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Resonance superfluidity: Renormalization of resonance scattering theory
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We derive a theory of superfluidity for a dilute Fermi gas that is valid when scattering resonances are
present. The treatment of a resonance in many-body atomic physics requires a novel mean-field approach
starting from an unconventional microscopic Hamiltonian. The mean-field equations incorporate the micro-
scopic scattering physics, and the solutions to these equations reproduce the energy-dependent scattering
properties. This theory describes the high-Tc behavior of the system, and predicts a value ofTc that is a
significant fraction of the Fermi temperature. It is shown that this mean-field approach does not break down for
typical experimental circumstances, even at detunings close to resonance. As an example of the application of
our theory, we investigate the feasibility for achieving superfluidity in an ultracold gas of fermionic6Li.
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I. INTRODUCTION

The remarkable accomplishment of reaching the reg
of quantum degeneracy@1# in a variety of ultracold atomic
gases enabled the examination of superfluid phenomena
diverse range of novel quantum systems. Already many
ementary aspects of superfluid phenomena have been
served in bosonic systems including vortices@2#. The chal-
lenge of achieving superfluidity in a Fermi gas remai
however, although it appears possible that this situation m
change in the near future. A number of candidate systems
realizing superfluidity in a fermionic gas appear very pro
ising and it is currently the goal of several experimental
forts to get into the required regime to observe the superfl
phase transition. So far both fermionic potassium@3# and
lithium @4,5# have been cooled to the microkelvin regime a
are well below the Fermi temperature by now—a precur
step for superfluidity.

In order to make the superfluid phase transition exp
mentally accessible, it will likely be necessary to utilize t
rich internal hyperfine structure of atomic collisions. Scatt
ing resonances, in particular, may prove to be extremely
portant since they potentially allow a significant enhan
ment of the strength of the atomic interactions. It
anticipated that by utilizing such a scattering resonance
may dramatically increase the critical temperature at wh
the system becomes unstable towards the formation of C
per pairs, thus bringing the critical temperature into the
perimentally accessible regime.

In spite of its promise, this situation poses a number
fundamental theoretical problems that must be addresse
order to provide an adequate minimal description of the c
cal behavior. The scope of the complexities that arise
treating a scattering resonance can be seen by examinin
convergence of the quantum kinetic perturbation theory
the dilute gas. In this theory the small parameter is known
the gaseous parameter, defined asAna3, wheren is the par-
ticle density anda is the scattering length. Formally, whe
the scattering length is increased to the value at whichna3

'1, conventional perturbation theory breaks down@6,7#.
This situation is commonly associated with the theoreti
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treatment of strongly interacting fermionic systems whe
higher-order correlations must be treated explicitly.

In this paper, we show that an unconventional mean-fi
theory can still be appropriately exploited under the con
tion that the characteristic rangeR of the potential is such
thatnR3!1 ~while na3*1). The core issue is that around
resonance, the cross section becomes strongly depende
the scattering energy. This occurs when either a bound s
lies just below threshold, or when a quasibound state lies
above the edge of the collision continuum. In both cases,
scattering length—evaluated by considering the zero-ene
limit of the scattering phase shift—does not characterize
full scattering physics over the complete energy range
interest, even when in practice this may cover a range of o
a few microkelvin.

The paper is outlined as follows. In Sec. II, we presen
systematic derivation of the renormalized potentials for
effective many-body Hamiltonian. This requires a detail
analysis of coupled-channels scattering. In Sec. III, we
rive the resonance mean-field theory. In Sec. IV, we pres
the thermodynamic solutions allowing for resonance sup
fluidity. We apply our theory to the specific case of6Li and
determine the critical temperature for the superfluid ph
transition. In Sec. V, we consider the validity of the mea
field approach in the case of resonance coupling, and es
lish the equivalence with previous diagrammatic calculatio
of the crossover regime between fermionic and bosonic
perconductivity.

II. TWO-BODY RESONANCE SCATTERING

The position of the last bound state in the interatom
interaction potentials generally has a crucial effect on
scattering properties. In a single-channel system, the sca
ing process becomes resonant when a bound state is clo
threshold. In a multichannel system the incoming chan
~which is always open! may be coupled during the collisio
to other open or closed channels corresponding to diffe
spin configurations. When a bound state in a closed cha
lies near the zero of the collision energy continuum, a Fe
bach resonance@8# may occur, giving rise to scattering prop
©2002 The American Physical Society17-1
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erties that are tunable by an external magnetic field. T
tuning dependence arises from the magnetic moment di
enceDmmag between the open and closed channels@9#. This
gives rise to a characteristic dispersive behavior of
s-wave scattering length at fields close to resonance give

a5abgS 12
DB

B2B0
D , ~1!

where abg is the background value that may itself depe
weakly on magnetic field. The field width of the resonance
given by DB, and the bound state crosses threshold a
field-valueB0. The field detuning can be converted into
energy detuningn̄ by the relationn̄5(B2B0)Dmmag. An
example of such a resonance is given in Fig. 1, wher
coupled-channels calculation is shown of the scatter
length of 6Li for collisions between atoms in the (f ,mf)
5(1/2,21/2) and (1/2,1/2) states@10#. The background scat
tering length changes slowly as a function of magnetic fi
due to a field-dependent mixing of a second resonance
comes from the triplet potential. This full coupled-chann
calculation includes the state-of-the-art interatomic potent
@11# and the complete internal hyperfine structure@13#.

The scattering length is often used in many-body the
to describe interactions in thes-wave regime. That the sca
tering length completely encapsulates the collision phys
over relevant energy scales is implicitly assumed in the d
vation of the conventional Bardeen-Cooper-Schrieffer~BCS!
theory for degenerate gases@14,15#, as well as the Gross
Pitaevskii description of Bose-Einstein condensates. H
ever, the scattering length is only a useful concept in
energy regime where thes-wave scattering phase shiftd0
depends linearly on the wave numberk, i.e.,d052ka. For a
Feshbach resonance system at a finite temperature there
always be a magnetic field value where this approximat
breaks down and the scattering properties become stro
energy dependent. In close proximity to a resonance,
scattering process then has to be treated by means o
energy-dependentT matrix.

FIG. 1. Scattering length as a function of magnetic field, for
( f ,mf)5(1/2,21/2) and (1/2,1/2) mixed spin channel of6Li.
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Only the exact interatomic interaction will reproduce t
full T matrix over all energy scales. However, since on
collision energies in the ultracold regime~of order mi-
crokelvin! are relevant, a much simpler description is po
sible. If the scattering length does not completely charac
ize the low-energy scattering behavior in the presence o
resonance, what is the minimal set of parameters that
do?

