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Resonance superfluidity: Renormalization of resonance scattering theory
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We derive a theory of superfluidity for a dilute Fermi gas that is valid when scattering resonances are
present. The treatment of a resonance in many-body atomic physics requires a novel mean-field approach
starting from an unconventional microscopic Hamiltonian. The mean-field equations incorporate the micro-
scopic scattering physics, and the solutions to these equations reproduce the energy-dependent scattering
properties. This theory describes the highbehavior of the system, and predicts a valueTgfthat is a
significant fraction of the Fermi temperature. It is shown that this mean-field approach does not break down for
typical experimental circumstances, even at detunings close to resonance. As an example of the application of
our theory, we investigate the feasibility for achieving superfluidity in an ultracold gas of fernfibhic
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[. INTRODUCTION treatment of strongly interacting fermionic systems where
higher-order correlations must be treated explicitly.

The remarkable accomplishment of reaching the regime In this paper, we show that an unconventional mean-field
of quantum degeneradyl] in a variety of ultracold atomic theory can still be appropriately exploited under the condi-
gases enabled the examination of superfluid phenomena int@n that the characteristic randge of the potential is such
diverse range of novel quantum systems. Already many etthatnR®<1 (while na®=1). The core issue is that around a
ementary aspects of superfluid phenomena have been ofgsonance, the cross section becomes strongly dependent on
served in bosonic systems including vorti¢@$. The chal-  the scattering energy. This occurs when either a bound state
lenge of achieving superfluidity in a Fermi gas remains lies just below threshold, or when a quasibound state lies just
however, although it appears possible that this situation magibove the edge of the collision continuum. In both cases, the
change in the near future. A number of candidate systems f@cattering length—evaluated by considering the zero-energy
realizing superfluidity in a fermionic gas appear very prom-limit of the scattering phase shift—does not characterize the
ising and it is currently the goal of several experimental ef-full scattering physics over the complete energy range of
forts to get into the required regime to observe the superfluidhterest, even when in practice this may cover a range of only
phase transition. So far both fermionic potassi(8h and a few microkelvin.
lithium [4,5] have been cooled to the microkelvin regime and  The paper is outlined as follows. In Sec. Il, we present a
are well below the Fermi temperature by now—a precursosystematic derivation of the renormalized potentials for an
step for superfluidity. effective many-body Hamiltonian. This requires a detailed

In order to make the superfluid phase transition experianalysis of coupled-channels scattering. In Sec. Ill, we de-
mentally accessible, it will likely be necessary to utilize therive the resonance mean-field theory. In Sec. IV, we present
rich internal hyperfine structure of atomic collisions. Scatter-the thermodynamic solutions allowing for resonance super-
ing resonances, in particular, may prove to be extremely imfluidity. We apply our theory to the specific case &fi and
portant since they potentially allow a significant enhance-determine the critical temperature for the superfluid phase
ment of the strength of the atomic interactions. It istransition. In Sec. V, we consider the validity of the mean-
anticipated that by utilizing such a scattering resonance onteld approach in the case of resonance coupling, and estab-
may dramatically increase the critical temperature at whicHish the equivalence with previous diagrammatic calculations
the system becomes unstable towards the formation of Co®f the crossover regime between fermionic and bosonic su-
per pairs, thus bringing the critical temperature into the ex{perconductivity.
perimentally accessible regime.

In spite of its promise, this situation poses a number of
fundamental theoretical problems that must be addressed in
order to provide an adequate minimal description of the criti- The position of the last bound state in the interatomic
cal behavior. The scope of the complexities that arise innteraction potentials generally has a crucial effect on the
treating a scattering resonance can be seen by examining tBeattering properties. In a single-channel system, the scatter-
convergence of the quantum kinetic perturbation theory ofng process becomes resonant when a bound state is close to
the dilute gas. In this theory the small parameter is known aghreshold. In a multichannel system the incoming channel
the gaseous parameter, defined/as®, wheren is the par- (which is always openmay be coupled during the collision
ticle density anda is the scattering length. Formally, when to other open or closed channels corresponding to different
the scattering length is increased to the value at whigh  spin configurations. When a bound state in a closed channel
~1, conventional perturbation theory breaks do{#7]. lies near the zero of the collision energy continuum, a Fesh-
This situation is commonly associated with the theoreticabach resonandeé] may occur, giving rise to scattering prop-

II. TWO-BODY RESONANCE SCATTERING
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FIG. 1. Scattering length as a function of magnetic field, for the  FIG. 2. Sequence of theoretical steps involved in formulating a
(f,mg)=(1/2,~1/2) and (1/2,1/2) mixed spin channel &fi. renormalized scattering model of resonance physics for low-energy
scattering. The starting point is a full coupled-chanr€l€) calcu-
erties that are tunable by an external magnetic field. Theation that leads us via an equivalent Feshbach theory, and an ana-
tuning dependence arises from the magnetic moment diffeilytic coupled square-well theory, to a contact potential scattering
enceA u™ between the open and closed chanfi@lsThis  theory that gives the renormalized equations for the resonance
gives rise to a characteristic dispersive behavior of thesystem.
s-wave scattering length at fields close to resonance given by
Only the exact interatomic interaction will reproduce the
AB full T matrix over all energy scales. However, since only
- B——Bo> (D collision energies in the ultracold regim@f order mi-
crokelvin are relevant, a much simpler description is pos-

where a, is the background value that may itself depend_Sible- If the scattering Ieng_th does not cpmpletely character-
weakly on magnetic field. The field width of the resonance is2€ the low-energy scattering behavior in the presence of a

given by AB, and the bound state crosses threshold at &£Sonance, what is the minimal set of parameters that will

field-value By,. Th_e field detuning can be converted into an O?As llustrated in Fig. 2, we proceed to systematically re-
i i — _ mag . 2,
gzz:gyled%[fugwgﬁ gyréggn;enlggogy i\EeBn iEO)F?M 1 : v'\?hnere solve this question by the following steps. We start from a
P . 159 9- L ® Aumerical solution of the complete coupled-channels scatter-
coupled-channels calculation is shown of the scatterin

length of bLi for collisions between atoms in thef fm,) Qng problem for a given real physical system. In Sec. Il Awe

demonstrate that the results of these full numerical calcula-
_(.1/ 2,~1/2) and (1/2,1/2) statg40]. Thg background €@t ions can be adequately replicated by giving an analytic de-
tering length changes slowly as a function of magnetic fiel

