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Higher-order evaluation of the critical temperature for interacting homogeneous dilute Bose gase
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We use the nonperturbative lineard expansion method to evaluate analytically the coefficientsc1 andc29 that
appear in the expansion for the transition temperature for a dilute, homogeneous, three-dimensional Bose gas
given byTc5T0„11c1an1/31@c28ln(an1/3)1c29#a2n2/31O(a3n)…, whereT0 is the result for an ideal gas,a is
the s-wave scattering length, andn is the number density. In a previous work the same method has been used
to evaluatec1 to order d2 with the resultc153.06. Here, we push the calculation to the next two orders
obtainingc152.45 at orderd3 andc151.48 at orderd4. Analyzing the topology of the graphs involved we
discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resum-
mation and the 1/N approximations. At the same orders we obtainc295101.4, c29598.2, andc29582.9. Our
analytical results seem to support the recent Monte Carlo estimatesc151.3260.02 andc29575.760.4.
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I. INTRODUCTION

Recently, the evaluation of the critical temperature for
teracting dilute homogeneous Bose gases has been the
est of many theoretical works. For this purpose, the star
model is that used in the analysis of a gas of interact
boson particles, described by a complex scalar fieldc, with a
local interaction characterized by thes-wave scattering
lengtha and Euclidean action, which, in natural unities, c
be written as

SE5E
0

b

dtE d3xH c* ~x,t!S d

dt
2

1

2m
¹2Dc~x,t!

2mc* ~x,t!c~x,t!1
2pa

m
@c~x,t!c* ~x,t!#2J .

~1.1!

The field c can be decomposed into imaginary-time fr
quency modesc j (x,v j ) with discrete Matsubara frequencie
v j52p j /b, j being an integer, whereasb is the inverse of
the temperature. At the early stages of solving this prob
@1# the nonzero Matsubara frequency modes have been
grated out generating a reduced three-dimensionalO(2) sca-
lar theory. This procedure was justified on the grounds t
near the transition, the nonzero Matsubara modes deco
and one is left with an effective action given by

S3d5bE d3xH c0* S 2
1

2m
¹22m Dc01

2pa

m
@c0c0* #2J .

~1.2!
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Despite this simplification the problem remains nontriv
since ordinary perturbation theory cannot be used to treat
model at the phase transition due to the severe infrared
vergences for the zero-frequency modesc0 at the critical
point, originating the breakdown of conventional perturb
tion theory. Different nonperturbative methods, some
which are currently used in quantum field theories, have t
been used to compute the transition temperature. The ana
cal methods include the self-consistent resummation~SCR!
used by the authors of Ref.@1#, the 1/N expansion used a
leading order (1/N-LO) by Baym, Blaizot and Zinn-Justin
@2# and at next to leading order (1/N-NLO) by Arnold and
Tomásik @3# as well as the lineard expansion~LDE! em-
ployed by some of the present authors in Ref.@4#. The nu-
merical methods used mainly Monte Carlo lattice simu
tions ~MCLS! such as those employed recently by Arno
and Moore@5# and by Kashurnikov, Prokof’ev, and Svis
tunov @6#. Most of those calculations predicted that in th
dilute limit, the shift of the critical temperature of the inte
acting gas,Tc , as compared to the critical temperature for
ideal gas,T0 , DTc5Tc2T0, behaves as

DTc

T0
5c1an1/31O~a2n2/3!, ~1.3!

wheren is the number density,c1 is a numerical constant
and the critical temperature for an ideal gas is given as u
by

T05
2p

m F n

z~3/2!G
2/3

. ~1.4!

The constantc1 in Eq. ~1.3! is directly related to the con
tributions from the zero-mode Matsubara frequencies a
therefore, can only be computed from nonperturbative me
ods. Some recent numerical applications predicted values
c1 that are close to 1.30~MCLS, @5,6#!. On the other hand
©2002 The American Physical Society13-1
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CRUZ, PINTO, RAMOS, AND SENA PHYSICAL REVIEW A65 053613
the analytical applications mentioned above predicted
values 2.90~SCR,@1#!, 2.33 (1/N-LO, @2#!, 1.71 (1/N-NLO,
@3#!, and 3.06~lineard expansion,@4#!. Additionally, the au-
thors of Ref.@7# have also argued that a logarithmic ter
appears at ordera2 in Eq. ~1.3!. They have shown that thi
term is of the formc28a

2n2/3ln(an1/3) and also estimated, us
ing large-N arguments, the value of the numerical coefficie
c28 . Recently, Arnold, Moore, and Toma´sik @8# have argued
that when naively going from the original action (SE) to the
reduced action (S3d) by ignoring the effects of nonzero fre
quency modes, one misses the effects that short dista
and/or high-frequency modes have on long-distance phys
For Tc(n) at second order these effects can be absorbed
a modification of the strengths of the relevant interactio
which means that one should consider the more general f
for the reduced effective action, Eq.~1.2!,

Seff@c0 ,c0* #5bE d3xH c0* S 2Z c

1

2m
¹22m3Dc0

1Za

2pa

m
@c0* c0#2

1O@c0* c0u¹cu2,~c* c!3#J 1bFvacuum,

~1.5!

whereZc is the wave function normalization function,m3
incorporates the mass-renormalization function,Za incorpo-
rates the vertex renormalization function, andFvacuumrepre-
sents the vacuum energy contributions coming from the
tegration over the nonstatic Matsubara modes. T
O@c0* c0u“c0u2,(c0* c0)3# terms represent higher-order in
teractions in the zero modes of the fields. As emphasize
Ref. @8#, these terms will give contributions to the density
ordera3 and higher and, therefore, do not enter in the ord
a2 calculations. By matching perturbative order-a2 results
obtained with the original actionSE and the general effective
actionSeff , the authors of Ref.@8# were able to show that th
transition temperature for a dilute, homogeneous, thr
dimensional Bose gas can be expressed at next-to-lea
order as

DTc

T0
5c1an1/31@c28ln~an1/3!1c29#a2n2/31O~a3n!.

~1.6!

A similar structure is also discussed in Ref.@9#. As far the
numerical coefficients are concerned, theexactvalue forc28 ,
c285264pz(1/2)z(3/2)25/3/3.19.7518, was obtained usin
perturbation theory@8#. The other two coefficients cannot b
obtained perturbatively but they can, through the match
calculation, be expressed in terms of the two nonperturba
quantitiesk and R, which are, respectively, related to th
number densitŷc0* c0& and to the critical chemical potentia
mc , as shown below. The actual relation in between the
nonperturbative coefficients and these physical quantitie
given by @8#
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c152128p3@z~3/2!#24/3k ~1.7!

and

c2952
2

3
@z~3/2!#25/3b291

7

9
@z~3/2!#28/3~192p3k!2

1
64p

9
z~1/2!@z~3/2!#25/3ln z~3/2!, ~1.8!

whereb29 in Eq. ~1.8! is given by

b29532pH F1

2
ln~128p3!1

1

2
272p2R296p2kGz~1/2!

1
Ap

2
2K22

ln 2

2Ap
@z~1/2!#2J , ~1.9!

with K2520.135 083 353 73. The quantitiesk and R are
related to the zero Matsubara modes only. Therefore, t
can be nonperturbatively computed directly from the redu
action Seff , which, as discussed in the numerous previo
applications, can be written as

Sf5E d3xF1

2
u“fu21

1

2
r baref

21
u

4!
~f2!2G , ~1.10!

wheref5(f1 ,f2) is related to the original real componen
of c0 by c0(x)5AmT/Zc@f1(x)1 if2(x)#, r bare5
22mm3 /Zc , andu548pamT(Za /Z c

2!. The vacuum con-
tribution appearing in Eq.~1.5! will not enter in the specific
calculation we do here.

The three-dimensional effective theory described by E
~1.10! is super-renormalizable@39# requiring only a mass
counterterm to eliminate any ultraviolet divergence. In ter
of Eq. ~1.10!, the quantitiesk and R appearing in Eqs.
~1.7!–~1.9! are defined by@8#

k[
D^f2&c

u
5

^f2&u2^f2&0

u
~1.11!

and

R[
r c

u2
52

S~0!

u2
, ~1.12!

where the subscriptsu and 0 in Eq.~1.11! mean that the
density is to be evaluated in the presence of interactions
in the absence of interactions, respectively, andS(0) is the
self energy with zero external momentum. Since they dep
on the zero modes their evaluation is valid, at the criti
point, only when done in a nonperturbative fashion. As d
cussed in the following section, the relation betweenr c and
S(0) comes from the Hugenholtz-Pines theorem at the c
cal point.

