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Bose-Einstein condensation in the presence of a uniform field and a pointlike impurity
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The behavior of an idealD-dimensional boson gas in the presence of a uniform gravitational field is
analyzed. It is explicitly shown that, contrary to a long-standing belief, the three-dimensional gas does not
undergo Bose-Einstein condensation at finite temperature. On the other hand, Bose-Einstein condensation
occurs atT5” 0 for D51,2,3 if there is a pointlike impurity at the bottom of the vessel containing the gas.
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I. INTRODUCTION

The response of quantum systems to the influence of
ternal background fields is of utmost importance in a w
number of physical applications. In addition, the role of d
order, i.e., the presence of impurities in condensed ma
systems, is often crucial in the occurrence of remarka
physical effects. It is the aim of the present paper to inve
gate the behavior of an ideal boson gas in the presence
uniform ~i.e., constant and homogeneous! gravitational field
and of extremely localized~actually pointlike! impurities af-
fecting the quantum dynamics of the bosonic particles.

It has been known for a long time@1,2# that an ideal
three-dimensional~3D! boson gas in free space undergoe
phase transition calledBose-Einstein condensation~BEC!, in
which a finite fraction of its constituent molecules conden
in the single-particle ground state. Such a condensation
fers from the usual condensation of a vapor into a liquid
that there is no phase separation. For this reason, BE
commonly described as a phase transition in momen
space—the particles condense into theup50& state, which
has a uniform spatial distribution. It is also well known@2#
that such a phase transition is no longer possible, for
bosons, in one and two dimensions—although in both ca
it does occur in the presence of a pointlike attractive pot
tial @3,4#. A long-standing popular belief@1,5–10# is that if
the particles of a 3D ideal boson gas were placed in a~uni-
form! gravitational field, then BEC would still occur, but i
the condensation region there would be a spatial separa
of the two phases, just as in a gas-liquid condensation.

In the present paper we study an exactly solvable qu
tum mechanical model of an ideal boson gas inD51,2,3
dimensions in the presence of a uniform gravitational fi
and of a pointlike impurity formally described by
d-function potential. In order to make the Hamiltonia
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bounded from below, so that the system may attain a stat
thermodynamic equilibrium, we shall enclose the gas in
container with impenetrable walls. Concerning the ma
ematical description of a pointlike impurity, it should be r
marked that ad potential is generally ill defined whenD
.1, and some renormalization procedure is mandatory.
tually, the rigorous mathematical procedure to deal w
pointlike interactions involves the analysis of the self-adjo
extensions of the symmetric Hamiltonian operator@11#. In
the present work, however, we prefer to follow a more info
mal approach@12#, which is closer to physical intuition, bu
reaches the same final result as the rigorous, though m
involved, general method to find all the self-adjoint exte
sions of a given symmetric operator@13#. To be specific, we
formally treat the contact interaction as aD-dimensionald
potential, then proceed to the renormalization procedure
physical terms, and finally obtain the so-called Krein formu
for the Green’s function, from which it is possible to extra
the energy spectrum of the single-particle Hamiltonian.

In Sec. II we prove that an ideal boson gas in the prese
of a uniform gravitational field does not undergo BEC
finite temperature, except in the one-dimensional case. T
implies, in particular, that in the three-dimensional case
phase separation occurs in the thermodynamic limit, at v
ance with the above quoted conventional wisdom. We a
provide a rather generalsufficientcondition for the occur-
rence of BEC in a trapped ideal gas, which generalizes so
results obtained by other authors@14–18# for power-law po-
tentials. In Sec. III we show that the onset of BEC in
uniform gravitational field is made possible inD52,3 if a
pointlike impurity ~i.e., ad potential! is placed at the bottom
of the vessel containing the gas. The reason is that the p
ence of the impurity entails the existence of a bound st
whose energy gap with respect to the continuous spectru
what is needed for the ideal gas to undergo BEC. In Sec
we draw our conclusions, and some technical details are
sented in two appendixes.