4 Y cription of resonance scattering provided by Feshbach’s
due to a field-dependent mixing of a second resonance th?ésonance theory. The point of this connection is to demon-

comes f.“’"? the triplet potential. This ﬂ.J” COUpIed'Channelsstrate that only a few parameters are necessary to account for
calculation includes the state-of-the-art interatomic potentlal§leI the collision properties. This implies that the scattering
[11] and the complete internal hyperfine structi8]. model is not unique. There are many microscopic models

i ghe S'Eatt.ert'ing Iﬁngth_ istrc:;?en used .in me_lrr%y-tb?hdy thetory[hat could be described by the same Feshbach theory. In Sec.
0 describe Interactions In trewave regime. 1hat the scat- | g \ye show this explicitly by presenting a simple double-

tering length completely en(_:apsulgt_es the coIIisi(_)n phySiC.%vell model for which analytic solutions are accessible.
over relevant energy_scales is implicitly assumeo_l in the derl=I'hereby we derive a limiting model in which the range of the
;’ﬁt'on Off thg conventt|ona| ﬁ;dfgn—Coopﬁlr—Sctmeﬂ%ES) square well potentials and coupling matrix elements are

eory for degenerate gasgss, 1o, as Well as the LroSs- ayan to zero. This leads in Sec. 11 C to a scattering model of

Pitaevskii description of Bose-Einstein condensates, HOWE o ntact potentials. We show that such a scattering solution is

ever, the s_catterlﬂg Ier:r?th is only ?tu.sefm r::oncep;]tl In theable to reproduce well the results of the intricate full numeri-
energy regime where thewave scattering phase shif, cal model we began with. The utility of this result is that, as

depends linearly on the wave numtl?e_i.e.,50= —ka. Fora Nill be apparent later, it greatly simplifies the many-body
Feshbach resonance system at a finite temperature there Willaoretic description

always be a magnetic field value where this approximation

breaks down and the scattering properties become strongly
energy dependent. In close proximity to a resonance, the
scattering process then has to be treated by means of the Here we briefly describe the Feshbach resonance formal-
energy-dependent matrix. ism and derive the elast@matrices and” matrices for two-

1

a= abg

A. Feshbach resonance theory
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body scattering. These matrices are related to the transitioftand side becomes tf#Ematrix for the total scattering pro-
probabilities for scattering from an initial channeto a final  cess. The unscattered state is related to the scattering wave
channelB. A more detailed treatment of this formalism can fynction | ¢2—> with incoming boundary conditions via
be found in the literaturg8].

In Feshbach resonance theory two projection operdors v
and Q are introduced, which project onto the subspaPes |¢Z*>=|Xﬁ>+ —|xp)- 8)
and Q. These subspaces are two orthogonal components that E™—Hpp
together span the full Hilbert space of both scattering and
bound wave functions. The open and closed channels afEhe 7 matrix giving the transition amplitude is then
contained inP and Q, respectively. The operato and Q
split the Schrdinger equation for the two-body problem into (05 Hpol &) {#i|HoplF)
two parts: EQITZJZ Ee )

I
(E—Hpp)|[¢)=Hpql 49, @ . . .
WhereT;a is the amplitude for the dire¢honresonantpro-
(E—Hoo)| ¢ =Hgp| 4", (3)  cess. From th@ matrix we can easily go to th@matrix that
is defined asS;,= (/| #). Since we consides-wave scat-
where Hpp=PHP, Hpo=PHQ, etc., andy is the total tering only, in our case there exists a simple relation between
scattering wave function. The projections on the two subthe S matrix and7 matrix: Sz, = 1—2i 75, [16], and this

spaces are indicated W3] (ﬂ>=|lﬂp> and Q|¢>=|¢Q> The  allows us to rewrite Eq(9) as
HamiltonianH=Hy+V consists of the sum of the single-

particle interactionsH, and the two-body interactiotV. 27 (4 [Hpol i) dilHopl ¥7)
Equation(3) can be formally solved Spa=Sha— 2 S5, z PQE_'E et
Y i i
N (10
|9 = ————Hqpl "), (4) b _ _ .
E"—Hgo The nonresonant factorS,, describe the direct scattering

. ] ] ] - process from an open channglto the outgoing channes.
where E"=E+i5 with & approaching zero from positive Returning to Eq.(7), we can solve for the component
values. Substituting this result into E@), the open channels ($i|Hop|¢/?) by multiplying both sides with{¢|Hgp.
equation can be written a& ¢ Hg)|47)=0, where

1. Single resonance

Her=HpptHpo— Hop. (5 For the case of only one resonant bound state and only
E"—Hqq one open channel, the solution of E@) gives rise to the
llowing elastic Smatrix element(we will omit now the

. . , f
The resolvant operator is now expanded in the discrete anﬁicoming channel labek):

continuum eigenstates éfqq:

HormHopt S Tpal @)(¢ilHor ool g 2T Hedl )l
eff — PP . —
i E—¢ E—€1_<¢1|HQPWHPQ|¢1>
+f HPQ|¢(6)><¢(6)|HQPd6. © op w
Et—e

The nonresonarfs matrix is related to the background scat-
Here theei 's are the uncoupled bound-state eigenvalues. |ﬂering |ength \/igSP:eXn:—Zikabg]_ The term in the numera-
practice, only a few bound states will significantly affect thetor gives rise to the energy width of the resonante,
ohpen—channel prgpertées. In thisdpapeT, WehWi|| consider ei—:2W|<¢P+|HPQ| #1)|?, which is proportional to the incom-
ther one or two bound states and neglect the continuum ex: ; ey
pansion in Eq(6). Then the formal solution fdrs®) is given )fng vave numberk and cou_plmg_ constang, [17]. The
bracket in the denominator gives rise to a shift of the bound-

by state energy, and to an additional width taiii2. When we
b denote the energy shift between the collision continuum and
1 D Hpol #i){(#ilHapl¥") —

the bound state by,, and represent the kinetic energy sim-

P\ _|,,P+
W) =1+ 2

T —Hpp E-e ply by 72k?/m, the Smatrix element can be rewritten as
(7)
it _ o . . 2ik|g,|?
where|y., ") is the eigenstate of the direct interactibipp S(k)=e 2ikang 1—
. . .. . _ 47Th2 . h2k2 - .
that satisfies the outgoing wave boundary condition in chan B B +ik[g)?
nel «. By multiplying from the left with(x |V, where|x 5) m "1 m 91
is an unscattered state in the outgoing chamethe left- (12
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The resulting total scattering length has exactly the samaition for T in the many-body theory will be slightly different
dispersive line shape for the resonant scattering length as wme order to give it the conventional dimensions of energy per

have presented originally as E(d). unit density:
2. Double resonance 2mh?i
: T(k)= [S(k)—1]. (19
Often more than one resonance may need to be consid- mk
ered. For example, the scattering properties for the (1/2,
—1/2)+(1/2,1/2) channel ofLi are dominated by a combi- B. Coupled square-well scattering

nation of two resonances: a triplet potential resonance and a ) ) )

