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Phase-modulation bistability and threshold self-start of laser passive mode locking
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A mechanism for operation bistability of passive mode-locked lasers is discovered. It explains why self-
starting requires a critical minimum strength of seed fluctuations. There are two contributing factors:~a! a
small-scale structure of the spectral loss curve due to a parasitic frequency-dependent loss,~b! phase modula-
tion of the resulting pulses due to nonlinearity and frequency dispersion of the refractive index of intracavity
elements. We discuss applications to actual experimental systems.
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I. INTRODUCTION

At the present time the shortest light pulses with durat
of 4–5 fs are generated in titanium-doped sapphire la
~see the reviews in@1,2#!. The ultrafast laser technology ha
been revolutionized by gain media with a broadba
electron-phonon lasing transition and by the Kerr-lens mo
locking ~KLM ! process related to the practically inertiale
nonlinearity of the refractive index. The Kerr nonlinearity
the laser medium by self-focusing induces an intens
dependent aperture of the intracavity radiation beam and
respondingly an ultrafast saturable-absorber-like intens
dependent diffraction loss.

Kerr nonlinearity is weak and as a result the KLM proce
is not usually self-starting. This means that when initia
switched on, the laser will usually operate in a continuo
wave~cw! mode, with modes unlocked, and some additio
means of initiating the self-mode-locked process has to
utilized. A sufficiently strong initial seed fluctuation must b
induced by the additional mean for initiating KLM@3#. The
simplest method to start KLM in a laboratory setup is
slightly tap the table or one of the cavity mirrors. Once in
tiated, the mode-locking operation could be retained for
riods of as much as several hours or days depending on
degree of physical perturbation or vibration in the surrou
ing environment.

This bistability of KLM lasers and the threshold depe
dence of self-start for the passive mode-locking process
an intensity of initial seed fluctuation pulse were discusse
many experimental and theoretical papers~see monograph in
@3# and references therein!. In Ref. @4# it was attributed to a
longitudinal spatial inhomogeneity of the gain saturation
the active medium due to a passing pulse. In Refs.@5,6# it
was explained by the relation of pulse buildup time and p
nomenological lifetime of the seed fluctuation. Strong se
fluctuations can induce pulses more quickly, and the cha
is enhanced that mode locking starts. For subthreshold
fluctuations, the laser displays fluctuating continuous em
sion. This means that the whole cavity is filled with rad
tion, but the intensity is not steady. We may call this turb
lent cw emission~see below!.

Experimental data led the authors of Ref.@6# to conclude
that spurious reflections from interfaces inside the laser c
1050-2947/2002/65~5!/053803~6!/$20.00 65 0538
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ity reduce the lifetime of the seed fluctuations considera
and thus prevent the self-starting of passive mode lock
Such spurious reflections are unavoidable; even inside
gain medium there may be small spatial inhomogeneities
to technical peculiarities in their manufacturing. These s
rious reflections produce a parasitic frequency-depend
loss. Results of this phenomenological model agree very w
with experimental results.

We are here going to explain why such minute pertur
tions are so enormously effective in influencing the startup
mode locking. In this paper we show how the small-sc
structure of the spectral loss curve caused by para
frequency-dependent loss can produce the above-menti
threshold behavior of self-starting of passive mode locki
Our model is different from one of Ref.@6# by two features.
First, in our model a lifetime of pulses is not a phenomen
logical parameter. It is determined by a frequency dispers
of the intracavity medium. Second, for our bistability th
phase modulation due to the nonlinear refractive index is
fundamental importance.

Our theoretical and numerical investigation is based
equations close to the complex Ginzburg-Landau equat
The latter is extensively used in descriptions of diversifi
nonlinear systems and phenomena: instability in Poiseu
flow @7#, Rayleigh-Be´nard instability in binary fluid mixtures
@8#, electroconvection in nematics@9#, and so on. Varied
states of these systems are described by plane-wave, tu
lent @10#, collapse@11,12#, stable quasiperiodic, and puls
@13,14# solutions. In Ref.@15# in the framework of an analo
gous equation a multiple-pulse operation, multistability a
hysteresis phenomena connected to multiple-pulse regi
in passive mode-locked lasers were described. The bistab
discussed in this paper is supplemented by an assortme
possible properties of nonlinear systems described by
equation close to the complex Ginzburg-Landau one.

