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Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices
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We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical
lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are
found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear
physical picture of the main features observed in the numerical simulations is given in terms of the atomic band
dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due to the atom-atom
interaction are discussed in detail, such as atom-optical limiting and atom-optical bistability. For positive
scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to
modulational instability. A scheme for the experimental generation of narrow bright gap solitons from a wide
Bose-Einstein condensate is proposed: the modulational instability is seeded starting from the strongly modu-
lated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from
their shape and their collisional properties.
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I. INTRODUCTION

In recent years, great interest has been devoted to the
ical as well as experimental studies of the propagation
matter waves in the periodic potential of optical lattices. T
first experiments were carried out using ultracold atom
samples@1#; later on, the realization of atomic Bose-Einste
condensates~BECs! @2# and their coherent loading into opt
cal lattices@3# opened the possibility of investigating fea
tures that follow from the coherent nature of the Bos
condensed atomic sample@4,5#.

At the same time, the propagation of light waves in line
and nonlinear periodic dielectric structures has been a v
active field of research: global photonic band gaps have b
observed@6# and one-dimensional nonlinear periodic sy
tems such as nonlinear Bragg fibers@7# are actually under
intense investigation given the wealth of different pheno
ena including optical bistability, modulational instability, an
solitonic propagation that can be observed@8–10#.

Given the very close analogy between the behavior
coherent matter waves and nonlinear optics, we expect
the concepts currently used to study the physics of nonlin
Bragg fibers can be fruitfully extended to the physics of c
herent matter waves in optical lattices: the optical poten
of the lattice plays the role of the periodic refractive inde
the atom-atom interactions are the atom-optical analog
Kerr-like nonlinear refractive index, and the Gross-Pitaevs
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equation of mean-field theory corresponds to Maxwe
equation with a nonlinear polarization term@11#.

In the present paper, we shall report a theoretical inve
gation of the transmission dynamics of coherent ma
pulses which are incident on a finite optical lattice with
velocity of the order of the Bragg velocity. In this velocit
range, Bragg reflection processes are most effective and
atomic dispersion in the lattice is completely different fro
that in free space. Depending on the value of the density
the spatial size and velocity of the incident atomic cloud,
well as on the depth and length of the lattice, a number
different behaviors are predicted by numerical simulatio
here, we shall focus our attention on the shape of the tra
mitted pulse just after it has crossed the lattice as well
while it is still propagating in the lattice. In particular, w
shall discuss a mechanism that can be used to generate
row bright atomic-gap solitons propagating along the latt
starting from a wide incident Bose-Einstein condensate.
more details of the continuous-wave transmission and refl
tion spectra in the linear regime, the reader can refer to@12–
16#; some aspects of the linear pulse dynamics are discu
in @15#.

The geometry considered in the present paper as we
in @12–16# is significantly different from the one usuall
considered in recent experimental work@3# on BEC dynam-
ics in optical lattices, in which an optical lattice is switche
on and superimposed on a stationary condensate; the dy
ics of the condensate inside the lattice is then studied
response to some external force such as gravity, an acce
tion of the lattice, or a spatial translation of the magne
potential.
©2002 The American Physical Society11-1
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The present paper is organized as follows. Section II
scribes the physical system under examination. In Sec. III
review some basic concepts of the dispersion of ma
waves in the periodic potential of an infinite optical latti
and present some simple analytical calculations which ac
rately reproduce the dispersion of the atomic bands in
neighborhood of the first forbidden gap. The linear regi
propagation of coherent matter wave pulses across finite
tices is the subject of Sec. IV. The intensity as well as
shape of the transmitted pulse are found to strongly dep
on the properties of the weak incident pulse, in particular
velocity and spatial size; a simple interpretation of the o
served phenomena in terms of allowed bands and forbid
gaps is provided. In Sec. V, we discuss the effect of ato
atom interactions on the propagation of the pulse in the
ferent cases: simple explanations for the observed beha
are put forward in terms of familiar concepts of nonline
optics such as optical limiting, optical bistability, or modul
tional instability; in the case of a positive scattering length
broad pulse of matter waves propagating at the top of
valence band where the effective mass is negative is in
subject to a dynamical instability~the so-called modulationa
instability! toward the formation of a train of narrow pulse
as a consequence of the effective attractive interactions
Sec. VI, we propose a scheme to exploit the modulatio
instability of valence band atoms in order to obtain a narr
bright gap soliton from a wide condensate: as an initial s
for the instability, the standing matter wave pattern crea
by the interference of the incident and reflected waves
used. The solitonic nature of the generated pulses is ver
by looking at their dynamical and collisional properties
well as by comparing the pulse shape with the analyt
predictions of the envelope-function approximation d
cussed in Sec. VII. Conclusions are finally drawn
Sec. VIII.

