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Higher-order evaluation of the critical temperature for interacting homogeneous dilute Bose gases
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We use the nonperturbative line@expansion method to evaluate analytically the coefficiep@ndc’ that
appear in the expansion for the transition temperature for a dilute, homogeneous, three-dimensional Bose gas
given by T.=To(1+c,an®+[chin(ant®) + c3]a?n?3+ O(a®n)), whereT is the result for an ideal gas,is
the sswave scattering length, andis the number density. In a previous work the same method has been used
to evaluatec, to order 5% with the resultc,=3.06. Here, we push the calculation to the next two orders
obtainingc,=2.45 at orders® andc,=1.48 at orders*. Analyzing the topology of the graphs involved we
discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resum-
mation and the N approximations. At the same orders we obtej=101.4, c5=98.2, andc;=82.9. Our
analytical results seem to support the recent Monte Carlo estirogte$.32+0.02 andc)=75.7+0.4.
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[. INTRODUCTION Despite this simplification the problem remains nontrivial
since ordinary perturbation theory cannot be used to treat the
Recently, the evaluation of the critical temperature for in-model at the phase transition due to the severe infrared di-
teracting dilute homogeneous Bose gases has been the intgergences for the zero-frequency modgs at the critical
est of many theoretical works. For this purpose, the startingpoint, originating the breakdown of conventional perturba-
model is that used in the analysis of a gas of interactingion theory. Different nonperturbative methods, some of
boson patrticles, described by a complex scalar figldith a  which are currently used in quantum field theories, have then
local interaction characterized by thewave scattering been used to compute the transition temperature. The analyti-
lengtha and Euclidean action, which, in natural unities, cancal methods include the self-consistent resummat®@oR

be written as used by the authors of Refl], the 1N expansion used at
5 d 1 leading order (IMM-LO) by Baym, Blaizot and Zinn-Justin

_ 3y g% R ) [2] and at next to leading order ({/NLO) by Arnold and

Se Jo dTJ d X{ 4 (X’T)(dr 2mV )w(X'T) Tomasik [3] as well as the lineas expansion(LDE) em-

) ployed by some of the present authors in Réf. The nu-

. a « 2 merical methods used mainly Monte Carlo lattice simula-

~ DGO+ T LG Y (% 7)] ] tions (MCLS) such as those employed recently by Arnold
(1.2) and Moore[5] and by Kashurnikov, Prokof’ev, and Svis-

' tunov [6]. Most of those calculations predicted that in the

The field ¢ can be decomposed into imaginary-time fre- dilute limit, the shift of the critical temperature of the inter-

quency modeg;(x, w;) with discrete Matsubara frequencies acting gasT., as compared to the critical temperature for an

wj=2mj/ B, j being an integer, wheregg is the inverse of ideal gasTo, ATc=T.—To, behaves as

the temperature. At the early stages of solving this problem

[1] the nonzero Matsubara frequency modes have been inte- ﬂzc an3+0(a2n?d) 1.3

grated out generating a reduced three-dimensioal) sca- To 1 ' '

lar theory. This procedure was justified on the grounds that

near the transition, the nonzero Matsubara modes decoupféheren is the number density;; is a numerical constant,

and one is left with an effective action given by and the critical temperature for an ideal gas is given as usual
by
3 * 1 2 2ma * 12
Ssa=B | EX) g — 5 VYot — Yool 2l n 123
To=—| =%~ 1.4
(1.2 " m |32 (14
The constant; in Eq. (1.3 is directly related to the con-
*Electronic address: fred@fsc.ufsc.br tributions from the zero-mode Matsubara frequencies and,
"Electronic address: marcus@Ipm.univ-montp2.fr therefore, can only be computed from nonperturbative meth-
*Electronic address: rudnei@dft.if.uerj.br ods. Some recent numerical applications predicted values for
$Electronic address: psena@bon.matrix.com.br c, that are close to 1.3(MCLS, [5,6]). On the other hand,
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the analytical applications mentioned above predicted the 012—128773[5(3/2)]_4/3K 1.7
values 2.90SCR,[1]), 2.33 (1N-LO, [2]), 1.71 (1N-NLO,

[3]), and 3.06(linear & expansion[4]). Additionally, the au- and

thors of Ref.[7] r21ave also argued that a logarithmic term 2 .

appears at ordes” in Eq. (1.3). They have shown that this n__ % —5/3, L —8/3 3,12
term is of the formc,a?n?3n(an*®) and also estimated, us- c2=~3l32)] et gLé(32)] 192 )

ing largeN arguments, the value of the numerical coefficient 64m

c;. Recently, Arnold, Moore, and Torsi [8] have argued + T§(1/2)[§(3/2)]*5’3In {(312), (1.9
that when naively going from the original actioBg) to the

reduced action%;y) by ignoring the effects of nonzero fre- " .

quency modes,$33ne misses the effects that short distancg\lsherebz n Eq. (1.8 is given by
and/or high-frequency modes have on long-distance physics. [

1 1
=In(12873) + 5 72m°R— 96k

For T¢(n) at second order these effects can be absorbed into b}=327 >

a modification of the strengths of the relevant interactions,
which means that one should consider the more general form

{1

for the reduced effective action, E@L.2), I E_Kg_ In2 [Z(12)]? (1.9
2 2\m '
1
Seff[‘//O"r//g]:ﬂf dgx[ ‘/fg(_zwﬁvz_#s) tho with K,=—0.13508335373. The quantities and R are

related to the zero Matsubara modes only. Therefore, they

2ma_ o, can be nonperturbatively computed directly from the reduced
+Za m [0 ¥ action Sg¢, which, as discussed in the numerous previous
applications, can be written as
+O[¢3 ¢0|V¢|2,(¢* ¢)3] + BF vacuum 3 1 5 1 o, U
S¢:f A% 5|V B|“+ ST paep™+ - (49)?|, (1.10
(1.5 2 2 Y

here 2. is th functi lization functi wherep= (¢4, ¢,) is related to the original real components

where Z,, is the wave function normalization functio — [Tz ; _

incorporgtes the mass-renormalization functiﬁg,incor?g— sz Vo / ;y l//&(x)_:mmw%—‘/’[;l/g);I-l(f;f(x)]’ il
—2mu3lZ,, andu=48ramT(Z,/Z;). The vacuum con-

rates the vertex renormalization function, @fghcuumrepre- tribution appearing in Eq(1.5 will not enter in the specific

sents the vacuum energy contributions coming from the iNtalculation we do here.

tegrition ov%r tpe ?onstatic Matsubarg modes. .The The three-dimensional effective theory described by Eq.
O[5 ol V tho|*, (1 o) "] terms represent higher-order in- (1 10 is super-renormalizablg39] requiring only a mass

teractions in the zero modes of the fields. As emphasized ifgynterterm to eliminate any ultraviolet divergence. In terms
Ref.[8], these terms will give contributions to the density of Eq. (1.10, the quantitiesx and R appearing in Egs.
ordera® and higher and, therefore, do not enter in the order-(1.7)_(1.9) ar,e defined by8]

a® calculations. By matching perturbative order-results

obtained with the original actioBg and the general effective A% e (2= (Do

actionSy¢, the authors of Ref8] were able to show that the KS— = u (1.19
transition temperature for a dilute, homogeneous, three-

dimensional Bose gas can be expressed at next-to-leadirgnd

order as
r 2(0)
AT, RE—ZZ—(—Z, (1.12
T—:clan1’3+[céln(an1’3)+cg]a2n2’3+ O(a®n). u u
0