Feshbach resonance. This can be clearly seen from Fig. 1, In this subsection we describe the coupled-channels ex-
where the residual scattering length, which would arise in thdénsion of a textbook single-channel square-well scattering
absence of the Feshbach resonance coupling, would be Vepspoblem. One reason that tr.us. model is interesting to study is
large and negative and vary with magnetic field. This can b&ecause we can take the limit of the potential raRge0,
compared with the value of the nonresonant backgrounéUs giving an explicit representation of a set of coupted
scattering length for the triplet potential for Li that is only function potentials that simplifies the description in the
31a,, which is an accurate measure of the characteristi€@ny-body problem to follow.

range of this potential. An adequate scattering model for this The scattering equations for such a coupled system are
system therefore requires inclusion of both bound-state resd¥ritten as

nances. Since fofLi the coupling between these two bound 52

states is small, it will be neglected in the doublg—resgnance Ezﬂp(r)=[— —V,2+Vp(r)}¢P(r)+g(r)¢Q(r), (16)
model presented here. The double-resonadogatrix, with m

again only one open channel, follows then from Ed)) and

includes a summation over two bound states. After solving h?
Qry=| — —v? Q Q P
for the two components ¢;|Hop|#") of wave function Ey (r)—[ S VEEVED eyt gt (nygh(n),
|¢™), the S matrix can be written as (17)
2ik(|g1|2A,+[g,l2A 1) with e being the energy shift of the closed channel with

S(k) — e_2ikabg 1—

respect to the collision continuum afit=72k?/m the rela-
tive kinetic energy of the two colliding particles in the
center-of-mass frame. The coupled square-well model encap-
. — — — sulates the general properties of two-body alkali interactions.
with Ay=(vy—%?k*/m)4mh%/m, wherev, andg, are the  There we can divide the internuclear separation into two re-
detuning and coupling strengths for state 1. Equivalent defigions: the inner region where the exchange interactibe
nitions are used for state 2. Later we will show that thisgitference between the singlet and triplet poteni@smuch
simple analytic Feshbach scattering model mimics thearger than the hyperfine splitting, and the outer region where
coupled-channels calculation 8ti. The parameters of this the hyperfine interaction dominates. Here we make a similar
model, which are related to the positions and widths of thejjstinction for the coupled square wells. In analogy to the
last bound states, can be directly found from a plot of theeg| singlet and triplet potentials, we use for the inner region
scattering length versus magnetic field as given, for examplawo artificial square-well potentials labeledgandV,. We

by Fig. 1. The scattering length behavior should be reprotgke the couplingy(r) to be constant over the range of the
duced by the analytic expression for the scattering lengtkquare-well potentials<R, and to be zero outside this range

ik(|g1|24,+]921%A1) —A4A,
13

following from Eg. (13): (see Fig. 3. Then the problem can be simply solved by
- o means of basis rotations at the bound&Hygiving rise to
m [|g:? |g,)? simple analytic expressions. For R, we therefore consider
a=apg— dh2 ;1 + 72 . (14 one open channel and one closed channel, with wave num-

berskp andkq . In analogy with a real physical system, we
can refer to the inner range channels<R) as a molecular

The advantage of a double pole over a single-fbiaatrix basis, and the channel wave functions are just linear combi-

parametrization is that we can account for the interplay behations of theu, andu, wave functions. At the boundar,

tween a potential resonance and a Feshbach resonan¢face wave functions have accumulated a phase k,R
which in principle can radically change the scattering prop- !

. o . . L and ¢,=k,R. The coupling strength is effectively given by
ert|6es_. Th's mtgrplay is not only important for_the descrlptlonthe basis-rotation angle for the scattering wave functions:
of °Li interactions, but also for other atomic systems that

have an almost resonant triplet potential, such as bosonic o
133cs [18,19] and &Rb [20] ( Up(R) _ ( cosé Sin 0) ( Ul( R) (18)
In the many-body part of this paper, Sec. Ill, the scatter- Ug(R) sing cosé | \uy(R)/’

ing properties are represented by anatrix instead of ars
matrix. We have shown in the above that in our case therallowing for an analytic solution of the scattering model.
exists a simple relation between the two, however, the defiThis leads to the following expression for t&amatrix:
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FIG. 3. lllustration of the coupled square-well system. Outer
regionr>R: the solid line corresponds to the open channel poten- -3

0.5 1 1.5 2

tial P, and the dotted line to the closed channel poter@alThe E (uK)
wave functions are given byup(r)~sinker) and ug(r)
~exp(—kgr), respectively. Inner region<R: the solid and dotted FIG. 4. Comparison of the real part of tAematrix for coupled

lines correspond to the molecular potentiddg and V,, respec-  square-well scatteringsolid line) with a potential rang&= 1a,, to
tively. The wave functions are given hy;(r)~sink;r and u,(r) Feshbach scatteringlashed ling for a detuning that yields a scat-
~sin(k,r). The dashed line corresponds to the kinetic endtgg tering length of about- 275Q. A similar, good agreement is found
the open channel. The wave vectors are definettpasmE/#, for all detunings.

ko=Vm(e—E)/#, ki=Vm(E+V,) /A, and ks,

=m(E+V,—€)/%. The detuninge can be chosen such that a strong energy dependence of thenatrix, the two scattering
bound state of square-well potentid, enters the collision con- representations agree very well.

tinuum, causing a Feshbach resonance in the open channel.