Equation ~1.6! is a general ordera2 result with coeffi-
cients that, therefore, depend on nonperturbative physics
k and R. In principle, to evaluate these two quantities o
may start from the effective three-dimensional theory, giv
3-2
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HIGHER-ORDER EVALUATION OF THE CRITICAL . . . PHYSICAL REVIEW A 65 053613
by Eq. ~1.10!, and then employ any nonperturbative analy
cal or numerical technique. In general, the analytical nonp
turbative methods give a prescription so as to select and
an infinite number of contributions belonging to a give
class. For example, the infinite subset that contains only
rect ~tadpole! contributions represents the Hartree appro
mation, whereas exchange contributions are also taken
account in the Hartree-Fock approximation. In practice,
sum is achieved by using a modified~‘‘dressed’’! propagator
to evaluate physical quantities. The nonperturbative res
are then generated by solving self-consistent equati
However, in resumming calculations, the bookkeeping a
renormalization may become a problem beyond leading
ders.

Another popular analytical nonperturbative technique
the 1/N expansion@10,11# where one sums infinite subsets
contributions whose order is labeled byO(1/Nn), whereN is
the number of field components. In general, the leadi
order contribution is easily evaluated and may reveal in
esting nonperturbative physics, at least from a qualita
point of view, apart from providing an ‘‘exact’’ result within
the large-N limit. A nice illustration is provided by its appli-
cation, for example, to the Gross-Neveu model at zero t
perature, where the issues of chiral-symmetry breaking
well as asymptotic freedom were investigated@12#. From a
quantitative point of view the leading order may not be s
ficient and leads to errors sinceN is finite and not too large in
most cases. An example of this case is illustrated by trea
the same Gross-Neveu model at finite temperature, where
leading-order large-N calculation predicts a finite value fo
the critical temperature at which chiral-symmetry restorat
takes place, in contradiction with Landau’s theorem
phase transitions in one space dimension@13#.

In practice, going to higher orders can be a difficult ta
Nevertheless, the 1/N calculation ranks as a good method
investigate nonperturbative physics as shown in many ap
cations. In particular, the results provided by this approxim
tion for the interacting Bose gas case, whereN52, are sur-
prisingly good already at leading order@2#. Good numerical
results can also be obtained with self-consistent methods
spite some potential problems as discussed in Ref.@9#. The
numerical calculations use mainly Monte Carlo lattice te
niques and many different results, for the interacting Bo
gas critical-temperature problem, were generated in this w
The differences arise mainly from the way the theory is
on the lattice, the size of the lattice, the way the continu
limit is taken, and other issues. As already mentioned,
recent works seem to have settled this question@5,6#.

Here we shall present, and then apply, an alternative a
lytical nonperturbative method, the LDE@14,15# ~for earlier
works see, for instance, Ref.@16#!, which is closely related to
the variational perturbation theory@17# and the Gaussian ef
fective potential@18#. This same method reappeared und
the name of optimized perturbation theory@19#. The main
attractive feature of this approximation is the fact that
actual evaluation of a physical quantity, including the sel
tion of thefinite subset of relevant contributions at each o
der, is done exactly as in perturbation theory. It is then e
to control and explicitly evaluate one by one each of
05361
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reduced number of contributions appearing at each or
The implementation of the renormalization procedure f
lows that performed in most quantum-field-theory textboo
@20#. After the usual perturbative manipulation one genera
nonperturbative results through an optimization procedu
as we will discuss in the following section.

This work is organized as follows. In Sec. II we prese
the method and illustrate it with a simple application to t
pure anharmonic oscillator. In the same section we imp
ment the method in the effective three-dimensional the
given by Eq.~1.10! in order to evaluate the constantsk and
R, Eqs.~1.11! and ~1.12!. The quantityr c is then evaluated
in Sec. III, whereaŝf2& is evaluated in Sec. IV. The opti
mization procedure is carried out in Sec. V, where the
merical results are presented and compared with some o
recent results. We present our conclusions in Sec. VI.
contributions that include difficult five-loop Feynman di
grams with arbitraryN are explicitly evaluated by brute forc
without recurring to any approximations. An appendix is i
cluded to show the details of the calculations of these high
order terms. To our knowledge, some of them have not b
evaluated in this way before.

II. THE METHOD AND ITS APPLICATION TO THE
INTERACTING BOSE GAS PROBLEM

A. The linear d expansion

The LDE was conceived to treat nonperturbative phys
while staying within the familiar calculational framewor
provided by perturbation theory. In practice, this can
achieved as follows. Starting from an actionS one performs
the following interpolation:

S→Sd5dS1~12d!S0~h!, ~2.1!

which resembles the trick of consisting of adding and s
tracting a mass term to the original action. One can rea
see that atd51 the original theory is retrieved. This param
eter is really just a bookkeeping parameter and some aut
do not even bother considering it explicitly as we do@21#.
The important modification is encoded in the field depend
quadratic termS0(h), which, for dimensional reasons, mu
include terms with mass dimensions (h). In principle, one is
free to choose these mass terms, and within the Hartree
proximation they are replaced by a direct~or tadpole! type of
self-energy before one performs any calculation. In the L
they are taken as being completely arbitrary mass parame
that will be fixed at the very end of a particular evaluatio
One then formally pretends thatd labels interactions so tha
S0 is absorbed in the propagator, whereasdS0 is regarded as
a quadratic interaction. So, one sees that the physical ess
of the method is the traditional dressing of the propagato
be used in the evaluation of physical quantities, very much
in the Hartree case. What is different between the two me
ods is that with in the LDE the propagator is complete
arbitrary, while it is constrained to cope only with dire
terms within the Hartree approximation. So, within the lat
approximation the relevant contributions are selected acc
ing to their topology from the start.
3-3
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CRUZ, PINTO, RAMOS, AND SENA PHYSICAL REVIEW A65 053613
Within the LDE, one calculates in powers ofd as if it was
small. In this aspect the LDE resembles the large-N calcula-
tion since both methods use a bookkeeping parameter th
not a physical parameter such as the original coupling c
stants, and within each method one performs the calculat
formally working as ifN→` or d→0, respectively. Finally,
in both cases the bookkeeping parameters are set to
original values at the end, which, in our case, meansd51.
However, quantities evaluated with the LDE dressed pro
gator will depend onh unless one could perform a calcul
tion to all orders. Up to this stage the results remain stric
perturbative and very similar to those that would be obtain
via a true perturbative calculation. It is now that the freed
in fixing h generates nonperturbative results. Sinceh does
not belong to the original theory one requires that a phys
quantityF calculated with the LDE be evaluated at the po
where it is less sensitive to this parameter. This criteri
known as the principle of minimal sensitivity~PMS!, trans-
lates into the variational relation@18#

dF

dh U
h̄

50. ~2.2!

The optimum valueh̄ which satisfies Eq.~2.2!, must be a
function of the original parameters including the coupling
which generate the nonperturbative results. The converge
properties of this method has been rigorously proved in
context of the anharmonic oscillator~AO! @21–24#. Very re-
cently, Kneur and Reynaud@25# claimed to have proved th
convergence of this method in renormalizable quantum fi
theories. These are very encouraging results for the pre
application, which uses a renormalizable effective model t
shares many similarities with the pure AO. Let us quick
illustrate how this method works by considering the anh
monic oscillator described, in Minkowski space, by

L5
1

2
~]0f!22

1

2
m2f22

l

4
f4. ~2.3!

If one setsm50 in the relation above, the model describ
the pure anharmonic oscillator, which cannot be treated
the usual perturbation theory. Let us first consider
ground-state energy density whose exact result,E exact

5l1/30.420 804 974 478 . . . , hasbeen calculated by Bende
Olaussen, and Wang@26#. Following Eq.~2.1! one may write
the interpolated action as

Ld5
1

2
~]0f!22

1

2
h2f22d

l

4
f41d

1

2
h2f2, ~2.4!

from which one obtains the perturbative order-d result @21#

E (1)52
i

2E2`

1` dp

2p
ln@p22h2#2d

i

2E2`

1` dp

2p

h2

p22h2

2dl
3

4 S E
2`

1` dp

2p

1

p22h2D 2

1O~d2!. ~2.5!
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Now, settingd51 and applying the PMS optimization pro
cedure one gets

h̄53ilE
2`

1` dp

2p

1

p22h 2̄
, ~2.6!

which is a self-consistent mass gap equation. It can be ea
checked that with this solution one resums exactly the sa
contributions that would appear in the usual Hartree appro
mation. The same procedure will capture the physics t
arises from exchange terms at orderd2, where the first con-
tribution of this type appears together with order-d2 direct
~Hartree! contributions. Moreover, as shown in other app
cations@27#, the result furnished by Eq.~2.6! remains valid
at second order if one considers only the direct terms,
this pattern is valid at any order ind. The actual value pre-
dicted at this lowest order isE (1)5E Hartree;l1/30.429, which
is only about 2% greater than the exact result. As shown
Ref. @21# this result can still be improved as one goes
higher orders. Here, we shall be mainly concerned with
nonperturbative evaluation of the vacuum expectation va
^f2&. This quantity, whose exact result iŝf2&exact

5l21/30.456 119 955 748 . . . @28#, was also evaluated in
Ref. @21#. The optimum values were obtained withh̄ values
coming from its direct optimization and also from the op
mization of E. At order d the value ^f2& (1)

5l21/30.446 456 was obtained from the direct optimizati
(h̄51.259 921) and̂ f2& (1)5l21/30.436 789 was obtained
from the injection ofh̄51.144 71, which was generated b
the optimization ofE. One then sees that the optimum^f2&
numerical values generated by the two optimization pro
dures are very similar, which could be expected since
each order, the diagrams that contribute to^f2& andE have
the same structure.