(1.6)  where the subscripta and 0 in Eq.(1.11) mean that the

o ) ) . density is to be evaluated in the presence of interactions and
A similar structure is also discussed in RE3]. As far the  ip the absence of interactions, respectively, ai{@) is the
numerical coefficients are concerned, thactvalue forc;,  self energy with zero external momentum. Since they depend
Cy=—64m{(1/2){(3/2)"%¥3=19.7518, was obtained using on the zero modes their evaluation is valid, at the critical
perturbation theory8]. The other two coefficients cannot be point, only when done in a nonperturbative fashion. As dis-
obtained perturbatively but they can, through the matchingussed in the following section, the relation betwegmand
calculation, be expressed in terms of the two nonperturbativi (0) comes from the Hugenholtz-Pines theorem at the criti-
quantitiesx and R, which are, respectively, related to the cal point.
number density ¢ 1) and to the critical chemical potential Equation (1.6) is a general ordea? result with coeffi-
M, as shown below. The actual relation in between the twaients that, therefore, depend on nonperturbative physics via
nonperturbative coefficients and these physical quantities is andR. In principle, to evaluate these two quantities one
given by|[8] may start from the effective three-dimensional theory, given
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by Eq.(1.10, and then employ any nonperturbative analyti-reduced number of contributions appearing at each order.
cal or numerical technique. In general, the analytical nonperThe implementation of the renormalization procedure fol-
turbative methods give a prescription so as to select and sutaws that performed in most quantum-field-theory textbooks
an infinite number of contributions belonging to a given [20]. After the usual perturbative manipulation one generates
class. For example, the infinite subset that contains only ditonperturbative results through an optimization procedure,
rect (tadpolé contributions represents the Hartree approxi-as We will discuss in the following section.
mation, whereas exchange contributions are also taken into This work is organized as follows. In Sec. Il we present
account in the Hartree-Fock approximation. In practice, théhe method and illustrate it with a simple application to the
sum is achieved by using a modifi¢ttiressed”) propagator ~Pure anharmonic qscﬂlator. In 'the same section we imple-
to evaluate physical quantities. The nonperturbative result§?€nt the method in the effective three-dimensional theory
are then generated by solving self-consistent equationgiven by Eq.(1.10 in order to evaluate the constantsand
However, in resumming calculations, the bookkeeping and®: Eds.(1.11) and(1.12. The quantityr is then evaluated
renormalization may become a problem beyond leading or Sec. Ill, whereag ¢?) is evaluated in Sec. IV. The opti-
ders. mization procedure is carried out in Sec. V, where the nu-
Another popular analytical nonperturbative technique ismerical results are presented and compared with some of the
the 1N expansior‘[lo,lﬂ where one sums infinite subsets of FECEUt results. We present our conclusions in Sec. VI. All
the number of field components. In general, the leadinggrams with arbitraryN are explicitly evaluated by brute force
order contribution is easily evaluated and may reveal interWithout recurring to any approximations. An appendix is in-
esting nonperturbative physics, at least from a qualitative?'UdEd to show the details of the calculations of these higher-
point of view, apart from providing an “exact” result within ©Order terms. To our knowledge, some of them have not been
the largeN limit. A nice illustration is provided by its appli- €valuated in this way before.
cation, for example, to the Gross-Neveu model at zero tem-
perature, where the issues of chiral-symmetry breaking as ||. THE METHOD AND ITS APPLICATION TO THE
well as asymptotic freedom were investigafd@®]. From a INTERACTING BOSE GAS PROBLEM
guantitative point of view the leading order may not be suf-
ficient and leads to errors sinbéis finite and not too large in
most cases. An example of this case is illustrated by treating The LDE was conceived to treat nonperturbative physics
the same Gross-Neveu model at finite temperature, where thehile staying within the familiar calculational framework
leading-order largéN calculation predicts a finite value for provided by perturbation theory. In practice, this can be
the critical temperature at which chiral-symmetry restoratiorachieved as follows. Starting from an acti8rone performs
takes place, in contradiction with Landau’s theorem forthe following interpolation:
phase transitions in one space dimengib3l.
In practice, going to higher orders can be a difficult task. S—85=6S+(1-0)S(n), 2.9
Nevertheless, the i/ calculation ranks as a good method to
investigate nonperturbative physics as shown in many appliwhich resembles the trick of consisting of adding and sub-
cations. In particular, the results provided by this approximadtracting a mass term to the original action. One can readily
tion for the interacting Bose gas case, whilre 2, are sur-  see that ab=1 the original theory is retrieved. This param-
prisingly good already at leading ordg?]. Good numerical eter is really just a bookkeeping parameter and some authors
results can also be obtained with self-consistent methods delo not even bother considering it explicitly as we [d&1].
spite some potential problems as discussed in Rgf.The  The important modification is encoded in the field dependent
numerical calculations use mainly Monte Carlo lattice tech-quadratic ternSy(#), which, for dimensional reasons, must
nigues and many different results, for the interacting Bosénclude terms with mass dimensions)( In principle, one is
gas critical-temperature problem, were generated in this wayree to choose these mass terms, and within the Hartree ap-
The differences arise mainly from the way the theory is putproximation they are replaced by a diréat tadpole type of
on the lattice, the size of the lattice, the way the continuurnrself-energy before one performs any calculation. In the LDE
limit is taken, and other issues. As already mentioned, twdhey are taken as being completely arbitrary mass parameters
recent works seem to have settled this questnf). that will be fixed at the very end of a particular evaluation.
Here we shall present, and then apply, an alternative andne then formally pretends thatlabels interactions so that
lytical nonperturbative method, the LDE4,15 (for earlier S, is absorbed in the propagator, wheré&; is regarded as
works see, for instance, R¢lL6]), which is closely related to a quadratic interaction. So, one sees that the physical essence
the variational perturbation theof$7] and the Gaussian ef- of the method is the traditional dressing of the propagator to
fective potential[18]. This same method reappeared underbe used in the evaluation of physical quantities, very much as
the name of optimized perturbation thedd@]. The main in the Hartree case. What is different between the two meth-
attractive feature of this approximation is the fact that theods is that with in the LDE the propagator is completely
actual evaluation of a physical quantity, including the selec-arbitrary, while it is constrained to cope only with direct
tion of thefinite subset of relevant contributions at each or-terms within the Hartree approximation. So, within the latter
der, is done exactly as in perturbation theory. It is then easgpproximation the relevant contributions are selected accord-
to control and explicitly evaluate one by one each of theing to their topology from the start.

A. The linear é expansion
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Within the LDE, one calculates in powers éfas ifitwas  Now, settingé=1 and applying the PMS optimization pro-
small. In this aspect the LDE resembles the lakgealcula-  cedure one gets
tion since both methods use a bookkeeping parameter that is

not a physical parameter such as the original coupling con- — . (*t=dp 1
stants, and within each method one performs the calculations 7=3IA 272 2 (2.6
formally working as ifN—~ or 6—0, respectively. Finally, P =

in both cases the bookkeeping parameters are set to th(Which is a self-consistent mass gap equation. It can be easily

arlglnal values '?tt' the enld, E[NE'Ch.’ﬂ;nﬂ?urLEaé’ed’ meas d'SL' checked that with this solution one resums exactly the same
OWEVEr, quantities evaluated wi € ressed propaz,nriputions that would appear in the usual Hartree approxi-
gator will depend ory unless one could perform a calcula-

4 . ) . mation. The same procedure will capture the physics that
tion to all orders. Up to this stage the results remain strictly, rises from exchangpe terms at oradr VF\)/here the l?lrsyt con-

perturbative and very similar to those that would be obtaine ribution of this type appears together with ord&rdirect
via a true perturbative calculation. It is now that the freedom(Hartree) contributions. Moreover, as shown in other appli-
in fixing 7 generate.s.nonperturbative res_ults. Sinceloes .__cations[27], the result furnished By Edq2.6) remains valid

not bglong to the ongm_al theory one requires that a phys!ca t second order if one considers only the direct terms, and
quanuty@l calculated V.V!th the LDE be evaluated at thg POINt g pattern is valid at any order if. The actual value pre-
where it is less sensitive to this parameter. This criterion

known as the principle of minimal sensitivitPMS), trans- dicted at this lowest order )= £\ 10,429, which
. princip ; ' is only about 2% greater than the exact result. As shown in
lates into the variational relatigri8]

Ref. [21] this result can still be improved as one goes to
do higher orders. Here, we shall be mainly concerned with the
—| =q. (2.2 nonperturbative evaluation of the vacuum expectation value
dz | (¢?). This quantity, whose exact result i¢g?)eact

=\ "%%0.4561199557&. .. [28], was also evaluated in

The optimum valuey which satisfies Eq(2.2), must be a  Ref.[21]. The optimum values were obtained withvalues
function of the original parameters including the couplings,coming from its direct optimization and also from the opti-
which generate the nonperturbative results. The convergencgization of &£ At order & the value (@)™
properties of this method has been rigorously proved in the= \ ~%/30.446 456 was obtained from the direct optimization
context of the anharmonic oscillatohO) [21-24. Very re-  (,— 1 259 921) and ¢2)(V=)~Y%0.436 789 was obtained
cently, Kneur and Reynay@5] claimed to have proved the om the injection ofy=1.144 71, which was generated by

. h . . I
convergence of this method in renormalizable quantum f|eI({“e optimization off. One then sees that the optime?)

theories. These are very encouraging results for the prese Ymerical values aenerated by the two optimization proce-
application, which uses a renormalizable effective model thal 9 y P P

I . ; dures are very similar, which could be expected since, at
shares many similarities with the pure AO. Let us quickly . X
illustrate how this method works by considering the anhar-eaCh order, the diagrams that contribute(¢5) and¢ have

. . X . ) . the same structure.
monic oscillator described, in Minkowski space, by At this stage it should be clear how nonperturbative re-

1 1 N sults may be generated, through the variational PMS proce-
L=5(dg)?— sm2p?—— ™. (2.3  dure, from the perturbative evaluation of physical quantities.
2 2 4 As already mentioned, the effective model to be considered
, . . in the sequel for the description of the dilute Bose gas tem-
If one setsm=0 in the relation above, the model describesperature bears may similarities with the AO. The main dif-
the pure anharmonic oscillator, which cannot be treated bygrences being the number of space-time dimensions con-
the usual perturbation thepry. Let us first considert thecerning each cas@vhich means that one has to deal with
grOlf/nd—state energy density whose exact resdi® jiraviolet divergences in three dimensipasd the fact that
=\1%0.420804 97443 . . ., hasbeen calculated by Bender, the former is used to investigate a phase transition. Techni-
Olaussen, and War{@6]. Following Eq.(2.1) one may write  ¢4|ly, as we shall see, this translates into extra difficulties due
the interpolated action as to the Hugenholtz-Pines theorem, which washes out direct
(tadpole contributions, meaning that the first nontrivial con-
tributions to({¢?) start at the three-loop level via two-loop
self-energies. Apart from the quantum-mechanical applica-
tions[21-24, the LDE was successfully applied to the de-
from which one obtains the perturbative orderesult[21] scription of mesoscopic systerf9], nuclear matter proper-
ties[27], phase transitions in the scalar* model[30,31]
i (+=dp i (+=dp 72 as well as in the Gross-Neveu mod8p], investigation of
EM=— 5 2—In[p2— 7°]— 65 5m i 2 chiral-symmetry phenomena in QQB3], and in the deter-
—eem I S mination of the equation of state for the Ising mofi#]. It
3 (+=dp 1 2 is worth mentioning that the application of the' LDE .to the
_5)\_<f - ) +0(8?). (2.5  scalarO(N)xO(N) model[35] has allowed to investigate
4\ ) w21 p2— 2 the nonperturbative phenomenon of symmetry nonrestoration

1 1 N 1
Li=5(000)*= 3 0P 6*= 57+ 650 (2.4
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at high temperatures f_urther than it was possible with other GO (p)=[p%+ 2+ or — 5772+253r)1(p)]_11 (2.10
standard nonperturbative methods.
The first application of this method to the present problemmuyst satisfyG(?(0)~1=0, which implies
was performed in Refl4], where only the first nontrivial
contribution, which appears at ordéf, was considered. A o =—32(0). (211
successful extension to the ultrarelativistic case was per-
formed by Bedingham and Evans in RE36). The above equation is equivalent to the Hugenholtz-Pines
theorem applied to the LDE. The relation Eg.11) shows
B. The interpolated theory for the zero-frequency that, to orders", the quantitysr " is directly obtained from
Matsubara modes the evaluation of(})(0). As discussed in the introduction,

One can now write the interpolated version of the efrec-We will use the Feynman rules(gescrlbed above to evaluate

tive model described by E@1.10. Before doing that, let us perturbative]y the self-energﬁren(p) to order 5* from
rewrite rp,=r + A, whereA is a mass counterterm coeffi- which we will get the nonperturbative values ferandR by

cient. This counterterm is the only one effectively needed'>'"Y the PMS optimization proc_edure. The subscript _ren
within the modified minimal subtractiofMS) renormaliza- In the self energy means that this quantity also contains all

tion scheme, which we will adopt here. Then, one can ChOOSgiagrams that arise from the mass counterterm vertex propor-
' ' tional to A ;. For our purposes, the easiest way to obtain a