II. THE PHYSICAL SYSTEM

We consider a Bose-condensed atomic cloud in a qu
one-dimensional~quasi-1D! geometry in which the trans
verse motion is frozen by the confining potential of an op
cal or magnetic atomic waveguide@17#. Gravity is made
immaterial either by placing the waveguide axis along
horizontal plane or by counterbalancing the gravitatio
field with a suitable magnetic field gradient.

A periodic potential is created along the waveguide a
by means of a pair of far-off-resonance laser beams of
quencyvL and wave vectorkL5vL /c crossing the wave-
guide at an angleu as in Fig. 1 @3#: denoting byVL(z)
5udW •EW (z)u/\ the ~slowly varying! single-beam Rabi fre-
quency and withvat the atomic transition frequency, the op
tical potential experienced by the atoms is given byVopt(z)
5V0(z)cos2 kBrz, with V0(z)5\VL(z)2/(vL2vat) and kBr
5kL cosu. For a red- or blue-detuned laser field, the opti
potential is, respectively, attractive or repulsive; the latt
period l Br5p/kBr can be tuned by varying the angleu. The
longitudinal envelopeV0(z) of the lattice potential is deter
mined by the profile of the laser beam waist and is assum
to smoothly vary on a length scale significantly longer th
05361
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the lattice periodl Br . Unless differently specified,V0(z) will
be taken as a Gaussian,

V0~z!5V0e2z2/2wl
2
, ~1!

of heightV0 and spatial lengthwl ; for the sake of complete
ness, we have however verified that most of the qualita
features discussed in the present paper do not depend o
specific shape chosen for the longitudinal lattice envelo
V0(z).

If both the kinetic and the interaction energy are mu
smaller than the transverse level spacing of the wavegu
this latter can be considered as being a single-mode one
the condensate wave function can be written in the factori
form

c~x!5c~z!c'~x'!, ~2!

wherec'(x') is the ground-state eigenfunction of the tran
verse confining potential with the appropria
*d2x'uc'(x')u251 normalization. Within this approxima
tion, the dynamics of the condensed atomic cloud can
described by a one-dimensional Gross-Pitaevskii equatio

i\
]c~z,t !

]t
5S 2

\2

2m0

]2

]z2
1Vopt~z!1g1Duc~z,t !u2D c~z,t !

~3!

wherem0 is the atomic mass and the renormalized 1D eff
tive interactiong1D is written in terms of the usual 3D sca
tering lengtha as @18#

g1D5
4p\2a

m0
E d2x'uc'~x'!u4. ~4!

III. ALLOWED BANDS AND FORBIDDEN GAPS

As happens to electrons in crystalline solids@19# and light
in periodic dielectric systems such as photonic band

FIG. 1. Upper panel: schematic plot of the experimental se
under consideration. Lower panel: spatial dependence of the l
band edge energies.
1-2
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NONLINEAR ATOM OPTICS AND BRIGHT-GAP- . . . PHYSICAL REVIEW A 65 053611
crystals@6#, the atomic dispersion in an infinite periodic p
tential is characterized in the linear regime~i.e., in the non-
interacting case! by allowed bands and forbidden gaps.

When the depthV0 of the lattice potential is weak with
respect to the Bragg energy\vBr5\2kBr

2 /2m0 the lowest
part of the band structure can be accurately described w
a nearly-free-atomapproximation@16# in which only two
coupled modes@7# are taken into account:

c~z!5afe
ikz1abei (k22kBr)z. ~5!

In this restricted (f ,b) basis, the linear regime Hamiltonia
has the following form:

H5S \2k2

2m0
1

V0

2

V0

4

V0

4

\2~k22kBr!
2

2m0
1

V0

2

D ~6!

and the eigenenergies\v6 are equal to

\v6~k!5\vBr1
V0

2
1\vBr

3F S Dk

kBr
D 2

62AS Dk

kBr
D 2

1S V0

8\vBr
D 2G , ~7!

where we have setDk5k2kBr ; the positive sign holds for
the upper, conduction band and the minus sign for the low
valence band. No states are present betweenvBr1V0/4 and
vBr13V0/4: this is the lowest forbidden gap in which th
matter waves cannot propagate through the lattice.