C. Contact potential scattering and renormalization
S=e"2kPR[1—{ - 2ikp(kyCOth,cOS O+ Ko In this section the Lippmann-Schwinger scattering equa-

. . tion is solved for a resonance system with contact potentials.
+k1COt i 6)}/{kpko+kyCothy (KpSirT 0~ kqcos'6) As in the preceding section, we make use of an open sub-

+ik,Cot oKy COt g +KpCOS O+ KosinP 6) }]. (19)  space that is coupled to a closed subspace. The contact po-
tentials are defined by

An extension to treat more than two coupled potentials, VE(r)=VPa(r), (20)
which would be required to model more than one resonance, 0 0
is also straightforward. VE(r)=V=4(r),
The parameters of the two wells have to be chosen such
that the results of a real scattering calculation are reproduced 9(r)=g4(r), (21)

for a given physical system. In fact, all the parameters are
completely determined from the field dependence of the scat-
tering length, and all other scattering properties, such as th
energy dependence of the scattering phase shift, can then . .
derived. First we choose a rangetypically of the order of , and g(r) is a coupling between the closed ar)d open
an interatomic potential range (14 or less. Now we have Ccnannel with strengtly. The procedure of renormalization
only to determine the set of parametats, V,, and 6. The  relates the physical unitsf,, g;, andy;) from Sec. Il Ato
potential depth/; is chosen such that the scattering length isthese parameters of the contact potential scattering model for
equal to the background scattering lengt, while keeping @ given momentum cutoff; a relationship for which we will
9=0. Also,V; should be large enough that the wave numbefOW obtain expll_C|t expressions. The first step is to solve
k, depends weakly on the scattering energy. Then, wed set dain the scattering Eqel6) and(17) for these contact po-
to be nonzero, and change the detuning until a bound staf€ntials. As we have seen in Sec. Il A, we can formally solve
crosses threshold, giving rise to a Feshbach resonance. TH bound-state equations, and make use of&do expand
value ofV, is more or less arbitrary, but we typically choose the Green_’s function in bound-state solutions. In this case it
it to be larger tharV/,. Finally, we change the value efto ~ ¢@n be written as
give the Feshbach resonance the desired width.

We will later show that the resulting scattering properties ¢iQ(r)f d3r’ p2* (r')g* (r')yP(r")
converge folR—0. In Fig. 4 the coupled square-well system ¥o(r) = 2
is compared with the Feshbach scattering theory, ‘it i E—¢ '
scattering parameters. Even despite the fact that there is a (22

here 5(r) is the three-dimensional Dirag function. Here
P(r) is the open channel potential with strength. The
ction VO(r) is a closed-channel potential with strength
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with d)iQ(_r) a bound—_state solution argl its eigengnerg_y. We . vPm
now define an amplitude for the system to be in this boundT(k)=V"— 55
state that will later be useful in the mean-field equations: 27h
#i=(#2|¢°), and together with the open channel equation

and the definitiong;(r)=g(r) ¢{°(r), we get a new set of This is a variant of the Lippmann-Schwinger equation. The

i

k
T(k)| K —arctank, + —-k +> gidi-
1
(29

scattering equations, closed-channel scattering solutions are now used to eliminate
22 42 the amplitude functionsp;. In Fourier space, Eq24) has
the form
Tev”(r):{—EV?WF’(r)}wP(rHZ gi(N i,
(29 h %K . 1 J P o) 3
S d3p. 29
e m di=vidi gi (271_)3 " (p)d°p (29
o= ¢i+f d*r g (r)yt(r). (24 After substitution of Eq(26) the expression fog; is linked

to the T matrix:

The energy difference between the bound-state energy and Ko
the threshold of the collision continuum is given by. The gl 1- m T(k)[K—arctanh—Jr '_Wk}
open channel solution for E¢23) can be formulated as 252 K 2

i h2k2
m ik|r—r'| ?— Vi
Pr): r)_ Jd3r/ [VP r/) Pr/
=X~ — prr MCRLACS 30
) Eliminating ¢; from Eq.(28) gives a complete expression for
+2i gi(r') ¢ the Lippmann-Schwinger equation
ikr Pm k i
- . . —\vP— _ —
=x(r)+£(6) = as r—o. (25 T(k)=V szﬁzT(k) K arctanhK—+ 5 k}
Here x(r) is the unscattered wave function, and in the other of, 1 m _ kK im
term we recognize the scattered part that is usually formu- l9il| 1 272 hZT(k) K arctanhK—+ 2 k
lated in terms of the scattering amplitutigd). The momen- +2 772
tum representation of this last line[ig] ! —
m
4mf(k,p) (31
yP(p)=(2m)*8(k—p)— 50— . (26)
Ke—p+id Similar to the Feshbach and coupled square-well prob-

lems, thek— 0 behavior ofT(k) should reproduce the scat-
Combining Eq.(26) with our expression for the scattering tering length, and, the result should not depend on the arbi-

amplitude we find trary momentum cutofK. For an analytic expression of the
scattering length, we conveniently use the Feshbach repre-
47h? sentation. A comparison between the latter and the expres-

52 1 f(k,p) sion for the scattering length that results from solving Eq.
- f(k,k')=VP+ VPJ BPprr—7 (31), tells us how to relate the coupling constants for contact
m (2m)?® ATk fiﬂg scattering to the Feshbach coupling constants. By making

m m use of the definitions=(1—aU) ™!, a=mK/(27°4?),
andU =47rﬁ2abg/m, we find the very concise relations

LS @ VP=TU, (32

The typica| temperature range of a system we are interestéﬁhic_h is Va||d also in the case where no resonance is present,
in will only allow for elastics-wave scattering, therefore the and in addition,
scattering amplitude has no angular dependence, and incom-

ing and outgoing wave numbers are the same, kek’. 9:=Ig;, (33
The scattering amplitude can then be simply linked toThe . o
matrix via the relatiorT (k) = — (47#2/m)f (k). The integral vi=v;+ag;0; (34)

has a principal-value part, and the integration ranges from
zero to a momentum cutofK. Equation(27) then has as for the open-channel potential and the first resonance. For
solution, the second resonance, if present, we find

053617-6



RESONANCE SUPERFLUIDITY: RENORMALIZATION . .. PHYSICAL REVIEW A5 053617

300

298f

ao)
N [\%] n
© © ©
N D [+2]
a
1 0) ]
» (]

Re([T] (Units of
Re[T] (Units of 10°

290p

|
4]

288f

288 05 1 15 2 @)
E (1K)

FIG. 5. Comparison of the real part of thematrix for coupled
square-well scattering for three different values of the potential
range:R=100g, (dash-dotted ling R=30a, (dashed ling andR
=1a, (solid line). The interaction parameters f8PK have been
used here, and the magnetic field is chosen such that a scatterin _
length of a=3008, is obtained. Also plotted is th& matrix for m“°-1 [
contact scattering, which clearly agrees very well as it coincides 2

with the solid line of the double-well scattering. E
_ 5
92 E
=== "7, (39  E7
2 aai/ v+t
vy= v+ agy0;. (36)
Obviously, our approach can be systematically extended fur- =3 0.2 04 0.6 0.8 1
ther, order by order, to give an arbitrarily accurate represen- E (uK)

tation of the microscopic scattering physics. ®)

