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Atomic diffraction from nanostructured optical potentials
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We develop a versatile theoretical approach to the study of ultracold atom diffractive scattering from
light-field gratings by combining calculations of the optical near field generated by evanescent waves close to
the surface of periodic nanostructured arrays with atom wavepacket propagation techniques. Nanometric one
dimensional~1D! and 2D arrays with subwavelength periodicity deposited on a transparent surface and opti-
cally coupled to an evanescent wave source exhibit intensity and polarization gradients on the length scale of
the object and can produce strong near-field periodic modulation in the optical potential above the structure. As
a specific and experimentally practical example we calculate the diffraction of cold Cs atoms dropped onto a
periodic optical potential crafted from a 2D nanostructure array. For an ‘‘out-of-plane’’ configuration we
calculate a wide diffraction angle (.2°) and about 60% of the initial atom flux in diffraction orders61, an
encouraging result for future experiments.
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I. INTRODUCTION

The prospect of manipulating neutral atoms and m
ecules by light forces acting at nanometer scale lengths
fers fascinating but experimentally challenging possibilit
in many areas of atomic physics. Atom optics@1#, atom
nanolithography@2,3#, and atom interferometry@1# are prime
examples. The use of high-refractive-index dielectric or m
tallic nanometric objects to produce subwavelength locali
light-field distributions@4–6# raises the possibility of ‘‘inte-
grated atom optics’’ in which atoms or molecules can
confined, guided, or diffracted above nanostructured surfa
fabricated to a designed shape@7–9#. Tailoring optical poten-
tials for atom control, and possibly Bose-Einstein cond
sates, is analogous to the use of micromagnetic fields f
similar purpose@10–18#. Atom diffraction from a transmis-
sion optical grating provided one of the early examples
light-field atom manipulation@19#. A proposal for@20# and
realization of@21# a reflection light-field grating quickly fol-
lowed. These early developments stimulated many su
quent experimental and theoretical studies, and a perti
review has recently appeared@22#. Until now reflection grat-
ings for matter waves have been implemented by the for
tion of one-dimensional evanescent standing waves produ
by counterpropagating laser beams undergoing total inte
reflection through a glass prism.

The approach we present here contrasts markedly
this earlier work on standing waves of sinusoidal form. W
study diffractive scattering of cold atoms from an evanesc
field, spatially modulated by an array of nanometric obje
with high index of refraction and subwavelength periodic
1050-2947/2002/65~5!/053615~9!/$20.00 65 0536
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deposited on a glass surface@23,24#. These evanescent field
and their interaction with atoms will exhibit several impo
tant features. First, rather than a pure sinusoidal evanes
standing wave, nanostructured periodic corrugation ge
ates fields containing higher-order harmonics and an intric
polarization distribution. Second, spatial gradients of fie
intensity and polarization at length scales well below t
diffraction limit interact with the external and internal atom
degrees of freedom in ways that strongly depend on the
ometry and material of the nanostructures employed. Th
the intensity and polarization map above the nanostruc
array also depends strongly on the intensity and polariza
of the exciting light source.

Since the cold-atom de Broglie wavelength is not mu
smaller than the characteristic scale length of the opt
field, an accurate description of atomic motion calls for
quantum treatment of external as well as internal degree
freedom. In order to analyze the dynamics of cold ato
scattering off periodic optical potentials we need to comb
two well-developed numerical techniques: calculation of
optical near field and atom wave packet propagation. T
situation we consider is shown in Fig. 1. First, we calcula
the three-dimensional electric field and polarization distrib
tion in the near field surrounding the nanostructures. At f
quency detunings far from resonance, where absorptio
negligible, this information is used to construct a conser
tive potential for a full three-dimensional treatment of t
center-of-mass motion of the atom, including ground inter
states. Using the light-field information above the nanostr
tures, we calculate the three-dimensional atom-field inter
tion potential @22,25,26#. Since the field polarization will
©2002 The American Physical Society15-1
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vary significantly over the length scale of the nanostructu
@27#, and since various field polarizations may lead to po
lation transfer among atomic internal states@22#, we include
the internal Zeeman states of a2S1/2 atomic ground level in
the calculation of the atom–optical field scattering. Seco
we apply a time-dependent wave packet method to desc
the scattering problem of cold atoms diffracting from an o
tical grating with subwavelength periodicity. Inclusion of th
ground-level internal states leads to a three-dimensio
coupled channel problem that we solve with wave pac
propagation techniques already successfully applied to a
or molecule surface scattering and quantum molecular
namics in several degrees of freedom@28–38#. After the
wave packet representing the atom reflects and diffracts f
the optical potential, it is projected onto final scattering sta
to yield the desired diffraction probabilities@35#.