As illustrated in Fig. 2, we proceed to systematically r
solve this question by the following steps. We start from
numerical solution of the complete coupled-channels sca
ing problem for a given real physical system. In Sec. II A w
demonstrate that the results of these full numerical calc
tions can be adequately replicated by giving an analytic
scription of resonance scattering provided by Feshba
resonance theory. The point of this connection is to dem
strate that only a few parameters are necessary to accoun
all the collision properties. This implies that the scatteri
model is not unique. There are many microscopic mod
that could be described by the same Feshbach theory. In
II B we show this explicitly by presenting a simple doubl
well model for which analytic solutions are accessib
Thereby we derive a limiting model in which the range of t
square well potentials and coupling matrix elements
taken to zero. This leads in Sec. II C to a scattering mode
contact potentials. We show that such a scattering solutio
able to reproduce well the results of the intricate full nume
cal model we began with. The utility of this result is that,
will be apparent later, it greatly simplifies the many-bo
theoretic description.

A. Feshbach resonance theory

Here we briefly describe the Feshbach resonance form
ism and derive the elasticSmatrices andT matrices for two-

FIG. 2. Sequence of theoretical steps involved in formulatin
renormalized scattering model of resonance physics for low-ene
scattering. The starting point is a full coupled-channels~CC! calcu-
lation that leads us via an equivalent Feshbach theory, and an
lytic coupled square-well theory, to a contact potential scatter
theory that gives the renormalized equations for the resona
system.
7-2
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RESONANCE SUPERFLUIDITY: RENORMALIZATION . . . PHYSICAL REVIEW A65 053617
body scattering. These matrices are related to the trans
probabilities for scattering from an initial channela to a final
channelb. A more detailed treatment of this formalism ca
be found in the literature@8#.

In Feshbach resonance theory two projection operatoP
and Q are introduced, which project onto the subspacesP
andQ. These subspaces are two orthogonal components
together span the full Hilbert space of both scattering a
bound wave functions. The open and closed channels
contained inP andQ, respectively. The operatorsP and Q
split the Schro¨dinger equation for the two-body problem in
two parts:

~E2HPP!ucP&5HPQucQ&, ~2!

~E2HQQ!ucQ&5HQPucP&, ~3!

where HPP5PHP, HPQ5PHQ, etc., andc is the total
scattering wave function. The projections on the two s
spaces are indicated byPuc&5ucP& and Quc&5ucQ&. The
Hamiltonian H5H01V consists of the sum of the single
particle interactionsH0 and the two-body interactionV.
Equation~3! can be formally solved

ucQ&5
1

E12HQQ

HQPucP&, ~4!

where E15E1 id with d approaching zero from positiv
values. Substituting this result into Eq.~2!, the open channels
equation can be written as (E2Heff)ucP&50, where

Heff5HPP1HPQ

1

E12HQQ

HQP . ~5!

The resolvant operator is now expanded in the discrete
continuum eigenstates ofHQQ :

Heff5HPP1(
i

HPQuf i&^f i uHQP

E2e i

1E HPQuf~e!&^f~e!uHQP

E12e
de. ~6!

Here thee i ’s are the uncoupled bound-state eigenvalues
practice, only a few bound states will significantly affect t
open-channel properties. In this paper, we will consider
ther one or two bound states and neglect the continuum
pansion in Eq.~6!. Then the formal solution forucP& is given
by

ucP&5uca
P1&1

1

E12HPP
(

i

HPQuf i&^f i uHQPucP&
E2e i

,

~7!

where uca
P1& is the eigenstate of the direct interactionHPP

that satisfies the outgoing wave boundary condition in ch
nel a. By multiplying from the left with^xbuV, whereuxb&
is an unscattered state in the outgoing channelb, the left-
05361
on

at
d
re

-

nd

n

i-
x-

-

hand side becomes theT matrix for the total scattering pro
cess. The unscattered state is related to the scattering w
function ucb

P2& with incoming boundary conditions via

ucb
P2&5uxb&1

V

E22HPP

uxb&. ~8!

The T matrix giving the transition amplitude is then

Tba5T ba
P 1(

i

^cb
P2uHPQuf i&^f i uHQPucP&

E2e i
, ~9!

whereT ba
P is the amplitude for the direct~nonresonant! pro-

cess. From theT matrix we can easily go to theSmatrix that
is defined asSba5^cb

2uca
1&. Since we considers-wave scat-

tering only, in our case there exists a simple relation betw
the S matrix andT matrix: Sba5122p iTba @16#, and this
allows us to rewrite Eq.~9! as

Sba5Sba
P 2(

g
Sbg

P (
i

2p i ^cg
1uHPQuf i&^f i uHQPucP&

E2e i
.

~10!

The nonresonant factorsSbg
P describe the direct scatterin

process from an open channelg to the outgoing channelb.
Returning to Eq.~7!, we can solve for the componen
^f i uHQPucP& by multiplying both sides witĥf i uHQP .

1. Single resonance

For the case of only one resonant bound state and o
one open channel, the solution of Eq.~7! gives rise to the
following elastic S-matrix element~we will omit now the
incoming channel labela!:

S5SPF 12
2p i u^cP1uHPQuf1&u2

E2e12^f1uHQP

1

E12HPP

HPQuf1&G .

~11!

The nonresonantS matrix is related to the background sca
tering length viaSP5exp@22ikabg#. The term in the numera
tor gives rise to the energy width of the resonance,G
52pu^cP1uHPQuf1&u2, which is proportional to the incom
ing wave numberk and coupling constantḡ1 @17#. The
bracket in the denominator gives rise to a shift of the bou
state energy, and to an additional width termiG/2. When we
denote the energy shift between the collision continuum
the bound state byn̄1, and represent the kinetic energy sim
ply by \2k2/m, theS-matrix element can be rewritten as

S~k!5e22ikabgF 12
2ikuḡ1u2

2
4p\2

m S n̄12
\2k2

m D1 ikuḡ1u2G .

~12!
7-3
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The resulting total scattering length has exactly the sa
dispersive line shape for the resonant scattering length a
have presented originally as Eq.~1!.