At this stage it should be clear how nonperturbative
sults may be generated, through the variational PMS pro
dure, from the perturbative evaluation of physical quantiti
As already mentioned, the effective model to be conside
in the sequel for the description of the dilute Bose gas te
perature bears may similarities with the AO. The main d
ferences being the number of space-time dimensions c
cerning each case~which means that one has to deal wi
ultraviolet divergences in three dimensions! and the fact that
the former is used to investigate a phase transition. Tec
cally, as we shall see, this translates into extra difficulties
to the Hugenholtz-Pines theorem, which washes out di
~tadpole! contributions, meaning that the first nontrivial co
tributions to^f2& start at the three-loop level via two-loo
self-energies. Apart from the quantum-mechanical appli
tions @21–24#, the LDE was successfully applied to the d
scription of mesoscopic systems@29#, nuclear matter proper
ties @27#, phase transitions in the scalarlf4 model @30,31#
as well as in the Gross-Neveu model@32#, investigation of
chiral-symmetry phenomena in QCD@33#, and in the deter-
mination of the equation of state for the Ising model@34#. It
is worth mentioning that the application of the LDE to th
scalarO(N)3O(N) model @35# has allowed to investigate
the nonperturbative phenomenon of symmetry nonrestora
3-4
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HIGHER-ORDER EVALUATION OF THE CRITICAL . . . PHYSICAL REVIEW A 65 053613
at high temperatures further than it was possible with ot
standard nonperturbative methods.

The first application of this method to the present probl
was performed in Ref.@4#, where only the first nontrivial
contribution, which appears at orderd2, was considered. A
successful extension to the ultrarelativistic case was
formed by Bedingham and Evans in Ref.@36#.

B. The interpolated theory for the zero-frequency
Matsubara modes

One can now write the interpolated version of the effe
tive model described by Eq.~1.10!. Before doing that, let us
rewrite r bare5r 1A, whereA is a mass counterterm coeffi
cient. This counterterm is the only one effectively need
within the modified minimal subtraction~MS! renormaliza-
tion scheme, which we will adopt here. Then, one can cho

S05
1

2
@ u“fu21h2f2#, ~2.7!

obtaining

Sd5E d3xF1

2
u“fu21

1

2
h2f21

d

2
~r 2h2!f2

1
du

4!
~f2!21

d

2
Adf2G . ~2.8!

Note that we have treatedr (r c at the critical point! as an
interaction, since this quantity has a critical value, which
at least of orderd. The Feynman rules for this theory, i
Euclidean space, are2dr , dh2, and2dAd for the quadratic
vertices and2du for the quartic vertex. The propagator
given by

G(0)~p!5@p21h2#21. ~2.9!

The corresponding diagrams for these rules are shown in
1. Note thath acts naturally as an infrared cutoff, so that w
do not have to worry about these type of divergences.
introducing only quadratic terms, the LDE interpolation do
not alter the polynomial structure, and hence the renorma
ability, of the theory.

In general, the counterterm coefficients appearing in
interpolated theory have a trivial dependence on the bo
keeping parameter and the renormalization process ca
consistently achieved with the interpolated theory exactly
in ordinary perturbation theory. Once inserted into a diagra
the extra quadratic vertex proportional todh2 brings in more
propagators decreasing the ultraviolet degree of diverge
We point out that renormalization should be carried out
fore the optimization process to ensure that the optim
value h̄ is a finite quantity. The interested reader is referr
to Refs.@30,35# for more details concerning renormalizatio
within the LDE.

Requiring that at the critical temperature the original s
tem must exhibit infinite correlation length, means that, atTc
andd51 ~the original theory!, the full propagatorG(d)(p),
given by
05361
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G(d)~p!5@p21h21dr 2dh21S ren
(d)~p!#21, ~2.10!

must satisfyG(d)(0)2150, which implies

dr c
(d)52S ren

(d)~0!. ~2.11!

The above equation is equivalent to the Hugenholtz-Pi
theorem applied to the LDE. The relation Eq.~2.11! shows
that, to orderdn, the quantitydr c

(n) is directly obtained from
the evaluation ofS ren

(n)(0). As discussed in the introduction
we will use the Feynman rules described above to evalu
perturbatively the self-energyS ren

(d)(p) to order d4 from
which we will get the nonperturbative values fork andR by
using the PMS optimization procedure. The subscript ‘‘re
in the self energy means that this quantity also contains
diagrams that arise from the mass counterterm vertex pro
tional to dAd . For our purposes, the easiest way to obtai
perturbative expansion for̂f2&u is to start from

^f2&u
(d)5(

i 51

N

^f i
2&u

(d)5NE d3p

~2p!3
G(d)~p!

5E d3p

~2p!3

N

p21h2 F11
d~r c

(d)2h2!1S ren
(d)~p!

p21h2 G21

.

~2.12!

Like dr c
(n) , the order-dn quantity ^f2&u

(d) is obtained by
evaluating the self-energies to that order and subseque
expanding the series on the right-hand side~RHS! of Eq.
~2.12!. Therefore, to obtainR andk to orderd4 we need to
consider the 54 self-energy contributions shown in Fig. 1

III. EVALUATION OF r c TO O„d 4
…

According to the Hugenholtz-Pines theorem,dr c
(4) is ob-

tained from the evaluation of all diagrams shown in Fig.
with zero external momentum. To make this paper m
pedagogical, let us do a step by step evaluation ofr c up to
orderd2. To orderd one has only the tadpole contribution,
direct application of the Feynman rules for the interpola
theory and dimensional regularization~see appendix for
more details! gives the finite contribution

2dr c
(1)5S ren

(1)~0!52du
h

8p S N12

3 D . ~3.1!

Carrying on to orderd2 one considers the contributions d
picted by the first five diagrams of Fig. 1, which give

2dr c
(2)5S ren

(2)~0!52du
h

8p S N12

3 D1d2u
h

16p S N12

3 D
2d2

u

16p

r c

h S N12

3 D1d2
u2

128p S N12

3 D 2

2d2
u2

~8p!2

~N12!

18 F1

e
14 lnS M

h D22.394G1dAd

1O~d3!, ~3.2!
3-5
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FIG. 1. Vertices~top! and diagrams contribut-
ing to the self-energySd up to orderd4.
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whereM is an arbitraryMS mass scale@40#. Now, one re-
placesdr c , which appears an the right-hand side, with t
valuedr c

(1) obtained at the previous order, so that the rig
hand sideremainsof orderd2. Next, one sees that the settin
sun, whose explicit evaluation follows those performed
the Appendix@see Eq.~A18!#, displays an ultraviolet pole a
e→`. In fact, within dimensional regularization, the on
primitive ultraviolet divergence associated with the effect
super-renormalizable three-dimensional theory stems f
the setting sun type of diagram with three internal propa
tors. The pole associated with this divergence fixes the m
counterterm coefficient in the modified minimal subtracti
renormalization scheme,

dAd5d2
u2

~8p!2

~N12!

18

1

e
. ~3.3!

As usual, this ‘‘vertex’’ must be considered also at high
orders~see Fig. 1! so diagrams whose divergences arise fr
05361
-

m
-
ss

r

‘‘setting sun’’ subdiagrams may be rendered finite@20#. Now,
it is easy to see how the ‘‘double scoop’’ contribution@fourth
term on the RHS of Eq.~3.2!# is exactly canceled due to th
Hugenholtz-Pines condition applied tor c at first order. One
then gets the finite second-order result

2dr c
(2)5S ren

(2)~0!52du
h

8p S N12

3 D1d2u
h

16p S N12

3 D
2d2

u2

~8p!2

~N12!

18 F4 lnS M

h D22.394G1O~d3!.

~3.4!

Also at higher orders many contributions cancel. In partic
lar, any diagram with one or more tadpole subdiagram~s!,
such as the ‘‘double scoop’’ discussed at orderd2, disappear.
Then, the diagrams that really contribute todr c

(4) are those
3-6
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FIG. 2. The diagrams effectively contributin
to r c up to orderd4. The black dot now represent
only dh2 insertions.
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shown in Fig. 2, where one must consider the external li
as carrying zero momentum. At the same time, countert
diagrams associated with the zero external momentum
ting sun diagram~or subdiagrams! could have been sup
d
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05361
s
m
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pressed from that figure. However, we prefer to write th
explicitly so that the same figure can be used again, facili
ing the discussion in the following section. Using the resu
obtained in the Appendix one obtains the fourth-order res
2dr c
(4)5S ren

(4)~0!52du
h

8p S N12

3 D1d2u
h

16p S N12

3 D2d2
u2

~4p!2

~N12!