1 s 2 perturbative expansion fdip?),, is to start from
SO:§[|V¢| +77 ¢ ]1 (27) N d3p
(=3, (=N L)
obtaining =1 (2m)

dp N
(2m)3 p*+ 7

-1
8(r— 7 +3Q(p)
p2+ 7? '

1 1 o
SV +5 720+ S (1= 7°) 2 :f

85: J d3X

ou o
2\2 2
+—4! (¢?) +EA5¢

(2.12

Like or(", the orders" quantity (¢?)(? is obtained by
Note that we have treated(r. at the critical poink as an evaluating the self.-energies to that order and subsequently
interaction, since this quantity has a critical value, which is€xPanding the series on the right-hand si&HS) of Eq.

at least of orders. The Feynman rules for this theory, in (2-12. Therefore, to obtaiR and« to orders” we need to
Euclidean space, are 6, 672, and— 6A , for the quadratic consider the 54 self-energy contributions shown in Fig. 1.

vertices and— éu for the quartic vertex. The propagator is
given by lll. EVALUATION OF r,TO O(8%

. (2.9

GO(p)=[p2+ n?] L. 2.9 According to the Hugenholtz-Pines theoresn(® is ob-
tained from the evaluation of all diagrams shown in Fig. 1
The corresponding diagrams for these rules are shown in Figvith zero external momentum. To make this paper more
1. Note thaty acts naturally as an infrared cutoff, so that we pedagogical, let us do a step by step evaluation.afip to
do not have to worry about these type of divergences. Byrder 2. To orders one has only the tadpole contribution, a
introducing only quadratic terms, the LDE interpolation doesdirect application of the Feynman rules for the interpolated
not alter the polynomial structure, and hence the renormaliztheory and dimensional regularizatioisee appendix for

ability, of the theory. more detaily gives the finite contribution
In general, the counterterm coefficients appearing in the 7 (N+2
interpolated theory have a trivial dependence on the book- —orM=30)0)= —dug— T) (3.9

keeping parameter and the renormalization process can be
consistently achieved with the interpolated theory exactly a% . 5 . _—
in ordinary perturbation theory. Once inserted into a diagram, -arrying on to ordgrﬁ one conS|der§ the con.trlbuyons de-
the extra quadratic vertex proportionalde? brings in more picted by the first five diagrams of Fig. 1, which give

propagators decreasing the ultraviolet degree of divergence. @) <) n [N+2 , m [N+2
We point out that renormalization should be carried out be- ~9r¢” = 2ren(0) == dUg—| —— |+ Uz —| —3
fore the optimization process to ensure that the optimum
value 7 is a finite quantity. The interested reader is referred o U T[N+2 e u? [N+2)2
to Refs.[30,35 for more details concerning renormalization 167 | 3 1287\ 3
within the LDE.
Requiring that at the critical temperature the original sys- , U (N+2)[1 M
tem must exhibit infinite correlation length, means thafl at N (8m)?2 18 Z+4 In 7 —2.394+ 5A;
and 5=1 (the original theory, the full propagatoiG(?(p),
given by +0(8%), (3.2
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e M=) — o4y ><—8x

w0.0.8. m+++§©o
88 a Q@@OEQQ

%008@%8@“8@
8860888 .

Q QAQ ing to the self-energy. 5 up to orders®.
* % N * * 8 ¥ @

whereM is an arbitraryM S mass scal¢40]. Now, one re-  “setting sun” subdiagrams may be rendered fii26]. Now,
placesér ., which appears an the right-hand side, with theit is easy to see how the “double scoop” contributidourth
value or (! obtained at the previous order, so that the right-term on the RHS of E¢(3.2)] is exactly canceled due to the
hand sideemainsof order 2. Next, one sees that the setting Hugenholtz-Pines condition applied tg at first order. One
sun, whose explicit evaluation follows those performed inthen gets the finite second-order result

the Appendisee Eq(A18)], displays an ultraviolet pole as
e—o. In fact, within dimensional regularization, the only
primitive ultraviolet divergence associated with the effective
super-renormalizable three-dimensional theory stems from
the setting sun type of diagram with three internal propaga-

n (N+2 n [N+2
—5r§2)=2$§2,(0)=—5u§( 3 )+52u (

167w\ 3

tors. The pole associated with this divergence fixes the mass > u> (N+2) 5
counterterm coefficient in the modified minimal subtraction "% 8m? 18 41n o —2.394+0(5%).
renormalization scheme,
(3.9
, U5 (N+2)1
6As=0 (87)2 18 ¢ (3.3 Also at higher orders many contributions cancel. In particu-

lar, any diagram with one or more tadpole subdiagsym
As usual, this “vertex” must be considered also at highersuch as the “double scoop” discussed at ordérd|sappear.
orders(see Fig. 1so diagrams whose divergences arise fromThen, the diagrams that really contribute &o are those
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r§4)=®+<.>+o+ +<O>+G+

G

+ x e * U NG w FIG. 2. The diagrams effectively contributing

tor. up to orders*. The black dot now represents

only 672 insertions.
N S NS G I

shown in Fig. 2, where one must consider the external linepressed from that figure. However, we prefer to write them
as carrying zero momentum. At the same time, counterternaxplicitly so that the same figure can be used again, facilitat-
diagrams associated with the zero external momentum seifag the discussion in the following section. Using the results
ting sun diagram(or subdiagramscould have been sup- obtained in the Appendix one obtains the fourth-order result

N+2 N+2 u? (N+2)[ (M N+2
s @S @)y — sy 2, " _ s M N R
srl=3:2(0) 5”87r( 3 )+5u1677 3 Gn? 18 |n(n> 0.59775}+a\3u64w( 3

u® (N+2)? u® (16+ 10N+ N? N+2
—ﬁ—g[o.14384a+ 5\3—;[81.07&(5%2 ( ) [0.498

7 108 4)°3 7 (47)%108 18(4)?

7 [N+2 u® (N+2)? u* (N+2) (16+10N+N?)

+ MU | ——| — 6*— —————=[0.0610 + 6* — 8.0992

1287\ 3 7 10&417)3[ d 7% 6(4m)° 108 [ 1

u® (N+2)? N+2 N+2
—#—g[o.on 788— 5%u? ( ) [0.166 492—64u2u[0.0834|

7 108 4m)3 18(47)? 18(47)?

u® (16+ 10N+ N?) u® (16+ 10N+ N?)

———"[10.240+ &*— —————"[30.31094

7 (47)°108 7 (47)°108

u* (0+32N+8N?+N3) u* (44+32N+5N?)
e [20.43048— &5*— ——————[12.04114

7 (41)°648 7 (4m)°324

u* (44+32N+5N? u* (N+2)32
—54—;[17.0043%”34—¥[2.8726+O(55). (3.5

7?  (4m)5324 7? (18)%(4)®

The scale dependence of this quantity will be discussed istage. In fact, one can immediately reduce the number of
Sec. V. graphs to be considered, by substituting the vedexvith
the the appropriate critical valugr ;. obtained in the preced-
V. EVALUATION OF (¢?), TO ORDER &* ing section. Then, as for, (2)(0), the set ofdiagrams that
effectively contribute toEEé%(p) reduces to those shown in
In principle, to obtain ¢2){") one should consider all con- Fig. 2, but now one must consider the external lines as car-
tributions to the self-energy.()(p) given by the diagrams rying momentunp. Substituting Eq(3.5) into Eq.(2.12 one
of Fig. 1 with external momentump. However, thanks to the sees that the quantity that matters for the evaluation of
results of the preceding section, one does not have to pet$?)(* is 3 @(p)—=)(0). Diagramatically, this quantity is

ren
form the evaluation of all those graphs explicitly at this given by taking the graphs of Fig. 2 with zero external mo-
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mentum and subtracting them from the same diagrams witksuch as masses and coupling consjaamsvell as the wave-
external momentunp. This means that all diagrams that do function counterterm associated with any eventual momen-
not depend on the external momentum will not contribute intum dependent pole. At the same tinieg‘)(O) involves the
the evaluation of #°) at the critical point. For example, all same counterterms except for the wave function one. How-
the tadpole diagrams with any type of subdiagrams will nOteyer, as we have already emphasized, in the three-
contribute. As expected, the mass counterterm is a redundagimensional case the only type of primitive divergence re-
quantity in the evaluation of¢?){" because this quantity quires only a mass counterterm, which is the same for
depends on the difference 23?3((5)) and {(0). This means that in our cas&{)(p)
Ny s (M — s (0 n —34/(0) is always a finite quantity as shown explicitly in
Zien(P)~ XG0 =[2G (p) + 2 (p)] the CX/ppendix, where it is also shown that this quantity is
—2M0)+2M0)], (4.1 scale independent, as opposed o Therefore, the type of
diagrams that really matter for the evaluation(dF)ff) are
where {V(p) is the divergent self-energy. For a generalthose shown in Fig. 3, which can be obtained expanding Eq.
renormalizable theory, the quantitS}gt‘)(p) represents all (2.12 to O(5%). Following the sequence of diagrams shown
counterterms associated with the parameters of the theoip Fig. 3 one can write

dp N 577 &' 87" &' n° 2[21(P)~24(0)]
(277)3p2+ 2 2+ 2+ 2 22+ 2 23+ 2 24_ 2 2
Ui pc+n= (P t79)° (p°+7)° (p°+7n°) P+

| o275 -340)]  S[32(p)-35(0)]  [%a(p)-3a(0)] 37 Ea(p)=24(0)]

(@2= [

(P*+7%)? P+ 7? PP+’ (p*+7%)°
_542772[22@)_22(0)] _64[24(p)_24(0)] _54[27@)_27(0)] _542772[23@)_23(0)]

(p*+ 7?)? (p%+ 7°) (p*+ 7% (p?+7%)?