2. Double resonance

Often more than one resonance may need to be con
ered. For example, the scattering properties for the (
21/2)1(1/2,1/2) channel of6Li are dominated by a combi
nation of two resonances: a triplet potential resonance a
Feshbach resonance. This can be clearly seen from Fi
where the residual scattering length, which would arise in
absence of the Feshbach resonance coupling, would be
large and negative and vary with magnetic field. This can
compared with the value of the nonresonant backgro
scattering length for the triplet potential for Li that is on
31a0, which is an accurate measure of the characteri
range of this potential. An adequate scattering model for
system therefore requires inclusion of both bound-state r
nances. Since for6Li the coupling between these two boun
states is small, it will be neglected in the double-resona
model presented here. The double-resonanceS matrix, with
again only one open channel, follows then from Eq.~10! and
includes a summation over two bound states. After solv
for the two componentŝ f i uHQPucP& of wave function
ucP&, theS matrix can be written as

S~k!5e22ikabgF12
2ik~ uḡ1u2D21uḡ2u2D1!

ik~ uḡ1u2D21uḡ2u2D1!2D1D2
G

~13!

with D15( n̄12\2k2/m)4p\2/m, where n̄1 and ḡ1 are the
detuning and coupling strengths for state 1. Equivalent d
nitions are used for state 2. Later we will show that th
simple analytic Feshbach scattering model mimics
coupled-channels calculation of6Li. The parameters of this
model, which are related to the positions and widths of
last bound states, can be directly found from a plot of
scattering length versus magnetic field as given, for exam
by Fig. 1. The scattering length behavior should be rep
duced by the analytic expression for the scattering len
following from Eq. ~13!:

a5abg2
m

4p\2 S uḡ1u2

n̄1

1
uḡ2u2

n̄2
D . ~14!

The advantage of a double pole over a single-poleS-matrix
parametrization is that we can account for the interplay
tween a potential resonance and a Feshbach reson
which in principle can radically change the scattering pro
erties. This interplay is not only important for the descripti
of 6Li interactions, but also for other atomic systems th
have an almost resonant triplet potential, such as bos
133Cs @18,19# and 85Rb @20#.

In the many-body part of this paper, Sec. III, the scatt
ing properties are represented by aT matrix instead of anS
matrix. We have shown in the above that in our case th
exists a simple relation between the two, however, the d
05361
e
we

id-
2,

a
1,
e
ery
e
d

ic
is
o-

e

g

fi-

e

e
e
e,
-

th

-
ce,
-

t
ic

-

re
fi-

nition for T in the many-body theory will be slightly differen
in order to give it the conventional dimensions of energy p
unit density:

T~k!5
2p\2i

mk
@S~k!21#. ~15!

B. Coupled square-well scattering

In this subsection we describe the coupled-channels
tension of a textbook single-channel square-well scatte
problem. One reason that this model is interesting to stud
because we can take the limit of the potential rangeR→0,
thus giving an explicit representation of a set of coupledd
function potentials that simplifies the description in t
many-body problem to follow.

The scattering equations for such a coupled system
written as

EcP~r !5F2
\2

m
¹ r

21VP~r !GcP~r !1g~r !cQ~r !, ~16!

EcQ~r !5F2
\2

m
¹ r

21VQ~r !1e GcQ~r !1g* ~r !cP~r !,

~17!

with e being the energy shift of the closed channel w
respect to the collision continuum andE5\2k2/m the rela-
tive kinetic energy of the two colliding particles in th
center-of-mass frame. The coupled square-well model en
sulates the general properties of two-body alkali interactio
There we can divide the internuclear separation into two
gions: the inner region where the exchange interaction~the
difference between the singlet and triplet potentials! is much
larger than the hyperfine splitting, and the outer region wh
the hyperfine interaction dominates. Here we make a sim
distinction for the coupled square wells. In analogy to t
real singlet and triplet potentials, we use for the inner reg
two artificial square-well potentials labeled asV1 andV2. We
take the couplingg(r ) to be constant over the range of th
square-well potentialsr ,R, and to be zero outside this rang
~see Fig. 3!. Then the problem can be simply solved b
means of basis rotations at the boundaryR giving rise to
simple analytic expressions. Forr .R, we therefore conside
one open channel and one closed channel, with wave n
berskP andkQ . In analogy with a real physical system, w
can refer to the inner range channels (r ,R) as a molecular
basis, and the channel wave functions are just linear com
nations of theu1 andu2 wave functions. At the boundaryR,
these wave functions have accumulated a phasef15k1R
andf25k2R. The coupling strength is effectively given b
the basis-rotation angleu for the scattering wave functions

S uP~R!

uQ~R!
D 5S cosu 2sinu

sinu cosu D S u1~R!

u2~R!
D , ~18!

allowing for an analytic solution of the scattering mode
This leads to the following expression for theS matrix:
7-4
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S5e22ikPR@12$22ikP~k2cotf2cos2u1kQ

1k1cotf1sin2u!%/$kPkQ1k1cotf1~kPsin2u2kQcos2u!

1 ik2cotf2~k1cotf11kPcos2u1kQsin2u!%#. ~19!

An extension to treat more than two coupled potentia
which would be required to model more than one resonan
is also straightforward.

The parameters of the two wells have to be chosen s
that the results of a real scattering calculation are reprodu
for a given physical system. In fact, all the parameters
completely determined from the field dependence of the s
tering length, and all other scattering properties, such as
energy dependence of the scattering phase shift, can the
derived. First we choose a rangeR, typically of the order of
an interatomic potential range (100a0) or less. Now we have
only to determine the set of parametersV1 , V2, andu. The
potential depthV1 is chosen such that the scattering length
equal to the background scattering lengthabg, while keeping
u50. Also,V1 should be large enough that the wave num
k1 depends weakly on the scattering energy. Then, we su
to be nonzero, and change the detuning until a bound s
crosses threshold, giving rise to a Feshbach resonance
value ofV2 is more or less arbitrary, but we typically choo
it to be larger thanV1. Finally, we change the value ofu to
give the Feshbach resonance the desired width.

We will later show that the resulting scattering propert
converge forR→0. In Fig. 4 the coupled square-well syste
is compared with the Feshbach scattering theory, for40K
scattering parameters. Even despite the fact that there

FIG. 3. Illustration of the coupled square-well system. Ou
region r .R: the solid line corresponds to the open channel pot
tial P, and the dotted line to the closed channel potentialQ. The
wave functions are given byuP(r );sin̂ kPr& and uQ(r )
;exp(2kQr), respectively. Inner regionr ,R: the solid and dotted
lines correspond to the molecular potentialsV1 and V2, respec-
tively. The wave functions are given byu1(r );sink1r and u2(r )
;sin(k2r). The dashed line corresponds to the kinetic energyE in
the open channel. The wave vectors are defined askP5AmE/\,
kQ5Am(e2E)/\, k15Am(E1V1)/\, and k2

5Am(E1V22e)/\. The detuninge can be chosen such that
bound state of square-well potentialV2 enters the collision con-
tinuum, causing a Feshbach resonance in the open channel.
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strong energy dependence of theT matrix, the two scattering
representations agree very well.