In this paper we emphasize general principles and see
establish a methodology without restriction to any spec
experimental setup. In fact, the numerical solution of Ma
well’s equations in the near field and Schro¨dinger’s equation
for the atomic motion can easily be adapted to explore a
manipulation in subwavelength optical light fields of arb
trary geometry. However to illustrate this methodology w
present calculations obtained with realistic parameters co
sponding to an experiment using a flux of cold2S1/2 atoms
incident at about 40° from the normal and scattering of
two-dimensional optical grating with subwavelength perio
The results of our calculation yields out-of-plane diffracti

FIG. 1. Schematic diagram of cold-atom diffraction off an op
cal potential. The atom impinges on the periodic potential w
incident wave vectork i and diffracts into ordersk61 ,k0. The peri-
odic optical near field above the nanostructured array is gener
by light with incident wave vectork00

i , totally internally reflected
into k00

r . The nanostructures are cubes of a high-refractive-in
material with subwavelength dimensions and periodicity~see text
for model details!. Note that the incident plane of the lightPL is
along the diagonal of the cubes while the incident plane of
atomsPA is shifted 45° and parallel to the cube edges. Note a
that the diffracted ordersk61 are ‘‘out of plane’’ with respect to the
plane of incidence of the atoms.
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into a few orders, with markedly large diffraction angles. T
results are encouraging for planned experiments.

The rest of the paper is organized as follows. Section
gives details of the calculation of the scattering probabiliti
The subwavelength light-field calculations are reported e
where@27#, so only the essential steps are summarized h
In Sec. III we present a model configuration and in Sec.
we show the numerical results for illustration.

II. THEORY

A. The optical near field

The evanescent wave field created by the totally intern
reflected laser beam is strongly modified by the perio
nanostructures on the glass substrate surface. The calcul
of this intricate electric vector field above the nanostructu
can be carried out using several methods that solve M
well’s equations in these nontrivial geometries. These me
ods are well established in the field of scanning near-fi
optical microscopy~SNOM! @4,6#. Among the most widely
used are the finite-differences scheme@39#, the differential
theory of gratings~DTG! ~@40–42#!, and the Green’s func-
tion method@4#. This latter approach is well adapted to stu
single, finite-size nano-objects, and has been used ex
sively to study a wide range of nanostructures@43,44#. How-
ever, in the case of periodic surface structures, it beco
inefficient, since it does not explicitly take the periodici
into account. In such cases, the DTG method is more ap
priate, because it solves Maxwell’s equations by means
Fourier expansion of each field component.

To be more specific, we definer5(x,y,z) with z taken as
the direction perpendicular to the surface. For convenien
we define a vectorl5(x,y) in the plane of the substrat
surface. We will denote the electric field by 1 in the gla
half space and by 2 in the vacuum half space,n1 being the
glass index andn2 the vacuum index. The two-dimension
periodicity of the nanostructures defines a unit cell of len
Lx and Ly along thex and y directions, respectively. The
direction of the incoming laser is given by (kL

x ,kL
y ,kL

z), with
kL5n12p/l05n1k0, andl0 being the laser wavelength i
vacuum.