_ _ _ 2 _

_54[210(p3 2210(0)]_64[25@)2 E;—,(O)]+54[21(p; 2;(20)] _54[26(DZ 225(0)]

(p*+7%) (p=+ 79 (p“+7%) (p*+ 7%
B [2g(p)—2(0)] B [Z9(Pp)—29(0)] _ [211(p) —=12(0)] 5

d (p*+ 7% > (p%+ 7°) o (p*+ 7°) +OLy- 42

The details of the explicit evaluation of thg terms are given in the Appendix. The final result we obtain is

N» 6Ny &Ny &Ny & 5Ny u?N(N+2)

. . . . ZN(N+2)
47 24w 8 4w 164w 128 4x 7 184m)3

(¢%)u="— [0.143848— 6°— — ~)[0.011 68
: 7 18(4m)3

u? N(N+2) u?® N (16+10N+N?) u? N(N+2)
-8 — ——[0.0610+ 5°— 8.09927—6*— ——[2.8270x10°°
U 18(47T)3[ " n* (4m)° T 1= Taame ! ]

2 2 2
— 54u_ M[7_7313< 10*3]_ 54u_ M[0.024 61— 54u_ M[O.OlS 29
7 18(47)3 7 18(4)3 7 18(47)3

u? N (16+10N+N?) u® N (16+10N+N?)
[0.85984+ &8*—

72 (4m)6 108 7 (4m)° 108

[1.937 786

u_3 N (16+10N+N2)[53047q_54u_4 N(N+2)2 [087333—54u—4 N
7? (4m)° 108 ' 7° (182(4m)7 7° (4m)’

(40+ 32N+ 8N?+N?3) u* N (44+32N+5N?)
X [3.159047 67— 6*—

648 7° (4m)7 324

[1.709 59

u? N(N+2)2 u* N (44+32N+5N2
- &' ( ) [4.4410—-6*— ( )

182am7 2. 5). _
7 (18)%(4m)’ 7 (4 325 2377411005 4.3
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; + ; + Q + Q + Q + é +§ + é
FIG. 3. All diagrams contributing to the two-
point function{ ¢2) 5, up to orders*, at the criti-
@ @ @ @ cal point. Again, the black dot represents here
+ + + + + + + + only the 672 insertions.
+ g + Q + § + % + %

V. NUMERICAL RESULTS FOR THE TEMPERATURE Applying the PMS to($2)(? at order 8° one obtains the

SHIFT following three solutions. The first;y=—0.047542 2,

In this section we will turn our, so far, perturbative evalu- gives($?)()=0.004 550 & while the other two,

ation into nonperturbative results using the PMS optimiza-

t?on prescription. Our a_malysi_s of results, including the selec- ;: (0.023 771 1+ 0.026 899 b)u, (5.3

tion of the relevant optima, will follow closely those adopted

in the applications that proved the convergence of this

method for the anharmonic oscillati21—24. Some of the Yield

guidelines developed on those studies are essential for our

present application. Let us start the optimization process with (¢2>ﬁ3)= —(0.00221912-0.0015024bu. (5.4

the scale independent quantip?){? , whose recent Monte
. . 2 — '_ _—

miing 1et s remark that all contbuions () e AL order 5° one obiains the real soluionsy

u = i i 2y(4) = _

proportional tos"u"z* " and, therefore, the PMS condition =0.04393521 which g'|ves<f./> N 5 8')002 93974, and

will imply solving a polynomial equation of degreeAs one ~ 7= —0.069799&, which gives (¢%);”=0.00483554.

may expect, many of those roots that determine the opti- The complex solutions are

mum » will be complex. Also, as observed in the anhar- .

monic oscillator studies, most of the time, the best results are 7=(0.012932 #0.046 769 4P u, (5.5
in fact generated by the complex solutid]. Since 7 is

arbitrary we have no justificatiom, priori, to throw away its from which one gets

complex part. This means that our optimized physical quan-
tities (¢?), and r, will have, eventually, complex parts
whose meaning is to be interpreted according to the physics. (¢*){=—(0.00134323:0.00213104u. (5.6
Here, these two quantities are ultimately used to determine a

strictly real physical quantity defined by the critical tempera- | order to select the appropriate roots we recur again to
ture. Therefore, for our purposes the complex parts of thosghe AO convergence studies, where the existence and behav-
two physical quantities are not relevant and will not be con+g, of optima families was fully investigated to ordéf’
sidered. Note that the imaginary parts c_)f optimized physica[21]_ There, it was observed that at a given ordereach
observables have also been dropped in Rf], where a  pys solution belongs to a different family, the exception
different, but still valid, physical argument has been usedpeing complex-conjugate solutions that belong to the same
Finally, we shall follow the original PMS prescriptidi8]  family. It was observed that, in the complex plane, the first
and optimize($®){” andr{” separately. This procedure was member of a new family always lies on the real axis and also
also adopted in the ultrarelativistic case, where it has prothat a new family arises as is increased by 2. Supposing
duced good results36]. that these findings may also be used in our three-dimensional

By truncating Eq(4.3) to the first nontrivial order, order problem, we may identify two families whose first members
6%, settingé=1, and by applying the PMS, one gets the twojie on the real axis at ordes?. Family 1 starts with the

real roots positive real solution;=0.023 233 21 and family 2 with the

_ negative real solutior;= —0.023233 2. No new families
7=%0.0232332, (5.9 arise when one goes to the next order and the real negative

_ ) solution ;: —0.047542 21 is just another member of the
which give family of negative real solutiong2), while the complex-

N conjugate optima with positive real parig=(0.0237711
(¢%)'=+0.002777 326. (52 +0.026899%5)u are taken as belonging to family 1.
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At order 8% family 2 gets another member given b_y TABLE |. Comparision of the results foc; as obtained from
— 0.06983, whereas family 1 gets?z (0.012932 1 ;jigfnerent methodgsee text and at different orders of approxima-

+0.046 769 4P u.
As we have increased the order by 2, one effectively seeg;ci s 1N-LO 1/N-NLO SCR 0(8%) 0(8% 0(5%
the appearance of a new family whose first member lies on

the real axis and is given by=0.043935 2. We can now 130 233 171 290 306 245 148
roughly examine the convergence of our results. The values

obtained with the optima belonging to family 1 af¢?){”  ptained when the theory is regularized with dimensional
=-0.002777326, Re(4*)("]=-0.00221918, ar21d regularization. Thenux=A($?)V=(4?{ from which
Re(4%){V]=-0.00134328. Famiy 2 gives (¢°){?  one finally obtains,=3.06, c; = 2.45, andc,=1.48 at or-
=0.002777326, (¢?){¥=0.00405506, and (*){"  derss? 6%, andé?, respectiveiyf41]. These results are com-
=0.00483554, whereas family 3 gives (¢?){V= pared with other analytical and numerical results in Table I.
—0.002 939 74. Note that the firs{ ¢?), value predicted by It is instructive to examine the topology of the diagrams
family 3 is only about 5% greater than the first value pre-contributing at each order so that we can establish the links
dicted by family 1. It is very likely that family 3 will become with other nonperturbative methods. At second order the
complex and, as for the AO, as we go to higher orders, faminontrivial contribution arises from the setting stame plain
lies 1 and 3 will predict very similar values converging to thebubblg type of diagram. At third order one has, besides the
exact value. Family 2, on the other hand, seems to have onlgetting suns with insertions, an additional contribution,
real components. It predicts values(@f?), , which increase which arises from the two-plain-bubbles type of diagram
order by order with a sign that is opposite to the one pre{ninth graph shown in Fig.)3 However, this contribution,
dicted by families 1 and 3. Moreover, in the AO, it was belongs with the setting sun to a class of diagrams that would
observed that the complex families have better convergencappear in a plain bubble sum or in the leading order of\a 1/
behavior than the purely real families. This analogy indicatesype of calculation. At fourth order one considers again a
that family 1 should produce converging results. three-plain-bubble contributiofi8th diagram of Fig. B but
We can justify pushing the analogy in between our effec-more radical changes arise via other type of vertex correc-
tive three-dimensional model and its one-dimensional vertions such as the correction to the plain bubble that comes
sion that far by remarking that, at least to the order we confrom the 19th and 20th diagrams of Fig. 3. Finally, the last
sider here{ ¢?)(? can be expressed as a power expansion ofliagram contains a different type of vertex correction that
the form would appear in a ladder type of summation. In fact, one can
easily evaluate which are the individual contributions of the
4 _ _ _ five-loop diagrams shown in Fig. 3. The first of them gives a
($HP=N2 (-1 1 ud)[7n(1-8)"*"'B;, (5.7  contribution(in terms ofu® 7% of ~1.9x 10"%, the second
=0 gives 2.8 1078, the third 2.% 180*8, the fourth 8.86
4 _ 5 16 X 10 %, and the fifth gives 28 10" °. These numbers show
vaq%r,% B‘?';iiostrhc?ulr; ?s sBir%n]alroto' thE:t folL?n q ir?r':geBéne- that, at this order, the total contribution from the ladder and
X bubble correction type of contributionghird and fifth is

dimensional case. This hints that both models may hav%ffectively twice that of the plain three-bubble one.

similar convergence properties making our procedure more ™ = - 0 easy to see by drawing that the only corrections

legitimate. It is also worth pointing out that in our previous .
> ; that may appear at odd orders are those due tadhbling
work, Ref.[4], we had only the ordef result and it was not of a bubble that already appeared at the previous dider

e oo e o oo b o ceegsing e bubble cha” AL he same (me, o even o-
. P P Y, . “ders, one is allowed tmserta new bubble anywhere, creat-
tions. There, to choose among the two possible solutions

<¢2>52):10-002 777326, we had to use different argu- ihg diagrams with completely different topologies. In other

' i ion @) itional to-
ments and were also guided by results found with othe}NordS’ in a perturbative expansion @6, , additional to

methods. By considering higher orders, as we have dcmBoIoglcaI classes of graphs can arise only at even orders.

here, we can overcome this problem, and the negative result One can now appreciate that the reason our oadre-
<¢2>52): —0.002 777 326 naturally appears as one that be- Sult c;=3.06 [4], obtained by optimizing only one setting

| to th t well-behaved t order by ord sun contribution, compares so well with the vale=2.90,
é)o??escti%nse most well-behaved sequence of order by ord&hng by resumming setting sun contributions in a self-

. . 2 (9) consistent way[1], is a consequence of the fact that both
We are now in position to evaluatec=A{¢“).” , so that

