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Phase-modulation bistability and threshold self-start of laser passive mode locking
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A mechanism for operation bistability of passive mode-locked lasers is discovered. It explains why self-
starting requires a critical minimum strength of seed fluctuations. There are two contributing féatas:
small-scale structure of the spectral loss curve due to a parasitic frequency-dependéh} fdssse modula-
tion of the resulting pulses due to nonlinearity and frequency dispersion of the refractive index of intracavity
elements. We discuss applications to actual experimental systems.
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[. INTRODUCTION ity reduce the lifetime of the seed fluctuations considerably
and thus prevent the self-starting of passive mode locking.
At the present time the shortest light pulses with durationSuch spurious reflections are unavoidable; even inside the
of 4-5 fs are generated in titanium-doped sapphire laser@ain medium there may be small spatial inhomogeneities due
(see the reviews ifil,2]). The ultrafast laser technology has to technical peculiarities in their manufacturing. These spu-
been revolutionized by gain media with a broadbandious reflections produce a parasitic frequency-dependent
electron-phonon lasing transition and by the Kerr-lens model0ss. Results of this phenomenological model agree very well
locking (KLM) process related to the practically inertialessWith experimental results.
nonlinearity of the refractive index. The Kerr nonlinearity of ~ We are here going to explain why such minute perturba-
the laser medium by self-focusing induces an intensityions are so enormously effective in influencing the startup of
dependent aperture of the intracavity radiation beam and coftode locking. In this paper we show how the small-scale

respondingly an ultrafast saturable-absorber-like intensityStructure of the spectral loss curve caused by parasitic
dependent diffraction loss. frequency-dependent loss can produce the above-mentioned

Kerr nonlinearity is weak and as a result the KLM processthreshold behavior of self-starting of passive mode locking.
is not usually self-starting. This means that when initially Our model is different from one of Reff6] by two features.
switched on, the laser will usually operate in a continuousirst, in our model a lifetime of pulses is not a phenomeno-
wave (cw) mode, with modes unlocked, and some additionalogical parameter. It is determined by a frequency dispersion
means of initiating the self-mode-locked process has to b@f the intracavity medium. Second, for our bistability the
utilized. A sufficiently strong initial seed fluctuation must be Phase modulation due to the nonlinear refractive index is of
induced by the additional mean for initiating KL§8]. The ~ fundamental importance.
simplest method to start KLM in a laboratory setup is to Our theoretical and numerical investigation is based on
slightly tap the table or one of the cavity mirrors. Once ini- €quations close to the complex Ginzburg-Landau equation.
tiated, the mode-locking operation could be retained for peThe latter is extensively used in descriptions of diversified
riods of as much as several hours or days depending on tHnlinear systems and phenomena: instability in Poiseuille
degree of physical perturbation or vibration in the surroundflow [7], Rayleigh-Baard instability in binary fluid mixtures
ing environment. [8], electroconvection in nematid®], and so on. Varied

This bistability of KLM lasers and the threshold depen-States of these systems are described by plane-wave, turbu-
dence of self-start for the passive mode-locking process of¢nt [10], collapse[11,12, stable quasiperiodic, and pulse
an intensity of initial seed fluctuation pulse were discussed i13,14 solutions. In Ref[15] in the framework of an analo-
many experimenta| and theoretical pam monograph in gous equa“on a multlp|e—pu|se 0perat|0n, mU|t|Stab|l|ty and
[3] and references therginn Ref.[4] it was attributed to a  hysteresis phenomena connected to multiple-pulse regimes
longitudinal spatial inhomogeneity of the gain saturation inin passive mode-locked lasers were described. The bistability
the active medium due to a passing pulse. In REF$] it discussed in this paper is supplemented by an assortment of
was explained by the relation of pulse buildup time and phePossible properties of nonlinear systems described by an
nomenological lifetime of the seed fluctuation. Strong seedduation close to the complex Ginzburg-Landau one.
fluctuations can induce pulses more quickly, and the chance
is enha.nced that mode !ocking starts. I_:or subt_hreshold sgeq. BASIC EQUATIONS AND NUMERICAL SIMULATION
fluctuations, the laser displays fluctuating continuous emis- RESULTS
sion. This means that the whole cavity is filled with radia-
tion, but the intensity is not steady. We may call this turbu- In a coordinate system moving with the pulses, the change
lent cw emissior(see below. of intracavity radiation during the process of its interaction

Experimental data led the authors of R] to conclude  with intracavity nonlinear elements is described by the fol-
that spurious reflections from interfaces inside the laser cadowing normalized equation:
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FIG. 1. lllustration of the dependence of the established operation on initial conditions. The threshold for single-pulse formation is an
initial pulse with equilibrium duration and chirp, and power of 0.0().Single-pulse operation when one pulse is above threshold, grows,
and suppresses all othefb) Turbulent cw operation when all pulses are below threshold. The initial pulses are unchirped Gadéssians.