C. Contact potential scattering and renormalization

In this section the Lippmann-Schwinger scattering eq
tion is solved for a resonance system with contact potenti
As in the preceding section, we make use of an open s
space that is coupled to a closed subspace. The contac
tentials are defined by

VP~r !5VPd~r !, ~20!

VQ~r !5VQd~r !,

g~r !5g d~r !, ~21!

whered(r ) is the three-dimensional Diracd function. Here
VP(r ) is the open channel potential with strengthVP. The
function VQ(r ) is a closed-channel potential with streng
VQ, and g(r ) is a coupling between the closed and op
channel with strengthg. The procedure of renormalizatio
relates the physical units (abg, ḡi , andn̄ i! from Sec. II A to
these parameters of the contact potential scattering mode
a given momentum cutoff; a relationship for which we w
now obtain explicit expressions. The first step is to so
again the scattering Eqs.~16! and ~17! for these contact po-
tentials. As we have seen in Sec. II A, we can formally so
the bound-state equations, and make use of Eq.~6! to expand
the Green’s function in bound-state solutions. In this cas
can be written as

cQ~r !5(
i

f i
Q~r !E d3r 8f i

Q* ~r 8!g* ~r 8!cP~r 8!

E2e i
,

~22!

r
-

FIG. 4. Comparison of the real part of theT matrix for coupled
square-well scattering~solid line! with a potential rangeR51a0, to
Feshbach scattering~dashed line!, for a detuning that yields a scat
tering length of about22750a0. A similar, good agreement is foun
for all detunings.
7-5
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with f i
Q(r ) a bound-state solution ande i its eigenenergy. We

now define an amplitude for the system to be in this bou
state that will later be useful in the mean-field equatio
f i5^f i

QucQ&, and together with the open channel equat
and the definitiongi(r )5g(r )f i

Q(r ), we get a new set o
scattering equations,

\2k2

m
cP~r !5F2

\2

m
¹ r

21VP~r !GcP~r !1(
i

gi~r !f i ,

~23!

\2k2

m
f i5n if i1E d3r 8gi* ~r 8!cP~r 8!. ~24!

The energy difference between the bound-state energy
the threshold of the collision continuum is given byn i . The
open channel solution for Eq.~23! can be formulated as

cP~r !5x~r !2
m

4p\2E d3r 8
eikurÀr8u

urÀr 8u
FVP~r 8!cP~r 8!

1(
i

gi~r 8!f i G
5x~r !1 f ~u!

eikr

r
, as r→`. ~25!

Herex(r ) is the unscattered wave function, and in the oth
term we recognize the scattered part that is usually form
lated in terms of the scattering amplitudef (u). The momen-
tum representation of this last line is@7#

cP~p!5~2p!3d~kÀp!2
4p f ~k,p!

k22p21 id
. ~26!

Combining Eq.~26! with our expression for the scatterin
amplitude we find

2
4p\2

m
f ~k,k8!5VP1

1

~2p!3
VPE d3p

2
4p\2

m
f ~k,p!

\2k2

m
2

\2p2

m
1 id

1(
i

gif i . ~27!

The typical temperature range of a system we are intere
in will only allow for elastics-wave scattering, therefore th
scattering amplitude has no angular dependence, and inc
ing and outgoing wave numbers are the same, i.e.,k5k8.
The scattering amplitude can then be simply linked to thT
matrix via the relationT(k)52(4p\2/m) f (k). The integral
has a principal-value part, and the integration ranges fr
zero to a momentum cutoffK. Equation ~27! then has as
solution,
05361
d
:

n
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m

T~k!5VP2
VPm

2p2\2
T~k!FK2arctanh

k

K
1

ip

2
kG1(

i
gif i .

~28!

This is a variant of the Lippmann-Schwinger equation. T
closed-channel scattering solutions are now used to elimi
the amplitude functionsf i . In Fourier space, Eq.~24! has
the form

\2k2

m
f i5n if i1gi*

1

~2p!3E cP~p!d3p. ~29!

After substitution of Eq.~26! the expression forf i is linked
to theT matrix:

f i5

gi* S 12
m

2p2\2
T~k!FK2arctanh

k

K
1

ip

2
kG D

\2k2

m
2n i

.

~30!

Eliminatingf i from Eq.~28! gives a complete expression fo
the Lippmann-Schwinger equation

T~k!5VP2
VPm

2p2\2
T~k!FK2arctanh

k

K
1

ip

2
kG

1(
i

ugi u2S 12
1

2p2

m

\2
T~k!FK2arctanh

k

K
1

ip

2
kG D

\2k2

m
2n i

.

~31!

Similar to the Feshbach and coupled square-well pr
lems, thek→0 behavior ofT(k) should reproduce the sca
tering length, and, the result should not depend on the a
trary momentum cutoffK. For an analytic expression of th
scattering length, we conveniently use the Feshbach re
sentation. A comparison between the latter and the exp
sion for the scattering lengtha that results from solving Eq
~31!, tells us how to relate the coupling constants for cont
scattering to the Feshbach coupling constants. By mak
use of the definitionsG5(12aU)21, a5mK/(2p2\2),
andU54p\2abg/m, we find the very concise relations

VP5GU, ~32!

which is valid also in the case where no resonance is pres
and in addition,

g15Gḡ1 , ~33!

n15 n̄11ag1ḡ1 ~34!

for the open-channel potential and the first resonance.
the second resonance, if present, we find
7-6
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g25
ḡ2

aḡ1
2/ n̄11G21

, ~35!

n25 n̄21ag2ḡ2 . ~36!

Obviously, our approach can be systematically extended
ther, order by order, to give an arbitrarily accurate repres
tation of the microscopic scattering physics.

These expressions we refer to as the renormalizing e
tions of the resonance theory since they remove the ultra
let divergence that would otherwise appear in the field eq
tions. Any many-body theory based on contact scatter
around a Feshbach resonance will need to apply these
pressions in order to renormalize the theory. These equat
~32!–~36! therefore represent one of the major results of t
paper.

In Fig. 5 theT matrix as a function of energy is shown fo
contact scattering, in comparison with the square-well s
tering for different values of the potential range. The conta
scattering model is demonstrated to be the limiting case
the coupled square-well system whenR→0.

D. Discussion of different models

In Sec. II C it has been shown that the resonance con
scattering representation is the limiting case of the coup
square-well system, when the range of the potentials is ta
to zero. Also, in Sec. II B it has been shown that the doub
well system is in good agreement with the Feshbach sca
ing theory. Now we will show how well these scatterin
representations agree with the full numerical coupl
channels calculation@10#. In Fig. 6 we show the real an

FIG. 5. Comparison of the real part of theT matrix for coupled
square-well scattering for three different values of the poten
range:R5100a0 ~dash-dotted line!, R530a0 ~dashed line!, andR
51a0 ~solid line!. The interaction parameters for40K have been
used here, and the magnetic field is chosen such that a scatt
length of a5300a0 is obtained. Also plotted is theT matrix for
contact scattering, which clearly agrees very well as it coinci
with the solid line of the double-well scattering.
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imaginary parts of theT matrix applied to the case of6Li,
and compare the cutoff and Feshbach scattering repres
tions to a full coupled-channels calculation. The agreemen
surprisingly good, and holds basically for all magnetic fiel
~i.e., similar agreement is found at all detunings!.