The group velocity is given by

vg
6~k!5

]v6

]k
5

vBrDk

kBr
H 16F S Dk

kBr
D 2

1S V0

8\vBr
D 2G21/2J ;

~8!

close to a band edge (\vBrDk!V0), the group velocityvg
6 is

much reduced with respect to the Bragg velocityvBr
5\kBr /m0; further away (\vBrDk@V0), it recovers the
free-space value\k/m.

The effective mass of the atom is given by

1

meff~Dk!
5

1

\

]2v6

]k2

5
1

m0
H 16

8\vBr

V0
F11S Dk/kBr

V0/8\vBr
D 2G23/2J .

~9!

At the band edge (Dk50), meff is much smaller in absolute
value than the free-space atomic massm0; as usual, it is
positive at the conduction band edge, while it is negative
the valence band edge. Further away from the band e
meff coincides with the positive free-space valuem0 @19#.
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Around the band edge, the weights of the forward a
backward traveling waves are comparableuaf u.uabu for both
valence and conduction bands: the density profile of
Bloch eigenfunction thus has a standing wave shape wi
spatial period equal to the lattice periodl Br . Further away
from the gap, one component dominates the other: the Bl
eigenfunction then has a traveling wave character and
density profile is uniform over the unit cell of the lattice.

IV. PROPAGATION IN THE LINEAR REGIME

We now consider a coherent matter pulse~e.g., extracted
from a Bose-Einstein condensate! which is moving along the
waveguide with a uniform velocityv0 close to the Bragg
velocity vBr . Initially the atomic pulse is far outside the la
tice. The initial density distribution of atoms in the cloud
taken as having a Gaussian shape:

c inc~z!5cmaxe
ik0ze2(z2z0)2/2w0

2
; ~10!

the carrier momentum is\k05m0v0 and the carrier kinetic
energy\v05\2k0

2/2m0; since the wave packet is finite i

space, its Fourier transformc̃(k) has a finite momentum
spreadsk51/w0 aroundk0. As for the lattice shape, we hav
checked that the qualitative features discussed in the pre
paper do not depend on the details of the incident pu
shape.

If the density is sufficiently low and the interactions su
ficiently weak, the nonlinear term in the Gross-Pitaevs
equation~3! can be neglected and the time evolution of t
matter field is accurately described by a linear Schro¨dinger
equation. In this case, the superposition principle holds
the transmission of the pulse can be well described in m
mentum space in terms of the wave vector-dependent tr
mission amplitudet(k):

c̃ t~k!5t~k!c̃ inc~k!. ~11!

If the whole of the incident wave packet is contained
either a transmitting or a reflecting region of the spectr
@Fig. 2~a!#, it will be transmitted@Fig. 2~b!# or reflected@Fig.
2~c!# without apparent reshaping. As discussed in full de
in previous papers@16#, complete transmission occurs whe
ever propagating states are available at all spatial posit
for the frequencies of interest. Given the smooth envelope
the lattice, interface reflections do not occur and the ma
wave adiabatically follows the shape of the correspond
Bloch state; the typical sinusoidal shape of band edge Bl
wave functions@6,19# multiplying the broad pulse envelop
can be clearly recognized while the wave packet is cross
the lattice@Fig. 2~b!, inset#. On the other hand, if the wav
packet frequency falls inside the forbidden gap at some s
tial positions, the matter wave is not able to cross that reg
and is then nearly completely reflected back@Fig. 2~c!#; the
inversion point is located at the beginning of the forbidd
region, i.e., at the point at which the carrier frequencyv0
enters the forbidden gap.
1-3
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When one or more resonance peaks due to quasi-bo
modes1 are contained within the spectrum of the incide
wave packet, the pulse will be partially reflected and p
tially transmitted@Figs. 3~b!–3~c!#; the strong frequency de
pendence of the transmission amplitude leads to a profo
reshaping of the spatial profile of the pulse@Fig. 3~a!#. An
incident pulse of linewidth much wider than the quasibou
mode linewidth has in fact a time duration much shorter th
the characteristic decay time of the mode; this latter
therefore be considered as being impulsively excited by
incident pulse and then exponentially decaying on a m
longer time scale. The exponential tail shown by the tra
mitted pulse profile when a single quasibound mode is
cited @dashed line in Fig. 3~a!# is a clear signature of trans
mission occurring via a single resonant quasibound m
@20#.