These expressions we refer to as the renormalizing equa- F|G. 6. (a) Real part of theT matrix as a function of collision
tions of the resonance theory since they remove the ultravicenergy, for the Feshbach model and the cutoff madeérlapping
let divergence that would otherwise appear in the field equasolid lines, and for a coupled-channels calculatit@ashed ling
tions. Any many-body theory based on contact scatteringhe atomic species considered ki, for atoms colliding in the
around a Feshbach resonance will need to apply these et/2,—1/2)+(1/2,1/2) channel(b) Same aga) for the imaginary
pressions in order to renormalize the theory. These equatiomnsirt.
(32)—(36) therefore represent one of the major results of this
paper. imaginary parts of th& matrix applied to the case diLi,

In Fig. 5 theT matrix as a function of energy is shown for and compare the cutoff and Feshbach scattering representa-
contact scattering, in comparison with the square-well scattions to a full coupled-channels calculation. The agreement is
tering for different values of the potential range. The contactSUrprisingly good, and holds basically for all magnetic fields

scattering model is demonstrated to be the limiting case ofi-€., similar agreement is found at all detunings
the coupled square-well system whenr-0. In this section we have discovered a remarkable fact that

even a complex system including internal structure and reso-
nances can be simply described with contact potentials and a
few coupling parameters. This was known for off resonance
In Sec. Il C it has been shown that the resonance contasicattering where only a single parameighe scattering
scattering representation is the limiting case of the coupletength is required to encapsulate the collision physics at a
square-well system, when the range of the potentials is takevery low temperature. However, to our knowledge this has
to zero. Also, in Sec. Il B it has been shown that the doublenot been pointed out before for the resonance system, where
well system is in good agreement with the Feshbach scattean analogous parameter set is required to describe a system
ing theory. Now we will show how well these scattering where the scattering length may even pass through infinity.
representations agree with the full numerical couplediWe have shown in a very concise set of formulas on how to
channels calculatiof10]. In Fig. 6 we show the real and derive the resonance parameters associated with contact po-

D. Discussion of different models
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tentials. This result is important for the incorporation of thekinetic and potential energies in the presence of external
two-body scattering in a many-body system, as we will showtraps, which is measured relative to the energgf a coro-
later in this paper. tating reference system. Thus, we define

Other papers have also proposed a simple scattering

model to reproduce coupled-channels calculat[@is22]. In h?

these papers real potentials are used, and they give a fair Ho(X)=~ ﬁVZJFV"(X)_'““' (39)
agreement. Here, however, we use models that need input

from a coupled-channels calculation to give information 2

about the positions of the bound states and the coupling to HM(x)=— WV2+V{T‘(X)+ Vi— M- (40)

the closed channels. All this information can be extracted
from a plot of the scattering length as a function of magneti

field %Here, m denotes the atomic mass as used previougly,

=2m is the molecular masg;,,=2u is the energy offset of
the molecules with respect to the reference systép{x)
IIl. MANY-BODY RESONANCE SCATTERING are external spin-dependent atomic trapping potentials, and

We will now proceed to a many-body description of reso-Vi'(x) are the external molecular trapping potentials. The
nance superfluidity and connect it to our theory of the two-molecular single-particle energy has an additional energy
body scattering problem described earlier. This section exterm »; that accounts for the detuning of the molecular state
plains in detail the similar approach in our papers devoted td relative to the threshold of the collision continuum.
resonance superfluidity in potassiui23,24. The general The binary interaction potentiad”(x,—x,) accounts for
methods of nonequilibrium dynamics has been described ifh€ nonresonant interaction of spin-up and spin-down fermi-
Ref. [25] and we have applied them in the context of con-Ons, and coupling potentiafs(x; —xz) convert free fermi-
densed bosonic field26,27). onic particles into bound bosonic molecular excitations.

In the |anguage of second quantization, we describe thghUS, we find for the total system Hamiltonian of the atomic
many-body system with fermionic fields,(x) that remove ~and molecular fields,
a single fermionic particle from positior in internal elec- . oA
tronic statec, and molecular bosonic fields;(x) that anni- H=Ho+Hy, (41)
hilate a composite-bound two-particle excitation from space - . . T
poi_ntx in ?ntgrnal_configuratiorip.) Thes_e fi_eld operators aF|)1_d }/iv:ee(;ea;he freerl, and interaction contributions, are de-
their adjoints satisfy the usual fermionic anticommutation
rules

. . Fio:f d12 JHDH,(1) (D)
{05, (X0), 105, (X2)} = 8(X1 = X2) 85, = O12, v

{We,(X0), 0, (X2)} =0, (37) + f 12, $l(DHM(D (D), (42)
and bosonic commutation rules

T ot ot Pr1_ 9\ iy
[1,(x0), 3] (X2) 1= 8(x1—X) 8 1, = b1z, i f dldz{%(lwz)v =292

|

respectively. Here and in the following discussion, we will (43

also try to simplify the notational complexity by adopting the

notation convention of many-particle physics. This meansHere, H.c. denotes the Hermitian conjugate. In the present
we will identify the complete set of quantum numbers picture, we deliberately neglect the interactions among the
uniquely by its subscript index, i.{x;,o4}=1. If only the molecules. Several other papers have treated a Feshbach
position coordinate is involved, we will use boldfacg=2. ~ resonance in a related w§98-31.

In the double-resonance case of lithium, we have to distin- In order to derive dynamical Hartree-Fock-Bogoliubov
guish only two internal atomic configurations for the free (HFB) equations from this Hamiltonian, we also need to de-
fermionic single-particle states={7,|} and we need at fine a generalized density matrix to describe the state of the

most two indicesi={1,2 to differentiate between the fermionic system[32] and an expectation value for the
bosonic molecular resonances. bosonic molecular field. The elements of th& 4 density

The dynamics of the multicomponent gas is governed bynatrix g are given by
a total system Hamiltoniafl =Hq+H;, which consists of

- - ~of 142 A -
[1,00), i, (2)1=0, (39 +2 [¢?(7)9?(1—2)%(2)%(1)+H.c.