18 F lnS M

h D20.597 75G1d3u
h

64p S N12

3 D
2d3

u3

h

~N12!2

108~4p!3
@0.143 848#1d3

u3

h

~16110N1N2!

~4p!5108
@81.076#2d3u2

~N12!

18~4p!2
@0.498#

1d4u
h

128p S N12

3 D2d4
u3

h

~N12!2

108~4p!3
@0.0610#1d4

u4

h2

~N12!

6~4p!6

~16110N1N2!

108
@8.099 27#

2d4
u3

h

~N12!2

108~4p!3
@0.011 788#2d4u2

~N12!

18~4p!2
@0.166 492#2d4u2

~N12!

18~4p!2
@0.0834#

1d4
u3

h

~16110N1N2!

~4p!5108
@10.240#1d4

u3

h

~16110N1N2!

~4p!5108
@30.310 96#

2d4
u4

h2

~0132N18N21N3!

~4p!6648
@20.430 48#2d4

u4

h2

~44132N15N2!

~4p!6324
@12.041 14#

2d4
u4

h2

~44132N15N2!

~4p!6324
@17.004 34#1d4

u4

h2

~N12!2

~18!2~4p!6
@2.8726#1O~d5!. ~3.5!
r of

-

n
car-

of
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The scale dependence of this quantity will be discusse
Sec. V.

IV. EVALUATION OF Šf2
‹u TO ORDER d 4

In principle, to obtain̂ f2&u
(4) one should consider all con

tributions to the self-energyS ren
(4)(p) given by the diagrams

of Fig. 1 with external momentump. However, thanks to the
results of the preceding section, one does not have to
form the evaluation of all those graphs explicitly at th
in

r-

stage. In fact, one can immediately reduce the numbe
graphs to be considered, by substituting the vertexdr with
the the appropriate critical valuedr c obtained in the preced
ing section. Then, as forS ren

(4)(0), the set ofdiagrams that
effectively contribute toS ren

(4)(p) reduces to those shown i
Fig. 2, but now one must consider the external lines as
rying momentump. Substituting Eq.~3.5! into Eq.~2.12! one
sees that the quantity that matters for the evaluation
^f2&u

(4) is S ren
(4)(p)2S ren

(4)(0). Diagramatically, this quantity is
given by taking the graphs of Fig. 2 with zero external m
3-7
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mentum and subtracting them from the same diagrams
external momentump. This means that all diagrams that d
not depend on the external momentum will not contribute
the evaluation of̂ f2& at the critical point. For example, a
the tadpole diagrams with any type of subdiagrams will
contribute. As expected, the mass counterterm is a redun
quantity in the evaluation of̂f2&u

(n) because this quantity
depends on the difference

S ren
(n)~p!2S ren

(n)~0!5@Sdiv
(n)~p!1Sct

(n)~p!#

2@Sdiv
(n)~0!1Sct

(n)~0!#, ~4.1!

where Sdiv
(n)(p) is the divergent self-energy. For a gene

renormalizable theory, the quantitySct
(n)(p) represents all

counterterms associated with the parameters of the th
05361
th

n

t
nt
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ry

~such as masses and coupling constants! as well as the wave-
function counterterm associated with any eventual mom
tum dependent pole. At the same time,Sct

(n)(0) involves the
same counterterms except for the wave function one. H
ever, as we have already emphasized, in the th
dimensional case the only type of primitive divergence
quires only a mass counterterm, which is the same
Sdiv

(n)(p) and Sdiv
(n)(0). This means that in our case,Sdiv

(n)(p)
2Sdiv

(n)(0) is always a finite quantity as shown explicitly i
the Appendix, where it is also shown that this quantity
scale independent, as opposed tor c . Therefore, the type of
diagrams that really matter for the evaluation of^f2&u

(4) are
those shown in Fig. 3, which can be obtained expanding
~2.12! to O(d4). Following the sequence of diagrams show
in Fig. 3 one can write
^f2&u5E d3p

~2p!3

N

p21h2 H 11
dh2

p21h2
1

d2h4

~p21h2!2
1

d3h6

~p21h2!3
1

d4h8

~p21h2!4
2d2

@S1~p!2S1~0!#

p21h2

2d3
2h2@S1~p!2S1~0!#

~p21h2!2
2d3

@S2~p!2S2~0!#

p21h2
2d3

@S3~p!2S3~0!#

p21h2
2d4

3h4@S1~p!2S1~0!#

~p21h2!3

2d4
2h2@S2~p!2S2~0!#

~p21h2!2
2d4

@S4~p!2S4~0!#

~p21h2!
2d4

@S7~p!2S7~0!#

~p21h2!
2d4

2h2@S3~p!2S3~0!#

~p21h2!2

2d4
@S10~p!2S10~0!#

~p21h2!
2d4

@S5~p!2S5~0!#

~p21h2!
1d4

@S1~p!2S1~0!#2

~p21h2!2
2d4

@S6~p!2S6~0!#

~p21h2!

2d4
@S8~p!2S8~0!#

~p21h2!
2d4

@S9~p!2S9~0!#

~p21h2!
2d4

@S11~p!2S11~0!#

~p21h2!
1O~d5!J . ~4.2!

The details of the explicit evaluation of theS i terms are given in the Appendix. The final result we obtain is

^f2&u52
Nh

4p
1

d

2

Nh

4p
1

d2

8

Nh

4p
1

d3

16

Nh

4p
1

d4

128

5Nh

4p
2d2

u2

h

N~N12!

18~4p!3
@0.143 848#2d3

u2

h

N~N12!

18~4p!3
@0.011 68#

2d3
u2

h

N~N12!

18~4p!3
@0.0610#1d3

u3

h2

N

~4p!6

~16110N1N2!

108
@8.099 27#2d4

u2

h

N~N12!

18~4p!3
@2.827 031023#

2d4
u2

h

N~N12!

18~4p!3
@7.731831023#2d4

u2

h

N~N12!

18~4p!3
@0.024 61#2d4

u2

h

N~N12!

18~4p!3
@0.018 25#

1d4
u3

h2

N

~4p!6

~16110N1N2!

108
@0.859 84#1d4

u3

h2

N

~4p!6

~16110N1N2!

108
@1.937 786#

1d4
u3

h2

N

~4p!6

~16110N1N2!

108
@5.304 76#2d4

u4

h3

N~N12!2

~18!2~4p!7
@0.873 39#2d4

u4

h3

N

~4p!7

3
~40132N18N21N3!

648
@3.159 047 67#2d4

u4

h3

N

~4p!7

~44132N15N2!

324
@1.709 59#

2d4
u4

h3

N~N12!2

~18!2~4p!7
@4.4411#2d4

u4

h3

N

~4p!7

~44132N15N2!

324
@2.377 41#1O~d5!. ~4.3!
3-8
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FIG. 3. All diagrams contributing to the two
point function^f2&d , up to orderd4, at the criti-
cal point. Again, the black dot represents he
only thedh2 insertions.
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V. NUMERICAL RESULTS FOR THE TEMPERATURE
SHIFT

In this section we will turn our, so far, perturbative eval
ation into nonperturbative results using the PMS optimi
tion prescription. Our analysis of results, including the sel
tion of the relevant optima, will follow closely those adopte
in the applications that proved the convergence of t
method for the anharmonic oscillator@21–24#. Some of the
guidelines developed on those studies are essential for
present application. Let us start the optimization process w
the scale independent quantity^f2&u

(d) , whose recent Monte
Carlo estimate iŝf2&u520.001 198(17)u @8#. Before opti-
mizing let us remark that all contributions tôf2&u

(n) are
proportional todnunh12n and, therefore, the PMS conditio
will imply solving a polynomial equation of degreen. As one
may expect, many of thosen roots that determine the opt
mum h̄ will be complex. Also, as observed in the anha
monic oscillator studies, most of the time, the best results
in fact generated by the complex solutions@21#. Sinceh is
arbitrary we have no justification,a priori, to throw away its
complex part. This means that our optimized physical qu
tities ^f2&u and r c will have, eventually, complex part
whose meaning is to be interpreted according to the phys
Here, these two quantities are ultimately used to determin
strictly real physical quantity defined by the critical tempe
ture. Therefore, for our purposes the complex parts of th
two physical quantities are not relevant and will not be co
sidered. Note that the imaginary parts of optimized phys
observables have also been dropped in Ref.@21#, where a
different, but still valid, physical argument has been us
Finally, we shall follow the original PMS prescription@18#
and optimizê f2&u

(d) andr c
(d) separately. This procedure wa

also adopted in the ultrarelativistic case, where it has p
duced good results@36#.