=-15,p=0.2,q=-7,b=3.5,a=3, h=103 and'=10".
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The dimensionless variables and parameters from{Bare

obtained from the corresponding real-world quantitiesit-

ten here with a primethrough the following relations.
The slowly varying field amplitude iE=E'/\/l,, where

—1] |E(k,1),

@

ﬁEk =| —K3(1+i h
E('t)__ (+|0)+

1+ (T'k)?

where E(k,t) is the Fourier transform oE(z,t); —k?(1

+i6) describes the frequency dispersion of both the gain and
refractive index. The parametet is ratio of the real and
imaginary parts of the frequency dispersion of the permittiv-
ity for the intracavity distributed mediumé#E Dge/D
where the dispersioD ge~ — 0.5 4 dv,,/dw accounts for the
frequency dispersion of the group velocity of all intracavity
elements, among them the ones used for compensation of the

I, is the intensity of the field saturating the nonlinear Iossesfrequency chirp of the resulting puldesThe narrow-band

The time variable i$=t' o, whereoy is the net linear reso-

Lorentzian models one of spectral peaks of parasitic losses in

nator loss including the linear loss in the saturable absorbgfpich the generation is born is the modulation depth of

o, (or the linear diffraction lossgés The coordinate iz

=27'"\Joo/Dn, WhereD,, is the frequency dispersion for the

gain (D ,,~0.50v5/T';; here,vy andI'y are the group ve-

frequency-dependent parasitic losses, &nd the ratio of
the spectral widths of the gain and the parasitic peak. Since
the dispersion of refractive index connected with the para-

locity and the spectral half-width of the gain in radians persitic loss peak and arising from Kramers-Kronig relation is

second, respectively
The first term in the parentheses of Eij) describes the

small, we may neglect it here.
Our numerical simulation is based on the split-step Fou-

saturable gain. The saturation is determined by the total intrier method. For each temporal step the total action of intra-
racavity radiation energy, and accordingly integration is carcavity elements to the field is split into nonlinear and disper-

ried out over the whole cavity volume;is the relative ex-
cess of the pumping rate above lasing threshatd;
=1aVDim/oo/(L1g), whereL is the cavity lengthi is the

sion components[16] described by Eqgs.1) and (2),
respectively. These equations describe the formation of ul-
trashort pulses owing to both the nonlinear losses and the

intensity of the monochromatic radiation saturating the gairsoliton mechanism related to the nonlinearity and the fre-
(the carrier frequency of the radiation corresponds to the cemguency dispersion of the refractive indgh7].

ter of the frequency gain bapdThe second term on the

Figure 1 shows the bistability between two regimes: that

right-hand side of Eq(1) is related to the net linear resonator of the single pulse vs that of turbulent cw emission as de-
losses. The third ternp|E|? describes the nonlinear losses scribed above. In both parts of the figure, all parameters are
(p=o01/00). The last term is associated with the nonlinearjust the same. The only difference is in initial conditions.

refractive indexg= —2wn,l I/(nyogl), wherew is the car-
rier frequency of the laser radiation; is the nonlinearity
determining the nonlinear refractive inde’ in absolute
units for dimensional intensit§n’ =n,|E’|?; n, is the linear
refractive index, andis the length of the nonlinear medium.
The change of spectral components of fiElk,t) during

Different initial conditions are represented by several dif-
ferent pulses; this reflects the spread in seed fluctuation
strength. Of the four pulses shown in Figail only the
largest one is above threshold. It grows at the expense of the
other three, and mode locking builds up. In Figb)l all
pulses are subthreshold, fluctuate in power, width, and chirp,

the process of its interaction with intracavity dispersive ele-and none wins over the others. This is the turbulent cw op-

ments is described by the following equation:

eration alluded to above.
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IIl. COMPLEX GINZBURG-LANDAU EQUATION
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ANALYSIS ", !
5 2 N3 2
In the cases of sufficiently long pulsék<1 and suffi- . _,'/
ciently short pulse$'k>1 the frequency dispersion of intra- 0 e ——
cavity elements is described in E®) by a quadratic depen- é 1 |
dence and this equation becomes equivalent to the following 5 KIS
. - - 'l LY
one forE(z,t): 2 ; 3, 2
30 L L AN
J A 3 20 -0 0 10 20 30
—E(z,t) = (deg+160)—E(z,1); (©))
ot Fria )

here,deg=1 for short pulsed’k>1 anddgs=1+hI'? for
long pulsed’k<1. The combination of Eq.3) with Eq. (1)
gives