A - =(AT A
the free-evolution Hamiltoniam, and the interactionsl, Gpal(12)= (Aq(x2) Ap(x0)), (44)
between atoms and molecules. We assume that the free dy- A - R at, Atz
namics of the atoms and molecules is determined by their A)=[1(), 1 (X), h1(X), b ()], (45

053617-8
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and symmetry-broken molecular fields are defined as d 1+2
iﬁa¢i(3)=H{“(3) ¢i(3)+f did2 5(7—3)
$i(1)=(i(x0))- (46) .
X g7 (1-2)Gp(12). (52
As usual, we define the quantum averages of an arbitrar
operatorO with respect to a many-body density matyby particle Hamiltonians of Eq42). In complete analogy to the

(O)=Tr[Op], and we calculate higher-order correlation generajized density matrix, it has a simple 4 structure
functions by a Gaussian factorization approximation known

lgirst, the free-evolutioit.° is obviously related to the single-

as Wick’s theoren{32]. The structure of the 44 density 50 3%(12) 0
trix, 12)= , 53
matrix (12 0 3012 (53
G(12)= Gn(12) Ga(12) (47 which can be factorized into22 submatrices as
—Ga(12)* 1 X 85— G\(12)* )]
0 H(1) 0
is very simple, if one recognizes that it is formed out of a 3M12)= 61, 0 H, (1) : (54)

2X 2 single-particle density matrigy, a pair correlation
matrix G, and obviously the vacuum fluctuatiods,. The  Second, one obtains from the interaction Hamiltonian of Eq.
single-particle submatrix is given by (43) the first-order self-energy® as

331412 3112 )

Gai(12)  Gn(12)
) ’ -3h(12*  —3j(12* 9

Y(12=
Gu(2D%  Gny(12) “9 > (12 (

On(12)= (
~ ~ . . l
where gn(r(12)2<l//j;(x2) J.(xy)) is the density of spin-up The normal potential matri®. ) has the usual structure of

. . N A direct contributions[i.e., local Hartree potentials propor-
i _/ot . : ' X
and spin-down particles andm(12) . wl(XZ)."bT(.Xl),? de tional to 8;,] and exchange ternge., nonlocal Fock poten-
notes a cross-level coherence, or “magnetization” betwee

. . Prq__ .
the states. The pair-correlation submatidd is defined Rals proportional tov*(1-2)J
analogously as 0120n(44) —514§m(12))

1 _ P _
EWZ)‘J a2 4)<—514gm<21>* ouki49) |
56

Ga1(12)  Gp(12)

912=| _g 21 G, (12)°

(49)
The zeros that appear in the diagonal of the anomalous cou-

where Gap(12) = (%, (X0) #,(x1)) is an anomalous pairing PliNg matrix

field within the same level and the usual cross-level pairing 0 A(12)
field of BCS theory is defined here agj,(12 zi‘(lz):( A(21 0 ) (57)
= (X2) 1 (X1)). (2D
reflect the fact that there is no low-energgWave interac-
A. General dynamic Hartree-Fock-Bogoliubov equations tion between same spin particles due to the Pauli exclusion
of motion principle. The off-diagonal element defines a gap function as
From these physical assumptions about the system’s 142
Hamiltonian Eq.(41) and the postulated mean fields of A(12)=VP(1-2) gp(12)+2 0i(1-2) ¢ _)
Eq. (46) andg of Eq. (47), one can now derive kinetic equa- [ 2
tions for the expectation valugg®)) for an operatoi® by a (58)

systematic application of Heisenberg's equation
q B. The homogeneous limit and the contact potential
i% a@: [(“9' I:l], (50) approximation
In this section, we will apply the general HFB equations
of motion[Eq. (51)] to the case of a spatially homogeneous

. o . . _._isotropic system. Furthermore, we will approximate the
The first-order kinetic equation for the Hermitian dens'tyfinite-range interaction potentiaIS/P(xl—xz) and g;(x,
I

mat|r|>:.g h:_;\s :jh? gef!er%' fé)rm o:'a cqtmmutaﬁ)r and the I'T.e'— X,) by the contact approximation as introduced in £§),
cevo u0|on '13 etermined by a hermitian Seli-energy matfiXang- assume equal populations for spin-up and spin-down
3 =3"+3" In general, one finds atoms

Spatial homogeneity implies that a physical system is

., d _ translationally invariant. Thus, any single-particle field must
'hﬁg(m)_f d2[2(12) (23 - G(12)2(23)], (5Y) be constant in space and any two-particle quantity or pair-

and Wick’s theorem.
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correlation function can depend on the coordinate difference . d
only: 17 :Gn(1) =0, (65
di(X)=¢i(0)=¢;, (59 g )
G(X1,%2) = G(X1 = X2) = G(1). (60) iﬁﬁgp(r): —EVE—ZM-I—VP(r) gp(r)+2i gi(r) i,

This assumption implies also that there can be no external (66)
trapping potentials present, i.e/,(x)=V["(x)=0, as this q
would break the translational symmetry. a4 -

Furthermore, we want to consider a special situation Iﬁdtqs' (vi~ sm) ¢it07 Gol(0). (67)

where there is no population difference in spin-up and spin-

down particlesG,(r =|r|)=Gy,,(r), there exists no cross-  The scattering solution of Eq&6) and (67) is “summa-
level coherence or “magnetizationG,,(r)=0, and the rized” by the energy-dependent two-bodymatrix, which
anomalous pairing field,(r)=0. It is important to note that we have discussed in the preceeding sections. In order to
this special scenario is consistent with the full eVO|Uti0nincorporate the full energy dependence of the scattering
equation and, on the other hand, leads to a greatly simplifieghysics, we propose to upgrade the direct energy shift

sparse density matrix, VPG.(r) to (TRK))G,(r), where (TR¥k)) represents the
real part of the two-body matrix, and(- - -} denotes two-
Gn(r) 0 0 Go(1) particle thermal averaging over a Fermi distribution. A de-
0 Gn(1) —Gp(r) 0 tailed calculation of the proper upgrade procedure will be
g12=| S S —Go(r) 0 : presented in a forthcoming publication.
P " The translationally invariant HFB Equatiof3) and(64)
Gp(r) 0 0 o(r)—Gn(r) are best analyzed in momentum-space. Thus, we will intro-

(67 duce the Fourier transformed field—operatépg by
wherer =|r|=|1-2|. Similarly, one finds a translationally

invariant self-energy (12) =3 (1— 2) with . e 1k,
Pr(19=>0172 1o00=3 ~ =, (68)
(1) 0 0 A k

3(12)=6 2(1) -4 (62) where() is the quantization volume. If we define the Fourier
2o —A* —=3(1) 0 ' components of the translationally invariant mean fields as
A* 0 0 -3(1)
_ _ —ik(xq—
and3 (x)=—#%2/(2m)V2— u+VPG,(0) and a complex en- Q(r)—g(xl—xz)—zk e Camal g, (69

ergy gapAzVng(0)+Eigi ¢; . These assumptions lead to

a significant simplification of the HFB equations. we obtain the following relations between the real-space den-