In the DTG method, an index-modulated zone, labele
and characterized byn3(r ), the high index material, is intro

ed

x

e
o

FIG. 2. Schematic representation of the three optical region
which the differential method of gratings is applied.
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ATOMIC DIFFRACTION FROM NANOSTRUCTURED . . . PHYSICAL REVIEW A65 053615
duced at the vacuum/glass substrate interface, as show
Fig. 2. In the glass and vacuum half spaces,n1 ,n2, the elec-
tromagnetic field obeys Helmholtz’s equation

DE( l )~r !1nl
2k0

2E( l )~r !50, l 51,2

In the modulated zone, this equation is not valid becaus
the discontinuities ofn3(r ). In this region, we integrate di
rectly Faraday’s and Ampere’s equations,

“3E~3!5 ivB~3!,

“3B~3!52 ive0m0n3
2E~3!.

Since the system is periodic alongx andy we can expand the
dielectric constant~i.e., n3

2) in the modulated zone,

n3
2~r !5(

n,m
amnexpF2ipS nx

Lx
1

my

Ly
D G ,

whereamn are the Fourier coefficients ofn3
2. It is clear that

electric and magnetic fieldsoutsidethe modulated zone wil
also be periodic and thus conveniently written,

E( l )~r !5 (
m,n52`

`

Emn
( l ) eigmn

l zeikmn
i

• l, ~1!

B( l )~r !5 (
m,n52`

`

Bmn
( l ) eigmn

l zeikmn
i

• l; l 51,2. ~2!

In this expression,kmn
i denote thex,y components of the

wave vector of the field diffracted in the (m,n) order, and is
given by kmn

i 5(kL
x12pm/Lx ,kL

y12pn/Ly). The z compo-
nent of the wave vectorgmn obeys the dispersion equation

~kmn
i !21~gmn

l !25nl
2@~k0

x!21~k0
y!21~k0

z!2# ~3!

for which we have two solutions, corresponding to ‘‘rising
and ‘‘descending’’ waves. The rising zero order in the gla
substrate corresponds to the incident laser field. Then, if
know the Fourier componentsEmn and Bmn of the electric
and magnetic field in a plane just above the nano-objects
field distribution anywhere above the structures is de
mined by Eqs.~1! and~2!. From Eq.~3!, it may be seen tha
the coefficientgmn is either real or purely imaginary. Th
real values ofgmn correspond to radiative harmonics whi
imaginary values introduce evanescent components.

The six components of the electromagnetic fie
E( l )(r ),B( l )(r ) are then deduced from two independent p
rameters, usually namedthe principal components, which in
the present case are chosen to be they componentsE( l )y(r )
andB( l )y(r ). In order to calculate the principal Fourier com
ponents of the electric field just above the nanostructures
have to solve a system of linear differential equations
E(3)x,y(r ) and B(3)x,y(r ) in the region of space where th
index is modulated by the nanostructures. This system m
all the Fourier orders of the electric and the magnetic fi
through the product betweenn3

2 and E(3)(r ) appearing in
Ampere’s equation. Then, for numerical applications,
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Fourier expansion converges at some sufficiently large va
N. The ordersn andm will both vary from 2N to 1N. We
solve this system using standard boundary conditions for
problem, i.e., we assume there is no field arriving from
finity in the vacuum, and the only Fourier components of t
incident field in the glass substrate are those of zero or
Finally, we can express the Fourier componentsEmn

(2)y and
Bmn

(2)y in a horizontal plane just above the nano-objects a
linear combination of they components of the incident fields
Ei ,Bi , which define the polarization state of the incomin
laser,

Emn
(2)y5T mn

EEEi
(1)y1T mn

EBBi
(1)y , ~4!

Bmn
(2)y5T mn

BEEi
(1)y1T mn

BBBi
(1)y . ~5!

