equalitavhen
transfer function is approximately equal to Actually, itis ~ the SBS medium is enclosed within a Fabry-Perot cavity. It
worth noticing that similar features would be qualitatively should be emphasized that these fluctuations of the Stokes
observed in an empty Fabry-Perot cavity with the samdntensity are not weak but result from oscillations on a limit
length as our fiber. In such a resonator, a forward- and gycle. Although their fundamental frequency can be found by
backward-propagating wave are coupled by reflective bounda linear stability analysi$28,30, these self-oscillations in-
ary conditions at the right- and left-hand mirrd23]. This  volve the nonlinear response of the Brillouin fiber laser. On
results in the emergence of resonances separated by a nthe other hand, the transfer functions considered in the
malized angular frequency equal ta Let us now explain present section characterize the linear response of the ampli-
why a similar frequency difference appears in the Brillouinfier for a weak modulation of the signal amplitude. The same
frequency found both in the laser and in the amplifier, there-
fore, characterizes responses and regimes that are fully dif-
ferent. On one hand, it represents the fundamental frequency
of self-oscillations occurring in the nonlinear regime and on
the other hand, it appears in a linear response to a weak
modulation.

|G(w)]

IV. SPECTRAL HOLE BURNING IN BRILLOUIN FIBER
GENERATORS

In this section, we study theoretically the mechanisms
leading to the emergence of hole burning in the spectrum of
intensity fluctuations of the Stokes light emitted by Brillouin
fiber generators. In particular, we will put emphasis on the
connection between this phenomenon and the spectral hole
burning already studied in Sec. Il for Brillouin fiber ampli-
fiers. The pump field being now the only external field in-
jected inside the fiber, the only boundary condition that is
taken into account is given by ERa). The weak noise term
f(Z,7) of Eq. (1¢) describes the thermal excitation of acous-

FIG. 7. Same as Fig. 6 but with=0.5. Contrary to all the tic waves. In the Brillouin fiber generator, it is responsible
figures previously presented, the plotted transfer functions are oot only for the initiation of the SBS process, but also for the
tained from numerical simulatior(see the tejt existence of a stochastic dynam|&. Contrary to Sec. lll,
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FIG. 8. Dependence of the reflectivity of a Brillouin fiber gen-
erator on the single-pass gaBr (g=10.98,8,=18.22).

its influence is now fully taken into account. The noise
sourcef({,7) being spatially distributed, the noise domi- :
nated SBS dynamics can only be studied by numerical sim 21N close above thresholds¢ =229=10.983,=18.22). Time
lations that have been performed by integrating the set ofies of the Stokes intensity 40 (a) and corresponding power
Egs.(1) with a procedure based on the method of character§peCtrum(c).' Time series of the pump intensity &1 (b) and
istics [23,24). In order to unambiguously connect our nu- corresponding power spectru).
merical results to previous works performed on Brillouin fi-
ber generators, we have chosen to use the parametdered Stokes light exhibits intensity fluctuations of a stochas-
commonly employed to describe the power transfer charadic nature[3,5]. In two-level atomic systems, intensity fluc-
teristics of SBS generators. The first of these parameters isiations are observed in the emitted fluorescef®®. In
the reflectivity R defined as the ratio between the averageparticular, it has been shown that the phase noise of the
output Stokes power and the incident pump poW&  pump laser strongly affects the fluorescence intensity and the
=(|es(£=0,7)|?/u?]. The other relevant parameter is the fluctuations of the fluorescence intendig7]. Our numerical
single-pass gaiG defined as the product between the SBSsimulations have also shown that the Brillouin generator is
gain factor measured in m/W, the pump laser intensity, angensitive to the phase noise of the pump laser. The SBS
the fiber lengt 1]. With our normalization, it is also simply threshold is thus found to be dependent on the pump-laser
given byGg=2gu2. As shown in Fig. 8, the dependence of linewidth. However, the effects described below remain
the SBS reflectivity on the single-pass gaB obtained qualitatively unchanged with or without the presence of
from our numerical simulations is identical to that usually pump phase noise.
found in the SBS literatur¢2,3]. We especially underline For a value of the single-pass gain close above the SBS
this point since Kovalev and Harrison mention in Ref5] threshold Gg=22), the time evolutions of the Stokes and
that “our numerical modeling of SBSpresented in Ref. pump intensities are plotted in Figs(a® and 9b), respec-
[10]) gives results which are intrinsically inconsistent andtively. The power spectra corresponding to these time series
contradictory to the physics and practice of SBS.” They alscare presented in Figs(® and 9d). Let us emphasize that
find in Ref.[25] many contradictions in the numerical results the temporal signals presented in Fig. 9 are obtained after an
presented in our Commeht0] to their original Letter9]; integration time that is long enough to ensure that the system
detailed numerical results supplementing those already pulgvolution takes place well after any transient process associ-
lished in Ref.[10] are presented hereafter. By using the pa-ated with the turn on of the pump laser. As shown in Fig.
rameters commonly employed to describe the physics o®(a), the fluctuations in the Stokes intensity obtained from
Brillouin fiber generators and by clearly specifying their nu- our numerical simulations are very similar to those reported
merical values, we hope to definitely clarify the situation andoy Boyd et al. in Ref. [3]. Despite the weak reflectivityR
to conclusively demonstrate the consistency of our numerica1%), it should be noticed that the pump field at the output
simulations. Finally, the power spectra of the Stokes intensityend of the fiber {=1) exhibits weak intensity fluctuations
fluctuations given hereafter are also presented in order to b&ound a strong dc backgroufisee Fig. ®)]. The power
directly compared to the transfer functions determined inspectrum of this signal is thus composed of a strong dc com-
Sec. lll. ponent that is approximatel50 dB above the noise level