By truncating Eq.~4.3! to the first nontrivial order, orde
d2, settingd51, and by applying the PMS, one gets the tw
real roots

h̄560.023 233 2u, ~5.1!

which give

^f2&u
(2)570.002 777 326u. ~5.2!
05361
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Applying the PMS to^f2&u
(d) at orderd3 one obtains the

following three solutions. The first,h̄520.047 542 2u,
gives ^f2&u

(3)50.004 550 5u while the other two,

h̄5~0.023 771 160.026 899 5i !u, ~5.3!

yield

^f2&u
(3)52~0.002 219 1260.001 502 45i !u. ~5.4!

At order d4 one obtains the real solutionsh̄
50.043 935 2u which gives^f2&u

(4)520.002 939 74u, and

h̄520.069 799 3u, which gives ^f2&u
(4)50.004 835 54u.

The complex solutions are

h̄5~0.012 932 160.046 769 42i !u, ~5.5!

from which one gets

^f2&u
(4)52~0.001 343 2360.002 131 04i !u. ~5.6!

In order to select the appropriate roots we recur again
the AO convergence studies, where the existence and be
ior of optima families was fully investigated to orderd47

@21#. There, it was observed that at a given ordern, each
PMS solution belongs to a different family, the excepti
being complex-conjugate solutions that belong to the sa
family. It was observed that, in the complex plane, the fi
member of a new family always lies on the real axis and a
that a new family arises asn is increased by 2. Supposin
that these findings may also be used in our three-dimensi
problem, we may identify two families whose first membe
lie on the real axis at orderd2. Family 1 starts with the
positive real solutionh̄50.023 233 2u and family 2 with the
negative real solutionh̄520.023 233 2u. No new families
arise when one goes to the next order and the real nega
solution h̄520.047 542 2u is just another member of th
family of negative real solutions~2!, while the complex-
conjugate optima with positive real partsh̄5(0.023 771 1
60.026 899 5i )u are taken as belonging to family 1
3-9
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At order d4, family 2 gets another member given byh̄
520.069 83u, whereas family 1 getsh̄5(0.012 932 1
60.046 769 42i )u.

As we have increased the order by 2, one effectively s
the appearance of a new family whose first member lies
the real axis and is given byh̄50.043 935 2u. We can now
roughly examine the convergence of our results. The va
obtained with the optima belonging to family 1 are^f2&u

(2)

520.002 777 326u, Re@^f2&u
(3)#520.002 219 12u, and

Re@^f2&u
(4)#520.001 343 23u. Family 2 gives ^f2&u

(2)

50.002 777 326u, ^f2&u
(3)50.004 055 05u, and ^f2&u

(4)

50.004 835 54u, whereas family 3 gives ^f2&u
(4)5

20.002 939 74u. Note that the first̂f2&u value predicted by
family 3 is only about 5% greater than the first value p
dicted by family 1. It is very likely that family 3 will become
complex and, as for the AO, as we go to higher orders, fa
lies 1 and 3 will predict very similar values converging to t
exact value. Family 2, on the other hand, seems to have
real components. It predicts values of^f2&u , which increase
order by order with a sign that is opposite to the one p
dicted by families 1 and 3. Moreover, in the AO, it wa
observed that the complex families have better converge
behavior than the purely real families. This analogy indica
that family 1 should produce converging results.

We can justify pushing the analogy in between our eff
tive three-dimensional model and its one-dimensional v
sion that far by remarking that, at least to the order we c
sider here,̂ f2&u

(d) can be expressed as a power expansion
the form

^f2&u
(4)5N(

i 50

4

~21! i 11~ud! i@h~12d!1/2#12 iBi , ~5.7!

where B0;1021, B150, B2;1025, B3;1026, and B4
;1027. This structure is similar to that found in the on
dimensional case. This hints that both models may h
similar convergence properties making our procedure m
legitimate. It is also worth pointing out that in our previou
work, Ref.@4#, we had only the order-d2 result and it was not
possible to do the same type of comparison among the s
tions to find an acceptable pattern of order by order corr
tions. There, to choose among the two possible solutio
^f2&u

(2)570.002 777 326u, we had to use different argu
ments and were also guided by results found with ot
methods. By considering higher orders, as we have d
here, we can overcome this problem, and the negative re
^f2&u

(2)520.002 777 326u naturally appears as one that b
longs to the most well-behaved sequence of order by o
corrections.

We are now in position to evaluateuk5D^f2&c
(d) , so that

c1 can be determined via Eq.~1.7! with the optima contained
in family 1. As one could expect,h̄ is always proportional to
u since the latter quantity is the only quantity with ma
dimensions appearing in̂f2&u

(d) . This means that the opti
mum value for the noninteracting vacuum expectation va
^f2&0

(d) will be zero at any order. This agrees with the resu
of Ref. @8#, where it was shown that this is indeed the val
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obtained when the theory is regularized with dimensio
regularization. Thenuk5D^f2&c

(n)5^f2&u
(n) , from which

one finally obtainsc153.06, c152.45, andc151.48 at or-
dersd2, d3, andd4, respectively@41#. These results are com
pared with other analytical and numerical results in Table

It is instructive to examine the topology of the diagram
contributing at each order so that we can establish the li
with other nonperturbative methods. At second order
nontrivial contribution arises from the setting sun~one plain
bubble! type of diagram. At third order one has, besides
setting suns with insertions, an additional contributio
which arises from the two-plain-bubbles type of diagra
~ninth graph shown in Fig. 3!. However, this contribution,
belongs with the setting sun to a class of diagrams that wo
appear in a plain bubble sum or in the leading order of a 1N
type of calculation. At fourth order one considers again
three-plain-bubble contribution~18th diagram of Fig. 3!, but
more radical changes arise via other type of vertex corr
tions such as the correction to the plain bubble that com
from the 19th and 20th diagrams of Fig. 3. Finally, the la
diagram contains a different type of vertex correction th
would appear in a ladder type of summation. In fact, one
easily evaluate which are the individual contributions of t
five-loop diagrams shown in Fig. 3. The first of them gives
contribution~in terms ofu4/h3) of '1.931029, the second
gives 2.831028, the third 2.731028, the fourth 8.86
31029, and the fifth gives 2.631028. These numbers show
that, at this order, the total contribution from the ladder a
bubble correction type of contributions~third and fifth! is
effectively twice that of the plain three-bubble one.

It is also easy to see by drawing that the only correctio
that may appear at odd orders are those due to thedoubling
of a bubble that already appeared at the previous order~in-
creasing the ‘‘bubble chain’’!. At the same time, at even or
ders, one is allowed toinsert a new bubble anywhere, crea
ing diagrams with completely different topologies. In oth
words, in a perturbative expansion of^f2&u

(d) , additional to-
pological classes of graphs can arise only at even orders

One can now appreciate that the reason our order-d2 re-
sult c153.06 @4#, obtained by optimizing only one settin
sun contribution, compares so well with the valuec152.90,
found by resumming setting sun contributions in a se
consistent way@1#, is a consequence of the fact that bo
approximations consider the same type of diagrams. On
other hand, when going to orderd3 one considers an addi
tional diagram but which, together with the setting su
would also be considered in a largeN calculation. In the
LDE, its effect is to reduce the second-order result toc1
52.45. Let us consider, for the moment, the only order-d4

contribution that would also be considered in a large-N cal-
culation. Graphically this contribution is displayed by th

TABLE I. Comparision of the results forc1 as obtained from
different methods~see text! and at different orders of approxima
tion.

MCLS 1/N-LO 1/N-NLO SCR O(d2) O(d3) O(d 4)

;1.30 2.33 1.71 2.90 3.06 2.45 1.48
3-10
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second of the five-loop terms in Fig. 3. Not surprisingly, w
obtain the valuec152.32, which is very close to thec1
52.33 value obtained with the 1/N method at leading orde
@2#, and the numerical differences may be due to the fact
we have considered our symmetry factors in full, not on
the highest power ofN. The four remaining five-loop contri
butions would be considered in an 1/N type of calculation to
the next order. Such a calculation has been performed
Arnold and Toma´sik @3# who found c151.71, which is
'27% smaller than the leading order result. In our case
fact is confirmed at orderd4, where the net effect of consid
ering diagrams that would belong to a next-to-leading-or
1/N evaluation is to decrease the valuec152.32 obtained
with the graph that would appear at leading order in the sa
approximation by roughly 35%. As before, the numeric
differences must be due to the full consideration of powers
N in each symmetry factor. It is not our aim to establish h
a formal relationship among the different approximatio
Nevertheless, the discussion above can serve as a gui
understand how the LDE captures part of the nonperturba
physics contained within the SCR and 1/N approximations.