) X ) i X approximations consider the same type of diagrams. On the
¢, can be determined via E{L.7) with the optima contained  oipqor hand, when going to ordéf one considers an addi-

in family 1. As one could expecty is always proportional to  tional diagram but which, together with the setting sun,
u since the latter quantity is the only quantity with masswould also be considered in a largeé calculation. In the
dimensions appearing ifp?)?) . This means that the opti- LDE, its effect is to reduce the second-order resultcio
mum value for the noninteracting vacuum expectation value=2.45. Let us consider, for the moment, the only ordér-
<¢>2)g‘5) will be zero at any order. This agrees with the resultscontribution that would also be considered in a lakgeal-

of Ref.[8], where it was shown that this is indeed the valueculation. Graphically this contribution is displayed by the
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second of the five-loop terms in Fig. 3. Not surprisingly, we Proceeding to the next order, the PMS gives two complex
obtain the valuec,=2.32, which is very close to the;  solutions,7=(0.035 367 8-0.055 009 1)u?, which yield
=2.33 value obtained with the N/method at leading order

[2], and the numerical differences may be due to the fact that r{®=(0.0022132%0.000 096 6l)u®.  (5.10

we have considered our symmetry factors in full, not only

the highest power oil. The four remaining five-loop contri-  Finally, the orders* optimization results are the real solution

butions would be considered in arNltype of calculation to ;: 0.065 933 41, which yieldsrg“):0.00Z 461582 and the

the next order. Such a calculation has been performed b . - 2
Arnold and Tomaik [3] who found ¢;=1.71, which is Xomplex solutions  7=(0.009 47463-0.079 726 Z)u”,

~27% smaller than the leading order result. In our case thigvhICh generates

fact is confirmed at ordes*, where the net effect of consid-
ering diagrams that would belong to a next-to-leading-order
1/N evaluation is to decrease the valog=2.32 obtained

r{¥=(0.001654 1%+ 0.000772560u?.  (5.11)

. ; : As in the previous case one sees that the first optima family
with the graph that would appear at leading order in the SaMEiarts with a real value at ordéf and turns into a complex

approximation by roughly 35%. As before, the numerical amily at order5°. At order 5* it receives a new complex
differences must be due to the full consideration of powers Oi’nember The fir.st familv cenerates the real valué@
N in each symmetry factor. It is not our aim to establish here : 2 3) y_ g 2 125)
a formal relationship among the different approximations._o'o03 152 362' R‘?[rc 1=0.00221320%, and Reér "] .
Nevertheless, the discussion above can serve as a guide 70001654107, Wh_'Ch are our selected value_s. Then, using
understand how the LDE captures part of the nonperturbativEd- (1.8 together with the optima values ob}amed foa”f,j
physics contained within the SCR andN1approximations. we Obta'r}; order after order, t2he resutts= 101.4, c;

In order to evaluate the coefficieaf we now turn to the = 98.2, andc,=82.9 for the ordea” nonperturbative coef-
optimization of the scale dependent. Settings=1 and ficient. As_ forcq, these results compare well with the Monte
applying the PMS ta® generates one positive, real opti- Carlo estimatec;=75.7+0.4.

mum given byn=u/6x. It is important to note that this PMS
solution is a scale independent quantity. In fagtdepends VI. CONCLUSIONS

on the MS mass scale through the term proportional to We have used the lineat expansion to evaluate nonper-

u In(M/7), which appears in the_orde}z- setting sun term. It turbatively the numerical coefficients appearing in the expan-
is then easy to see that when this term is derived with respeg

. . ) fon for the transition temperature for a dilute, homogeneous,
to 7, the scale dependence automatically disappears tumning .ee_dimensional Bose gas given Hy=To(1+c,an’®

our optimization procedure into a scale independent procesg&[c’ln(anm)+c”]a2n2’3+ 0(a3n)), whereT, is the result

As discussed below, this situation will be verified at any, - a2n deal gasazis heswave scat’tering Ien(g);th Amds the

order in 5 . .. number density. This expansion fdy, incorporates the ef-
Next, in order to get a numerical result for the optlmlzedfects of nonzero Matsubara modgg&9]. While the coeffi-

e one must fix a scale and here we chobe u/3, which is cient c, has been exactly evaluated using perturbation

the same scalgt2] used by Arnold, Moore, and Torsik in : X
Ref. [8], where the result found for this quantity is(M theory, the question about the numerical values of the other

=u/3)=0.001 920(2)°. The relation in between the values two coefficientsc_l and_cg _remains open and h"’?s begn the_
of rga)' evaluated at two different MS mass scaMs and objecfc of recent investigations. The reason behind this (_jlfﬂ—
M,, can be obtained from E¢3.5) and reads f:ulty is the fact that these coefficients can only be obtained
in a nonperturbative way.
Due to the Hugenholtz-Pines theorem the first nontrivial
) ) (5.8  contribution appears at an order where one has to consider, at
least, momentum dependent two-loop self-energy diagrams.
Considering higher-order terms, so as to get more accurate
It is not too difficult to see that this relation will be verified resu|tsy becomes rap|d|y difficult within the existing nonper-
at any order ins. At order 5” the only diagram that is scale tyrhative methods as discussed in R8l, where the authors
dependent is the setting sun. At a higher orde®g) this  state that the complexity of the mathematical problem does
order5” contribution can only appear as a subdiagram. Athot allow a definitive prediction of the prefactog, of the
the same order a similar graph appears, but this tine term linear ina, from an analytic analysis. On the other
replaces the setting sun insertion. However, the “vertéx  hand, two recent numerical results obtained with lattice
is always replacedsee Sec. )by its expansion i, which  simulations, which predict,~1.30[5,6,8], are being taken
contains, at ordes?, exactly the same scale dependent termvery seriously. In a previous work, Ré#], we have applied
as given by the setting sun, with a reversed sign. This meange LDE to this problem obtaining the valeg~3.06 at the
that, apart from the orde#? setting sun, all contributions to first nontrivial order 6%). However, the quality of that ap-
or(" are automatically scale independent. Optimizing ourplication was difficult to infer, from a quantitative point of

My
M,

My 1My (N+2)
2 u? 18(41)?

u

order-5? result one gets view, since only one approximant had been used. On the
@) 5 hand, the fact that at orde¥ with only one graph the opti-
re’=0.003152 36°. (5.9  mization procedure was able to generate a result numerically
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similar to that obtained with a self-consistent resummatiorinvestigated the quantity, by evaluating all self-energy con-

(SCR of two-loop momentum dependent contributiddi§  tributions, with zero external momentum, up to ords

was encouraging. At that time, we were not in a position toOnce this quantity was optimized, we have obtained the val-

elaborate any further about the convergence behavior of thatesc,=101.4,c5=98.2, andc,=82.9 for the next nonper-

result. turbative coefficient at second, third, and fourth orders, re-
In the present work, we have again explicitly shown thatspectively. These results are in good numerical agreement

the LDE method offers, as its major advantage, the possibilwith the Monte Carlo result}=75.7[8].

ity to select, evaluate, and renormalize a physical quantity In summary, our analytical investigation seems to support,

exactly as in the familiar perturbative framework. Here, theorder by order, the results obtained with the other three ana-

contributions appearing at each order are not selected accorfjtical nonperturbative methods. Our fourth-order numerical

ing to their topology as within most nonperturbative analyti-results compare well with the recent results found in Refs.

cal cases. Contrary to some previous unfounded criticismg5,6,8|. Additionally, there is an exciting possibility that the

no uncontrolled errors arise in this type of perturbative cal-method may offer a way of making a definitive analytical

culation, most notably in this application, where even theprediction about the nonperturbative coefficieafsandc’,

most cumbersome five-loop contributions have been fullywhich we are currently investigating.

considered and evaluated without recurring to any approxi-

mations as shown in the Appendix. Another advantage is that

one does not have to worry about infrared divergences, since, ACKNOWLEDGMENTS

during the formal evaluation of the graphs, the LDE arbitrary

parameter naturally acts as such before disappearing durir];ge

the optimization process. Also, the fact that a convergenc Ister for their help conceming the genekalsymmetry
P P ' ) 9eNCe, ctors and Philippe Garcia for discussing the selection of the
proof for the quantum-mechanical analog of the model con-

. ) . optima. F.F.S.C., M.B.P.,, and R.O.R. were patrtially sup-
sidered here does exig21-24 is an extra bonus. ; : ;
At first one could think that the multiplicity of possible ported by Conselho Nacional de Desenvolvimento Clieat:

.~ e Tecnolgico (CNPg-Brazi). R.O.R. also thanks the “Mr.
real and complex results generated by the PMS ConSt'tUteFompkin;gFun(d foquosmglogy and Field Theory” at Dart-

the most serious Qisadvantage of the LDE. Nevertheless, ﬁ}%outh for partial support. P.S. was partially supported by
guantum-mechanical convergence studies of R&f] have Associa@o Catarinense das Fundms Educacionais

shown how meaningful nonperturbative physical results ca ;
still be obtained. As discussed in the text, those studies hav ACAFE-Brazi).
been crucial to our application for some important reasons
such as showing how the possible solutions gather into realappPENDIX: EVALUATING THE HIGHER LOOP TERMS

and complex families and emphasizing that better results are ) ) S
generated by the complex ones. We recall that, although dif- To m_ake this Wo_rk self-contam_epl we shaI_I outline, in this
ferent physical arguments have been used in each case, tABPendix, the details of the explicit evaluation of all Feyn-
imaginary parts of the optimized physical observables genman diagrams considered in the evaluation(gf)" for
erated by the complex families have also been dropped out i@rbitraryN. We also remark that working out symmetry fac-
Ref. [21]. As already mentioned, our effective model dis- tors for many-loop contributions with geneiitis a problem
plays the same series structure for the physical observabR its own. Here, we have used the methods developed by
($*)® as its quantum-mechanical counterpart. Taking allKleinertsetal.[37]. o _ _
these facts into account we were able to obtain the results We regularize all diagrams with dimensional regulariza-
c,=3.06,c,=2.47, anct; = 1.48 at second, third, and fourth tion in arbitrary dimensionsl=3—2¢ and carry the renor-
orders, respectively. Our results approach, order after ordefalization with the modified minimal subtractiotMS)

The authors would like to thank Hagen Kleinert and Axel

the recent Monte Carlo estimatg,~ 1.3. scheme. So, the momentum integrals are replaced,
Comparing our results and the topology of the diagrams

considered here with those belonging to the self-consistent d%p e’eEM2\€ [ dp

resummation of setting suns and thé\lapproximation at f 3_>f = ) f = (AL)

leading (1N-LO) and next-to-leading (N-NLO) orders, (2m) p 4m (2m)

we made clear that our results are not a mere coincidence. In

fact, the PMS is successively chopping, order after order,hare M is an arbitrary mass scale ang¢=0.5772 is the

nonperturbative information contained in those approXimag,jer-Mascheroni constant. Very often, in evaluating the
tions. Our results confirm the decrease in the valueof ontributions to 2), one considers the integral
u

observed successively with the SCRY4LO, and 1N-NLO.