II. D-DIMENSIONAL BOSON GAS IN A UNIFORM FIELD

It is convenient to first analyze and discuss the impuri
free case, which turns out to exhibit, as we shall see be
rather surprising features. Thus, in this section we shall st

n-
:
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the quantum mechanical behavior of an ideal boson ga
the presence of a uniform gravitational field. The existen
of a ~single-particle! ground state is guaranteed by the pre
ence of an impenetrable wall at the bottom of the ves
containing the gas. The single-particle Hamiltonian is giv
by

H0
(D)~g!5

p2

2m
1mgx, ~1!

in which we have set

x5~x1 , . . . ,xD![~r ,x!, p5~p1 , . . . ,pD![~k,p!. ~2!

The gas is supposed to be enclosed in a rectangular bo
sidesL1 ,L2 , . . . ,LD , with its bottom fixed at the planex
50. Since we are interested in the thermodynamic limit,
can, without lack of generality, impose periodic bounda
conditions in thex1 , . . . ,xD21 directions and the Neuman
boundary condition1 at x50 andx5LD , i.e.,

c~x1 , . . . ,xj1L j , . . . ,xD!5c~x1 , . . . ,xj , . . . ,xD!,
~3!

j 51, . . . ,D21,

]xc~r ,x50!5]xc~r ,x5LD!50, ~4!

and then take the limitsL j→`, j 51, . . . ,D. After these
limits are taken, the eigenfunctions and eigenvalues
H0

(D)(g) read

cn,k~r !5
exp$~ i /\! k•r%

~2p\!(D21)/2
A2

k

an8

Ai ~kx1an8!

Ai ~an8!
, ~5!

En,k5
k2

2m
2Egan8 , nPN, kPRD21, ~6!

where Ai(x) is the Airy function @19#, an8 are the zeros of
Ai 8(x), and the parametersk andEg are defined as

k[S 2m2g

\2 D 1/3

, Eg[
mg

k
5

\2k2

2m
. ~7!

All the zeros of Ai8(x) are negative; hence the energy leve
En,k are positive.

If D.1 the spectrum is purely continuous and the cor
sponding improper eigenfunctions are normalized accord
to

^cn8,k8ucn,k&5dn,n8d
(D21)~k2k8!. ~8!

On the other hand, in the one-dimensional case the spec
is purely discrete, the normalized eigenfunctions and eig
values being, respectively,

1The reason why we impose Neumann boundary condition,
stead of the seemingly more natural Dirichlet one, will be explain
in Sec. III.
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cn~x!5A2
k

an8

Ai ~kx1an8!

Ai ~an8!
, ~9!

En52Egan8 , nPN. ~10!

Let us first analyze in detail the Bose-Einstein conden
tion for such a one-dimensional system. In the grand can
cal ensemble the average number of particlesN at tempera-
ture T and chemical potentialm reads

N5 (
n51

`
1

exp@b~En2m!#21
, ~11!

where, as usual,b51/kBT. The criterion for the occurrence
of BEC is that the average population of the excited sta
remains finite as the chemical potential approaches
ground state energy from below, i.e.,

lim
m↑E1

Nex5 lim
m↑E1

(
n52

`
1

exp@b~En2m!#21
,`. ~12!

Notice that the ground state population has been split
that being the reason why the above sum begins atn52. The
sequence of eigenvalues~10! is such that the above men
tioned BEC criterion is satisfied. Consequently, Bos
Einstein condensation is expected to occur, although, in
der to specify the critical temperature, it would be necess
to sum up the series, which, to our knowledge, cannot
done analytically. Nonetheless, one can estimate the cri
quantities using the asymptotic behavior ofEn for large n
@19#:

En52Egan8;Eg@3p~4n23!/8#2/3, n@1. ~13!

This corresponds to a density of states of the form

r~E!'
dn

dE
;

1

p
Eg

23/2E1/2, E@Eg . ~14!

SinceEg}g2/3, asg→0 the energy spectrum becomes den
and denser and the ground state energy approaches
Thus, in a weak gravitational field it is reasonable to extra
late in the continuum the density of states~14! down to E
50. We can then approximate the series in Eq.~12! by an
integral, and eventually obtain

Nex;E
0

`dE

p

Eg
23/2E1/2

exp@b~E2m!#21

54p~klT!23g3/2~ebm!, ~15!

where lT[h/A2pmkBT is the thermal wavelength an
gs(x)[(n51

` n2sxn is the Bose-Einstein function@1#. To ob-
tain the critical temperature, we take the limitm→0 in Eq.
~15! and equateNex to the total number of particles in th
gas; solving forT then yields the approximate critical tem
perature

-
d
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BOSE-EINSTEIN CONDENSATION IN THE PRESENCE . . . PHYSICAL REVIEW A 65 053606
Tc;
Eg

kB
~4p!1/3S N

g3/2~1! D
2/3

. ~16!