&E =(dggti azE ! E|?
En (z,t)=( eﬁ+|0)g (z,t)+§(g+p| |

+iq|E|?)E(z,1), (4)

whereg=(1+a)/[1+Dbf|E(z,t)|2dZz]—1 is the net gain in-

FIG. 2. Dependence of the established operation on dispersive
and nonlinear parametefsand £= g/p. With any initial conditions
for ¢ and @ from area 1 passive mode locking is always established.
For the parameters from area 3 the cw operation is always realized.
For area 2 the former is established with a sufficiently short pow-
erful seed pulse in initial radiation; in the opposite case, the latter is
realized. The boundary curves are determinedifand I' from
Fig. 1.

nonlinear absorber and is not fulfilled for nonbleaching)one

cluding the linear losses. Notice that sufficiently powerful the Lyapunov functional has two local minimé(z) =0 and
pulses remain or become sufficiently short and are describeld(2) # 0. That is, in this case the system is bistable: a single-

by Eq. (4) with deg= 1. If initially pulse is short but weak,
then it quickly spreads and after that is described by (Ep.
with dgg=1+hI"2.

With deg=0, g=0, p=0 the complex Ginzburg-Landau
equation(4) becomes the nonlinear Schiinger one. With
0=0, q=0, Eq.(4) is the diffusion equation. For it, there is
the Lyapunov functiond]18]

all,

1+aI
b n

],

JE|? ) )
2d +(1—po)|E[*+ poIn(1+][E|?)

— dz
0z

1+bf |E|?dz
\

2
dz 5

JE

ot

pulse passive mode locking vs an absence of generation.
With a>0, a<<p, the bistablity between a single-pulse re-
gime and a cw operation is realized. But for this bistability
the pumpa must be within the narrow range<p, and it
cannot explain the bistability of KLM Ti:sapphire lasers.

If the dispersiond.4 depends on a duration pulses as in
Eqg. (4) the range of such bistabilityd=0,0=0) is essen-
tially broader. In this case the threshold of passive mode
locking for sufficiently short powerful pulses is less than for
long ones by a factor of (hI'?). This mechanism of a
bistability can be realized in experiments with passive mode-
locked lasers.

Our paper is devoted to a different mechanism for the
bistability between the passive mode locking and cw opera-
tion. This mechanism is related to the phase modulation of
pulses due to the dispersion and nonlinearity of the refractive
index. It has been known that the phase-modulation instabil-
ity prevents passive mode locking. As a consequence, a cw

here,V is the cavity volume, the dispersion is assumed agperation is realized instead of a single-pulse regime. The

constantd.z=d, and the nonlinearity falls with a rise in
intensityp=py/(1+|E|?), po<1. This relation allows us to

dependence of these regimes on the parameters of the
Ginzburg-Landau equatiof), g, p, and #, was analyzed in

solve the problem of the transient evolution: from any initial detail in Ref.[19]. The areas for cw operation and passive
conditions the system passes into the steady-state singlgrode locking on the plang=q/p and ¢ are shown in Fig. 2
pulse mode or the steady-state cw regime. After the transiefii 9] (here and furthep does not depend on an intensity

process any change must sto||E|(2) when the Lyapunov

|E|?). For Eq.(4) with deg=1+hI"2 (long weak pulsesarea

functional having the sign of the derivative with respect tol corresponds the single-pulse operation and areas 2 and 3

time reaches its minimal valuénally it must happen due to

the cw operation. In the caskg=1 (short powerful pulses

the functional being bounded below and it can only decreasareas 1 and 2 correspond a passive mode locking and area 3

during the system evolutionThe functional’s minimum is
realized only either by a single steady-state pulSe)
(when passive mode-locking criteria have been fulfjlled

monochromatic radiation spatially uniformly filling the cav-

ity (E does not depend on a coordinagle With a<0, pg

a cw operation. Therefore, the laser operation with param-
eters from area 2 is bistable. That is, with a powerful initial
seed pulse passive mode locking is achieved. In alternative
case the cw operation is realized. In such a way we interpret
our numerical simulation results on the bistability shown in