If several isolated modes are instead present in the
quency interval encompassed by the incident spectrum,
spectrum of the transmitted pulse will contain several pe
@Fig. 3~b!# and a complex shape will result from the interfe
ence of the different frequency components. For example
the incident pulse has a duration comparable to the dep
ing time of a pair of neighboring modes~i.e., the inverse of
their frequency difference!, both of them will be impulsively
excited and the profile of the transmitted pulse will sho
oscillations following the time evolution of the relative pha
@solid line in Fig. 3~a!#; these oscillations can be interprete
as quantum beatingsbetween the two coherently excite

1In analogy with optics, these quasibound modes correspon
the resonance peaks of a Fabry-Pe´rot interferometer or, more
closely, to the cavity modes of a distributed Bragg reflector~DBR!
microcavity @6~b!#. A more detailed discussion about quasibou
modes in optical lattices can be found in@16# and in @14,15#.

FIG. 2. ~a! Linear transmission spectrum across a repuls
(V0 /vBr51) optical lattice with Gaussian profile (wl / l Br55). Lin-
ear regime time evolution of Gaussian incident pulses (w0 / l Br

520) centered atv05va ~b! ~transmitted! and v05vb ~c! ~re-
flected!. The spatial extension of the lattice is indicated by the v
tical dashed lines.
05361
nd
t
-

nd

d
n
n
e
h
-
-

e

e-
he
s

if
s-

quasibound modes coupled to the same continuum of pro
gating modes outside the lattice.2

V. NONLINEAR REGIME AND MODULATIONAL
INSTABILITY

For higher values of the atomic density and the coupl
constantg1D , the effect of the atom-atom interactions is n
longer negligible and the mean-field nonlinear termg1Ducu2

in Eq. ~3! starts playing an important role in the dynamics.
the following, we shall focus on the experimentally mo
relevant case of a positive scattering lengtha.0, which
means a repulsive interaction among atoms in free sp
furthermore, we shall limit ourselves to the case of a su
ciently weak nonlinearityg1Ducu2!V0 in order for the band
structure of the atomic dispersion not to be washed out
the interaction term.

In @16# we discussed the case of a continuous wave~cw!
beam of coherent atoms incident on a finite lattice; depe
ing on the detuning of the incident beam with respect to
frequency of a quasibound mode of the lattice, atom-opt
limiting or bistability was predicted for an incident bea
respectively on or above the resonance frequency. Here
shall consider the more realistic case of a finite atomic w
packet incident on a finite optical lattice; its central fr
quencyv0 is taken to be close to that of a quasibound mo
of the lattice and its temporal duration much longer than
lifetime of the mode so that the frequency spread is narro
than the mode linewidth.to

2Similar oscillations were studied in@15# in the case in which a
large number of closely spaced quasibound modes are excited

e

-

FIG. 3. ~c! Time evolution of a weak and short (w0 / l Br510)
Gaussian pulse close to resonance with a quasibound mode avg

.1.17vBr @see Fig. 2~a!#; lattice parameters as in Figs. 1 and 2. T
spatial extension of the lattice (wl / l Br55) is indicated by the ver-
tical dashed lines.~a! Expanded view of the transmitted pulse sha
for the pulse in~c! ~solid line! and for a longerw0 / l Br520 pulse
~dashed line!; ~b! incident ~dashed! and transmitted~solid! spectra
for the incident pulse in~c!.
1-4
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NONLINEAR ATOM OPTICS AND BRIGHT-GAP- . . . PHYSICAL REVIEW A 65 053611
First we consider the case of an incident wave packet w
a center-of-mass kinetic energy\v0 exactly on resonance
with a quasibound mode@Fig. 4~a!#: in the absence of inter
actions~dashed line!, the wave packet is nearly complete
transmitted without any shape distortion; only a small fra
tion of the pulse is reflected@Fig. 5~a!#. Thanks to the reso
nance condition with the quasibound mode, the atomic d
sity inside the lattice is significantly larger than that in t
incident wave packet. In the presence of interactions,
main effect of nonlinearity is to blueshift the quasibou
mode frequency@11# and push it out of resonance with th
incident beam; this negative feedback effect, already pre
in the cw treatment@16#, gives not only a saturation of th
transmission as a function of the incident density~atom-
optical limiting!, but also a significant reshaping of the wa

FIG. 4. Transmitted pulse shape for Gaussian incident pulse
resonance~a! and 0.04vBr above resonance~b! with the quasibound
mode of the lattice atvg.1.17vBr ~solid lines!. For comparison,
same calculations neglecting the interaction term~dashed lines! and
in the absence of the lattice~dot-dashed lines! are shown. Same
lattice parameters as in Figs. 2 and 3; the pulse starts atz0 / l Br5
21000 with a Gaussian width equal tow0 / l Br5480.