The structure of the HFB equations can b_e elucidated fur'sity of particlesn (the same for both spihand the real-space
ther by separating out the bare two-particle interactions fronaensity of particle pairg:

the many-body contributions. One can achieve this by split-

ting the self-energy into the kinetic energy and mean-field 1

shifts2 =3°+31, and by separating the density matrix into N=G,,(r=0)=> G..(K=—= > (al a (70)
the vacuum contributiog® [proportional tos(r)] and the 7 ko 0% (@)
remaining mean field§=G°+g*:

1 ~ -
iﬁ%gl_[zolgl]_[21,g0]:[21,g1]’ (63) p:gp(rZO)ZEK gp(k)ZEEK (a,klakT). (71)

d The Fourier-transformed HFB equations are now local in
iﬁa(bi:(yi—ﬂm) $i+9’ Gp(0). (64)  momentum space,

In this fashion, we can now identify the physics of resonance . d
scattering of two particles in vacudeft-hand side of Eq. 'hﬁg(k):[E(k)'g(k)]’ (72)
(63)] from the many-body corrections due to the presence of
a medium[right-hand side of Eq(63)]. d
In the limit of very low densities, we can ignore many- i —db = (v — 4 a*
body effects and rediscover Eq@3) and (24) of Sec. Il C, e = () SO P, 73
but given here in a time-dependent form. They describe the
scattering problem that we have solved already: and the self-energy is given by
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S 0 0 A 30
sao=| & A 74
=19 —a* -5, o0 74 =
A* 0 0 -3 =
=20
j=d
3]

n

Here, the upgraded single-particle excitation energy is nowg

S=e— (TN, e=4k?2m denotes the kinetic en- 3§13
ergy and the gap energy is still defined as=V"p §

+2i0i ¢ w10}
s}

IV. THERMODYNAMICS 5

In this paper we focus on the properties of thermody-
namic equilibrium. Thermodynamic equilibrium can be o
reached by demanding that the grand potental=
—k,TIn E at a fixed temperature has a minimal value. In this
definition k, is Boltzmann's constant, ang the partiton Flcf_;- 7. lTWO 0\_/e|f|a|f_ping quaSiparti;illzizi?grg)y s;;]ectra ?Z a func-

Ce 0. - tion of single-particle kinetic energig= m). The total den-
Iﬂgcéli(;g;ngggzxﬂ;#ﬂg%ii;fzgé;ze exponent containing sity of the gas im=10" cm™3, the magnetic field i8=900 G,
and the temperature i5=0.01T-. The energy spectrum is calcu-
lated for two different values of the cutoff; i.e{=32k; and K
N _2 2 =64ke . The fact that the two lines are overlapping to the extent
H diag= i (i~ pm)| il that the difference is difficult to see shows the renormalization in
practice, demonstrating the validity of Eq82)—(36).

10 15 20 25
Single—particle Energy (u K)

+§k:[Ek+Ek(&lT&kT+&L&kl—l)], (75) o
pi=—=——, (77)

Vi= Mm

which is a quadratic approximation to the original Hamil- _ _ _
tonian. The energy spectruffy results from a local diago- Which is also the stationary solution of E§7). This equal-
nalization by the Bogoliubov transformation of the self- ity is very useful because we can effectively eliminate the
energy matrixX at eachk, where the obtained quasiparticle molecular field from the equations. The qua_smart_lclg states
spectrum isE,= 32+ AZ. Note that the first summation are now populated according to the Fermi-Dirac distribution
oA K I ne=[expE./k,T)+1]" L. The mean fields are then deter-
term in Hgag results from a contribution fron@ space, and . . ; S . . .
the second summation term fro space of Sec. Il A. The mined by integrating the equilibrium single-particle density

rotation to Bogoliubov quasiparticles is given by the generafnamx elements given by
canonical transformation

" 2m)?
~ a
o

At
p=

dek[(an— 1)cos 26, +1], (78
( ay )_( cos¢  —e'’sing ’

e'”’sing  cosé

a_kl a_kl

K
dk(2n,—1)sin 26y. (79
(Zw)zfo (2ny k
where tan 2,=|A|/X, is the Bogoliubov transformation

angle. The quasiparticle annihilation and creation operatorSince 6, depends om and p, these equations require self-

are indicated byay, and &) . In Fig. 7 we show a typical Cconsistent solutions that are found from a numerical iterative

quasiparticle energy spectrum fdiLi versus the single- methoq- ] .
particle kinetic energy, at a magnetic field®£900 G and In Fig. 8 we show a plot of the chemical potential as a
a temperature of =0.01T; . The figure demonstrates how function of temperature, for the case Bi in a homoge-
well the renormalizing equation®2)—(36) work in obtain- N€OUS gas, at a magnetic field®#900 G. Figure 9 shows
ing a cutoff-independent energy spectrum. This is importanfl® ratio of the critical temperatufk, to the Fermi tempera-
because it implies that all the thermodynamics that follow{U"® Te @s & function of detuning. It clearly shows that there
will also be cutoffindependent. is a limiting value ofT of about 0.9, similar to the value
For the stationary solution the grand potential, or equivaihat has been predicted faPK in Ref.[23]. The BCS result
lently, the free energy, has indeed a minimum. This followsfor the critical temperature, given by the formula
easily from setting the partial derivative of the grand poten- T
tial with respect tog; to zero:ddg/d¢;=0. This gives the c F{ m

T H T 2k,

, 80
solution Te 80
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FIG. 8. Chemical potential as a function of temperature, for a F'G- 10. Density profile for a gas ofLi atoms (solid line),
magnetic field ofB=2900 G for °Li. evenly distributed among the two lowest hyperfine states. The tem-

perature isT=0.2T at a magnetic field o0B=900 G. The trap
Cg)nstant isw=27Xx500 s!, and we have a total numb&t=5

has been plotted in the same graph for comparison. The B
P grap b X10° atoms. We compare this with a profile resulting from the

line gives a curve foff. higher than the resonance theory, ) P
g c N Y sameu (but for different total numbeN), where artificially no

since it does not contain the energy dependence ofTthe S i S
matrix. The absolute value of the scattering length in thissuloe'rfIUId IS present by setting the pairing figldequal to zero

magnetic field range is always larger than 28§0which (dashed fing:

implies that kg|a|>1—a clear indication that the BCS _ o
nonsuperfluid system, this gives the well-known Thomas-

theory breaks down in this regime. ; . .
So far, our calculation has been done for a homogeneon;gserm' solution. For a resonance system, however, a density

gas. We will also present results for a trapped lithium gas i ulge appears in the. qenter of the trap, Wh,ich is caused by, a
a harmonic oscillator potentiaf(r) with a total number of change in compressibility when a superfluid is present. This
N=5x10° atoms, similar to what we presented 8K in is shown in Fig. 10, for a spherical trap with a trap constant