+a>0 (the generation condition is fulfilled for bleaching Fig. 1.
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IV. COMPETITION OF PHASE-MODULATED PULSES 0.50
We turn to a discussion of the underlying mechanism for
this bistability. In our numerical simulation the transient pro- 0.25 |
cess consists of three stages: In a first fast stage there is the
establishment of equilibrium between the gain and the total o O
radiation energyf|E|?dz. In a following slower stage equi-
librium pulse duration and equilibrium frequency chirp are 025 -
established. They are determined by the balance between
mechanisms that either shorten or spread out the pulses and -0.50 L L L
between mechanisms increasing or reducing the pulse’s 0 0.05 0.1
phase modulation. In a final, very slow stage there is com- Bk

petition between several pulses of different amplitude, all of

which have found the_|r eqU|I|br|u_m chirp and duration. _ FIG. 3. Dependence of equilibrium frequency chiep on the
We analyze the third stage with the use of the followingeqyiiibrium inverse duratior, for dissimilar pulses formed in la-

model approximation. In Eq2) let us switch fromE(k,t) to  gser cavity. The paramete® p, g, h, andT are the same as in

E(z1): Fig. 1.
d hI'? ) 52 ration, the frequency shift, and the growth rate Kah pulse,
SE@b=[ 1+ —(?2+|0 EE(Z’U' (6)  respectively. Substituting E@8) into Eq. (7) gives
1-I’—
922 Mt idwe=de(1+i ) (L+ia)2Bi+0.59,  (9)

where the <_jerivative in th_e dgnominator must pe treated as  0.5p+iq)lo=des(1+iber) (1 +ia)(2+iey) B2 ;

the expansion of the fraction into Taylor series in powers of (10)
2%/ 9z%. Then this derivative is replaced by3?, whereB _ o .

is equal to an inverse duration of the resulting pulge¥he  here,deg=1+hI'?/[1+(I'B,)?] is the effective dispersion

combination of the obtained equation with E@) gives of the gain-loss and
d hI2 92 _9
_ ; Octt=——. (12)
—E(zt)=| 1+ ———+i6|—E(zt eff
FaGl 1+(I'B)? )azz (z1) e
1 1+a In writing Eq. (10) we replaced a factor of exp(g) by 1, so
+ = —1+pl|E[? the solution(8) of Eq. (7) with parameters determined from
1+bJ |E(z,)|2dz Egs.(9) and(10) will be correct to the extent thaf, t<1.
’ From Eq.(10) we find the expression which together with
Eq. (11) determines the equilibrium frequency chiag as
+ig|E|?2 | E(z,t). 7) the function of the equilibrium inverse duratigy,
a -6
k& Oer ’ (12
. : 2—af 3(1+&6ex)
Equation(7) differs from Eq.(4) often used for the de- k
scription of a formation of ultrashort pulses in passive mode- . . . ]
locked laserd15,19 by the dependence of the frequency and the relation between the peak intensjy and 5
dispersion of the gain-loss on the pulse parameter: namely, 20l 3
its inverse durationd. Notice that for Eq.(7) with B2 lok= eff k(z_aﬁ_gakgeﬁ)_ (13

=—4°/9z°> and §=0, q=0, there is the relation of the type

Eq. (5), which allows us to analyze the transient evolution _ ! .
and the above-mentioned bistability with=0, q=0. Finally from Eq.(9) we find the growth rate as the function

As in Ref.[15], the solution of Eq(7) is sought in the ©f Bk
form of several pulses with various amplitudes and with

_ 2 2
equilibrium duration and frequency chirp: A= deriBi( 1 — ai— 2y berr), (14)
et dwt whereA .=\ — 0.53. Notice that with the use of E¢13) the
E(t,z)=>, Egy—m——, (8)  parameters\, anday can be expressed as functions of peak
cosht *1e( B, z) intensities of pulsed .= A (loW), a=ar(low)-