Below Tc the fraction of particles occupying the ground sta
is given by

N0

N
512

Nex

N
512S T

Tc
D 3/2

. ~17!

The reasoning that led us to the conclusion that a o
dimensional ideal boson gas in a uniform gravitational fi
displays BEC can be easily generalized to higher dimens
and other types of potential. This is the content of the f
lowing theorem.

Theorem 1. Suppose the single-particle energy spectr
of an ideal boson gas satisfies the following conditions:~i!
there is a gap between the fundamental and the first exc
energy levels, i.e.,E12E05D.0; ~ii ! the single-particle
partition function is finite, i.e., Z[(n50

` dn exp(2bEn)
,`, dn being the finite degeneracy of thenth eigenvalue of
the single-particle Hamiltonian. Then this gas displays Bo
Einstein condensation at finite temperature.

Proof. If m,E0, the number of particles in the excite
states is bounded from above by

Nex5 (
n51

`
dn exp@2b~En2m!#

12exp@2b~En2m!#

<
exp~bm!

12exp@2b~E12m!# (
n51

`

dn exp~2bEn!. ~18!

Therefore

lim
m→E0

Nex<
exp~bE0!

12exp~2bD!
@Z2d0 exp~2bE0!#,`, ~19!

since, by hypothesis,Z andd0 are finite andD.0. j
We notice that the above statement may be generalize

some cases in which part of the spectrum is continuou
there are infinitely degenerate energy levels. This is d
under the suitable introduction of the density of particles
the excited states and of the single-particle partition funct
per unit volume. Some explicit examples of this generali
tion are discussed in Ref.@4# and in Sec. III of the presen
paper.

There are many papers that discuss the problem of B
Einstein condensation of an ideal gas confined in a pow
law potential@14–18#, mainly using some kind of semiclas
sical approximation. In particular, they predict that a on
dimensional gas displays BEC if and only if the power-la
potential islessconfining than the parabolic one, i.e.,V(x)
}xh, h,2. Theorem 1 shows that this condition is to
strong: BEC occurs for any positiveh. It should be clear tha
the reason for such a discrepancy is not the semiclas
approximationper se, but the substitution of the discret
spectrum by a smooth density of states, which may m
some relevant features of the energy spectrum.
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Let us return to the problem of an ideal boson gas in
uniform gravitational field. We shall now consider the tw
and three-dimensional cases. Due to the translation inv
ance along the transverse direction~s!, the proper quantity to
be discussed is the number of particles per unit arean(D)

[ limL j→`N/L1•••LD21. The density of particles in the ex
cited states is then given by

nex
(D)5(

j 51

` E dD21k

~2p\!D21

3H expFbS k2

2m
2Egaj82m D G21J 21

5lT
12D(

j 51

`

g(D21)/2@expb~Egaj81m!#,

m,2Ega18 . ~20!

The integral in Eq.~20! is well defined for arbitraryD.1
due to the conditionm,2Ega18 . Now, since limx→1gs(x)
5` if s<1, the first term of the series on the right-hand si
~RHS! of Eq. ~20! diverges forD<3 asm→2Ega18 . There-
fore, a two- or three-dimensional ideal boson gas in a u
form gravitational fielddoes notdisplay Bose-Einstein con
densation atT5” 0.

Some remarks are in order here.
~a! At first sight, Eq.~20! seems to imply absence of BE

in D51 too. It should be noted, however, that in one dime
sion there is no integration over transverse momenta. He
in order to remove the contribution of the ground state fro
the sum over states in Eq.~20!, one has to begin it atj 52.
Thennex

(1) (5Nex) has a finite limit asm→2Ega18 .
~b! It is easy to see that the absence of BEC in a two-

three-dimensional ideal boson gas in a uniform gravitatio
field in thex direction is due to the quantization of the m
tion in that direction. Thus, any potentialV that depends only
on x, and such that the one-dimensional Hamiltonian

Hx5
px

2

2m
1V~x! ~21!

has a discrete spectrum, will do the job of hindering BEC
D52,3.