In Sec. lll A, we have pointed out an analogy between[see Fig. @)]. As shown in Fig. &), the power spectrum of
pump-probe experiments in atomic systems and the threghe Stokes intensity fluctuations is qualitatively similar to the
wave configuration proposed by Takushima and Kikuchi topower spectrum of the pump intensity fluctuations. The only
study the Brillouin fiber amplifiefsee Fig. 1)]. A similar  significant difference lies in the weight of the dc component
analogy can be drawn between fluorescence experiments that is only 20 dB above the noise level. Figure 10 shows the
two-level atoms and studies performed in Brillouin fiber gen-time series and power spectra obtained well above the SBS
erators. In both cases, only one pump beam is injected insidiareshold forGg= 60. The reflectivity is now=50% and the
the medium. In the Brillouin fiber generator, the backscat4intensity of the pump and Stokes fields is strongly fluctuat-

FIG. 9. Dynamical behavior of a Brillouin fiber generator oper-
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FIG. 10. Same as Fig. 9 but well above threshdbg € 60). FIG. 12. Longitudinal profiles of the Stokds),(c) and pump
(b),(d) intensities at an arbitrary time for gain facto® of 22

ing. The power spectra are very different from those of Fig.(a)’(b) and 60(c),(d).

9. As in the experiments of Reff9], both of them now ex-

hibit a pronounced dip arounéd=0. Moreover, a careful fluctuations over 100 realizations of the random process
analysis of Figs. 1@) and 1@d) reveals several peaks that f({,7). This averaging procedure permits to remove almost
are symmetrically and regularly spaced around 0. This  all the noise that superimposes on the spectrum of Fig) 10
strongly suggests to compare the power spectra of Fig. 10his is also especially useful for noise spectra computed for
with the transfer functions presented in Fig. 7. To this endweak reflectivities. Figure 1&) indeed reveals a small dip in
we rescale the functionG(w)| by plotting the function the power spectrum obtained for a reflectivity of 1%. As
Gyp(w) =20log,G(w)| which permits a direct comparison shown in Fig. €c), it is not observable in only one spectrum.
between power spectra and transfer functions. Figutb)11 However, itis very similar to the dip characterizing the trans-
thus shows that the power spectrum of Fig(clObtained fer functionGyg(w) that has been computed for a Brillouin
for R=50% is very similar to the transfer function of Fig. fiber amplifier operating in the weak saturation regime for
7(a) computed for a ratio =14(0)/1,(0) of 0.5. Let us no- r=15(0)/1,(0)=0.01.