In order to evaluate the coefficientc29 we now turn to the
optimization of the scale dependentr c . Setting d51 and
applying the PMS tor c

(2) generates one positive, real op

mum given byh̄5u/6p. It is important to note that this PMS
solution is a scale independent quantity. In fact,r c depends
on the MS mass scale through the term proportional
u2ln(M/h), which appears in the order-d2 setting sun term. It
is then easy to see that when this term is derived with res
to h, the scale dependence automatically disappears tur
our optimization procedure into a scale independent proc
As discussed below, this situation will be verified at a
order ind.

Next, in order to get a numerical result for the optimiz
r c one must fix a scale and here we chooseM5u/3, which is
the same scale@42# used by Arnold, Moore, and Toma´sik in
Ref. @8#, where the result found for this quantity isr c(M
5u/3)50.001 920(2)u2. The relation in between the value
of r c

(d) , evaluated at two different MS mass scalesM1 and
M2, can be obtained from Eq.~3.5! and reads

r c
(4)~M1!

u2
5

r c
(4)~M2!

u2
1

~N12!

18~4p!2
lnS M1

M2
D . ~5.8!

It is not too difficult to see that this relation will be verifie
at any order ind. At orderd2 the only diagram that is scal
dependent is the setting sun. At a higher order (n>3) this
order-d2 contribution can only appear as a subdiagram.
the same order a similar graph appears, but this timedr
replaces the setting sun insertion. However, the ‘‘vertex’’dr c
is always replaced~see Sec. III! by its expansion ind, which
contains, at orderd2, exactly the same scale dependent te
as given by the setting sun, with a reversed sign. This me
that, apart from the order-d2 setting sun, all contributions to
dr c

(n) are automatically scale independent. Optimizing o
order-d2 result one gets

r c
(2)50.003 152 36u2. ~5.9!
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Proceeding to the next order, the PMS gives two comp
solutions,h̄5(0.035 367 860.055 009 1i )u2, which yield

r c
(3)5~0.002 213 2160.000 096 61i !u2. ~5.10!

Finally, the orderd4 optimization results are the real solutio
h̄50.065 933 4u, which yieldsr c

(4)50.002 461 53u2 and the

complex solutions h̄5(0.009 474 6360.079 726 2i )u2,
which generates

r c
(4)5~0.001 654 1160.000 772 567i !u2. ~5.11!

As in the previous case one sees that the first optima fam
starts with a real value at orderd2 and turns into a complex
family at orderd3. At order d4 it receives a new complex
member. The first family generates the real valuesr c

(2)

50.003 152 36u2, Re@r c
(3)#50.002 213 21u2, and Re@r c

(4)#
50.001 654 11u2, which are our selected values. Then, usi
Eq. ~1.8! together with the optima values obtained fork and
R we obtain, order after order, the resultsc295101.4, c29
598.2, andc29582.9 for the order-a2 nonperturbative coef-
ficient. As forc1, these results compare well with the Mon
Carlo estimate,c29575.760.4.

VI. CONCLUSIONS

We have used the lineard expansion to evaluate nonpe
turbatively the numerical coefficients appearing in the exp
sion for the transition temperature for a dilute, homogeneo
three-dimensional Bose gas given byTc5T0„11c1an1/3

1@c28ln(an1/3)1c29#a2n2/31O(a3n)…, whereT0 is the result
for an ideal gas,a is thes-wave scattering length, andn is the
number density. This expansion forTc incorporates the ef-
fects of nonzero Matsubara modes@8,9#. While the coeffi-
cient c28 has been exactly evaluated using perturbat
theory, the question about the numerical values of the o
two coefficientsc1 and c29 remains open and has been t
object of recent investigations. The reason behind this d
culty is the fact that these coefficients can only be obtain
in a nonperturbative way.

Due to the Hugenholtz-Pines theorem the first nontriv
contribution appears at an order where one has to conside
least, momentum dependent two-loop self-energy diagra
Considering higher-order terms, so as to get more accu
results, becomes rapidly difficult within the existing nonpe
turbative methods as discussed in Ref.@9#, where the authors
state that the complexity of the mathematical problem d
not allow a definitive prediction of the prefactorc1, of the
term linear in a, from an analytic analysis. On the othe
hand, two recent numerical results obtained with latt
simulations, which predictc1;1.30 @5,6,8#, are being taken
very seriously. In a previous work, Ref.@4#, we have applied
the LDE to this problem obtaining the valuec1;3.06 at the
first nontrivial order (d2). However, the quality of that ap
plication was difficult to infer, from a quantitative point o
view, since only one approximant had been used. On
hand, the fact that at orderd2 with only one graph the opti-
mization procedure was able to generate a result numeric
3-11
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similar to that obtained with a self-consistent resummat
~SCR! of two-loop momentum dependent contributions@1#
was encouraging. At that time, we were not in a position
elaborate any further about the convergence behavior of
result.

In the present work, we have again explicitly shown th
the LDE method offers, as its major advantage, the poss
ity to select, evaluate, and renormalize a physical quan
exactly as in the familiar perturbative framework. Here, t
contributions appearing at each order are not selected acc
ing to their topology as within most nonperturbative analy
cal cases. Contrary to some previous unfounded criticis
no uncontrolled errors arise in this type of perturbative c
culation, most notably in this application, where even
most cumbersome five-loop contributions have been fu
considered and evaluated without recurring to any appr
mations as shown in the Appendix. Another advantage is
one does not have to worry about infrared divergences, si
during the formal evaluation of the graphs, the LDE arbitra
parameter naturally acts as such before disappearing du
the optimization process. Also, the fact that a converge
proof for the quantum-mechanical analog of the model c
sidered here does exist@21–24# is an extra bonus.

At first one could think that the multiplicity of possibl
real and complex results generated by the PMS constit
the most serious disadvantage of the LDE. Nevertheless
quantum-mechanical convergence studies of Ref.@21# have
shown how meaningful nonperturbative physical results
still be obtained. As discussed in the text, those studies h
been crucial to our application for some important reas
such as showing how the possible solutions gather into
and complex families and emphasizing that better results
generated by the complex ones. We recall that, although
ferent physical arguments have been used in each case
imaginary parts of the optimized physical observables g
erated by the complex families have also been dropped o
Ref. @21#. As already mentioned, our effective model d
plays the same series structure for the physical observ
^f2&u

(4) as its quantum-mechanical counterpart. Taking
these facts into account we were able to obtain the res
c153.06,c152.47, andc151.48 at second, third, and fourt
orders, respectively. Our results approach, order after or
the recent Monte Carlo estimate,c1;1.3.

Comparing our results and the topology of the diagra
considered here with those belonging to the self-consis
resummation of setting suns and the 1/N approximation at
leading (1/N-LO) and next-to-leading (1/N-NLO) orders,
we made clear that our results are not a mere coincidenc
fact, the PMS is successively chopping, order after ord
nonperturbative information contained in those approxim
tions. Our results confirm the decrease in the value ofc1
observed successively with the SCR, 1/N-LO, and 1/N-NLO.
The numerical differences may be due to the fact that we
not make any distinction among the different powers ofN
that appear on the symmetry factors since the LDE was
visaged to cope with arbitraryN.

We remark that a problem regarding the sign of the co
ficient c1, which appeared in our previous application, h
disappeared at this higher-order evaluation. We have
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investigated the quantityr c by evaluating all self-energy con
tributions, with zero external momentum, up to orderd4.
Once this quantity was optimized, we have obtained the v
uesc295101.4, c29598.2, andc29582.9 for the next nonper-
turbative coefficient at second, third, and fourth orders,
spectively. These results are in good numerical agreem
with the Monte Carlo result,c29575.7 @8#.

In summary, our analytical investigation seems to supp
order by order, the results obtained with the other three a
lytical nonperturbative methods. Our fourth-order numeri
results compare well with the recent results found in Re
@5,6,8#. Additionally, there is an exciting possibility that th
method may offer a way of making a definitive analytic
prediction about the nonperturbative coefficientsc1 andc29 ,
which we are currently investigating.
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APPENDIX: EVALUATING THE HIGHER LOOP TERMS

To make this work self-contained we shall outline, in th
appendix, the details of the explicit evaluation of all Fey
man diagrams considered in the evaluation of^f2&u

(4) for
arbitraryN. We also remark that working out symmetry fa
tors for many-loop contributions with genericN is a problem
on its own. Here, we have used the methods developed
Kleinert’s et al. @37#.

We regularize all diagrams with dimensional regulariz
tion in arbitrary dimensionsd5322e and carry the renor-
malization with the modified minimal subtraction~MS!
scheme. So, the momentum integrals are replaced,

E d3p

~2p!3
→E

p
[S egEM2

4p D eE ddp

~2p!d
, ~A1!

whereM is an arbitrary mass scale andgE.0.5772 is the
Euler-Mascheroni constant. Very often, in evaluating t
contributions tô f2&u one considers the integral

E
p

1

~p21h2!n
5

h322n

~4p!3/2

G@n1e23/2#

G~n! S M2egE

h2 D e

. ~A2!