~c! There are claims in the literature@1,5–10# that a three-
dimensional ideal boson gas in a uniform field may unde
BEC atT5” 0. This is an artifact of approximating the sum
Eq. ~20! by an integral@remember that Eq.~20! holds true for
D.1#. Indeed, using the density of states given by Eq.~14!
we obtain

(
j 51

`

g(D21)/2@expb~Egaj81m!#

'
1

p
Eg

23/2E
0

`

dEE1/2(
n51

`
e2nb(E2m)

n(D21)/2

5
1

p
~bEg!23/2G~3/2! (

n51

`
enbm

n(D12)/2
6-3
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54p~klT!23g(D12)/2~ebm!. ~22!

Inserting this result into Eq.~20!, one would be led to the
incorrect conclusion that BEC occurs at finite temperature
D52 andD53 in the presence of a uniform field, becau
limm→0g(D12)/2(e

bm),` if D.0.
~d! It should be clear by now that none of our conclusio

so far depends crucially on the use of the Neumann boun
condition. They would remain correct, at least qualitative
had we used Dirichlet or Robin boundary conditions inste

III. D-DIMENSIONAL BOSON GAS INTERACTING WITH
A POINTLIKE IMPURITY AT THE BOTTOM

OF THE CONTAINER

In this section we finally come to the most interesti
physical case in which, in addition to the gravitational fie
there is a pointlike impurity at the bottom of the vessel co
taining the gas. As we shall show here, such an impurity
enough to restore BEC in the three-dimensional case—an
allow its existence in the two-dimensional case, in which i
absent with or without the gravitational field. The singl
particle Hamiltonian now takes the form

H (D)~g,lD!5
p2

2m
1mgx1lDd (D)~x!

[H0
(D)~g!1lDd (D)~x!. ~23!

Our main task will be to show that thed potential creates a
bound state in the two- and three-dimensional cases,
paving the way for the occurrence of Bose-Einstein cond
sation, at variance with the impurity-free situation discuss
in the previous section.

Our basic tool to tackle this problem is the Green’s fun
tion

G(D)~z;x,x8!5^xu@H (D)~g,lD!2z#21ux8&, zPC,
~24!

from which it is possible to extract the energy spectrum
formal expression forG(D)(z;x,x8) can be obtained by solv
ing the Lippmann-Schwinger integral equation,

G(D)~z;x,x8!5G0
(D)~z;x,x8!2E dDyG0

(D)~z;x,y!V~y!

3G(D)~z;y,x8!, ~25!

where G0
(D) and G(D) are the Green’s functions associat

with H0
(D) and H (D)5H0

(D)1V(x), respectively. ForV(x)
5lDd (D)(x) the integral in Eq.~25! can be done trivially,
resulting in

G(D)~z;x,x8!5G0
(D)~z;x,x8!

2lDG0
(D)~z;x,0! G(D)~z;0,x8!. ~26!

If we now set x50, we obtain an algebraic equation fo
G(D)(z;0,x8). Solving that equation and inserting the res
into Eq. ~26!, we end up with
05360
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G(D)~z;x,x8!5G0
(D)~z;x,x8!

2
G0

(D)~z;x,0! G0
(D)~z;0,x8!

1/lD1G0
(D)~z;0,0!

. ~27!

As we shall see below,G0
(D)(z;0,0) is formally divergent for

D>2, but one can still give a well defined meaning to E
~27! by renormalizing the coupling parameterlD . The re-
sulting expression, which then makes sense also forD52,3,
is known as Krein’s formula@11# and encodes the one
parameter family of self-adjoint extensions of the symme
Hamiltonian operatorH0

(D)(g). This precisely corresponds t
the mathematically rigorous description of thed potential.

To complete the construction ofG(D) we still have to
obtain the Green’s function in the absence of the impur
This is done in Appendix A, with the result

G0
(D)~z;x,x8!52

pk

Eg
E dD21k

~2p\!D21
expH i

\
k•~r2r 8!J

3
u@j~x,!#v@j~x.!#

Ai 8@j~0!#
, ~28!

where the functionsu(j) andv(j) are defined in Eq.~A7!,
j(x) is defined in Eq.~A4!, and x, (x.)5min (max)
3$x,x8%. Settingx5x850 in Eq. ~28! we formally obtain

G0
(D)~z;0,0!52

k

Eg
E dD21k

~2p\!D21

3
Ai @~k2/2mEg!2~z/Eg!#

Ai 8@~k2/2mEg!2~z/Eg!#

52CDE
0

`

dyy(D23)/2
Ai ~y2z!