These transmission coefficients,T mn
EE , T mn

EB , T mn
BE , and T mn

BB

depend only on the geometry of the sample, the freque
and the angle of incidence of the illuminating laser. T
setup for the field calculation is shown in Fig. 2. A mo
detailed description of this calculation can be found in Re
@40,42#. With the optical field mapping in hand we turn ou
attention to atom scattering in the presence of these field

B. Calculation of atom-surface scattering

In the limit of low saturation and a blue detuningd that is
large compared to the Doppler shift and natural linewid
the atom-field interaction can be treated within the fram
work of coherent atomic motion where spontaneous emiss
is neglected@22,25,26#. We will consider an atom transition
dipole, typical of the first alkali2S1/2→2P3/2 transition, ne-
glecting hyperfine structure, but including the tw
component angular momentum degeneracy of the gro
state. The excited level can be eliminated adiabatica
which results in atomic motion that is described by a tw
component, three-dimensional wave packet that evolves
the ground-state manifold of the Zeeman sublev
@22,25,26#,

i\
]Cmj

~r !

]t
5TrCmj

1 (
mj8561/2

Vmjmj8
~r !Cm

j8
~r !. ~6!

In this expression, the operator of the kinetic energy is s
ply given by

Tr52
\2

2M
¹ r

2 , ~7!

with M being the mass of the atom. The potential within t
low saturation limit can be written as@22,25,26#

Vmjmj8
~r !5

d2

\d (
q,q8,me

Eq* ~r !Eq8~r !~ j g ,mj ;1,qu j e ,me!

3~ j e ,meu j g ,mj8 ;1,q8!. ~8!

In this expression the terms in parentheses are Cleb
Gordan coefficients withj g and j e being the total angular
momentum of the ground and excited states, respectiv
5-3



ha

uc
c
-
th
e
te

io
s
u
s
ic
th
t
ll-
a

um
he
ly
ve
ti

l
e
n

tio
n
k
li
n
e
s

-
ie
tin

ee
h
ze

is-
-
su

-
to

-
n,

m-
ee-
we
,
or
ble,

ator

nd
eri-
nt
e

in
a
s of
ich
al-

he
ef-
on
of
d.
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The reduced dipole moment is denoted byd and the field
enters through its spherical componentsEq(r ), q50,61.
This expression forms the basis of numerous studies
atomic diffraction from standing evanescent waves as
been used by many authors@8,22,25,26,45#. In general, the
polarization state of the electric field above the nanostr
tured objects is a very complicated function of space. Hen
according to Eqs.~6! and~8!, transitions between the differ
ent Zeeman sublevels can occur during the interaction of
atom with the light fields. As a consequence, we perform
the calculation including coupling of the two ground sta
levels.

One way of proceeding is to expand the wave funct
into plane waves parallel to the surface, which results in a
of coupled diffraction channels for the direction perpendic
lar to the surface@22#. Diffraction then occurs as transition
between these diffractive states, the probabilities of wh
can be calculated by a semiclassical treatment within
Landau-Zener theory@22#, or by numerical wave packe
propagation@45#. This treatment corresponds to the we
known close-coupling wave packet method used in stand
atom or molecule surface scattering@46#. However, with in-
creasing diffraction orders one may need to take a large n
ber of diffractive states into account, together with all t
coupling matrix elements among them. In fact, it is on
recently that modern and very efficient numerical wa
packet propagation techniques have permitted the calcula
of diffractive scattering by solving Eq.~6! directly on grids
in real space@28,36,37#. Briefly, one simulates the collisiona
process by a wave packet propagation from the initial stat
the final interaction-free zone, where it is projected onto a
desired observable, which in our case is the total popula
in the different diffraction channels. To achieve a good e
ergy resolution, one needs to construct an initial wave pac
that is sufficiently large such that its energy width is neg
gible. From a numerical point of view, this is very disadva
tageous, since it requires a large grid in the direction perp
dicular to the surface. Therefore, we used a method propo
by Mowrey and Kouri@46#, who started with a spatially nar
row wave packet that comprised a wide range of energ
and extracted energetically resolved results by projec
onto asymptotic states of well-defined energy,E.