The numerical differences may be due to the fact that we do

not make any distinction among the different powersNof 1 722" T[n+e—3/2]

that appear on the symmetry factors since the LDE was en- f > _on 32

visaged to cope with arbitrary. P(p™+ )" (4m) T
We remark that a problem regarding the sign of the coef-

ficient c,, which appeared in our previous application, hasThis integral can be explicitly evaluated as above or by con-

disappeared at this higher-order evaluation. We have alssidering the casa=1,

€

M 2e'}’E
772

(A2)
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1+€2In

j ! U M)+2 In(4)
- = — —1In
pp2+5? AT 7

+ €% 4+ 7T—2+2|n2 o
€ 4 27
+4In| — +0(e3)], (A3)
27
and its derivatives with respect t?,
f 11 d ”‘1f 1 )
p(pP+pA" (M= gy pp’+ 7%

Let us now consider the three-loop contributiong ¢&),
with any number of, external and/or internaky? insertions.
Their general form is

8°%a(p)

— o (A5)
(p?+ )"

(5772)n—2ij

wherec is defined below anch determines the number of
external(to the setting sundz? insertions. At the same time
the insertions, internal to the setting sun, are taken into ac-

count by
__M(N+2) 2[ 1
S 2ym+j+h-3 1
(67°) |  (A6)
(@®+ 79 [(p+k+q)2+ 7"

where M defines the multiplicity of equivalent internahy?
insertions. This general contribution ¢¢?2), can be written
as

%a(p)
—(8 2 r'I—ZNf
(o) p(p*+ 7%)"
N(N+2) M
18

:5n+m+j+h—3 u2(772)n+m+j+h—5

Xf 1 1 1
pkq(p2+ 7]2)n (k2+ 772)m (q2+ 772)J

1
><[<|o+k+q>2+ 7" (A7)

wherec=m+j+h—1 labels the order of the two-lodset-
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or other generalizations. One then gets

5°a(p)
2\n—2
N
B 5n+m+j+h—3 N(N+2)M UZ
(4 18 7
I[n+m+j+h—9/2+3€] [ eeM?| >
P[n]T[m]I[j]Th] 7?
! 9(2)9(B)9(v)
XJO dadﬁdy[g(ayﬂ,,y)]n+m+j+h—9/2+36' (A9)
where
9(a)=a) (1= a)" a(1-a)] T "3,
(A10)
g(,B):,Bm_l(l_,B)j+h_5/2+6[,3(1_B)]_j_h_m+3_2€-
(A1)
g(y)=yn_l(l—y)j+h+m_4+2€, (A].Z)
and
7y, 17Y (A13)

9(a.B,y)=v+ -5 Bali—a)

Then, for givenn,m,j, andh one performs the expansion in

€ keeping the poles and finite terms as usual. For most situ-
ations found in the present work, the integrals over the Feyn-
man parameters need to be evaluated numerically. Here we
use Monte Carlo and Vegas techniques to perform those in-
tegrations. We have taken particular care to keep the numeri-
cal errors less thar-1% in our final numerical results.

One must be careful in carrying out teeexpansion in the
expression above, since sometimes the divergences can be
hidden in the exponents of the Feynman parameters. Since
m,n,j, and h are positive integersn=2m,j,h=1), one
sees thag(y) has a pole ag—0 whenj=h=m=1, corre-
sponding to a setting sun diagram without interdaf® in-
sertions. This is the only situation where one has ultraviolet
divergences for these contributions. ferh=m=1, the ac-
tual divergence appears in the term<%)2¢~* contained in
g(y) and it will appear as a &/pole if one integrates

ting sun self-energy term. Now, we can merge all propaga-

tors through the use of standard Feynman parametrization,

given as usual by

1 Tx+y] [t @ l-a)?
a0’ TIXITY1Jo " [aa+b(l—a)]Y

(x,y>0)
(A8)

' 9(v)
fody[g(a,ﬁ,y)]“*mﬂm9/2+3e (A14)

by parts. The casp=0 follows essentially the same lines
and the general result for the setting sun type of contribution
with any internal and/or externals;? insertions is
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5°3,.(0) absolute control about each single contribution we prefer to
(5772)”*2Nf Z—aZ use our general expressions, E¢s9) and (A15). We have
p(p=+ 79)" checked both procedures, finding that they agree with each
STEIHIEI-3 NN 2) M other within 1%, which is reassuring since when obtaining
__ U2( 72)"2 the diagrams with insertions via— 7(1— 6)*, one has a
(4m)3 18 result that may be considered exact, since this expansion
starts from Eq(A19), and this result agrees with the analyti-
T[m+j+h—3+2¢] [ e7eM2| > cal results of Refs[4,38]. Also, at orders?, the general
T[m]C[jIT[] > relations given by Eqs(A9) and (A15) have proven to be
n very useful in the evaluation of diagrams containing the set-
ting sun as an insertion. For the eighth graph of Fig. 3 one
y fldad[)’ 9(a)g(B) has three cases similar to=m=2 andj=h=1 (M=3).
0 [g(a,ﬁ)]m+j+h*3+25 Th|S giVeS
3%2(p) u? N(N+2)
1 —NJ(S e 0.188 (A20
X J’pm, (A15) p(p2+ 772)2 7 18(4’77)3 [ a ( )

where the integral ovep can be readily obtained by one of and
the methods discussed in the beginning of this appendix and

2
Nj 5550 U NIN*2) 6 2ag, (a20)
p

! ! (pP+722 M 184m)°

WP =15 " Bati-a)’

(A16)

which lead to
Note that the” function in Eqg.(A15) displays an ultraviolet

pole whenm=j=h=1 and is finite otherwise. 53 ,(p)—2,(0)] u? N(N+2)
The first contributior(sixth diagram of Fig. Bof this type f 2 .22 0, m[0.061q.
appears aO(45%) with n=2m=j=h=1. Since there is just b (P 8(4m)

one graph like thisM=1 and one writes (A22)

For the seventh graph of Fig. 8=3 andm=h=j=1

_NJ 831(p) _ 2N(N+2) u_2 E+6In(M) with M=1, one has
p(p%+ 5?)? 18(4m)2 m (€ 7
Nf 5377221(p)_53u2 N(N+2) 1
—4.9314%. (A17) p (p?+ 7%)° 7 18(4)% 32
1 M
The p=0 contribution is given by X E+6 In( ;) —1.96% (A23)
823,4(0 N(N+2) u?[1 M
f 10 ,N( )__+6m(_) and
p(p%+ 5?)? 18(4m)® 1€ 7
Nf S*9?21(0) 6\3u2 N(N+2) 1
—3.780 6%. (A18) p (p2+ 7?)3 7 184)3 32
. ) 1 M
The last two equations reproduce the results found analyti- X|—=+61In —) —1.784, (A24)
cally by Braaten and Nieto in Ref38]. Note that although € Y

Egs. (A17) and (A18) diverge, their sum is finite and scale

independent. Together, they give the contribution which lead to

2 _
—Nf F[Z1(p)—21(0)] _ _52u_2 N(N+2) _NL(% 2[341(p)—241(0)]
p

0.143 8438, 2, .2\3
(p%+ 72)? " 18(477)3[ g (p=+7n%)
(A19) u2 N(N+2)
. . . =-8— ———[0.01169. (A25)
which is exactly the result found in our previous work, Ref. 7 184m)3

[4]. Now, we turn to the evaluation of the setting suns with

insertions. The most expedient way would be to make thevhere the factor of 2 on the RHS accounts for the two pos-
replacementy— 7(1— 8)¥? and then expand the square root sibilities of external insertiongsee Eq(4.2)]. Forn=4 and

to the desired order. However, this procedure would onlym=h=j=1 (tenth diagram of Fig. Bone gets, withM
give the total contribution at each order. In order to have=1,
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JN(N+2) 1 u?
18(4m)% 64 1

_Nf 84n*21(p) _
p (p?+ 7?)*

1 M
X|—+6 In(—) —1.201 1%
€ n

(A26)

and

JN(N+2) 1 0
18(4)% 64 7

Nf R (0)
0 (PPt

1
X|—+61In
€

M
—) - 1.140%, (A27)
n

which lead to

3582 1(p)—21(0)]
pr (p*+ 7"
N(N+2) u

=—5* ——[2 8270< 10 3], (A28)
18(47)% 7

where the factor of 3 on the RHS accounts for the possibili-
ties of external insertiongsee Eq.(4.2)]. There are three

cases (M=3) similar to the casn=3, m=2, andj=h
=1 displayed by the 11th graph of Fig. 3. One gets

4 _2
—Nf 0T 2a(p) _ (NN )—[o 0586 (A29)
p

(p2+ 723 1847)% 7
and
87’2500, N(N+2) u?
NLW‘ QETTREEI
(A30)
which lead to
847°[235(p) —35(0)]
pr (p2+ 7]2)3
JN(N+2) u
-5t ——[7 7318<10 3] (A31)
18(4)°3

The 12th graph of Fig. 3 has1=3n=2m=3, andj=h
=1 leading to

,N(N+2) u
184m)°

4
_Nf (5 24(P) _ —[o 058 639

p2+ 72)2
(A32)
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and
8%%40)  ,N(N+2)u
prm— St —— 84n )3 [008324@
(A33)
which give
[Z4(p)—24(0)] JNIN+2) u
f (02t )7 =-5* 184n)? 7 —[00246JJ
(A34)

Finally, for the 13th graphM=3, n=m=j=2, andh=1
from which one gets

54%(p) JN(N+2) u
- = —[0.02
NJp(p2+n2)2 84?7 [oo 34553
(A35)
and
5434(0) JN(N+2) u
N| ——==-6——— 1
Jp(p2+7]2)2 18(4m)* 7 [00 B
(A36)
which gives
54[27(10)—27(0)]_ JNIN+2)u
pr P 518(4 = [001825
(A37)

Let us now consider a general four-loop contribution with
any number of internal and/or externd#? insertions. After
performing few shifts on the integration variables one gets

e 89%4(p)
— (579" 2N fp—(p2+ o

_ 5n+m+|+h+i+j74u3N

M(16+ 10N+ N?)
x 108 (

2\n+m+l+h+i+j—=7
7°) !