FIG. 5. Reflected pulse shapes for the same values of the p
cal parameters as in Fig. 4~black lines!: ~a! refers to the resonan
case, and~b! to the off-resonant case. For comparison, same ca
lation neglecting the interaction term is shown~gray lines!.
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packet: the higher density part is cut and the resulting w
packet is flattened. The negative feedback in the transmis
obviously corresponds to a positive feedback in the refl
tion.

In the opposite case of a wave packet incident with
kinetic energy higher than the quasimode frequency, a
density wave packet is nearly completely reflected@Fig. 4~b!,
dashed line#. At higher densities, the cw calculations in@16#
predicted the appearance ofatom-optical bistabilityeffects:
several stationary states with different transmitted intensi
can indeed be found for the same value of the incident
tensity. On such grounds, we are able to put forward a ph
cal interpretation of the transmitted pulse shape in the p
ence of interactions shown as a solid line in Fig. 4~b!: only a
small fraction of the leading part of the pulse is transmitt
since the incident frequency is out of resonance with
empty quasibound mode; moreover, this part of the incid
wave packet has been accelerated by the repulsive mean
interactions before reaching the lattice and thus pushed e
further off resonance.3 For the same reason, the trailing pa
of the pulse has been slowed down with respect to the cen
velocity and thus is closer to resonance with the quasibo
mode; when this trailing part of the pulse reaches the latt
the quasibound mode starts to be effectively populated.
main effect of the interactions among the atoms in the q
sibound mode is to push its frequency closer to resona
with the incident wave packet: the sudden increase in
density of the transmitted pulse that is apparent in Fig. 4~b!
is a direct consequence of this positive feedback. This beh
ior is analogous to the jump from the lower to the upp
branch of the bistability loop that occurs in the cw case
incident intensities growing beyond the switch-on thresho
The shape of the reflected pulse is complementary to tha
the transmitted pulse: in the presence of the nonlinearity,
reflected pulse shows a dip corresponding to the switch-o
the transmission@Fig. 5~b!#.

Provided the interaction energy is much smaller than
spacing of the different quasibound modes, the transmis
dynamics is mostly determined by a single resonant m
and the shape of the matter field inside the lattice is fixed
the eigenfunction of the mode; this guarantees that nomodu-
lational instability can occur4 even in the presence of a
effectively attractive interaction such as the one which
curs in the case of negative massmeff,0 valence band atom

3In the previous case@Fig. 4~a!# this acceleration effect was no
apparent since the nonlinearity required to observe the optical
iting effect is generally weaker than the one required for opti
bistability.

4From a different point of view, this suppression of the modu
tional instability can be interpreted in the following terms: If th
spatial extension of the condensate wave packet is small eno
the excitation of the long wavelength modes that are responsible
the modulational instability cannot occur because of the finite s
of the system; this effect is well known from the physics of trapp
BECs with attractive interactions, which are stable provided
number of atoms is sufficiently small for the effective heali
length to be larger than the condensate size@21,22#.
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CARUSOTTO, EMBRIACO, AND LA ROCCA PHYSICAL REVIEW A65 053611
for which the sign of the effective interaction is revers
with respect to free space.

On the other hand, a spatially extended wave packe
coherent valence band atoms in the absence of spatial
finement is instead subjected to modulational instabil
consider, for example, an attractive lattice and an incid
wave packet with a kinetic energy just below the lower ed
of the gap. Since propagating valence band states are a
able at all spatial positions, the pulse is able to penet
inside the lattice without any reflection. As soon as the pu
is in the lattice, the initially smooth envelope starts bei
modulated with an amplitude that grows exponentially
time and, at the end, a train of narrow and intense pulse
found ~Fig. 6!. The seed for this modulational instability
automatically provided by the density modulations which
evitably arise while the pulse is entering the nonuniform l
tice.

In Fig. 6 a very idealized lattice shape with a flat cent
part and Gaussian wings has been considered; we have,
ever, checked that the qualitative features remain unchan
if different lattice or pulse shapes are taken into consid
ation.

A similar modulational instability is well known to occu
in nonlinear Bragg fiber optics@7#; a cw laser beam traveling
in the conduction~valence! photonic band of a Bragg lattic
with a focusing~defocusing! nonlinear refractive index is
subjected to self-pulsation and therefore converted int
train of pulses. Since the nonlinear refractive index can
interpreted as an effective photon-photon interaction@23,24#,
this self-pulsing effect is easily explained as arising from
modulational instability due to the effective attractive inte
action.