Figure 3 shows the dependeneg= «(B)) obtained by a
whereEq,, @y, Bk, dwy, and\y are the peak amplitude, numerical calculation with laser parameters corresponding to
the equilibrium frequency chirp, the equilibrium inverse du-Fig. 1. The important finding here is about the dependence of
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0.00030 x10° s (6% per round-trip timg linear diffraction losses
0,=0.205 (p=0.2). Half-width of the spectral gain band
0.00015 - I'y=2x10" rad/s; group velocity o, =3x10° m/s; inten-
sity saturating the gairlg=10° W/m?. Refractive index of
A 0 the laser rodny=1.7, refractive index nonlinearity coeffi-
B. cientn,=3.0x 10 2° m?/W. Intensity saturating the nonlin-
-0.00015 | ear lossed ,=5x 10" W/m? [19]. From these values we
determine the frequency dispersion for the gal,,
-0.00030 L ! =0.07 cnt/s (or 0.8 f¢), q=—7, and the parametep
0 0.019 0.037 0.056 =3.5x10 3. The relation of dimensional and dimensionless

B durations isz’'=zx10"% m. In numerical simulation pre-
k sented in Fig. 1, one-thousandth of the length of the resona-
tor round-trip is involved. Correspondingly we must use
FIG. 4. Dependence of the amplification coefficiént for the  b.s=10°b=3.5. As a result, Fig. 1 faithfully represents the
pulse with equilibrium duration and frequency chirp on the equilib-initial stages of transient evolution of actual laser systems.
rium inverse duratioB, under the competition of pulses during the The value ofd= — 15 used here corresponds to a group ve-
transient evolution. The parametetsp, g, h, andl’ are the same as  |ocity dispersion of—12 f&. Note that the frequency chirp
in Fig. 1. for long pulses withh=10"2 andI"'=10? can be compen-
sated only by a group velocity dispersion equal to
the dispersion of gain-lossleg=1+hI'?/[1+(I'8)?], on  —300 f&. The valueB,=0.036 corresponds to the equilib-
the pulsg width 8. For very long pulses, i.e3~0, det  rjum pulse widthr,=1.76x 10~*B; */v,,~200 fs and peak
=1+hI'"=11. On the other hand, for very short puls&s intensity|,.=5x 10" W/m2. Thus the parasitic frequency-
~ anddes=1. This shows that longer pulses sense stronyependent loss with spectral peaks having a frequency width
ger dispersion of the gain-loss. This requires stronger dlspe@qum to 102 of the gain spectral bandwidth and the height
sion of th_e refractive index for compensation o_f the fre'equal to 103 of the total linear losses suffices to produce
quency chirpf=de; & [see the numerator on the right-hand pstapility and to prevent self-starting of passive mode lock-
side of Eq.(12)]. As a result longer pulses have strongering. Self-starting can be obtained by initial fluctuations of
frequency chirp. Boundary curves=£(6) in Fig. 2 are ob-  equilibrium durations smaller than 0.2 fisf peak intensities
tained from Eq.(14) with A,=0, deg=1+hI'2=11 (the greater than % 10t W/m?).
solid curvg anddey=1 (the dashed curve Notice that the above-mentioned bistability wigh=0,
Figure 4 demonstrates the dependenge= A(By) with  y—0 for used parametets=10"3, T'=10? is not realized
laser parameters corresponding to Figs. 1 and 3. The dgas our numerical simulation has shown the passive mode
crease of\ at smallBy is connected to a spectral broaden- |ocking with a single pulse in the cavity is established with
ing of the pulses and selective parasitic losses described yhy initial conditiong. This means that the phase-modulation

the narrow-band Lorentzian in E¢2). When the spectral pjstability is more serious obstacle to passive mode locking
width of pulses becomes more than the width of the narrownan, the bistability withg=0, 6=0.

Lorentzian, them\ increases with increasing, (greaterB
corresponds to greater peak intengigy and to less nonlin-
ear losses This dependenca ;= A (By) explains the bista-
bility between pulsing and cw solution described above. If In this study, we have found a mechanism resulting in a
the equilibrium inverse duration8, for all pulses are less bistable operation of passively mode-locked lasers with para-
than 8., noise pulses with long duratiorismall 3,) will sitic frequency-dependent losses. This bistability is realized
grow in amplitudes, and the whole cavity will be filled with as either a cw operation or passive mode locking with a
radiation[see Fig. 1b)]. To the contrary, if one of the pulses single steady-state ultrashort pulse in cavity. The mechanism
has the equilibrium inverse duratig®)> 8., the pulse with  found here is connected with phase modulation of the result-
the greatest inverse duration will have the greatest growting pulses due to nonlinearity and frequency dispersion of
rate A,. This pulse will survive and grow in the cavity, the refractive index of the intracavity elements. In conse-
while all other pulses will decay. Thus, single-pulse opera-quence of this bistability a self-starting of mode locking is
tion will be realized[see Fig. 13)]. obtained only with specific initial conditions.

VI. CONCLUSION
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