tice that the spectrum presented in Fig(dllhas been ob- Let us now summarize our results and discuss their sig-
tained by averaging the power spectra of Stokes intensitpificance. In a Brillouin fiber generator reflecting a given
percentagdR of the incident pump intensity, the power spec-
trum of the Stokes intensity fluctuations is very similar to the
transfer function characterizing the linear response of a Bril-
louin fiber amplifier operating in such a way that
=14(0)/1,(0) is equal toR. Rigorously speaking, the trans-
fer functions considered in Sec. Il properly characterize the
intensity noise properties of a Brillouin amplifier operating
in the configuration represented in Figlal Instead of a
weak intensity modulation applied at the output end of the
fiber (see Fig. 2, a weak noise source must obviously be

-40 1

Power Spectra (dB)

added to the signal wave &t=1. The spectral density of
signal intensity noise af=0 is then simply obtained by
multiplying the spectral density of signal intensity noise at
{=1by|G(w)|?.

In a Brillouin fiber generator, the situation is not so
simple. First of all, no signal wave is injected inside the fiber.

This means that no stationary state can be rigorously defined.
However for weak reflectivities, pump depletion can be ne-

FIG. 11. Comparison between the power spectra of Stokes inglected and the Stokes light is exponentially amplified on the
tensity fluctuations in the Brillouin fiber generatfiull lines) and ~ @verage as it propagates inside the fif@f This is illus-
the transfer functionsGgg(w) of the Brillouin fiber amplifier ~ trated in Figs. 1@ and 12b), which show the Stokes and
(dashed lines (a) Weak reflectivity R=1%, Gr=22) and weak PUMP intensity profiles at an arbitrary time. The tef(4, 7)
saturation regimer(=0.01). (b) Strong reflectivity R=50%, G¢ induces weak fluctuations around the exponential Stokes in-
=60) and strong saturation regime=0.5). Note that an arbitrary tensity profile[see Fig. 12a)] but the reflectivity is so small
offset of 30 dB has been added to the transfer functioapin that the pump intensity profile is not significantly perturbated
order to permit a direct comparison between the two small dips. [see Fig. 1£b)]. Contrary to the situation previously de-
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scribed for the Brillouin fiber amplifier, the origin of the However, one significant qualitative difference between the-
weak fluctuations is not a localized noise source but a spaoretical and experimental results must be underlined. The
tially distributed noise source. Nevertheless, we can applpower spectra of Stokes intensity fluctuations obtained from
arguments identical to those previously used for the discussur numerical simulationsee our Fig. 1@) and Fig. 1 of
sion of noise properties of Brillouin fiber amplifiers. The Ref.[10]] show evidence of peaks regularly spaced that are
weak fluctuations around the exponential intensity profilenot found in the experimentsee Fig. 1 of Ref.9]). Follow-
characterizing the average amplification of the Stokes waveng our interpretation, these peaks are a signature of the in-
are filtered by the transfer functig®(w)| studied in Sec. teraction between the counterpropagating pump and signal
[Il C. This results in a noise power spectruméat 0, which  fluctuations. In our opinion, the fact that they are not ob-
is very similar to the transfer function of the amplifier. served in the experiments may be due either to their weak-
For higher reflectivities, the coupling between the Stokesiess or to a poor instrumental resolution. Another way to
and pump fluctuations becomes significant. This is illustrateegxperimentally check the existence of coupling between
in Figs. 12c) and 12d), which show that the Stokes field is Stokes and pump intensity fluctuations would simply consist
now so intense that its fluctuations induce strong variationgn putting a photodiode at the output end of the fiber in order
of the pump intensity profile. The coupled pump and Stokego monitor the time evolution of the transmitted pump inten-
perturbations counterpropagate around mean intensity preity. The observation of a dip in the power spectrum of pump
files that are determined by the reflectivity. The situation carintensity fluctuations would then indisputably validate our
thus be compared to that studied in Sec. Il D for a Brillouininterpretation of spectral hole burning in Brillouin fiber
fiber amplifier operating in the strong saturation regime. De-generators.
spite the fact that the intensity fluctuations are now stronger,
the analysis previously developed for the weak reflectivity ACKNOWLEDGMENTS
regime still qualitatively holds for the strong reflectivity re- ]
gime. The Stokes intensity fluctuations are filtered by the The Centre d’Etudes et de Recherches Lasers et Applica-
transfer functiorG(w)| numerically computed in Sec. 111 D tions (CERLA) is supported by the Ministe Chargede la
for a Brillouin fiber amplifier operating in the strong satura- Recherche, the Rgon Nord/Pas de Calais, and the Fonds
tion regime. This results in a dip in the power spectrum ofEuropen de Deeloppement Economique desdRens. This
Stokes intensity fluctuations and in the emergence of peak¥0rk was partially supported by the European contract “In-
arising from the counterpropagation and the coupling beléreg Il Nord-Pas de Calais/Kent."