VI. BRIGHT-GAP-SOLITON GENERATION

A regular train of short optical pulses with a well-define
period and intensity has been theoretically shown to be p

FIG. 6. Onset of modulational instability: propagation of a pu
of valence band atoms (v0 /vBr50.68,w0 / l Br5240,z0 / l Br

52650) across an attractive lattice (V0 /vBr520.4). The lattice
has a flat profile in the centraluz/ l Bru,100 region and Gaussia
(wl / l Br550) wings; its spatial extension is indicated by the verti
dashed lines.
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duced if the modulational instability of a cw laser bea
propagating in a lattice is seeded with a weak periodic int
sity modulation@10#. The shape of each pulse is stable d
ing propagation since the group velocity dispersion is co
terbalanced by the optical nonlinearity. Following th
literature, we shall call these pulsesgap solitons@7#, even if
from a strictly mathematical point of view they could b
classified only as solitary waves, since the wave equation~3!
in a periodic potential is not exactly integrable@23# and col-
lisions between two such solitons do not exactly preserve
pulse shape@25#; as we shall see in the following, the ex
pression ‘‘gap soliton’’ is, however, physically justified b
the fact that the pulse distortion following a collision is ge
erally small. Since the first observation of optical gap so
tons in 1995, intense experimental activity has occurred
the generation and characterization of gap solitons and Br
modulational instabilities in optical fibers@9#.

In very recent years, solitonic excitations are also beg
ning to be investigated in the context of nonlinear atom o
tics @18#: dark solitons in the form of stable density dips
an otherwise uniform condensate have been recently
served@26#; bright gap solitons@4# and modulational insta-
bilities @5# are actually under intense investigation; desp
the positive atom-atom scattering length, such stable ato
pulses can exist inside an optical lattice thanks to the ne
tive effective mass of valence band atoms. In the pres
section we present a method to generate narrow bright
solitons starting from a wide atomic condensate incident
an optical lattice

Consider a long coherent matter wave pulse~i.e., a Bose-
condensed atomic cloud! incident on the same attractive la
tice as in the previous section but with a kinetic energy j
above the lower edge of the gap. In the linear regime, suc
wave packet is nearly completely reflected so that the in
ference of the incident and reflected waves creates a stan
wave pattern in front of the reflection point. Far outside t

l

FIG. 7. Bright-gap-soliton generation from a standing mat
wave ~same lattice parameters as in Fig. 6!: pulse shape snapsho
at different times. Vertical dashed lines indicate the spatial ext
sion of the lattice; the dot-dashed line indicates the reflection p
in the linear regime. Inset: incident pulse profile (v0 /vBr

50.72,w0 / l Br5240,z0 / l Br52650).
1-6
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lattice, the period of the pattern is fixed by the wave vec
k0 of the incident wave packet and is therefore of the or
of the lattice periodl Br . Inside the lattice, the standing wav
pattern originates instead from the interference of a forw
and a backward Bloch wave: the amplitude of the fast os
lations follows from the density modulation of each Blo
wave function with a periodicityl Br , while the local period
of the slower modulation that originates from the interfe
ence of the two Bloch waves atk5kBr6Dk is equal to
2p/Dk. As we approach the reflection point, the Blo
waves approach the band edge, so thatDk→0 and the period
of the modulation is strongly increased with respect to
lattice period, although it still remains much shorter than
size of the incident condensate; this effect is apparent in
leftmost snapshot of Fig. 7. Provided the nonlinear term
sufficiently small, the interactions do not wash out the sta
ing wave interference pattern@27# but simply blueshift the
local band edge at the spatial position of the rightmost a
nodes; in this way, the wave packet frequency is pushed
from the local gap and valence band states become avai
for propagation. The resulting short pulses, stabilized by
effective attractive interaction, can therefore propagate al
the lattice as solitonic objects. The stronger the nonlin
term, the larger the number of pulses for which this mec
nism is effective and which are then able to propagate al
the whole lattice without being reflected; as shown in Fig
a parameter range can be found in which a single solito
generated. In Fig. 8 we have plotted the shape of the so
nic pulse train for different values of the density: the high
the density, the larger the number of solitons forming
train; in the presence of several solitons, the dynamics ca
complicated by oscillations and mass exchange effects
tween the different pulses. For lower densities, the lin
regime is recovered and the incident pulse is nearly co
pletely reflected. In Figs. 7 and 8, a lattice with Gauss
edges and a central flat region was used: in this way, afte

FIG. 8. Dependence of bright-soliton number and properties
the interaction parameterg1D . In ~a! the lattice and incident pulse
parameters are the same as in Fig. 7; in~b!, ~c!, and~d! the densities
of the incident pulse are a factor of, respectively, 4/3, 5/3, an
larger than in~a!. All snapshots are take at the same timevBrt
51700.
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initial complex nucleation stage at the front edge of the l
tice, the dynamics is made simple by the fact that the solit
freely propagate through a uniform periodic lattice.