The initial state of the atom is taken to be a specific Z
man sublevelmj521/2 of the ground state manifold wit
center-of-mass motion described by the box-normali
wave function

Cmj

i ~r !5~2pj2Lx
2Ly

2!21/4

3exp@2~z2z0!2/4j21 ik i
zz1 ik i• l#, ~9!

with the initial transverse momentumk i5(ki
x ,ki

y) and the
initial momentum inz direction described by a Gaussian d
tribution centered aroundki

z . The propagation of this three
dimensional wave packet is performed on the coupled
faces defined by Eqs.~6! and ~8! until the final scattered
wave functionCmj

f (r ) is entirely in the asymptotic region.
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The ~unnormalized! modulus square of the transition am
plitudes is given by projection of the final wave packet on
diffractive states@46#,

ubmj

mn~E!u25
1

kmn
z U E dr exp$2 i @kmn

z z1~k i1Gmn!• l#%

3Cmj

f ~r !U2

, ~10!

where Gmn5(2pm/Lx,2pn/Ly) denotes the reciprocal
lattice vector andkmn

z is determined by energy conservatio

kmn
z 5A2ME2~k i1Gmn!

2. ~11!

The probability to diffract into a specific order (m,n) as a
function of total collision energy is then given by@37,46#

P~m,n!5S (
mj 561/2

ubmj

mn~E!u2D Y S (
mj 561/2

(
mn

ubmj

mn~E!u2D .

~12!

This quantity will be calculated for a selected set of para
eters and discussed in the following section. For the thr
dimensional, two-component wave packet propagation
used the fast Fourier transform~FFT!-split-operator scheme
which in the field of quantum molecular dynamics
molecule-surface collisions has proven to be a fast, sta
and efficient method to perform this task@47#. Briefly, in this
method the total quantum mechanical short-time propag
is approximated by

expF2 i
Dt

\ S Tr1V1/2,1/2~r ! V1/2,21/2~r !

V21/2,1/2~r ! Tr1V21/2,21/2~r !
D G

'expF2 i
Dt

2\ S Tr 0

0 Tr
D G

3expF2 i
Dt

\ S V1/2,1/2~r ! V1/2,21/2~r !

V21/2,1/2~r ! V21/2,21/2~r !
D G

3expF2 i
Dt

2\ S Tr 0

0 Tr
D G . ~13!

This form of symmetric splitting is correct through seco
order; it is unitary by construction and thus ensures num
cal stability@47,48#. The operator acts on the two-compone
wave function to perform a short-time propagation from tim
t to t1Dt. The action of the kinetic operator is calculated
Fourier space, where it is a simple multiplication with
phase factor, and so every time step the two component
the wave functions need to be Fourier transformed, wh
can be done very efficiently with three-dimensional FFT
gorithms. With this technique, the initial wave packet Eq.~9!
is propagated until it is entirely in the asymptotic region. T
distance from which the wave packet can be considered
fectively free has to be checked carefully since it depends
many parameters. This is especially important in the field
cold collisions where low energies are considere
5-4
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Even though not applied in the current approach, we n
that the numerical effort can still be reduced by an adiab
correction of the initial state@36,37,49#, analyzing the flux
out of the scattering region instead of projecting onto fi
diffractive states@49,50# or using a filter-diagonalization
scheme@51#.

III. NUMERICAL IMPLEMENTATION

A. Model configuration

We model a typical experimental setup with a regu
square lattice of TiO2 cubes~100 nm on a side, index o
refractionn52.1) deposited onto a flat silica surface~index
of refractionn51.5) at a center-to-center distance of 250 n
~Figs. 1, 3, and 4!. These structures are illuminated by a
evanescent light field created by an incoming laser wit
vacuum wavelength of 850 nm, intensity of 80 W/cm2, and
subject to total internal reflection. The plane of incidence
the laser beam~denotedk00

i in Figs. 1 and 3! is chosen to be
diagonal with respect to the rectangular nanostructured

FIG. 3. Top panel, schematic view of the 100 nm TiO2 cubes
deposited on a silica surface. Bottom panel, light-field intensity d
tribution 125 nm above the nanostructures~the arrowk00

i indicates
the plane of the incident laser of mode TM andk i the plane of
incidence of the atoms!. The contour lines correspond to~in units of
uEi u2) 0.397, 0.412~dashed lines! and 0.427, 0.442~solid lines!.
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tern, and its polarization is taken to be within the plane
incidence~TM polarization!. The angle of incidence with
respect to the surface normal was chosen to be 60°. Un
these conditions, the flat surface without the nanostructu
would give rise to an evanescent wave with a decay len
g00 of about 170 nm, and the atoms would not approa
closer than about 200 nm to the surface. Hence the influe
of the attractive van der Waals atom-surface potential can
neglected. For different parameters, however, it might
come important@52#, and can easily be included in Eqs.~6!
and ~8!. The Fourier decomposition Eq.~1! requiredN510
terms for convergence.