This integral can be explicitly evaluated as above or by c
sidering the casen51,
3-12
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E
p

1

p21h2
52

h

4p H 11eF2 lnS M

h D122 ln~4!G
1e2F41

p2

4
12 ln2S M

2h D
14 lnS M

2h D G1O~e3!J , ~A3!

and its derivatives with respect toh2,

E
p

1

~p21h2!n
5

1

~n21!! S 2
d

dh2D n21E
p

1

p21h2
. ~A4!

Let us now consider the three-loop contributions to^f2&u
with any number of, external and/or internal,dh2 insertions.
Their general form is

~dh2!n22NE
p

dcSa~p!

~p21h2!n
, ~A5!

where c is defined below andn determines the number o
external~to the setting sun! dh2 insertions. At the same time
the insertions, internal to the setting sun, are taken into
count by

Sa~p!52
M~N12!

18
u2E

kq

1

~k21h2!m

3
~dh2!m1 j 1h23

~q21h2! j

1

@~p1k1q!21h2#h
, ~A6!

whereM defines the multiplicity of equivalent internaldh2

insertions. This general contribution to^f2&u can be written
as

2~dh2!n22NE
p

dcSa~p!

~p21h2!n

5dn1m1 j 1h23
N~N12!M

18
u2~h2!n1m1 j 1h25

3E
pkq

1

~p21h2!n

1

~k21h2!m

1

~q21h2! j

3
1

@~p1k1q!21h2#h
, ~A7!

wherec5m1 j 1h21 labels the order of the two-loop~set-
ting sun! self-energy term. Now, we can merge all propag
tors through the use of standard Feynman parametriza
given as usual by

1

axby
5

G@x1y#

G@x#G@y#
E

0

1

da
ax21~12a!y21

@aa1b~12a!#x1y
~x,y.0!

~A8!
05361
c-

-
n,

or other generalizations. One then gets

~dh2!n22NE
p

dcSa~p!

~p21h2!n

52
dn1m1 j 1h23

~4p!9/2

N~N12!M
18

u2

h

3
G@n1m1 j 1h29/213e#

G@n#G@m#G@ j #G@h# S egEM2

h2 D 3e

3E
0

1

dadbdg
g~a!g~b!g~g!

@g~a,b,g!#n1m1 j 1h29/213e
, ~A9!

where

g~a!5a j 21~12a!h21@a~12a!#2 j 2h13/22e,
~A10!

g~b!5bm21~12b! j 1h25/21e@b~12b!#2 j 2h2m1322e,
~A11!

g~g!5gn21~12g! j 1h1m2412e, ~A12!

and

g~a,b,g!5g1
12g

12b
1

12g

ba~12a!
. ~A13!

Then, for givenn,m, j , andh one performs the expansion i
e keeping the poles and finite terms as usual. For most s
ations found in the present work, the integrals over the Fe
man parameters need to be evaluated numerically. Here
use Monte Carlo and Vegas techniques to perform those
tegrations. We have taken particular care to keep the num
cal errors less than'1% in our final numerical results.

One must be careful in carrying out thee expansion in the
expression above, since sometimes the divergences ca
hidden in the exponents of the Feynman parameters. S
m,n, j , and h are positive integers (n>2,m, j ,h>1), one
sees thatg(g) has a pole ase→0 when j 5h5m51, corre-
sponding to a setting sun diagram without internaldh2 in-
sertions. This is the only situation where one has ultravio
divergences for these contributions. Forj 5h5m51, the ac-
tual divergence appears in the term (12g)2e21 contained in
g(g) and it will appear as a 1/e pole if one integrates

E
0

1

dg
g~g!

@g~a,b,g!#n1m1 j 1h29/213e
~A14!

by parts. The casep50 follows essentially the same line
and the general result for the setting sun type of contribut
with any internal and/or externaldh2 insertions is
3-13
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~dh2!n22NE
p

dcSa~0!

~p21h2!n

52
dn1m1 j 1h23

~4p!3

N~N12!M
18

u2~h2!n22

3
G@m1 j 1h2312e#

G@m#G@ j #G@h# S egEM2

h2 D 2e

3E
0

1

dadb
g~a!g~b!

@g~a,b!#m1 j 1h2312e

3E
p

1

~p21h2!n
, ~A15!

where the integral overp can be readily obtained by one o
the methods discussed in the beginning of this appendix

g~a,b!5
1

12b
1

1

ba~12a!
. ~A16!

Note that theG function in Eq.~A15! displays an ultraviolet
pole whenm5 j 5h51 and is finite otherwise.

The first contribution~sixth diagram of Fig. 3! of this type
appears atO(d2) with n52,m5 j 5h51. Since there is jus
one graph like this,M51 and one writes

2NE
p

d2S1~p!

~p21h2!2
5d2

N~N12!

18~4p!3

u2

h F1

e
16 lnS M

h D
24.931 47G . ~A17!

The p50 contribution is given by

NE
p

d2S1~0!

~p21h2!2
52d2

N~N12!

18~4p!3

u2

h F1

e
16 lnS M

h D
23.780 69G . ~A18!

The last two equations reproduce the results found ana
cally by Braaten and Nieto in Ref.@38#. Note that although
Eqs. ~A17! and ~A18! diverge, their sum is finite and sca
independent. Together, they give the contribution

2NE
p

d2@S1~p!2S1~0!#

~p21h2!2
52d2

u2

h

N~N12!

18~4p!3
@0.143 848#,

~A19!

which is exactly the result found in our previous work, R
@4#. Now, we turn to the evaluation of the setting suns w
insertions. The most expedient way would be to make
replacementh→h(12d)1/2 and then expand the square ro
to the desired order. However, this procedure would o
give the total contribution at each order. In order to ha
05361
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ti-

.

e

y
e

absolute control about each single contribution we prefe
use our general expressions, Eqs.~A9! and ~A15!. We have
checked both procedures, finding that they agree with e
other within 1%, which is reassuring since when obtaini
the diagrams with insertions viah→h(12d)1/2, one has a
result that may be considered exact, since this expan
starts from Eq.~A19!, and this result agrees with the analy
cal results of Refs.@4,38#. Also, at orderd4, the general
relations given by Eqs.~A9! and ~A15! have proven to be
very useful in the evaluation of diagrams containing the s
ting sun as an insertion. For the eighth graph of Fig. 3 o
has three cases similar ton5m52 and j 5h51 (M53).
This gives

2NE
p

d3S2~p!

~p21h2!2
5d3

u2

h

N~N12!

18~4p!3
@0.188# ~A20!

and

NE
p

d3S2~0!

~p21h2!2
52d3

u2

h

N~N12!

18~4p!3
@0.249#, ~A21!

which lead to

NE
p

d3@S2~p!2S2~0!#

~p21h2!2
52d3

u2

h

N~N12!

18~4p!3
@0.0610#.

~A22!

For the seventh graph of Fig. 3,n53 andm5h5 j 51
with M51, one has

2NE
p

d3h2S1~p!

~p21h2!3
5d3

u2

h

N~N12!

18~4p!3

1

32

3F1

e
16 lnS M

h D21.968G ~A23!

and

NE
p

d3h2S1~0!

~p21h2!3
52d3

u2

h

N~N12!

18~4p!3

1

32

3F1

e
16 lnS M

h D21.781G , ~A24!

which lead to

2NE
p

d3h22@S1~p!2S1~0!#

~p21h2!3

52d3
u2

h

N~N12!

18~4p!3
@0.011 68#. ~A25!

where the factor of 2 on the RHS accounts for the two p
sibilities of external insertions@see Eq.~4.2!#. For n54 and
m5h5 j 51 ~tenth diagram of Fig. 3! one gets, withM
51,
3-14
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2NE
p

d 4h4S1~p!

~p21h2!4
5d 4

N~N12!

18~4p!3

1

64

u2

h

3F1

e
16 lnS M

h D21.201 11G
~A26!

and

NE
0

d 4h4S1~0!

~p21h2!4
52d 4

N~N12!

18~4p!3

1

64

u2

h

3F1

e
16 lnS M

h D21.1408G , ~A27!

which lead to

2NE
p

3d 4h4@S1~p!2S1~0!#

~p21h2!4

52d 4
N~N12!

18~4p!3

u2

h
@2.827031023#, ~A28!

where the factor of 3 on the RHS accounts for the possib
ties of external insertions@see Eq.~4.2!#. There are three
cases (M53) similar to the casen53, m52, and j 5h
51 displayed by the 11th graph of Fig. 3. One gets

2NE
p

d 4h2S2~p!

~p21h2!3
5d 4

N~N12!