Ai 8~y2z!
, ~29!

where

CD[
kD~4p!(12D)/2

EgG@~D21!/2#
, z[

z

Eg
. ~30!

It follows from the asymptotic behavior of the Airy functio
Ai( x) for largex @19#,

Ai ~x! ;
x→` 1

2Apx1/4
expS 2

2
3 x3/2D @11O~x23/2!#, ~31!

that the integral in Eq.~29! diverges in the uv region forD
>2, as anticipated.~The integral is finite in the ir forD
.1.!
6-4
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Before we show how to make sense of Eq.~27! for D
52,3, let us discuss the one-dimensional case, which d
not need renormalization. In this case, the energy spect
can be obtained by solving2

1

l1
1G0

(1)~z;0,0!50, ~32!

or, more explicitly~see Appendix A!,

1

l1
2

k

Eg

Ai ~2z/Eg!

Ai 8~2z/Eg!
50. ~33!

This equation is equivalent to the imposition of the Rob
boundary condition at the origin, i.e.,c8(0)1cc(0)50. It
interpolates between the Neumann boundary condition,
l1→0, and the Dirichlet one, forl1→`. Any of these
boundary conditions prevents the flow of particles across
origin, so any of them can be used to represent an imp
etrable wall at the bottom of the container. Nevertheless,
more convenient to impose the Neumann boundary condi
in the impurity-free case, because it is then possible to mo
an impurity at the bottom of the container by ad potential.
This would not be possible had we imposed the Dirich
boundary condition instead. In any case, the energy spec
obtained by solving Eq.~33! will be purely discrete and
bounded from below. As a consequence, we can say tha
the one-dimensional case the Bose-Einstein condensatio
tually occurs at the lowest discrete energy level, although
ground state energy itself as well as the critical quantities
shifted with respect to the previously discussed impurity-f
case.

Let us now discuss the two- and three-dimensional ca
In order to make sense of the denominator in Eq.~27!, we
first have to regularizeG0

(D)(z;0,0). We shall do this by in-
troducing a uv cutoff in Eq.~29!, namely,

G0
(D)~z;0,0!→G0

(D)~L,z;0,0!

52CDE
0

L

dyy(D23)/2
Ai ~y2z!

Ai 8~y2z!
. ~34!

We now add toG0
(D)(L,z;0,0) the integral

I D~L,z,a![2CDE
0

L

dyy(D23)/2~y1a!21/2, a.0. ~35!

It follows from Eq. ~31! that

Ai ~y2z!

Ai 8~y2z!
;

y→`

2~y2z!21/21O@~y2z!22#

;2y21/21O~zy23/2!; ~36!

2One can easily check that the residue ofG0
(1)(z;x,x8) at z5

2Egan8 cancels the residue of the second term on the RHS of
~27! at the same pole. Therefore, all the poles ofG(1)(z;x,x8) are
given by the solutions to Eq.~32!.
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hence, the integrand ofG0
(D)(L,z;0,0)1I D(L,z,a) behaves

like y(D26)/2 for large y. This allows us to remove the u
regulator ~i.e., to take the limitL→`) for D,4. At the
same time, since we have addedI D to G0

(D) , we must sub-
tract it from lD

21 in order to keep the combinationlD
21

1G0
(D)(z;0,0) unaltered. We may then define the renorm

ized coupling parameterlD
R as

1

lD
R

5 lim
L→`

F 1

lD
2I D~L,z,a!G , ~37!

where it is understood thatlD depends onL in such a way
that the limit exists. We then finally arrive at a meaningf
expression for the Green’s functionG(D)(z;x,x8) for D
52,3, in which the denominator of Eq.~27! is replaced by
the finite expression

gD~z,a,lD
R![

1

lD
R

2CDE
0

`

dyy(D23)/2

3F Ai ~y2z!

Ai 8~y2z!
1~y1a!21/2G . ~38!