II. BASIC EQUATIONS AND NUMERICAL SIMULATION
RESULTS

In a coordinate system moving with the pulses, the cha
of intracavity radiation during the process of its interacti
with intracavity nonlinear elements is described by the f
lowing normalized equation:
©2002 The American Physical Society03-1
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FIG. 1. Illustration of the dependence of the established operation on initial conditions. The threshold for single-pulse formati
initial pulse with equilibrium duration and chirp, and power of 0.011.~a! Single-pulse operation when one pulse is above threshold, gr
and suppresses all others.~b! Turbulent cw operation when all pulses are below threshold. The initial pulses are unchirped Gaussu
5215, p50.2, q527, b53.5, a53, h51023, andG5102.
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E~z,t !5

1

2 S 11a

11bE uE~z,t !u2dz

211puEu2

1 iquEu2D E~z,t !. ~1!

The dimensionless variables and parameters from Eq.~1! are
obtained from the corresponding real-world quantities~writ-
ten here with a prime! through the following relations.

The slowly varying field amplitude isE5E8/AI a, where
I a is the intensity of the field saturating the nonlinear loss
The time variable ist5t8s0, wheres0 is the net linear reso-
nator loss including the linear loss in the saturable abso
s1 ~or the linear diffraction losses!. The coordinate isz
5z8As0 /D Im, whereD Im is the frequency dispersion for th
gain (D Im'0.5s0vgr

2 /Gg
2 ; here,vgr andGg are the group ve-

locity and the spectral half-width of the gain in radians p
second, respectively!.

The first term in the parentheses of Eq.~1! describes the
saturable gain. The saturation is determined by the total
racavity radiation energy, and accordingly integration is c
ried out over the whole cavity volume;a is the relative ex-
cess of the pumping rate above lasing threshold;b
5I aAD Im /s0/(LI g), whereL is the cavity length;I g is the
intensity of the monochromatic radiation saturating the g
~the carrier frequency of the radiation corresponds to the c
ter of the frequency gain band!. The second term on the
right-hand side of Eq.~1! is related to the net linear resonat
losses. The third termpuEu2 describes the nonlinear losse
(p5s1 /s0). The last term is associated with the nonline
refractive indexq522vn2I al /(n0s0L), wherev is the car-
rier frequency of the laser radiation;n2 is the nonlinearity
determining the nonlinear refractive indexdn8 in absolute
units for dimensional intensitydn85n2uE8u2; n0 is the linear
refractive index, andl is the length of the nonlinear medium

The change of spectral components of fieldE(k,t) during
the process of its interaction with intracavity dispersive e
ments is described by the following equation:
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E~k,t !5F2k2~11 iu!1hS 1

11~Gk!2
21D GE~k,t !,

~2!

where E(k,t) is the Fourier transform ofE(z,t); 2k2(1
1 iu) describes the frequency dispersion of both the gain a
refractive index. The parameteru is ratio of the real and
imaginary parts of the frequency dispersion of the permitt
ity for the intracavity distributed medium (u5DRe/D Im ,
where the dispersionDRe'20.5vgrdvgr /dv accounts for the
frequency dispersion of the group velocity of all intracavi
elements, among them the ones used for compensation o
frequency chirp of the resulting pulses!. The narrow-band
Lorentzian models one of spectral peaks of parasitic losse
which the generation is born:h is the modulation depth of
frequency-dependent parasitic losses, andG is the ratio of
the spectral widths of the gain and the parasitic peak. Si
the dispersion of refractive index connected with the pa
sitic loss peak and arising from Kramers-Kronig relation
small, we may neglect it here.

Our numerical simulation is based on the split-step Fo
rier method. For each temporal step the total action of int
cavity elements to the field is split into nonlinear and dispe
sion components@16# described by Eqs.~1! and ~2!,
respectively. These equations describe the formation of
trashort pulses owing to both the nonlinear losses and
soliton mechanism related to the nonlinearity and the f
quency dispersion of the refractive index@17#.

Figure 1 shows the bistability between two regimes: th
of the single pulse vs that of turbulent cw emission as d
scribed above. In both parts of the figure, all parameters
just the same. The only difference is in initial conditions.

Different initial conditions are represented by several d
ferent pulses; this reflects the spread in seed fluctuat
strength. Of the four pulses shown in Fig. 1~a!, only the
largest one is above threshold. It grows at the expense of
other three, and mode locking builds up. In Fig. 1~b!, all
pulses are subthreshold, fluctuate in power, width, and ch
and none wins over the others. This is the turbulent cw o
eration alluded to above.
3-2
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III. COMPLEX GINZBURG-LANDAU EQUATION
ANALYSIS

In the cases of sufficiently long pulsesGk!1 and suffi-
ciently short pulsesGk@1 the frequency dispersion of intra
cavity elements is described in Eq.~2! by a quadratic depen
dence and this equation becomes equivalent to the follow
one forE(z,t):

]

]t
E~z,t !5~deff1 iu!