B. Diffractive scattering

We have chosen a model atom with ground state2S1/2,
the mass of atomic Cs, and transition dipole moment co
sponding to the 62S1/2→6 2P3/2 atomic Cs transition. The
initial internal ground state was taken to bemj521/2 and
the initial Gaussian distribution of the perpendicular moti
was centered aroundkz

i 50.87 nm21 with a width parameter
j55.00 nm. The inital transverse momentum is taken to
kx

i 50.73 nm21,ky
i 50.0. This corresponds approximately

cold Cs atoms produced in a magneto-optic trap after a
fall of about 1.5 cm before colliding with the nanostructur
surface inclined at an angle of about 40° between the vert
axis and the surface normal. Under these conditions, the
coming and specular direction are in they50 plane, as in-
dicated in Fig. 1. We found converged results for a cut
distance of about 600 nm. The asymptotic wave function
then analyzed to yield the diffraction probabilitiesP(m,n) as
outlined in the preceding section. As will be discussed
Sec. IV B, most of the diffraction is ‘‘out of plane’’ along th
y axis. Therefore in all calculations, grids of only 16 poin
on thex axis were needed while computation along axey
andz required 64 and 1024 points, respectively, for conv
gence.

-

FIG. 4. Light-field intensity distribution in they,z plane to-
gether with a schematic view of the TiO2 nanostructures deposite
on the silica surface. The contour lines correspond to~in units of
uEi u2) 0.080, 0.135, 0.189, 0.241, 0.293, 0.346, 0.400~dashed lines,
from top to bottom!.
5-5



an

e

o
th
ad
r
nm
el
n-
wn
o

M

in
ne

ruc-
ki-

nt
rent

he
the
dis-
e
to
he
the
ee

-
rom
ight
ct
.
e

er-
ed-

tric
in
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IV. RESULTS

A. Subwavelength optical near field

In Fig. 3 we show the geometry of the TiO2 cubes~top!
together with the intensity distribution~bottom! at a distance
of 125 nm above the surface. The arrow indicating the pl
of incidence of the laser beam is denoted byk00

i and plane of
incidence of the atoms byk i . One can clearly see that th
light fields bear the periodicity of the nanostructures. W
found that illuminating the nanostructures with the plane
laser incidence aligned along the cube diagonals rather
along the sides yields periodic potentials with steeper gr
ents ~more pronounced localization! even at distances fa
above the surface. At the illustrated distance of 125
above the surface, we still find pronounced periodic fi
intensity modulation. This strong localization of light inte
sity above high-refractive-index structures is a well-kno
characteristic of the TM illumination mode. It has been the

FIG. 5. Distribution of the spherical components of the elec
field 125 nm above the top of the nanostructures. The contour l
correspond to~in units of uEi u2) ~a! 0.377, 0.387~dashed lines! and
0.397, 0.407~solid lines!, ~b! 0.020, 0.025~dashed lines! and 0.030,
0.035 ~solid lines!, ~c! 2.331024, 4.631024 ~dashed lines! and
6.931024, 9.231024 ~solid lines!.
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retically modeled and experimentally verified by the SNO
technique for a number of nanostructured objects@4#. In Fig.
4 we show a cross section of the field intensity distribution
the y,z plane above the nanostructures upto 400 nm. O
clearly sees how the intensity contrast above the nanost
tures decays with increasing distance. Depending on the
netic energy, the falling atoms will penetrate to differe
heights above the surface, therefore experiencing a diffe
amplitude modulation~contrast! at the plane of the mean
classical turning point. It is important to note that even if t
contrast diminishes with distance, the periodicity remains
same; and that even if the atoms are diffracted at large
tances from the surface, the diffraction angle will still b
controlled by the ratio of the atom de Broglie wavelength
the optical grating period. In order to rigorously establish t
optical potential that governs the atomic motion, we need
full information of the field above the surface, i.e., the thr
spherical components of the electric fieldE1 , E2 , andE0,
as can be seen from Eq.~8!. The quantization axis was cho
sen to be perpendicular to the plane of laser incidence. F
Fig. 5 one can see that the different components of the l
fields are a complicated function of space that will intera
with the multilevel internal structure of the colliding atom
Note that theE0 component is one order of magnitud
smaller thanE1 or E2 .