18~4p!3

u2

h
@0.0586# ~A29!

and

NE
0

d 4h2S2~0!

~p21h2!3
52d 4

N~N12!

18~4p!3

u2

h
@0.0650#,

~A30!

which lead to

2NE
p

d 4h2@2S2~p!2S2~0!#

~p21h2!3

52d 4
N~N12!

18~4p!3

u2

h
@7.731831023#. ~A31!

The 12th graph of Fig. 3 hasM53,n52,m53, and j 5h
51 leading to

2NE
p

d 4S4~p!

~p21h2!2
5d 4

N~N12!

18~4p!3

u2

h
@0.058 638#

~A32!
05361
i-

and

NE
p

d 4S4~0!

~p21h2!2
52d 4

N~N12!

18~4p!3

u2

h
@0.083 246#,

~A33!

which give

2NE
p

@S4~p!2S4~0!#

~p21h2!2
52d 4

N~N12!

18~4p!3

u2

h
@0.024 61#.

~A34!

Finally, for the 13th graph,M53, n5m5 j 52, andh51
from which one gets

2NE
p

d 4S7~p!

~p21h2!2
5d 4

N~N12!

18~4p!3

u2

h
@0.023 455 2#

~A35!

and

NE
p

d 4S7~0!

~p21h2!2
52d 4

N~N12!

18~4p!4

u2

h
@0.041 7#,

~A36!

which gives

2NE
p

d 4@S7~p!2S7~0!#

~p21h2!2
52d 4

N~N12!

18~4p!3

u2

h
@0.018 25#.

~A37!

Let us now consider a general four-loop contribution w
any number of internal and/or externaldh2 insertions. After
performing few shifts on the integration variables one ge

2~dh2!n22NE
p

d dSb~p!

~p21h2!n

52dn1m1 l 1h1 i 1 j 24u3N

3
M~16110N1N2!

108
~h2!n1m1 l 1h1 i 1 j 27

3E
pqkt

1

~ t21h2!n~q21h2!m~k21h2! l@~p1q!21h2#h

3
1

@~p1k!21h2# i@~p1t !21h2# j
, ~A38!

where d5m1 l 1h1 i 1 j 22 labels the order of the three
loop self-energy term. Then, proceeding as in the three-l
case one finds
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2~dh2!n22NE
p

d dSb~p!

~p21h2!n

52N
dn1m1 l 1h1 i 1 j 24

~4p!6

u3

h2

M~16110N1N2!

108

3S M2expgE

h2 D 4e

3
G~n1m1 l 1h1 i 1 j 2614e!

G~n!G~m!G~ l !G~h!G~ i !G~ j !

3E
0

1

dadbdgdudf

3
f ~a! f ~b! f ~g! f ~u! f ~f!
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As far as renormalization is concerned one should note
those type of four-loop contributions are always finite. T
four-loop contribution whose self-energy has zero exter
momentum reads
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Proceeding as above one gets
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where f (a) and f (b) are given by Eqs.~A40! and ~A41!.
Also, one has
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The first four-loop contribution of this type appears at ord
d3 and is displayed by the ninth graph of Fig. 3 and it h
n52, m5 l 5h5 i 5 j 51, andM51. The contributions to
^f2&u are given by
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which lead to
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As for the three-loop case one could use the equation ab
to obtain a series expansion, which would give the total c
tribution of graphs with insertions to any order ind. How-
ever, we prefer to perform the individual evaluation of ea
contribution in order to achieve more control over the ser
expansion. At orderd4 the first contribution is displayed b
the 14th graph withM51, n53, andm5 l 5h5 i 5 j 51.
One then obtains
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where, once more, the factor of 2 accounts for the two p
sibilities of internal insertions in accordance with Eq.~4.2!.

Next, let us consider the case illustrated by the 15th gr
of Fig. 3, which hasM51, n5 j 52, andh5 i 5 l 5m51.
After evaluating the integrals one gets
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The remaining four-loop contributions to this order a
evaluated using the case displayed by the 16th diagram
Fig. 3, which hasM54, n5m52, l 5h5 i 5 j 51 and
whose result is given by
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Let us now consider the five-loop contributions. The fi
one is given by the 17th graph of Fig. 3,

d 4NE
p

@S1~p!2S1~0!#2

~p21h2!3
52d 4

u4

h3

N~N12!2

~18!2~4p!7
@0.873 39#,

~A63!

where the individual contributions are given by three ter
starting with
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After performing the expansion ine and integrating numeri-
cally one obtains
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Now, expanding Eq.~A9!, with n53,m5 j 5h51 to or-
der e and considering
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one gets
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The final contribution to this diagram is obtained by cons
ering Eq. ~A2!, with n53, expanded to ordere2 and by
taking the square of Eq.~A76!, which leads to
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Next, let us consider the 18th graph of Fig. 3, who
contribution comes from
3-18



HIGHER-ORDER EVALUATION OF THE CRITICAL . . . PHYSICAL REVIEW A 65 053613
2d 4NE
p

S6~p!

~p21h2!2

5d 4
u4

h3

N

~4p!15/2

~40132N18N21N3!

648
G~3/215e!

3S M2expgE

h2 D 5eE
0

1

dadbdgdudfdxdz

3
y~a!y~b!y~g!y~u!y~f!y~x!y~z!

@y~a,b,g,u,f,x,z!#3/215e
, ~A79!

where

y~a!5a@a~12a!#23/22e, ~A80!

y~b!5@b~12b!#21/22e, ~A81!

y~g!5@g~12g!#21/22e, ~A82!

y~u!5@u~12u!#21/22e, ~A83!

y~f!5f1/21e~12f!21/21e, ~A84!

y~x!5@x~12x!#21/21e, ~A85!

y~z!5z112e~12z!2e, ~A86!

and

y~a,b,g,u,f,x,z!5
z~12f!

b~12b!
1

fz

a~12a!
1

~12x!~12z!

u~12u!

1
x~12z!

g~12g!
. ~A87!

This contribution is finite and yields
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The p50 case is given by
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Integrating, one obtains
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Together these contributions yield

2d 4NE
p

@S6~p!2S6~0!#

~p21h2!2

52d 4
u4

h3

N

~4p!7

~40132N18N21N3!

648
@3.159 047 67#.

~A95!

The 19th contribution of Fig. 3 is given by
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The first contribution to this result follows from
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Integrating, one obtains

2d 4NE
p

S8~p!

~p21h2!2

5d 4
u4

h3

N

~4p!7

~44132N15N2!

324
@4.310 98#.

~A109!

The p50 case is given by
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We have another five-loop contribution given by the 20
graph of Fig. 3, whose contribution is
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whereM53 accounts for the three possible ways of inse
ing one setting sun within another graph of the same ty
The first term on the LHS of Eq.~A112! is
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Then after integrating over the Feynman parameters and
panding ine one gets
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which gives the finite, scale independent result
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The other contribution is given by
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which gives the finite, scale independent result
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The final contribution comes from the last diagram of F
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The first contribution to this result follows from
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3
z~a!z~b!z~u!z~f!z~x!z~g!z~j!z~f,u!L2124e

Fg1
J

L
~12g!G3/215e ,

~A131!

where

z~a!5@a~12a!#21/22e, ~A132!

z~b!5@b~12b!#21/22e, ~A133!

z~f!5f2122e~12f!21/21e, ~A134!

z~u!5~12u!21/22e, ~A135!

z~x!5~12x!1/213e, ~A136!

z~g!5g~12g!4e, ~A137!

z~j!5j2e~12j!21/21e, ~A138!

z~f,u!5@12f~12u!#2122e, ~A139!

L5
u2j~12x!

@12f~12u!#2
1x2Fx1

uj~12x!

12f~12u!G
2

1Qj~12x!,

~A140!

J5
12x2j~12x!

b~12b!
1x1Fj~12x!, ~A141!

with

Q5
u~12u!

f~12u!@12f~12u!#
111

2u

12f~12u!

2
@11u2f~12u!#2

@12f~12u!#2
, ~A142!

and
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F5
12u2f~12u!

a~12a!f~12u!@12f~12u!#

1
u1f~12u!

f~12u!@12f~12u!#
. ~A143!

Integrating, one obtains

2d 4NE
p

S11~p!

~p21h2!2

5d 4
u4

h3

N

~4p!7

~44132N15N2!

324
@6.124 76#.

~A144!

The p50 case is given by
s.

a

h.
.

05361
d 4NE
p

S11~0!

~p21h2!2

52d 4
u4

h3

N

~4p!15/2

~44132N15N2!

324
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h2 D 4e

3E
0

1

dadbdjdudfdx

3
z~a!z~b!z~j!z~u!z~f!z~x!z~f,u!

J114e
~A145!

with the same notation used in Eq.~A131!. Integrating Eq.
~A145! one obtains

d 4NE
p
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52d 4
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N
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