tween pump and Stokes fluctuations inside the generator.
APPENDIX A: ANALYTICAL DETERMINATION OF THE

TRANSFER FUNCTIONS |G(w)| AND |H ()| IN
V. CONCLUSION THE WEAK SATURATION REGIME

In summary, spectral hole burning in Brillouin fiber am-  Combining Eq.(7a) with Eq. (8a) permits one to obtain a
plifiers and generators has been theoretically studied. Trangyngition for 5A¢(u,w) that reads
fer functions characterizing the linear response of the Bril-
louin amplifier to a weak amplitude modulation of the aﬁs(u,w)
injected signal wave have been analytically determined for T
three different amplification regimes. The fact that these
transfer functions may exhibit a dip is due both to the gair%E

=DoA(U=1w) (A1)

u=1

saturation and the coupling between the pump and sign Ig)] Bve ot;t(:\ior{(yw). From this condition and by using Eq.
perturbations that counterpropagate around the steady-state™’

intensity profiles. The transfer functions also relate the inten-

sity noise of the amplified signal wave to the intensity noise |G(w)|=
of the injected signal wave. In other words, they characterize
the way through which a weak noisy perturbation propagat-
ing around the stationary intensity profiles is filtered by theWith
Brillouin fiber amplifier. In the Brillouin fiber generator, one
cannot consider that the Stokes intensity fluctuates around a
well-defined stationary profile, but around a mean spatial
profile determined by the reflectivity. Nevertheless, the
Stokes intensity fluctuations are filtered in the same way as oT
signal intensity fluctuations in a Brillouin fiber amplifier. N=A+ —2_2pD. (A3c)
This results in a dip in the power spectrum of the Stokes Y

intensity noise.

Our interpretation of spectral hole burning in Brillouin
fiber generators is very different from the interpretation pro-
posed by Kovalev and Harrison in R€€]. In particular, we T(PS,+0QS,) ‘
have shown that this effect can be understood without invok- IH(w)|= J (A4)
ing an inhomogeneous broadening of the Brillouin line. PJA(Be™ y’2)4—QYA(Be‘“/’2)‘

[PJa(B) +QYa(B)]exp(T'o) |
PJa(Be ™) +QY(Be )|

(A2)

P=BYa1(B)—NYa(B), (A3a)

Q=-BJa+1(B)+NJI(B), (A3b)

The analytical expression df(w)| derived from Egs.
(8a) and(23) reads
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with

Sy;=—Be "2, 1(Be ")+ NI (Be ?), (A5a)
S,=—Be "?Y,.(Be "?)+NY,(Be "?), (A5b)

T L4 . (A5C)

Ba
2g1,(0)| 1+ BA+iw)

APPENDIX B: ANALYTICAL DETERMINATION OF THE
TRANSFER FUNCTIONS |G(w)| AND |H ()| IN
THE STRONG SATURATION REGIME

By using Egs(11b) and(12), the set of Eqs(8) is trans-

formed into a second-order differential equation that reads

PSR L, 0)
aL?

IR ¢, @)

+2(Ag+ A0 ) i

+(02+02e ") 5A({,0)=0 (B1)

with

—lwy

An= _gBArIp(O)
O ABatio) TH

Batio

(B2a)

Y
— .2

and

i+

239! p(O))

0,=-2grl,(0) Batio

(B2b)

As already achieved in Sec. Il C, we introduce the new vari-

ableu=exp(—v{), and Eq.(B1) becomes

, %A (U, 0)
au?