]2

]z2
E~z,t !; ~3!

here,deff51 for short pulsesGk@1 and deff511hG2 for
long pulsesGk!1. The combination of Eq.~3! with Eq. ~1!
gives

]

]t
E~z,t !5~deff1 iu!

]2

]z2
E~z,t !1

1

2
~g1puEu2

1 iquEu2!E~z,t !, ~4!

whereg5(11a)/@11b* uE(z,t)u2dz#21 is the net gain in-
cluding the linear losses. Notice that sufficiently power
pulses remain or become sufficiently short and are descr
by Eq. ~4! with deff51. If initially pulse is short but weak
then it quickly spreads and after that is described by Eq.~4!
with deff511hG2.

With deff50, g50, p50 the complex Ginzburg-Landa
equation~4! becomes the nonlinear Schro¨dinger one. With
u50, q50, Eq.~4! is the diffusion equation. For it, there i
the Lyapunov functional@18#

d

dt H EV
F2dU]E

]zU
2

1~12p0!uEu21p0ln~11uEu2!Gdz

2
11a

b
lnS 11bE

V
uEu2dzD J

524E
V
U]E

]t U
2

dz; ~5!

here,V is the cavity volume, the dispersion is assumed
constantdeff5d, and the nonlinearityp falls with a rise in
intensityp5p0 /(11uEu2), p0,1. This relation allows us to
solve the problem of the transient evolution: from any init
conditions the system passes into the steady-state sin
pulse mode or the steady-state cw regime. After the trans
process any change must stop (uĖu2) when the Lyapunov
functional having the sign of the derivative with respect
time reaches its minimal value~finally it must happen due to
the functional being bounded below and it can only decre
during the system evolution!. The functional’s minimum is
realized only either by a single steady-state pulseE(z)
~when passive mode-locking criteria have been fulfilled! or
monochromatic radiation spatially uniformly filling the ca
ity (E does not depend on a coordinatez). With a,0, p0
1a.0 ~the generation condition is fulfilled for bleachin
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nonlinear absorber and is not fulfilled for nonbleaching on!
the Lyapunov functional has two local minima:E(z)50 and
E(z)Þ0. That is, in this case the system is bistable: a sing
pulse passive mode locking vs an absence of genera
With a.0, a!p0 the bistablity between a single-pulse r
gime and a cw operation is realized. But for this bistabil
the pumpa must be within the narrow rangea!p0 and it
cannot explain the bistability of KLM Ti:sapphire lasers.

If the dispersiondeff depends on a duration pulses as
Eq. ~4! the range of such bistability (u50,q50) is essen-
tially broader. In this case the threshold of passive mo
locking for sufficiently short powerful pulses is less than f
long ones by a factor of (11hG2). This mechanism of a
bistability can be realized in experiments with passive mo
locked lasers.

Our paper is devoted to a different mechanism for
bistability between the passive mode locking and cw ope
tion. This mechanism is related to the phase modulation
pulses due to the dispersion and nonlinearity of the refrac
index. It has been known that the phase-modulation insta
ity prevents passive mode locking. As a consequence, a
operation is realized instead of a single-pulse regime. T
dependence of these regimes on the parameters of
Ginzburg-Landau equation~4!, q, p, andu, was analyzed in
detail in Ref.@19#. The areas for cw operation and passi
mode locking on the planej5q/p andu are shown in Fig. 2
@19# ~here and furtherp does not depend on an intensi
uEu2). For Eq.~4! with deff511hG2 ~long weak pulses! area
1 corresponds the single-pulse operation and areas 2 a
the cw operation. In the casedeff51 ~short powerful pulses!
areas 1 and 2 correspond a passive mode locking and a
a cw operation. Therefore, the laser operation with para
eters from area 2 is bistable. That is, with a powerful init
seed pulse passive mode locking is achieved. In alterna
case the cw operation is realized. In such a way we inter
our numerical simulation results on the bistability shown
Fig. 1.