B. Diffraction probabilities including ground-state degeneracy

In this section, we show the results for diffractive scatt
ing, using the light-field parameters as detailed in the prec

es

FIG. 6. Upper panel, in-plane diffraction probabilityP(m,0)
~the plane containingk i). Lower panel, out-of-plane diffraction
probability P(0,n) ~perpendicular to the plane containingk i), as a
function of total collision energy(E5kBT). The arrows indicate the
cases discussed in the text.
5-6
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ing section. We stress that these probabilities are calcul
using the Cs 62S1/2→6 2P3/2 transition dipole and atomic
mass, but that no other specific atomic parameters were u
This particle is still a model atom, however, since we ha
ignored the hyperfine structure in the ground and exc
states. The center-of-mass motion is treated entirely quan
mechanically, and the polarization state of the electric fi
with its spatial variation rigorously included in the calcul
tions. Since we are considering a two-dimensional poten
surface, the diffraction takes place in two spatial directio
labeledGmn , which are the reciprocal lattice vectors corr
sponding to thex and y directions, respectively. The prob
ability P(m,n) to diffract into a given order (m,n) as a
function of energy is given by Eq.~12!. Figure 6 plots these
diffraction probabilitiesP(m,0) ~top panel! andP(0,n) ~bot-
tom panel! as a function of total energy. The symmetric
results for negative values ofm,n are not shown for clarity.
With the definitions employed (m,0) corresponds to diffrac
tion within the plane of incidence of the atoms while (0,n)
corresponds to diffraction perpendicular to this plane. Th
two cases will be called ‘‘in-plane’’ and ‘‘out-of-plane’’ dif-
fraction, respectively. Comparing the top and bottom pan
of Fig. 6, we see that probabilities for in-plane and out-
plane diffraction differ dramatically.

The top panel of Fig. 6 shows the in-plane diffractio
probability as a function of energy for fixed initial transver
momentum ofki

x50.73 nm21. For low energies, we find
negligible diffraction. Most of the final population is in th
~0,0! channel, which represents specular reflection. As
energyE increases,P(0,0) decreases and falls off to almo
zero for energies greater than 2.5 mK (E5kBT). The higher
orders of in-plane diffractionP(m,0), m561,62,63, . . .
are not significantly populated either. The bottom panel

FIG. 7. Diffraction probabilitiesP(m,n) for Cs atoms with a
total energy of 2.35 mK corresponding to a drop height of 15 m
~left arrows in Fig. 3! and an angle of incidence~between the ver-
tical axis and the surface normal! of 40°. The diffraction angle
between the orders (0,61) is .2.6°.
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Fig. 6 shows where the scattering flux has gone. Almost
entire population is found in the out-of-plane diffraction o
ders (0,n), n561,62,63. The fact that we calculate a rap
idly decreasing in-plane diffraction corresponds to the we
known averaging of the transverse scattering amplitude
the atomic motion parallel to the diffracting structures@22#.
With our parameters, we find an interaction time of abo
3 msec, which together with the initial transverse moment
of ki

x50.73 nm21 implies that the atoms ‘‘sample’’ the
modulated potential over a transverse distance of about
nm, greater than the periodicity of the potential by more th
a factor of three. For the out-of-plane scattering there is
such averaging and the situation is analogous to in-pl
diffraction at normal incidence. It is worth noting that th
out-of-plane diffraction at grazing incidence~in a quite dif-
ferent experimental arrangement than the one envisa
here! has been observed experimentally@53#.