In this section we have discovered a remarkable fact
even a complex system including internal structure and re
nances can be simply described with contact potentials a
few coupling parameters. This was known for off resonan
scattering where only a single parameter~the scattering
length! is required to encapsulate the collision physics a
very low temperature. However, to our knowledge this h
not been pointed out before for the resonance system, w
an analogous parameter set is required to describe a sy
where the scattering length may even pass through infin
We have shown in a very concise set of formulas on how
derive the resonance parameters associated with contac

l

ing

s

FIG. 6. ~a! Real part of theT matrix as a function of collision
energy, for the Feshbach model and the cutoff model~overlapping
solid lines!, and for a coupled-channels calculation~dashed line!.
The atomic species considered is6Li, for atoms colliding in the
(1/2,21/2)1(1/2,1/2) channel.~b! Same as~a! for the imaginary
part.
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tentials. This result is important for the incorporation of t
two-body scattering in a many-body system, as we will sh
later in this paper.

Other papers have also proposed a simple scatte
model to reproduce coupled-channels calculations@21,22#. In
these papers real potentials are used, and they give a
agreement. Here, however, we use models that need i
from a coupled-channels calculation to give informati
about the positions of the bound states and the couplin
the closed channels. All this information can be extrac
from a plot of the scattering length as a function of magne
field.

III. MANY-BODY RESONANCE SCATTERING

We will now proceed to a many-body description of res
nance superfluidity and connect it to our theory of the tw
body scattering problem described earlier. This section
plains in detail the similar approach in our papers devote
resonance superfluidity in potassium@23,24#. The general
methods of nonequilibrium dynamics has been describe
Ref. @25# and we have applied them in the context of co
densed bosonic fields@26,27#.

In the language of second quantization, we describe
many-body system with fermionic fieldsĉs(x) that remove
a single fermionic particle from positionx in internal elec-
tronic states, and molecular bosonic fieldsf̂ i(x) that anni-
hilate a composite-bound two-particle excitation from spa
point x in internal configurationi. These field operators an
their adjoints satisfy the usual fermionic anticommutati
rules

$ĉs1
~x1!,ĉs2

† ~x2!%5d~x12x2! ds1s2
[d12,

$ĉs1
~x1!,ĉs2

~x2!%50, ~37!

and bosonic commutation rules

@f̂ i 1
~x1!,f̂ i 2

† ~x2!#5d~x12x2! d i 1i 2
[d12,

@f̂ i 1
~x1!,f̂ i 2

~x2!#50, ~38!

respectively. Here and in the following discussion, we w
also try to simplify the notational complexity by adopting th
notation convention of many-particle physics. This mea
we will identify the complete set of quantum numbe
uniquely by its subscript index, i.e.,$x1 ,s1%[1. If only the
position coordinate is involved, we will use boldfacex2[2.
In the double-resonance case of lithium, we have to dis
guish only two internal atomic configurations for the fr
fermionic single-particle statess5$↑,↓% and we need a
most two indices i 5$1,2% to differentiate between the
bosonic molecular resonances.

The dynamics of the multicomponent gas is governed
a total system HamiltonianĤ5Ĥ01Ĥ1, which consists of
the free-evolution HamiltonianĤ0 and the interactionsĤ1
between atoms and molecules. We assume that the free
namics of the atoms and molecules is determined by t
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kinetic and potential energies in the presence of exte
traps, which is measured relative to the energym of a coro-
tating reference system. Thus, we define

Hs~x!52
\2

2m
¹21Vs~x!2m, ~39!

Hi
m~x!52

\2

2M
¹21Vi

m~x!1n i2mm . ~40!

Here, m denotes the atomic mass as used previously,M
52m is the molecular mass,mm52m is the energy offset of
the molecules with respect to the reference system,Vs(x)
are external spin-dependent atomic trapping potentials,
Vi

m(x) are the external molecular trapping potentials. T
molecular single-particle energy has an additional ene
term n i that accounts for the detuning of the molecular st
i relative to the threshold of the collision continuum.

The binary interaction potentialVP(x12x2) accounts for
the nonresonant interaction of spin-up and spin-down fer
ons, and coupling potentialsgi(x12x2) convert free fermi-
onic particles into bound bosonic molecular excitation
Thus, we find for the total system Hamiltonian of the atom
and molecular fields,

Ĥ5Ĥ01Ĥ1 , ~41!

where the freeĤ0 and interaction contributionsĤ1 are de-
fined as

Ĥ05E d1(
s

ĉs
†~1!Hs~1!ĉs~1!

1E d1(
i

f̂ i
†~1!Hi

m~1!f̂ i~1!, ~42!

Ĥ15E d1d2H ĉ↑
†~1!ĉ↓

†~2!VP~122!ĉ↓~2!ĉ↑~1!

1(
i

F f̂ i
†S 112

2 Dgi* ~122!ĉ↓~2!ĉ↑~1!1H.c.G J .

~43!

Here, H.c. denotes the Hermitian conjugate. In the pres
picture, we deliberately neglect the interactions among
molecules. Several other papers have treated a Fesh
resonance in a related way@28–31#.

In order to derive dynamical Hartree-Fock-Bogoliubo
~HFB! equations from this Hamiltonian, we also need to d
fine a generalized density matrix to describe the state of
fermionic system@32# and an expectation value for th
bosonic molecular field. The elements of the 434 density
matrix G are given by

Gpq~12!5^Âq
†~x2!Âp~x1!&, ~44!

Â~x!5@ĉ↑~x!,ĉ↓~x!,ĉ↑
†~x!,ĉ↓

†~x!#T, ~45!
7-8
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and symmetry-broken molecular fields are defined as

f i~1!5^f̂ i~x1!&. ~46!

As usual, we define the quantum averages of an arbit
operatorÔ with respect to a many-body density matrixr by

^Ô&5Tr@Ôr#, and we calculate higher-order correlatio
functions by a Gaussian factorization approximation kno
as Wick’s theorem@32#. The structure of the 434 density
matrix,

G~12!5S GN~12! GA~12!