It is possible to show~see Appendix B! that, for any finite
value oflD

R , gD( z, a, lD
R) has a single zeroz0 in the inter-

val 2`,z0,2a18 . In physical terms, this means the exi
tence of a bound state with energyE05Eg z0. The rest of the
energy spectrum forms a continuum starting atE52Ega18 .
The presence of this gap in the energy spectrum is enoug
guarantee the occurrence of BEC. The proof of this fac
similar to that of Theorem 1, the only difference being th
what saturates in the limitm→E0 is notNex, butnex

(D) . Some
examples of this phenomenon are discussed in detail in
@4#, where it is also shown how to obtain the critical quan
ties. Working in close analogy, one can obtain an estimat
the critical quantities in the present situation, taking Eq.~22!
suitably into account. If the energy gap created by the im
rity is much greater than the energy splitting due to the gra
tational field, i.e., D[2Ega182E0@2Ega281Ega18 , one
can obtain a good approximation to the critical temperat
Tc by solving the equation

lTc

D21n(D)54p~klTc
!23g(D12)/2@exp~2D/kBTc!#.

~39!

It is worthwhile to stress that now, because the bound s
energy E0 is strictly below the continuum threshol
(2Ega18), we can safely use Eq.~22! to estimate the critical
quantities inD52,3.

We close this section with a somewhat technical rema
Aside from being positive, the parametera in Eq. ~38! is
arbitrary, and has to be fixed by some renormalization p
scription. One possibility is the so called Bergmann-Manu
Tarrach~BMT! @20# renormalization prescription, in which
the bound state energyE0 labels the one-parameter family o

q.
6-5
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self-adjoint extensions of the symmetric Hamiltoni
H0

(D)(g). Then Eq.~38! becomes equivalent to the pair o
equations

gD~z,z0!uBMT5CDE
0

`

dyy(D23)/2

3F Ai ~y2z0!

Ai 8~y2z0!
2

Ai ~y2z!

Ai 8~y2z!
G , ~40!

1

lD
R~a!

5CDE
0

`

dyy(D23)/2

3F Ai ~y2z0!

Ai 8~y2z0!
1~y1a!21/2G , ~41!

where z05E0 /Eg,2a18 . The parametera.0 is thus the
subtraction point at which the ‘‘running’’ coupling paramet
lD

R is defined.

IV. CONCLUSIONS

In this paper we have explicitly solved the quantum d
namics and studied the thermodynamic equilibrium of
ideal D-dimensional boson gas in the presence of a unifo
gravitational field and a pointlike impurity at the bottom
the vessel containing the gas. For convenience, in the pre
analysis we have imposed the Neumann boundary cond
at the bottom of the container, but our results might be g
eralized to Dirichlet or Robin boundary conditions witho
any substantial modification in the physical behavior. In
impurity-free case it has been shown that Bose-Einstein c
densation at finite temperature is possible only in the o
dimensional case and an estimate of the critical tempera
in this case has been obtained. It has also been elucid
why the conventional wisdom that BEC~with a phase sepa
ration! might occur in the three-dimensional case does a
ally fail: the reason eventually lies in the illegitimate use o
continuous approximation to the density of states in the co
putation of the average number of particles in the exci
states.

On the other hand, it has been proved that the presenc
a pointlike impurity is enough to allow BEC atT5” 0 also in
two and three dimensions. The reason is that the impu
creates a bound state in the single-particle spectrum, w
particles can now accumulate. It should also be emphas
that ad potential in the presence of a uniform field is alwa
attractive in two and three dimensions, irrespective of
sign of the renormalized coupling parameter.

The main interest in the study of the present model is
its exact solvability. Nonetheless, it is evident that the k
physical features here exhibited will persist even if mo
realistic impurity potentials are used. The situation is le
clear if one considers an interacting boson gas~for the gen-
eral definition of BEC, applicable to this case, see Ref.@21#!.
It is reasonable to assume that our results still hold if
mean field interaction between the particles in the gas
smaller than~i! the energy splitting due to the gravitation
05360
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field, and~ii ! the energy gap created by the impurity~if the
latter is present!. This condition, however, is likely to be
violated as more and more particles accumulate in the low
energy level, until the interaction between the particles c
not be neglected anymore. What happens then awaits fur
investigation.
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APPENDIX A

The Green’s functionG0
(D)(z;x,x8) satisfies the partia

differential equation

@H0
(D)~g!2z#G0

(D)~z;x,x8!5d (D)~x2x8!. ~A1!