FIG. 2. Dependence of the established operation on disper
and nonlinear parametersu andj5q/p. With any initial conditions
for j andu from area 1 passive mode locking is always establish
For the parameters from area 3 the cw operation is always reali
For area 2 the former is established with a sufficiently short po
erful seed pulse in initial radiation; in the opposite case, the latte
realized. The boundary curves are determined forh and G from
Fig. 1.
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IV. COMPETITION OF PHASE-MODULATED PULSES

We turn to a discussion of the underlying mechanism
this bistability. In our numerical simulation the transient pr
cess consists of three stages: In a first fast stage there i
establishment of equilibrium between the gain and the t
radiation energy* uEu2dz. In a following slower stage equi
librium pulse duration and equilibrium frequency chirp a
established. They are determined by the balance betw
mechanisms that either shorten or spread out the pulses
between mechanisms increasing or reducing the pul
phase modulation. In a final, very slow stage there is co
petition between several pulses of different amplitude, al
which have found their equilibrium chirp and duration.

We analyze the third stage with the use of the followi
model approximation. In Eq.~2! let us switch fromE(k,t) to
E(z,t):

]

]t
E~z,t !5S 11

hG2

12G2
]2

]z2

1 iuD ]2

]z2
E~z,t !, ~6!

where the derivative in the denominator must be treated
the expansion of the fraction into Taylor series in powers
G2]2/]z2. Then this derivative is replaced by2b̂2, whereb̂
is equal to an inverse duration of the resulting pulsesb. The
combination of the obtained equation with Eq.~1! gives

]

]t
E~z,t !5S 11

hG2

11~Gb̂!2
1 iu D ]2

]z2
E~z,t !

1
1

2 S 11a

11bE uE~z,t !u2dz

211puEu2

1 iquEu2D E~z,t !. ~7!

Equation~7! differs from Eq.~4! often used for the de
scription of a formation of ultrashort pulses in passive mo
locked lasers@15,19# by the dependence of the frequen
dispersion of the gain-loss on the pulse parameter: nam
its inverse durationb. Notice that for Eq.~7! with b̂2

52]2/]z2 andu50, q50, there is the relation of the typ
Eq. ~5!, which allows us to analyze the transient evoluti
and the above-mentioned bistability withu50, q50.

As in Ref. @15#, the solution of Eq.~7! is sought in the
form of several pulses with various amplitudes and w
equilibrium duration and frequency chirp:

E~ t,z!5(
k

E0k

e(lk1 idvk)t

cosh11 iak~bkz!
, ~8!

whereE0k , ak , bk , dvk , and lk are the peak amplitude
the equilibrium frequency chirp, the equilibrium inverse d
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ration, the frequency shift, and the growth rate fork-th pulse,
respectively. Substituting Eq.~8! into Eq. ~7! gives

lk1 idvk5deff~11 iueff!~11 iak!
2bk

210.5g, ~9!

0.5~p1 iq !I 0k5deff~11 iueff!~11 iak!~21 iak!bk
2 ;

~10!

here,deff511hG2/@11(Gbk)
2# is the effective dispersion

of the gain-loss and

ueff5
u

deff
. ~11!

In writing Eq. ~10! we replaced a factor of exp(2lkt) by 1, so
the solution~8! of Eq. ~7! with parameters determined from
Eqs.~9! and ~10! will be correct to the extent thatlkt!1.

From Eq.~10! we find the expression which together wi
Eq. ~11! determines the equilibrium frequency chirpak as
the function of the equilibrium inverse durationbk ,

ak

22ak
2

5
j2ueff

3~11jueff!
, ~12!

and the relation between the peak intensityI 0k andbk :

I 0k5
2deffbk

2

p
~22ak

223akueff!. ~13!

Finally from Eq.~9! we find the growth rate as the functio
of bk

Lk5deffbk
2~12ak

222akueff!, ~14!

whereLk5lk20.5g. Notice that with the use of Eq.~13! the
parametersLk andak can be expressed as functions of pe
intensities of pulsesLk5Lk(I 0k), ak5ak(I 0k).

Figure 3 shows the dependenceak5ak(bk) obtained by a
numerical calculation with laser parameters correspondin
Fig. 1. The important finding here is about the dependenc

FIG. 3. Dependence of equilibrium frequency chirpak on the
equilibrium inverse durationbk for dissimilar pulses formed in la-
ser cavity. The parametersu, p, q, h, and G are the same as in
Fig. 1.
3-4
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the dispersion of gain-loss,deff511hG2/@11(Gbk)
2#, on

the pulse width 1/b. For very long pulses, i.e.,b'0, deff
511hG2511. On the other hand, for very short pulsesb
'` anddeff51. This shows that longer pulses sense str
ger dispersion of the gain-loss. This requires stronger dis
sion of the refractive index for compensation of the fr
quency chirpu5deff j @see the numerator on the right-han
side of Eq.~12!#. As a result longer pulses have strong
frequency chirp. Boundary curvesj5j(u) in Fig. 2 are ob-
tained from Eq.~14! with Lk50, deff511hG2511 ~the
solid curve! anddeff51 ~the dashed curve!.