1
qukt(t2+ 79+ 72)"(K2+ 7)) [(p+a)2+ 72"

X

1
X ¢ P
[(p+k)*+ 7T [(p+0*+ »*]

(A38)

whered=m+I|+h+i+j—2 labels the order of the three-
loop self-energy term. Then, proceeding as in the three-loop
case one finds
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d _ o A2—j—efq _ N12-n—e
_(5772)n2me f(y)=v (1= ) (A42)
p(p2+ 7?)" _ pm+h—5/2+ €1 _ pyn+j—52+€
f(6)=26 (1-90) : (A43)
— 5n+m+|+h+i+j_4U_BM(16+1G\I+N2) f(¢):¢|+i—5/2+e(l_¢)n+j+m+h—4+26, (A44)
(4m® 7 108
. and
MzexpyE) S T(n+m+l+h+i+j—6+4e)
—— 1-¢) (1-6)(1-¢)
2 F(mT(m)I M) __ ¢ i
Y f(a,B,v,0, + + .
R T e TG ) R )
1 (A45)
XJ dadBdydod¢
0 As far as renormalization is concerned one should note that
those type of four-loop contributions are always finite. The
fla)f(B)F(y)T(0)f(P) (A39) four-loop contribution whose self-energy has zero external
[f(a,B, Y, 0, ¢)]I+i+m+h+n+j76+4e’ momentum reads
where 59%,(0
| oty S (A46)
fla)=a " (1-a)> ', (A40) p(P™+7°)
f(B)=BY>""(1-p)> ™, (A41)  where
|
2
Eb(o): N53u3M(16+ 1ON+N )(57]2)n—2( 57’2)m+|+h+i+j—5
108
xf ! (A47)
aki(q°+ ) (K2+ 7) (24 72)"[(a+K)*+ T [(a+ )+ 7°]™
|
Proceeding as above one gets and
893,(0) y(1-6) 044
2yn—2 f(a,B,y,0)=(1—v)+ + . (A50
(572" pr<p2+,72)n (@B, 0)=(1= )+ g bz (ASO)

ud(7*)" %2 M(16+ 10N+ N?)
(477_)9/2 108

— 5n+m+|+h+i+j74N

M2expye | > T(m+1+h+i+j—9/2+ 3¢)
e F(m)I(HT (M)
YH(a)f(B)f(y,0)

[f(a :8 ¥ 0)]|+i+m+h+j—9/2+36

1
X f dadpBdydé
0

X f ot (A48)
p(p2+ 73"

where f(a) and f(B) are given by Eqs(A40) and (A41).
Also, one has

f('}’, ‘9):(1— 'y)j*l[ y(l— 0)]I+i+575/2(,y‘9)h+m—5/2+5,
(A49)

The first four-loop contribution of this type appears at order
5% and is displayed by the ninth graph of Fig. 3 and it has
n=2, m=l=h=i=j=1, and M=1. The contributions to
(¢?), are given by

B f 23(p)
p(p?+ 7°)?
u?® N (16+10N+N?)

— _bGF o 108 [32.4389

(A51)

and

2300
éGNL(lonr 772)2_66

u® N (16+10N+N?)
7’ (4m)° 108

[40.539,
(A52)

which lead to
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N f [S4(p)—35(0)] and
2\2
P (PP ) 54Nf S0 00 N (A6HINENY)
¥ N (16+10N+N?) (p?+ 7?)? 2 (4m)® 108 Y
S [8.099 27. g g
7 (4m)° 108 (A58)
(A53) which lead to
As for the three-loop case one could use the equation above [210(P)—210(0)]
to obtain a series expansion, which would give the total con- —d°N b (p2+ 722
tribution of graphs with insertions to any order & How-
ever, we prefer to perform the individual evaluation of each u® N (16+10N+N?)
contribution in order to achieve more control over the series = 54—2 5 108 [1.9784.
expansion. At ordep* the first contribution is displayed by n” (4m)
the 14th graph with\i=1, n=3, andm=I=h=i=j=1. (A59)
One then obtains
The remaining four-loop contributions to this order are
7°23(p) evaluated using the case displayed by the 16th diagram of
_54Nfﬁ Fig. 3, which hasM=4, n=m=2, I=h=i=j=1 and
P(P™+7°) whose result is given by
LU N (16+10N+N?
=-8*"— ( )[9.70445 5%%5(p)
7? (47)° 108 -N | />
p(p*+ 7°)?
(A54)
. ,Uu® N (16+10N+N?) 08507
. f 7°23(0) (A60)
p(p*+ 7°)°
s u® N (16+10N+N?) L0154 and
T amp 18 0B
f (0)  ,u® N (16+10N+N?) 151554
which lead to (AB1)
2 _
_54NJ 2n1>5(p) = 23(0)] which lead to
P (PP 7P)°
83s5(p)—25(0)
e N (BHINENY —Nf [ 5(2p+ 25( ]
LU N (16+10N+N?)
(AS6) = ; e Tog5:30476.
where, once more, the factor of 2 accounts for the two pos-
sibilities of internal insertions in accordance with E4.2). (A62)

Next, let us consider the case illustrated by the 15th graph

of Fig. 3, which hasM=1, n=j=2, andh=i=l=m=
After evaluating the integrals one gets
py
_54NJ 210(p2) 2
p(p+7°)
_ g LU N (16+10N+N?) 31820
T _2 (41)8 108 3 1

(A57)

Let us now consider the five-loop contributions. The first

one is given by the 17th graph of Fig. 3,

[2.(p)—21(0)]? u* N(N+2)2

4 I V' S
B Nf P B - (18)2(477)7[0.87339,
(A63)

where the individual contributions are given by three terms
starting with
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[21(p)]? u® N(N+2)T(3/2+5¢)
3

(18)°T'(3)(47)157?

3 ¢h(a,B,v,0,x)

p(p2+77)° g

M expyE)

9 ¢y(1-h(a,B)]
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h(a)h(B)h(y)h(O)h($H)h(x)
[h(a.,B,7,0,6,x)1%%">

1_5 ¢27[1_ h(avﬂ)]h(a1:817=61X)

f dadBdydadédy

1

3

" 4h(a,B,7,6,4,x)

~ 8h(a,B,7.6,4,x)

18 ¢y[1-h(a,pB)]

€

[h(a,B,7.0,¢,x)]?
40 ¢27[1 h(e,B)]h(a.B,7.0,x)

[ 5 ¢h(a,B,7,6,x)
2 h(a,8,7,0,4,x)

5 ¢y[1-h(a,B)]

4 h(e,B,7,6,4,x)

2_5 ¢27[1_ h(arﬂ)]h(a1B!7!0!X)

[h(a,B,7.0,6,x)1

" 2h(a,B,7.6,4.x)

where

h(a)=[a(l-a)] ¥, (AB5)
h(B)=(1-B) " [B(1-p)I >,  (A66)
h(y)=y(1-y)%, (A67)
h(o)=[6(1-6)] ¥, (A689)
h(¢)= ' 2(1- ¢)%, (AB9)
h(0=(1—x) Y {x(1-x]7%, (A70)
h(a,B)= ! + ! , (A71)

1-8 Ba(l—a)
h(o,x)= ! (A72)

1-x ' x0(1-0)’
h(a1:8!7=01X): ’y_h(aa)()—i_(l_ 7)h(aaﬂ)! (A73)
and

h(a,B,7,0,¢,X): 7’¢+(1_ ¢)h(0!X)+ ¢(1_ y)h(a,ﬂ)
(A74)

After performing the expansion ia and integrating numeri-

cally one obtains

[2a(p)) _ uf N(N+2)° 1 1 (M)
=0 =\ 10In
p(p?+ 7%)°3 7° 129687)° 2 7

M M
—4.41% +50 In2<—) - (44.19In(—)
] 7

+ 20.015% . (A75)

Now, expanding Eq(A9), with n=3m=j=h=1 to or-
der € and considering

[h(a,B8,7.0,¢,x)]?

} , (A64)

o, U (N+2) oM
3,(0)=—26 (877)2T —+4In[— , —2.3911
M\ 72 M
+¢€ 8In?| —|+—=—9.5644In —| +4.3127{,
n/ 3 7
(A76)
one gets
‘254NJ [21(p)X241(0)]
(p?+7%)°

el u* N(N+2)2 E:
-7 9 6498m)5

M
10 In( ) 4.306%
Y

M M
+50Ir12(—) —(42.93mn(—
] 7

E

+ 18.9756} . (AT7)

The final contribution to this diagram is obtained by consid-
ering Eq. (A2), with n=3, expanded to ordee’ and by
taking the square of EQA76), which leads to
M
10 In( )
Y

[2,(0)]?