Using the results shown in Fig. 6, one can now simp
read off the probability for specific collision energies. At a
energy of 2.35 mK, which corresponds to an angle of in
dence of about 40°~indicated by the left arrows in the to
and bottom panels of Fig. 6!, we have almost the entire
population equally distributed in the three diffraction orde
~0,0! and (61,0!. Figure 7 shows the complete set of diffra
tion probabilitiesP(m,n) for this case. One sees clearly th
the only significant diffraction is out-of-plane, and the thr
dominating diffraction channels have almost equal proba
ity of 30% each. The diffraction angle, given roughly by th
ratio of de Broglie wavelength to grating periodicity, is qui
large—about 2.6°. This geometry could thus be very attr
tive for the realization of an atomic beam splitter or f
atomic interferometry.

As a second example, we have shown in Fig. 8 the sit
tion at slightly higher collision energy of 2.52 mK. With th
chosen initial transverse momentum this corresponds to

FIG. 8. Same as Fig. 7, but for a total energy of 2.56 m
corresponding to a drop height of 16 mm~right arrows in Fig. 6!
and an angle of incidence of 38°. The diffraction angle between
orders (0,61) is .2.0°.
5-7
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G. LÉVÊQUE et al. PHYSICAL REVIEW A 65 053615
angle of incidence of about 38°. The maximum of the fin
state population is now concentrated in the orders~0,61)
while the specular direction is suppressed to about 10%
this slightly higher energy, we find also the diffraction pea
~0,62) to be populated. Still, the ratio betweenP(0,0) @or
P(0,62)# andP(0,61) is about 3, and the angle spanned
the two main diffraction peaksP(0,1) andP(0,21) is about
2°.

C. Diffraction probabilities neglecting ground-state degeneracy

In the preceding section, we have calculated the diffr
tion probability including the ground-state degeneracy.
can be seen from Eq.~8!, the intricate spatial distributions o
polarization in general do not allow treatment of the probl
as a one-surface scattering event, but require the solutio
multiple internal states coupled to the optical potential. Ho
ever, as one sees from Fig. 3, the electric field is domina
by the E1 and E2 components, with theE0 one order of
magnitude smaller~the axis for the polarization state is ch
sen to be orthogonal to the plane of incidence of the la
beam!. One sees from Eq.~8! that the coupling between th
ground-state sublevels in the present case of anS1/2→P3/2
transition is due to theE0 component. Hence if the compo
nentE0 is sufficiently small, the system of Eqs.~6! and ~8!
decouples and we have the situation of an effective sin
surface collision. Consistent with this observation, we fi
that, starting from a well-defined initialmj level, less than
0.1% of the population is transferred to the other one. A
consequence, one can assume that a treatment on one s
only, which greatly simplifies the computational burden, c
yield satisfactory results. Thus in this particular case a o
surface calculation gives very good agreement with the
results, even for the weakly populated diffraction orders.
er

e
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general, however, with atoms having higher ground-st
multiplicity and with different optical materials and excita
tion geometries, a full coupled-surface calculation will
necessary.

V. CONCLUSIONS

In this paper we have investigated the diffraction of co
atoms by highly structured subwavelength optical potent
generated from evanescent fields. Our approach includ
three-dimensional quantum treatment of the atomic cente
mass motion. We take into account the spatial distribution
rapidly varying polarization states of the nanostructured
tical fields and include the effect of these polarizati
changes on the atom ground internal state populations.

As an illustration, we have chosen a model system t
corresponds to cold cesium atoms~without nuclear spin! dif-
fracting from a nanostructured surface illuminated und
conditions of total internal reflection. The interaction of co
atoms with these light fields is calculated in the limit of lar
detuning and negligible absorption. For experimentally re
istic initial conditions, we find diffraction angles of the orde
of 2° with about two third of the initial atomic flux concen
trated in the first two diffraction orders. These structures m
therefore prove useful in wide-angle atomic interferomete
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