07,5\/A5(u,w)

2 _ _
+'}’U(’y ZAO 2A1U) U

v-u

+(02+02u)5A4(u,w)=0. (B3)

PHYSICAL REVIEW A65 053812

By determining the ratio between the integration constants
C] and Cj from Eq. (A1), we finally obtain the following
analytical expression for the transfer functi®®(w)| in the
strong saturation regime:

|G(w)|
[F"Mn,K(X)+Q’W77,,<(X)]9XF%(1—€_’)+w
B P'M,.(xe ) +Q'W, (xe )
(86)
with
PI=2W, 1 0+ N'W, (), (B73)

Q'=(1+27+2K)M 11, (x)=N'M,, . (x), (B7b
N'=2(p—x—p+D). (B70)

The analytical expression 0H(w)| derived from Eqs(8a)
and (B4) reads

T'(P'Sy+Q’
o= | O | g
P'M, . (xe""+Q'W, (xe )]
with
1
Su=AM, . (xe )+ 5+ 7t KMy dxe?),

(B9a

Sw=AW,, . (xe ) =W, 1,(xe" ), (B9b)

glp(O)[1-r(1-e )] +1),

iw
A=ye "+p—n+ — -
X& e 7’( Batiw

(B90)
Y

gly(0)[1-r(1—e )]

T =

Ba

+ -
1 BA+|(U

) . (B99

The solution of this equation is a sum of Whittaker functions

M, (xu) andW, . (xu) defined in Ref[21]. It reads

1y ¢ ” " XU
O0Ag(U,w)=[CIM n,K(XU)+C2Wn,K(XU)]eXp(7 u?
(B4)
with
02+ yA;—2A0A, VAS— 03
= H K: H
g 2yA, Y
x=——, and p= 2y (B5)

APPENDIX C: SIMPLIFIED ANALYSIS OF THE ORIGIN
OF THE RESONANCE FREQUENCIES APPEARING
IN THE TRANSFER FUNCTIONS

In this appendix, we perform a very simplified analytical
treatment to show that only three elementary ingredients are
necessary to explain the emergence of a normalized angular
frequency difference of approximatetyin the transfer func-
tions characterizing the response of the amplifier. These in-
gredients are counterpropagation of pump and signal pertur-
bations around arbitrary stationary intensity profiles, SBS
coupling, and boundary conditions for the perturbations at
the ends of the fiber. We first assume an instantaneous acous-
tic response, so that the set of E(®). reduces to
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(93\/_\’) a’ﬁ’\p - We will now reduce our analysis to situations for whioh is
e + 9l =—29l4(¢) dAs, (C1a greater than ¢l pls, SO that() isNrgaI. This amounts to only
considering situations in whicldA4({,7) is the sum of a
a’(ﬁs (9’5~S N forward—_ and a backwa_rd—propagati_ng sine wave. The trans-
5 oL =291,({)dA,. (Cib  fer function|G(w)| relating the amplitude fluctuations of the

signal at{=0 to the amplitude fluctuations of the signal
applied at{=1 is obtained by using the boundary condition

By taking the Fourier transform of Eq&C1), we obtain the given by Eq.(7a). It simply reads

following second-order differential equation:

~ SA (/= 2 2
PORLL0) o o |9A(£=00)[" (1+a)
T +Q%0A{({,0)=0 (€2 Glw) SR({=10)| 1+a’+2acod2Q)
(CH
with )
with
0%=w?—4g%1,(D14(0). (C3
. , . . , , O-w 49%1
The existence of stationary intensity profiles around which a= g Q=w\/1- — (Co)
w w

the propagation of the pump and signal perturbations is pos-

sible is obviously crucial, but their shape is not critical in . _ o

order to explain the emergence of resonance frequencies. Alhe expression given by E(C5) is very similar to the trans-
though it is not physically realistic, we will, therefore, as- mission function characterizing an empty Fabry-Perot cavity
sume that the stationary intensity profiles do not depend of23]. In particular, resonances are obtained each fimeo-

{. The solution of Eq(C2) is then trivial and reads tates byw. The corresponding rotations of the normalized
angular frequencyw are equal tor if w?>4g?l s, and

~ pts:
SAL({,w)=CiexpiQl)+Coexp—iQ(). (C4)  they are slightly lower thanr if w?=4g?l ;.
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