_ 1 Thi : :
Ref.[24]. We treat the inhomogeneity by making use of the_Of. @=2mXx500 S Th's bulge is a S'gnatw? of superflu_—
semiclassical local-density approximation, which involves!dity and could experimentally be seen by fitting the density

mainly the replacement of the chemical potential by a spagriStribLgio_n in the outer windgs to a_nor;]resonda(\jr;t Snytﬁm' and
fially dependent versionu(r)—u—V(r). The thermody- thuS obtaining an excess density in the middie of the trap.

namic equations for the homogeneous system are then solvE®" iaqd]icsgtission of the abrupt change in the compressibility,
at each point in spad®4]. As a result, we obtain a spatially see Ref[24].

dependent density distribution. At zero temperature, for a
V. FLUCTUATIONS IN THE MEAN FIELDS
AND CROSSOVER MODEL

0.5¢T

In this section we make some comments on the connec-
tion between the resonance superfluidity theory we have pre-
sented and related mean-field approaches to discuss the
crossover of superconductivity from weak to strong cou-
pling. In the mean-field theory of BEC, most often reflected
in the literature by the Gross-Pitaevskii equation or finite-
temperature derivatives, a small parameter is derived to jus-
tify the application of the theory. This parametgna® [6],
may be obtained from a study of higher-order corrections to
the quasiparticle energy spectrum. It has been suggested that
for a fermi system that exhibits superfluidity the small pa-
rameter is given by a power &fa, and that the BCS theory
0.2ka . . . . breaks down when this parameter approaches unity. How-
850 900 95% (Gauss)woo 1050 1100 ever, the small parameter in the theory of resonance super-

fluidity cannot be simply a function of the scattering length

FIG. 9. Dependence of critical temperature on magnetic field fofor detunings close to resonance. This can already be seen
8Li, for a total density ofn=10'* cm~2 (solid line). The dashed from the energy dependence of tfiematrix, which shows
line is, for comparison, the prediction of the regular BCS theory. that around the Fermi energy, the matrix may have an

0.45F
0.4F
w
& p.3s5}p
—

0.3f

0.25F
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absolute value much smaller than at zero energy where thedds significantly to the total density equation in both the
scattering length is defined. Moreover, even right on resoerossover models of superconductivity and in the theory we
nance wherw=0 and the scattering length passes througthave presented here. Moreover, the inclusion of the molecu-
infinity, the T matrix remains well behaved. lar term allows for a smooth interpolation between the BCS
Instead of calculating the small parameter of this systemand BEC limits. This is clearly a substantial topic in its own
we choose a different approach based on crossover modeight, and will be addressed further in a future publication
between BCS and BEC, formulated by Noze and [35].
Schmitt-Rink [33], and later expanded upon by Randeria
[34]. In the regular BCS theory for weakly coupled systems VI. CONCLUSIONS
the value of the critical temperature is given by the exponen-
tial dependence in E@80), but for strongly coupled systems  We have shown that it is possible to derive a mean-field
this model results in a logarithmically divergent prediction theory of resonance superfluidity, which can be applied to
for T.. The parameterka) ~! is usually taken to describe ultracold Fermi gases such 8ki and “%. The Hamiltonian
the crossover from the weak-coupling Bose lifffkca) "> we use treats the resonant states explicitly, and automatically
— —] to the strong-couplingi(kea) “*— +o] BEC limit.  builds the coupled scattering equations into the many-body
The unphysical divergence iR, occurs because the process theory. With a study of analytical scattering we have shown
that dominates the transition in the weak-coupling regime ighat these scattering equations can completely reproduce a
the dissociation of pairs of fermions. For a strongly coupledfull coupled-channels calculation for the relevant energy re-
system, however, the fermions are so tightly bound that thgime. The energy dependence of tawave phase shifts can
wave functions of pairs of atoms begin to overlap, and thébe described by a small set of parameters that correspond to
onset of coherence is signaled by excitations of the conphysical properties, such as the nonresonant background
densed state, which occurs at a temperature well below thealue of the scattering length, and the widths and detunings
dissociation temperature of the Cooper pairs. Thus, whenf the Feshbach resonances. Close to resonance, we predict a
moving from weak to strong coupling, the nature of the tran-large relative value of 0’ for the critical temperature. The
sition changes from a BCS- to a BEC-type mechanism. Arparticular resonance under study féti occurs in the
explicit inclusion of the process of molecule formation, char-(1/2,1/2)+ (1/2,— 1/2) collision channel, and has its peak at
acterized by the detuning, resonance width, and resonand®=2844 G, and a width of aboutB~185 G[10,11. This
position, will allow us to move from one regime to the other. large width translates into a large magnetic field range where
The lowest-order correction that connects between BCSthe critical temperature is within a factor of 2 from its peak
and BEC-type superconductivities can be made by augmenvalue. This range is, for comparison, much larger than for
ing the density equation to account for the formation of pairs**K. For 6Li there are also two other Feshbach resonances,
of atoms. This is done by using the thermodynamic numbeone in the (1/2,1/2) (3/2,—3/2) state, as also noted by
equationN= —gd5/du, with ®5 the total thermodynamic O’Hara et al. [36], and another in the (1/21/2)+(3/2,

grand potential —3/2) state. They result from coupling to the same singlet
0 ) bound state, and occur at field values of abByt823 G
Pe=Pg—kpT2qiq NI (aiqy). (8)  andB,=705 G, and have a similar width to the (1/2,1/2)

o - _ . +(1/2,—1/2) resonance. The disadvantage of these reso-
The term®g is a grand potential that does not include thepances, however, is that the atoms in these channels suffer
quasibound molecules and results from regular BCS theorfrom dipolar losses, which are also resonantly enhanced.
Retaining only this term yields a theory that can only ac-Three-body interactions will be largely suppressed, as
count for the free and scattered fermionic atoms that contribasymptoticp-wave collisions will give very little contribu-
ute to the fermion density, therefore the theory breaks dowfion in the temperature regime consider@ s-wave colli-
if a sizeable number of bound states are formed. In the exsjon is always forbidden for at least one of the paiFsom a
treme limit of strong coupling®? becomes negligible and study of crossover models between BCS and BEC we find no
Eq. (81) just reduces to the thermodynamic potential of anindication of breakdown effects of the applied mean-field
ideal Bose gas. In this regime, the theory predicts the formatheory.
tion of a condensate of molecules below the BEC transition

temperature.
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