2GA~12!* 1 3d122GN~12!* D , ~47!

is very simple, if one recognizes that it is formed out of
232 single-particle density matrixGN , a pair correlation
matrix GA and obviously the vacuum fluctuationsd12. The
single-particle submatrix is given by

GN~12!5S Gn↑~12! Gm~12!

Gm~21!* Gn↓~12!
D , ~48!

where Gns(12)5^ĉs
†(x2)ĉs(x1)& is the density of spin-up

and spin-down particles andGm(12)5^ĉ↓
†(x2)ĉ↑(x1)& de-

notes a cross-level coherence, or ‘‘magnetization’’ betwe
the states. The pair-correlation submatrixGA is defined
analogously as

GA~12!5S Ga↑~12! Gp~12!

2Gp~21! Ga↓~12!
D , ~49!

where Gas(12)5^ĉs(x2)ĉs(x1)& is an anomalous pairing
field within the same level and the usual cross-level pair
field of BCS theory is defined here asGp(12)
5^ĉ↓(x2)ĉ↑(x1)&.

A. General dynamic Hartree-Fock-Bogoliubov equations
of motion

From these physical assumptions about the syste
Hamiltonian Eq.~41! and the postulated mean fieldsf i of
Eq. ~46! andG of Eq. ~47!, one can now derive kinetic equa
tions for the expectation values^O& for an operatorO by a
systematic application of Heisenberg’s equation

i\
d

dt
Ô5@Ô,Ĥ#, ~50!

and Wick’s theorem.
The first-order kinetic equation for the Hermitian dens

matrix G has the general form of a commutator and the tim
evolution is determined by a Hermitian self-energy mat
S5S01S1. In general, one finds

i\
d

dt
G~13!5E d2@S~12! G~23!2G~12!S~23!#, ~51!
05361
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i\
d

dt
f i~3!5Hi

m~3! f i~3!1E d1d2dS 112

2
23D

3gi* ~122!Gp~12!. ~52!

First, the free-evolutionS0 is obviously related to the single
particle Hamiltonians of Eq.~42!. In complete analogy to the
generalized density matrix, it has a simple 434 structure

S0~12!5S SN
0 ~12! 0

0 2SN
0 ~12!* D , ~53!

which can be factorized into 232 submatrices as

SN
0 ~12!5d12S H↑~1! 0

0 H↓~1!
D . ~54!

Second, one obtains from the interaction Hamiltonian of E
~43! the first-order self-energyS1 as

S1~12!5S SN
1 ~12! SA

1 ~12!

2SA
1 ~12!* 2SN

1 ~12!* D . ~55!

The normal potential matrixSN
1 has the usual structure o

direct contributions@i.e., local Hartree potentials propo
tional tod12# and exchange terms@i.e., nonlocal Fock poten-
tials proportional toVP(122)#:

SN
1 ~12!5E d4VP~224!S d12Gn↓~44! 2d14Gm~12!

2d14Gm~21!* d12Gn↑~44!
D .

~56!

The zeros that appear in the diagonal of the anomalous
pling matrix

SA
1 ~12!5S 0 D~12!

2D~21! 0 D ~57!

reflect the fact that there is no low-energy (s-wave! interac-
tion between same spin particles due to the Pauli exclus
principle. The off-diagonal element defines a gap function

D~12!5VP~122! Gp~12!1(
i

gi~122! f i S 112

2 D .

~58!

B. The homogeneous limit and the contact potential
approximation

In this section, we will apply the general HFB equatio
of motion @Eq. ~51!# to the case of a spatially homogeneo
isotropic system. Furthermore, we will approximate t
finite-range interaction potentialsVP(x12x2) and gi(x1
2x2) by the contact approximation as introduced in Eq.~20!,
and assume equal populations for spin-up and spin-do
atoms.

Spatial homogeneity implies that a physical system
translationally invariant. Thus, any single-particle field mu
be constant in space and any two-particle quantity or p
7-9
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correlation function can depend on the coordinate differe
only:

f i~x!5f i~0![f i , ~59!

G~x1 ,x2!5G~x12x2!5G~r!. ~60!

This assumption implies also that there can be no exte
trapping potentials present, i.e.,Vs(x)5Vi

m(x)50, as this
would break the translational symmetry.

Furthermore, we want to consider a special situat
where there is no population difference in spin-up and sp
down particlesGn(r 5uru)5Gns(r), there exists no cross
level coherence or ‘‘magnetization’’Gm(r )50, and the
anomalous pairing fieldGa(r )50. It is important to note tha
this special scenario is consistent with the full evoluti
equation and, on the other hand, leads to a greatly simpl
sparse density matrix,

G~12!5S Gn~r ! 0 0 Gp~r !

0 Gn~r ! 2Gp~r ! 0

0 2Gp* ~r ! d~r!2Gn~r ! 0

Gp* ~r ! 0 0 d~r!2Gn~r !

D ,

~61!

where r 5uru5u122u. Similarly, one finds a translationall
invariant self-energyS(12)5S(122) with

S~12!5d12S S~1! 0 0 D

0 S~1! 2D 0

0 2D* 2S~1! 0

D* 0 0 2S~1!

D , ~62!

andS(x)52\2/(2m)¹x
22m1VPGn(0) and a complex en

ergy gapD5VPGp(0)1( igi f i . These assumptions lead
a significant simplification of the HFB equations.

The structure of the HFB equations can be elucidated
ther by separating out the bare two-particle interactions fr
the many-body contributions. One can achieve this by sp
ting the self-energy into the kinetic energy and mean-fi
shifts S5S01S1, and by separating the density matrix in
the vacuum contributionG 0 @proportional tod(r)# and the
remaining mean fieldsG5G 01G 1:

i\
d

dt
G 12@S0,G 1#2@S1,G 0#5@S1,G 1#, ~63!

i\
d

dt
f i5~n i2mm! f i1gi* Gp~0!. ~64!

In this fashion, we can now identify the physics of resonan
scattering of two particles in vacuo@left-hand side of Eq.
~63!# from the many-body corrections due to the presence
a medium@right-hand side of Eq.~63!#.

In the limit of very low densities, we can ignore man
body effects and rediscover Eqs.~23! and ~24! of Sec. II C,
but given here in a time-dependent form. They describe
scattering problem that we have solved already:
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i\
d

dt
Gn~r!50, ~65!

i\
d

dt
Gp~r!5F2

\2

m
¹ r

222m1VP~r!GGp~r!1(
i

gi~r! f i ,

~66!

i\
d

dt
f i5~n i2mm! f i1gi* Gp~0!. ~67!