In Figs. 9~a!–9~c!, we illustrate how the generation of
solitonic pulse relies on neither the specific Gaussian sh
of the incident pulse, nor the Gaussian shape of the lat
edges: a calculation similar to the ones of Figs. 7 and 8
been repeated for different incident pulse and lattice sha
and in all cases, provided the density in the incident puls
carefully tuned, it was possible to obtain a single soliton
pulse. As a further check, we verified that a soliton can a

n

2

FIG. 9. Bright-soliton generation for different pulse and latti
shapes. In~a! and~b! the lattice is the same Gaussian-flat lattice
in Figs. 6–8; in~a! the incident pulse is Gaussian (w0 / l Br5240),
while in ~b! it has an inverted parabolic~Thomas-Fermi! shape. In
~c! a Gaussian pulse (w0 / l Br5240) is incident on a lattice with a
flat central region foruz/ l Bru,100 and Lorentzian edges of chara
teristic widthwl / l Br550. In ~d! a Gaussian pulse (w0 / l Br5160) is
incident on a Gaussian lattice (wl / l Br5100).

FIG. 10. Collision process between a pair of gap solitons g
erated at either end of a lattice with the same parameters as in
7 and propagating along the lattice with opposite velocities. All
collisional dynamics take place in the regionuz/ l Bru,100 where the
lattice profile is flat.
1-7



fl
-

ar
th
fe

g
u

er
it i
th
th

o
o
t

el

m

ttic
s
th
k
o

e
e

n
de
of
of
c-
ire
lle

r
n-
th

gh
al
n
e
in
n
se
ac

ow

o

rk.

e

s

ic

(

CARUSOTTO, EMBRIACO, AND LA ROCCA PHYSICAL REVIEW A65 053611
be generated using a simple Gaussian lattice without a
region @Fig. 9~d!#: in this case the dynamics is more com
plex, however, since the lattice parameters are spatially v
ing. The center-of-mass motion is no longer uniform and
pulse width changes because of the spatially varying ef
tive mass.

In summary, we have found that the generation of a sin
bright-gap soliton from a wide condensate is a rather rob
feature with respect to changes in the initial paramet
however, given the complexity of the nucleation process,
not physically evident how to control the parameters of
soliton such as velocity and peak density by acting on
parameters of the lattice and of the incident pulse.

Once the pulse has crossed the lattice and has got t
opposite end, the effective mass of the atoms becomes p
tive again and the pulse is immediately broadened under
combined effect of group velocity dispersion and mean-fi
repulsion~see the two last snapshots in Fig. 7!. A proof of
the solitonic nature of the generated pulse is obtained fro
study of its collisional dynamics~Fig. 10!: a pair of such
pulses symmetrically generated at the two ends of the la
collide in the middle of the lattice. Their solitonic propertie
result clearly from the fact that their shapes as well as
number of atoms contained in each of them are only wea
affected by the collision process. The small broadening
the pulses that can be observed in Fig. 10 is a signatur
the fact that the nonlinear wave equation in a periodic pot
tial is integrable only in an approximate way@25,28#.

Because the effective massmeff is much smaller than the
free-space massm0 ~for the parameters of Fig. 7meff
520.07m0), the solitonic width is significantly larger tha
the free-space healing length at the same value of the
sity; for a typical value of the lattice period of the order
0.5 mm, the solitonic length turns out of the order
10 mm, which is well within the capabilities of actual dete
tion systems. The mean-field interaction energies requ
for the observation of solitonic effects are in general sma
than or of the order of one-tenth of the recoil energyvBr : for
the most relevant case of87Rb atoms and23Na, the recoil
energy corresponds to reasonable densities of the orde
1014 cm23. The characteristic time for the modulational i
stability and soliton formation processes described in
previous sections is of the order ofvBrt.500, which means
t.20 ms for 23Rb atoms andt.3 ms for 87Na.

The method here described for the generation of bri
gap solitons is significantly different from previous propos
@4#: in our approach the soliton pulse shape originates
from the whole BEC cloud, but only from the much short
density bump corresponding to an antinode of the stand
matter wave. This fact allows one to obtain short solito
from a wide BEC without the need for a dramatic pul
compression under the effect of effectively attractive inter
tions.