We can reduce Eq.~A1! to an ordinary differential equation
by Fourier transforming in the transverse coordinates:

S 2
\2

2m

]2

]x2
1

k2

2m
1mgx2zD G~z,k;x,x8!

5d~x2x8!; ~A2!

the Green’s functionG0
(D) will then be given by3

G0
(D)~z;x,x8!5E dD21k

~2p\!D21
expH i

\
k•~r2r 8!J

3G~z,k;x,x8!. ~A3!

Upon the change of variable

j5kx1Eg
21S k2

2m
2zD , ~A4!

Equation~A2! becomes

S ]2

]j2
2j D G~j,j8!52

k

Eg
d~j2j8!. ~A5!

When j5” j8, Eq. ~A5! reduces to the Airy differentia
equation. Its solution must satisfy the Neumann bound
condition atx50, i.e.,]jG(j,j8)ux5050, and it must vanish
at infinity, limj→` G(j,j8)50. Thus,

G~j,j8!5C1u~j!u~j82j!1C2v~j!u~j2j8!, ~A6!

whereu(x) is the Heaviside step function and

u~j![Bi8~j0!Ai ~j!2Ai 8~j0!Bi~j!, v~j![Ai ~j!,
~A7!

with j0[j(x50). To fix the constantsC1 andC2, one im-
poses continuity ofG(j,j8) at j5j8,

G~j810,j8!5G~j820,j8!, ~A8!

and a jump in]jG(j,j8) at the same point,

3In the one-dimensional case we have insteadG0
(1)(z;x,x8)

5G(z,k50;x,x8).
6-6
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]jG~j810,j8!2]jG~j820,j8!52
k

Eg
, ~A9!

obtained by integrating Eq.~A5! from j82e to j81e and
letting e↓0. Applying conditions~A8! and ~A9! to the solu-
tion ~A6!, and using the fact that the Wronskian ofu(j) and
v(j) is given by

W$u~j!,v~j!%52Ai 8~j0!W$Bi~j!,Ai~j!%

5
1

p
Ai 8~j0!, ~A10!

we finally obtain

G~j,j8!52
pku~j,!v~j.!

Eg Ai 8~j0!
, ~A11!

wherej, (j.)5min (max)$j,j8%. Substituting Eq.~A11!
into Eq. ~A3! gives us the desired integral representation
Eq. ~28! for G0

(D)(z;x,x8).

APPENDIX B

Here we show thatgD( z, a, lD
R) has one~and only one!

zero in the interval2`,z,2a18 . Indeed, forz large and
negative we may use the first line of Eq.~36! to evaluate the
integral in Eq.~38!, obtaining

g2~z,a,l2
R! ;

z→2` 1

l2
R

2C2 lnS 2
z
a D , ~B1!
,

.

05360
f

g3~z,a,l3
R! ;

z→2` 1

l3
R

22C3~A2z2Aa!. ~B2!

In both cases, limz→2`gD(z,a,lD
R)52`. On the other

hand, the integral in Eq.~38! becomes divergent at the origi
for D<3 if z↑2a18 , as

Ai ~y1a18!

Ai 8~y1a18!
;

y→0 Ai ~a18!

Ai 9~a18! y
5

1

a18y
. ~B3!

~The last equality is a consequence of the Airy different
equation.! Sincea18,0, it follows that limz↑2a

18
gD(z,a,lD

R)

51` (D52,3). By continuity, we may conclude tha
gD(z,a,lD

R) vanishes at least once in the interval2`,z
,2a18 . To show that it vanishes only once, it suffices
prove thatgD(z,a,lD

R) is a monotonically increasing func
tion of z in that interval. This follows from the identity

]

]z
gD~z,a,lD

R!5Eg

]

]z F 1

lD
1G0

(D)~z;0,0!G
5Eg^0u@H0

(D)~g!2z#22u0&. ~B4!

It shows that]zgD(z,a,lD
R).0 if z is real and does no

belong to the spectrum ofH0
(D)(g). This occurs, as we hav

seen in Sec. II, forz,2Ega18 , or z,2a18 .
l
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