Figure 4 demonstrates the dependenceLk5Lk(bk) with
laser parameters corresponding to Figs. 1 and 3. The
crease ofLk at smallbk is connected to a spectral broade
ing of the pulses and selective parasitic losses describe
the narrow-band Lorentzian in Eq.~2!. When the spectra
width of pulses becomes more than the width of the narr
Lorentzian, thenLk increases with increasingbk ~greaterbk
corresponds to greater peak intensityI 0k and to less nonlin-
ear losses!. This dependenceLk5Lk(bk) explains the bista-
bility between pulsing and cw solution described above
the equilibrium inverse durationsbk for all pulses are less
than bc , noise pulses with long durations~small bk! will
grow in amplitudes, and the whole cavity will be filled wit
radiation@see Fig. 1~b!#. To the contrary, if one of the pulse
has the equilibrium inverse durationbk.bc , the pulse with
the greatest inverse duration will have the greatest gro
rate Lk . This pulse will survive and grow in the cavity
while all other pulses will decay. Thus, single-pulse ope
tion will be realized@see Fig. 1~a!#.

V. APPLICATION TO KLM Ti:SAPPHIRE LASERS

We apply our numerical simulations and calculations
the practical case of a Ti:sapphire laser. We use the follow
laser parameters: linear resonator lengthL51.5 m, length of
Ti:sapphire rod l 515 mm. Net linear lossess056

FIG. 4. Dependence of the amplification coefficientLk for the
pulse with equilibrium duration and frequency chirp on the equil
rium inverse durationbk under the competition of pulses during th
transient evolution. The parametersu, p, q, h, andG are the same as
in Fig. 1.
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3106 s21 ~6% per round-trip time!, linear diffraction losses
s150.2s0 (p50.2). Half-width of the spectral gain ban
Gg5231014 rad/s; group velocityvgr533108 m/s; inten-
sity saturating the gain,I g5109 W/m2. Refractive index of
the laser rodn051.7, refractive index nonlinearity coeffi
cientn253.0310220 m2/W. Intensity saturating the nonlin
ear lossesI a5531013 W/m2 @19#. From these values we
determine the frequency dispersion for the gain,D Im
50.07 cm2/s ~or 0.8 fs2), q527, and the parameterb
53.531023. The relation of dimensional and dimensionle
durations isz85z31026 m. In numerical simulation pre-
sented in Fig. 1, one-thousandth of the length of the reso
tor round-trip is involved. Correspondingly we must u
beff5103b53.5. As a result, Fig. 1 faithfully represents th
initial stages of transient evolution of actual laser system
The value ofu5215 used here corresponds to a group v
locity dispersion of212 fs2. Note that the frequency chirp
for long pulses withh51023 and G5102 can be compen-
sated only by a group velocity dispersion equal
2300 fs2. The valuebc50.036 corresponds to the equilib
rium pulse widthtc51.7631024bc

21/vgr'200 fs and peak
intensity I 0c5531011 W/m2. Thus the parasitic frequency
dependent loss with spectral peaks having a frequency w
equal to 1022 of the gain spectral bandwidth and the heig
equal to 1023 of the total linear losses suffices to produ
bistability and to prevent self-starting of passive mode lo
ing. Self-starting can be obtained by initial fluctuations
equilibrium durations smaller than 0.2 ps~of peak intensities
greater than 531011 W/m2).

Notice that the above-mentioned bistability withq50,
u50 for used parametersh51023, G5102 is not realized
~as our numerical simulation has shown the passive m
locking with a single pulse in the cavity is established w
any initial conditions!. This means that the phase-modulati
bistability is more serious obstacle to passive mode lock
than the bistability withq50, u50.

VI. CONCLUSION

In this study, we have found a mechanism resulting in
bistable operation of passively mode-locked lasers with pa
sitic frequency-dependent losses. This bistability is realiz
as either a cw operation or passive mode locking with
single steady-state ultrashort pulse in cavity. The mechan
found here is connected with phase modulation of the res
ing pulses due to nonlinearity and frequency dispersion
the refractive index of the intracavity elements. In cons
quence of this bistability a self-starting of mode locking
obtained only with specific initial conditions.
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