VII. GAP SOLITONS: A SIMPLE ANALYTICAL MODEL

Provided the gap soliton is wide enough, only a narr
group of Bloch states around a central wave vectorksol are
populated and an accurate description can be analytically
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tained within the so-called envelope-function framewo
Denoting byuksol

(z) the Bloch eigenfunction atk5ksol, we

write the wave functionc(z,t) of the coherent matter puls
as the product of the slowly varying envelopec̄(z,t) and the
quickly oscillating Bloch eigenfunctionuksol

(z):

c~z,t !5c̄~z,t !uksol
~z!; ~12!

in the following, the Bloch eigenfunctionuk(z) is assumed
to be normalized according to

1

l Br
E

0

l Br
dzuuk~z!u251, ~13!

which corresponds to

uaf u21uabu251, ~14!

in the (f ,b) basis of Eq.~5!. If the variations of the envelope
c̄(z,t) are slow enough, it can be shown@28# that c̄(z,t)
obeys a simple integrable nonlinear Schro¨dinger equation

i\
]c̄~z,t !

]t
5S 2

\2

2meff

]2

]z2
1geffuc̄~z,t !u2D c̄~z,t !,

~15!

in which the effective massmeff and the effective coupling
geff depend on the central wave vectorksol. While an explicit
expression formeff(k) has already been given in Eq.~9!, the
effective couplinggeff(k) turns out to be expressed in term
of the Bloch wave function by

geff~k!5
1

l Br
E

0

l Br
dzg1Duuk~z!u4; ~16!

FIG. 11. Comparison of the numerically calculated soliton
pulse atvBrt51700 in Fig. 7~thin solid line! with the analytical
prediction ~18! for the envelope~thick solid line!. Dashed line:
approximate prediction obtained using the band edge valuesksol

5kBr! for geff andmeff.
1-8
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obviously, the sign ofgeff is always the same as that ofg1D ,
which, in the case we are considering, meansgeff.0. Within
the two-mode ansatz, Eq.~5!, this quantity can be rewritten
in the simple form

geff~k!5g1D~ uaf u41uabu414uaf u2uabu2!, ~17!

whereaf ,b are the projections of the Bloch eigenfunction
the forward and backward propagating waves. Notice t
the density modulation of the Bloch wave function at the g
edge (uaf u25uabu251/2) makes the effective coupling a fa
tor of 3/2 larger than that far from the gap, i.e., the free-sp
coupling.

Under these assumptions, the envelopec̄sol of the solito-
nic wave packet has the simple expression@23#

c̄sol~z!5c̄maxsechS z2vgt

jsol
D , ~18!

with the widthjsol given by

jsol5A \2

umeffugeffuc̄maxu2
; ~19!

as expected, the sizejsol of the soliton is of the order of the

healing lengthj5\/A2umeffugeffuc̄maxu2. The accuracy of
this approximate description is apparent in Fig. 11 where
compare the numerically obtained wave packet with the a
lytical prediction~18! for the envelope; the central wave ve
tor ksol of the wave packet was determined from the gro
velocity by means of Eq.~8!, the envelope amplitudec̄max
from the peak density of the pulse.

VIII. CONCLUSIONS

In this paper we have theoretically investigated the tra
mission dynamics of coherent matter pulses~such as those
that can be extracted from Bose-Einstein condensates! which
are incident on finite optical lattices; such systems are ma
wave analogs of the nonlinear Bragg fibers currently stud
in nonlinear optics.
C
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e

05361
at
p

e

e
a-

p

-

er
d

In the linear regime~i.e., in the low-density or weak-
interaction limit!, we have characterized the dependence
the intensity and shape of the transmitted pulse on the ve
ity and size of the incident condensate in terms of the d
persion of matter waves inside the lattice; as in the case
light waves in periodic dielectric structures or in the case
electrons in crystalline solids, the dispersion of matter wa
in the periodic potential of optical lattices is in fact chara
terized by allowed bands and forbidden gaps.

The dynamics in the presence of interactions is found
be even richer: an interpretation of the numerically predic
effects is put forward in terms of familiar concepts fro
nonlinear optics, such as optical limiting, optical bistabilit
and modulational instability.

In particular, we have investigated a possible way of g
erating narrow bright gap solitons from a wide incident Bo
condensate: the modulational instability is seeded from
strongly inhomogeneous density profile of the standing w
that is formed in front of the finite optical lattice by th
interference of the incident and reflected matter waves.
solitonic nature of the generated pulses has been che
from their shape, which is in excellent agreement with
simple analytical model, as well as from their dynamical a
collisional properties.

Finally, we have verified that the range of physical para
eters that is required for the observation of the effects p
dicted in the present paper falls well within the possibiliti
of actual experimental setups.
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