The scattering solution of Eqs.~66! and~67! is ‘‘summa-
rized’’ by the energy-dependent two-bodyT matrix, which
we have discussed in the preceeding sections. In orde
incorporate the full energy dependence of the scatte
physics, we propose to upgrade the direct energy s
VPGn(r) to ^TRe(k)&Gn(r), where ^TRe(k)& represents the
real part of the two-bodyT matrix, and^•••& denotes two-
particle thermal averaging over a Fermi distribution. A d
tailed calculation of the proper upgrade procedure will
presented in a forthcoming publication.

The translationally invariant HFB Equations~63! and~64!
are best analyzed in momentum-space. Thus, we will in
duce the Fourier transformed field-operatorsâks by

ĉs~x!5(
k

e2 ikx

AV
âks , ~68!

whereV is the quantization volume. If we define the Fouri
components of the translationally invariant mean fields a

G~r!5G~x12x2!5(
k

e2 ik(x12x2) G~k!, ~69!

we obtain the following relations between the real-space d
sity of particlesn ~the same for both spins! and the real-space
density of particle pairsp:

n5Gns~r50!5(
k

Gns~k!5
1

V (
k

^âks
† âks&, ~70!

p5Gp~r50!5(
k

Gp~k!5
1

V (
k

^â2k↓âk↑&. ~71!

The Fourier-transformed HFB equations are now local
momentum space,

i\
d

dt
G(k)5@S~k!,G~k!#, ~72!

i\
d

dt
f i5~n i2mm! f i1gi* p, ~73!

and the self-energy is given by
7-10
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S~k!5S Sk 0 0 D

0 Sk 2D 0

0 2D* 2Sk 0

D* 0 0 2Sk

D . ~74!

Here, the upgraded single-particle excitation energy is n
Sk5ek2m1^Tk

Re& n, ek5\2k2/2m denotes the kinetic en
ergy and the gap energy is still defined asD5VPp
1( igi f i .

IV. THERMODYNAMICS

In this paper we focus on the properties of thermod
namic equilibrium. Thermodynamic equilibrium can b
reached by demanding that the grand potentialFG5
2kbTln J at a fixed temperature has a minimal value. In t
definition kb is Boltzmann’s constant, andJ the partition
functionJ5Tr@exp(2Ĥdiag/kbT)#. The exponent containing
the diagonalized Hamiltonian reads

Ĥdiag5(
i

~n i2mm!uf i u2

1(
k

@Sk1Ek~ âk↑
† âk↑1âk↓

† âk↓21!#, ~75!

which is a quadratic approximation to the original Ham
tonian. The energy spectrumEk results from a local diago
nalization by the Bogoliubov transformation of the se
energy matrixSk at eachk, where the obtained quasipartic
spectrum isEk5ASk

21D2. Note that the first summation

term in Ĥdiag results from a contribution fromQ space, and
the second summation term fromP space of Sec. II A. The
rotation to Bogoliubov quasiparticles is given by the gene
canonical transformation

S âk↑

â2k↓
† D 5S cosu 2eigsinu

eigsinu cosu D S âk↑

â2k↓
† D , ~76!

where tan 2uk5uDu/Sk is the Bogoliubov transformation
angle. The quasiparticle annihilation and creation opera
are indicated byâk and âk

† . In Fig. 7 we show a typica
quasiparticle energy spectrum for6Li versus the single-
particle kinetic energy, at a magnetic field ofB5900 G and
a temperature ofT50.01TF . The figure demonstrates ho
well the renormalizing equations~32!–~36! work in obtain-
ing a cutoff-independent energy spectrum. This is import
because it implies that all the thermodynamics that foll
will also becutoff independent.

For the stationary solution the grand potential, or equi
lently, the free energy, has indeed a minimum. This follo
easily from setting the partial derivative of the grand pote
tial with respect tof i to zero:]FG /]f i50. This gives the
solution
05361
w

-

s

l

rs

t

-
s
-

f i52
ḡip

n̄ i2mm

, ~77!

which is also the stationary solution of Eq.~67!. This equal-
ity is very useful because we can effectively eliminate t
molecular field from the equations. The quasiparticle sta
are now populated according to the Fermi-Dirac distribut
nk5@exp(Ek /kbT)11#21. The mean fields are then dete
mined by integrating the equilibrium single-particle dens
matrix elements given by

n5
1

~2p!2E0

K

dk @~2nk21!cos 2uk11#, ~78!

p5
1

~2p!2E0

K

dk ~2nk21!sin 2uk . ~79!

Sinceuk depends onn and p, these equations require sel
consistent solutions that are found from a numerical itera
method.

In Fig. 8 we show a plot of the chemical potential as
function of temperature, for the case of6Li in a homoge-
neous gas, at a magnetic field ofB5900 G. Figure 9 shows
the ratio of the critical temperatureTc to the Fermi tempera-
ture TF as a function of detuning. It clearly shows that the
is a limiting value ofTc of about 0.5TF , similar to the value
that has been predicted for40K in Ref. @23#. The BCS result
for the critical temperature, given by the formula

Tc

TF
;expF2

p

2uaukF
G , ~80!

FIG. 7. Two overlapping quasiparticle energy spectra as a fu
tion of single-particle kinetic energyE5\2k2/(2m). The total den-
sity of the gas isn51014 cm23, the magnetic field isB5900 G,
and the temperature isT50.01TF . The energy spectrum is calcu
lated for two different values of the cutoff; i.e.,K532kF and K
564kF . The fact that the two lines are overlapping to the exte
that the difference is difficult to see shows the renormalization
practice, demonstrating the validity of Eqs.~32!–~36!.
7-11
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has been plotted in the same graph for comparison. The B
line gives a curve forTc higher than the resonance theor
since it does not contain the energy dependence of thT
matrix. The absolute value of the scattering length in t
magnetic field range is always larger than 2000a0, which
implies that kFuau.1—a clear indication that the BCS
theory breaks down in this regime.

So far, our calculation has been done for a homogene
gas. We will also present results for a trapped lithium gas
a harmonic oscillator potentialV(r) with a total number of
N553105 atoms, similar to what we presented for40K in
Ref. @24#. We treat the inhomogeneity by making use of t
semiclassical local-density approximation, which involv
mainly the replacement of the chemical potential by a s
tially dependent versionm(r)5m2V(r). The thermody-
namic equations for the homogeneous system are then so
at each point in space@24#. As a result, we obtain a spatiall
dependent density distribution. At zero temperature, fo

FIG. 8. Chemical potential as a function of temperature, fo
magnetic field ofB5900 G for 6Li.