LU N(N+2)2 [ 1 1
p(p2+7]2)3_ _2

7% 12968m)5

+ 18.6434% . (A78)

—4.168%+50In2(

3| Z

M
—(41.684In| —
7

Next, let us consider the 18th graph of Fig. 3, whose
contribution comes from
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26(p)
_ 54 o
> NL(IOZJr 7°)?
LUt N (40+32N+8NA N
=5 —3(477)15/2 518 I'(3/2+5¢€)
w) f dadBdydodpdyds
7
Xy(a)y(ﬁ)y(y)y(ﬂ)y(sb)zl(zi(iy(é) (A79)
[y(a1B17101¢1X1§)] €
where
y(a)=ala(l-a)] ¥, (ABO)
y(B)=[B(1-pB)] 1<, (A81)
y(y)=[y(1-y)] Y2, (A82)
y(O)=[6(1-6)] ">, (A83)
y(¢) =M (1) 12", (AB4)
yO) =[x(1—x)]1" Yo%, (A85)
y(9) =124 (1- )% (A86)
and
_{(1-9) 14 (1-x)(1-9)
Wb 0= ga=p) " ali=a) 01~ 0)
x(1=9)
+ Sa=)" (A87)
This contribution is finite and yields
26(p)
_ 54 o
° ij(pz+ 7%)?
Ut N (40+32N+8N%+N?)
=5 ?(477)7 18 [7.056 192 33.
(A88)

The p=0 case is given by
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26(0)
SN | ———
fp(p2+ 7°)?
LUt N (40+32N+8N*+N?)
_— —2(477)6 518 ['(1+4e€)
w) fd dBdydadedy
n
Y (@)y(B)Y(y)Y' (0)y' (¢)y(x) 1
[y(a.8,7.0,¢. )14 Jo(p?+n?)?’
(A89)
where
y'(a@)=[a(1-a)] V>, (A90)
y'(0)=(1—0) Y2*e, (A91)
y (@)= V> (1- )%, (A92)
B P(1-0) x(1—¢)
y(a’ﬁ’y'0’¢’x)_¢0+a(l—a)+,8(1—,B)
(1-x)(1-¢)
+—y( 1=y (A93)
Integrating, one obtains
26(0)
54N
jp(p2+ 7°)?
. ,u" N (40+32N+8NZ+N?)
=5 ;(477)7 618 [10.215 24.
(A94)

Together these contributions yield

[26(P)—26(0)]
4N
° fp (p?+ 7%)?

_,u" N (40+32N+8NZ+N?) [3.150047 6T
7/3 (4m)7 648 ' '
(A95)
The 19th contribution of Fig. 3 is given by
[25(p)—25(0)]
b (pPHnd?
_,u" N (44+32N+5N?) 170959
7,3 (4m)7 324 ' '
(A96)

The first contribution to this result follows from
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25(p)
B 54Nf 28(p2 2
pP(p“+ 7°)

LUt N (44+32N+5N?)
=5 —3(477)15/2 4 ['(3/2+5¢€)

M?2 expye

) fd dBdydad¢dydé
77

K@K(BKOK(SKOOKVK(EK(,0) A5 %
[1— y+ Egy]¥2t5e )

(A97)
where
k(@)=[a(l-a)]"¥*¢ (A98)
k(B)=[B(1-B)]~*~*pH2r3, (A99)
k()= ¥, (A100)
k(6)=(1—6) Y2 e (A101)
k(x)=(1—x)*"2, (A102)
k(y)=(1—7)7*, (A103)
k(&)= ¢, (A104)
k(¢p,0)=[1—p(1—0)] 7172, (A105)
Agmy 0*£(1—x) _{X 0£(1—x) r
[1—(1—6)]? 1-¢(1-90)
Py | E1-x01-0)
1-¢(1-6) H(1-0)[1-p(1-06)]
(A106)
and
with
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$(1-0)
By=1—£(1—x)+£(1 >1_¢(1_0)+a(1_a)
8" X X pa=o)[1-¢(1-0)]"
(A108)
Integrating, one obtains
p(p?+ 7°)?
_54u4 N (44+32N+5N2)[4 31094
73 (4m)7 324 ’ '
(A109)
The p=0 case is given by
35(0
54NJ 8(0)
p(p*+7%)?
_,u" N (44+32N+5N?)
- ? (4)1572 324
M2ex 4
XT(1+46)T(1/2+ €) ZpyE)
7

1
X f dadBdédodpdy
0

K@KBKEKOKBKOO($,0)Ag 3/2-3¢

=1+4e

=T

(A110)

with the same notation used in EGA97). Integrating Eq.
(A110), one obtains

24(0
54Nj 28( )2 2
p(p=+7%)
LUt N (44+32N+5N?)
=5 ;(477)7 4 [6.02057.

(A111)

We have another five-loop contribution given by the 20th

graph of Fig. 3, whose contribution is

[2 (P)—24(0)]
(PP

—54u—4—MN(N+2)2 1.480
7 <18)2<4w)7[ 4803,
(A112)
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where M =3 accounts for the three possible ways of insert-
ing one setting sun within another graph of the same type.

The first term on the LHS of EQA112) is

24(p)
_54NJ 2., . 2\2
p(p=+ 1)
__gaN(N+2) zf 1 1
a 18 pka(p?+ 7%)? (k*+ 7?)
X[El(Q)—El(O)] 1
(@®+79)?  [(p+k+q)°+ 77
U N(N+2)2T'(3/2+5¢) MzexpyE)SE
- 7]3 (18)2(477) 15/2 772

1 X(a)X(B)X(7)X(O)X()X(x)
Xfodadﬂdyd0d¢dx [x(a,,B,‘y,ﬂ,¢,)()]3/2+5E
L[, 3xX(@B 080

2€ 2 X(a,B,v,0,0,x)

_§X’(ayﬂ,%0,¢,x)]
2 xX(a,B,y,0,¢,x)

u* N(N+2)? [7x10 ]
Y
7’ (187 (8m)?

X (A113

1 M
—+10 In( —| = 5.925%.
€ n

Note that>;(q) and2,(0) have, except for the labeling

of momenta, the same form as E@¢A9) and (A15) with m
=j=h=1. Thex functions are given by

x(@)=[a(l-a)] 27, (A114)
X(B)=(1-B) " [B(1-B)]17%,  (ALLD)
X(y)=(1- )%, (A116)
X(0)= 61" 2[o(1— )] 323, (A117)
X($)=(1=)* 3 [p(1- )71 7%, (A119
X(x)=x(1—x)*, (A119)
1

X(a,B)= 15 + Ba(l—a)’ (A120)

X(a,B,y, 0,¢,X)=x+X(a,ﬂ)(1;Z/1)(_10_)X) ;((11:);;
+ Ei:;)) + (10_(;() (A121)

and
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Y(1—x)

s(1—g X @p)] (A122)

X'(a,B,7,0,¢,x)=

Then after integrating over the Feynman parameters and ex-
panding ine one gets

B 4NJ So(p) 4u_4N(N+2)2u_4[7T><10‘5]
ap?+70)2 g (182 4 (8m)°

1 M
X|=+10 In( —) —6.834 8%
€ n

LUt N(N+2)? u? [7X107°]
7’ (187 »° (8m)?

X

1 M
~+10 In( ;> - 5.925%, (A123)

which gives the finite, scale independent result

4J' So(p)  _,U* N(N+2)% u
p(p*+ 7%)? 7 (187 7’
[7x10®]
X—

B [0.909 0F.

(A124)

The other contribution is given by
29(0

54Nf 29( )2 2

p(p=+ 7°)

N(N+2) 1 1
254 UZJ
18 pka(p®+ 5%)? (k*+ n?)

X[El(Q)—El(O)] 1
(@®+ 7% [(k+a)?+ 7]

54u4 N(N+2)?T'(1+4e€)

7 (18%(4m)°

1 X(a)X(B)X(yY)X(0)X( )

dadsdyded

Xfo B (B y.0,8) 17

% i 1_X'(CL’,B,’)’,0,¢) o X'(a,ﬁ,y,9,¢)
2e X(a,B,7,0,¢) X(a,,B,'y,ﬂ,d))

f 1 . u_4N(N+2)2 [4.1906< 10 °]
p(p?+79)% ° (187 (8m)2

M2exp yE) 4

7]2

% (A125)

1 M
~+10 In(—) ~6.173 8%,
€ n

where
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(1—7y) y 1 The first contribution to this result follows from
1 B 4Nf %11(p)
+ m (A126) p(p2+ 7]2)2
LUt N (44+32N+5N?)
=+6 ;(477)15/2 324 I'(3/2+5¢)
and
MZexpye| > (1
5 f dadBdydodpdydé
n 0
K (@7 0.0)= g L x(@ B (AL27) A@2BOA 20222 D OA
= 3/2+5€ '
y+ 3 (1=
Integrating over the parameters and expanding, one gets (A131)
where
34(0) u* N(N+2)? [4.1906< 10 ]
54pr(pZiW:_ 4; 1972 B2 2(a)=[a(l—a)] Y2 ¢, (A132
x E+10In(M)—6.4043% 2B =[BA=p1 (A133
€ 7
52" NN+ 2)? [4.1906¢10°°] 2(g)=¢ 1 A1) T (A134)
3 2 2
Y (18) (87T) Z( 0):(1_ 0)—1/2—6' (A135)
1 M
X ;+10|n(;)—6.1738%, (A128) 20¢) = (1 y) V2% (A136)
2(y)=y(1-y)*, (A137)
which gives the finite, scale independent result
2(£)=E(1-§ Ve (A138)
y f 36(0) Ut N(N+2)2 2(¢,0)=[1-p(1-6)] 1%, (A139)
2, .22 ¢ 3 2
e [Zlgoigioﬁ B Cr Y —{ ot N PO
2 10,2305, T eoap X X 1ga-g) TOHETX
(8m) (A140)
(A129)
Ezl_X_l—'f_(l_X)erq)g(l—X), (A141)
The final contribution comes from the last diagram of Fig. BL=P)
3 and reads
with
N [212(p) —214(0)] . 0(1—6) Lq, 20
o (PP 7)) $(1-0)[1-¢(1-6)] ~ 1-¢(1-6)
u* N (44+32N+5N?) _[A+6-¢1-0)F (A142)
:_54¥ (477)7 324 [23774]} [1_¢(1_6)]2 !
(A130) and
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© — 1—?:?(11—_0) — 54NJ 214(0)
a(l-a)p(1-0)[1-p(1-0)] p(p2+ 72)?
0+ p(1—6) LUt N (444 32N+5N?)
+ : (A143) =—-5"—
P(1=0)[1-p(1-0)] 7 (4r)152 324
M2ex te
XT(1+46)T(1/2+ €) %)
i
Integrating, one obtains L
xf dadpBdédadpdy
0
z(a)z(B)z(E)z(0)z(P)z(x)z( P, 0
o« (a)z(B)z(§)z(0)z(P)z(x)z(H, 0) (AL45)
_54NJ 211(p) Fltae
p(p?+ 7%)? with the same notation used in EGA131). Integrating Eq.
4 ’ (A145) one obtains
_ga N (44+32N+5N )[6 12478
773 (4,”_)7 324 ’ ’ 54Nf 2211(02) ,
(A144) p(P=+ 1)
B 54u4 N  (44+32N+5N?) 85021
T S amy  saa (o502
The p=0 case is given by (A146)
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