FIG. 9. Dependence of critical temperature on magnetic field
6Li, for a total density ofn51014 cm23 ~solid line!. The dashed
line is, for comparison, the prediction of the regular BCS theor
05361
S

s
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n
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a

nonsuperfluid system, this gives the well-known Thom
Fermi solution. For a resonance system, however, a den
bulge appears in the center of the trap, which is caused
change in compressibility when a superfluid is present. T
is shown in Fig. 10, for a spherical trap with a trap const
of v52p3500 s21. This bulge is a signature of superflu
idity and could experimentally be seen by fitting the dens
distribution in the outer wings to a nonresonant system,
thus obtaining an excess density in the middle of the tr
For a discussion of the abrupt change in the compressibi
see Ref.@24#.

V. FLUCTUATIONS IN THE MEAN FIELDS
AND CROSSOVER MODEL

In this section we make some comments on the conn
tion between the resonance superfluidity theory we have
sented and related mean-field approaches to discuss
crossover of superconductivity from weak to strong co
pling. In the mean-field theory of BEC, most often reflect
in the literature by the Gross-Pitaevskii equation or fini
temperature derivatives, a small parameter is derived to
tify the application of the theory. This parameter,Ana3 @6#,
may be obtained from a study of higher-order corrections
the quasiparticle energy spectrum. It has been suggested
for a fermi system that exhibits superfluidity the small p
rameter is given by a power ofkFa, and that the BCS theory
breaks down when this parameter approaches unity. H
ever, the small parameter in the theory of resonance su
fluidity cannot be simply a function of the scattering leng
for detunings close to resonance. This can already be s
from the energy dependence of theT matrix, which shows
that around the Fermi energy, theT matrix may have an

a

r

FIG. 10. Density profile for a gas of6Li atoms ~solid line!,
evenly distributed among the two lowest hyperfine states. The t
perature isT50.2TF at a magnetic field ofB5900 G. The trap
constant isv52p3500 s21, and we have a total numberN55
3105 atoms. We compare this with a profile resulting from t
samem ~but for different total numberN), where artificially no
superfluid is present by setting the pairing fieldp equal to zero
~dashed line!.
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absolute value much smaller than at zero energy where
scattering length is defined. Moreover, even right on re
nance whenn50 and the scattering length passes throu
infinity, the T matrix remains well behaved.

Instead of calculating the small parameter of this syste
we choose a different approach based on crossover mo
between BCS and BEC, formulated by Nozie`res and
Schmitt-Rink @33#, and later expanded upon by Rande
@34#. In the regular BCS theory for weakly coupled syste
the value of the critical temperature is given by the expon
tial dependence in Eq.~80!, but for strongly coupled system
this model results in a logarithmically divergent predicti
for Tc . The parameter (kFa)21 is usually taken to describ
the crossover from the weak-coupling Bose limit@(kFa)21

→2`# to the strong-coupling@(kFa)21→1`# BEC limit.
The unphysical divergence inTc occurs because the proce
that dominates the transition in the weak-coupling regime
the dissociation of pairs of fermions. For a strongly coup
system, however, the fermions are so tightly bound that
wave functions of pairs of atoms begin to overlap, and
onset of coherence is signaled by excitations of the c
densed state, which occurs at a temperature well below
dissociation temperature of the Cooper pairs. Thus, w
moving from weak to strong coupling, the nature of the tra
sition changes from a BCS- to a BEC-type mechanism.
explicit inclusion of the process of molecule formation, ch
acterized by the detuning, resonance width, and reson
position, will allow us to move from one regime to the oth

The lowest-order correction that connects between B
and BEC-type superconductivities can be made by augm
ing the density equation to account for the formation of pa
of atoms. This is done by using the thermodynamic num
equationN52]FG /]m, with FG the total thermodynamic
grand potential

FG5FG
0 2kbTSq,iql

ln G~q,iql !. ~81!

The termFG
0 is a grand potential that does not include t

quasibound molecules and results from regular BCS the
Retaining only this term yields a theory that can only a
count for the free and scattered fermionic atoms that cont
ute to the fermion density, therefore the theory breaks do
if a sizeable number of bound states are formed. In the
treme limit of strong coupling,FG

0 becomes negligible and
Eq. ~81! just reduces to the thermodynamic potential of
ideal Bose gas. In this regime, the theory predicts the for
tion of a condensate of molecules below the BEC transit
temperature.

The functionG(q,iql), which is a function of momentum
q and thermal frequenciesiql , is mostly negligible for a
weakly coupled system and has little effect on the value
Tc in this regime. It allows for the inclusion of the lowe
contributing order of quantum fluctuations@33,34# by means
of a general inclusion of mechanisms for molecular pair f
mation. In the resonance superfluidity model, a similar te
is present due to the formation of bosonic molecular bou
statesf i , and prevents the critical temperature from dive
ing. When the coupling increases, the formation of molecu
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adds significantly to the total density equation in both t
crossover models of superconductivity and in the theory
have presented here. Moreover, the inclusion of the mole
lar term allows for a smooth interpolation between the B
and BEC limits. This is clearly a substantial topic in its ow
right, and will be addressed further in a future publicati
@35#.

VI. CONCLUSIONS

We have shown that it is possible to derive a mean-fi
theory of resonance superfluidity, which can be applied
ultracold Fermi gases such as6Li and 40K. The Hamiltonian
we use treats the resonant states explicitly, and automatic
builds the coupled scattering equations into the many-b
theory. With a study of analytical scattering we have sho
that these scattering equations can completely reprodu
full coupled-channels calculation for the relevant energy
gime. The energy dependence of thes-wave phase shifts can
be described by a small set of parameters that correspon
physical properties, such as the nonresonant backgro
value of the scattering length, and the widths and detuni
of the Feshbach resonances. Close to resonance, we pre
large relative value of 0.5TF for the critical temperature. The
particular resonance under study for6Li occurs in the
(1/2,1/2)1(1/2,21/2) collision channel, and has its peak
B05844 G, and a width of aboutDB'185 G@10,11#. This
large width translates into a large magnetic field range wh
the critical temperature is within a factor of 2 from its pe
value. This range is, for comparison, much larger than
40K. For 6Li there are also two other Feshbach resonanc
one in the (1/2,1/2)1(3/2,23/2) state, as also noted b
O’Hara et al. @36#, and another in the (1/2,21/2)1(3/2,
23/2) state. They result from coupling to the same sing
bound state, and occur at field values of aboutB05823 G
and B05705 G, and have a similar width to the (1/2,1/2
1(1/2,21/2) resonance. The disadvantage of these re
nances, however, is that the atoms in these channels s
from dipolar losses, which are also resonantly enhanc
Three-body interactions will be largely suppressed,
asymptoticp-wave collisions will give very little contribu-
tion in the temperature regime considered~an s-wave colli-
sion is always forbidden for at least one of the pairs!. From a
study of crossover models between BCS and BEC we find
indication of breakdown effects of the applied mean-fie
theory.
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