PHYSICAL REVIEW A, VOLUME 65, 053606
Bose-Einstein condensation in the presence of a uniform field and a pointlike impurity
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The behavior of an ideaD-dimensional boson gas in the presence of a uniform gravitational field is
analyzed. It is explicitly shown that, contrary to a long-standing belief, the three-dimensional gas does not
undergo Bose-Einstein condensation at finite temperature. On the other hand, Bose-Einstein condensation
occurs afT#0 for D=1,2,3 if there is a pointlike impurity at the bottom of the vessel containing the gas.
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[. INTRODUCTION bounded from below, so that the system may attain a state of
thermodynamic equilibrium, we shall enclose the gas in a
The response of quantum systems to the influence of exsontainer with impenetrable walls. Concerning the math-
ternal background fields is of utmost importance in a wideematical description of a pointlike impurity, it should be re-
number of physical applications. In addition, the role of dis-marked that a5 potential is generally ill defined wheb
order, i.e., the presence of impurities in condensed matter 1, and some renormalization procedure is mandatory. Ac-
systems, is often crucial in the occurrence of remarkabléually, the rigorous mathematical procedure to deal with
physical effects. It is the aim of the present paper to investipointlike interactions involves the analysis of the self-adjoint
gate the behavior of an ideal boson gas in the presence of&xtensions of the symmetric Hamiltonian opergtbt]. In
uniform (i.e., constant and homogenepugavitational field the present work, however, we prefer to follow a more infor-
and of extremely localizetactually pointliké impurities af- ~ mal approach12], which is closer to physical intuition, but
fecting the quantum dynamics of the bosonic particles. reaches the same final result as the rigorous, though more
It has been known for a long timgl,2] that an ideal involved, general method to find all the self-adjoint exten-
three-dimensional3D) boson gas in free space undergoes asions of a given symmetric operafdr3]. To be specific, we
phase transition calleBose-Einstein condensati¢BEC), in formally treat the contact interaction asDadimensionals
which a finite fraction of its constituent molecules condensegotential, then proceed to the renormalization procedure in
in the single-particle ground state. Such a condensation difPhysical terms, and finally obtain the so-called Krein formula
fers from the usual condensation of a vapor into a liquid infor the Green’s function, from which it is possible to extract
that there is no phase separation. For this reason, BEC t§e energy spectrum of the single-particle Hamiltonian.
commonly described as a phase transition in momentum In Sec. Il we prove that an ideal boson gas in the presence
Space_the partic|e5 condense into tpe: O> state, which of a uniform gravitational field does not undergo BEC at
has a uniform spatial distribution. It is also well knoy®] finite temperature, except in the one-dimensional case. This
that such a phase transition is no longer possible, for freémplies, in particular, that in the three-dimensional case no
bosons, in one and two dimensions—although in both casaghase separation occurs in the thermodynamic limit, at vari-
it does occur in the presence of a pointlike attractive potenance with the above quoted conventional wisdom. We also
tial [3,4]. A long-standing popular belidfl,5-17 is that if ~ provide a rather generaufficientcondition for the occur-
the particles of a 3D ideal boson gas were placed ora-  rence of BEC in a trapped ideal gas, which generalizes some
form) gravitational field, then BEC would still occur, but in results obtained by other authddst—18 for power-law po-
the condensation region there would be a spatial separatidgntials. In Sec. Ill we show that the onset of BEC in a
of the two phases, just as in a gas-liquid condensation. uniform gravitational field is made possible l=2,3 if a
In the present paper we study an exactly solvable quarpointlike impurity (i.e., aé potentia) is placed at the bottom
tum mechanical model of an ideal boson gasDir1,2,3  Of the vessel containing the gas. The reason is that the pres-
dimensions in the presence of a uniform gravitational fieldence of the impurity entails the existence of a bound state,
and of a pointlike impurity formally described by a Whose energy gap with respect to the continuous spectrum is
S-function potential. In order to make the Hamiltonian what is needed for the ideal gas to undergo BEC. In Sec. IV
we draw our conclusions, and some technical details are pre-
sented in two appendixes.
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the quantum mechanical behavior of an ideal boson gas in \/\KAi(KX+ a))

the presence of a uniform gravitational field. The existence Un(X)=\ —————, 9

of a (single-particleé ground state is guaranteed by the pres- a, Ai(ap)

ence of an impenetrable wall at the bottom of the vessel , )

containing the gas. The single-particle Hamiltonian is given En=—Eqa,, nel\. (10

by Let us first analyze in detail the Bose-Einstein condensa-
5 p? tion for such a one-dimensional system. In the grand canoni-

HP(g)= om Tmox (1) cal ensemble the average number of partitlest tempera-

ture T and chemical potentigk reads

in which we have set
1

X=(X1, ... Xp)=(r,X), P=(P1,....pp)=(K,p). (2 N:n; exd B(E,—u)]—1"

(11)

The gas is supposed to be enclosed in a rectangular box Where, as usuaj3=1/kgT. The criterion for the occurrence

S'deSL.l’LZ’ ko, with its .bottom fixed at the.p"?‘”? of BEC is that the average population of the excited states
=0. Since we are interested in the thermodynamic limit, we

n. without lack of generality. im riodic boundar remains finite as the chemical potential approaches the
can, without lack-of generality, Impose periodic bou ayground state energy from below, i.e.,
conditions in thexq, ... Xp_4 directions and the Neumann
boundary conditiohat x=0 andx=Lp, i.e.,

- 1
[im N, = lim (12
P(Xq, o XL, Xp) = (X, L X, - XD), WIEy & MEanz exd B(Ep—u)]—1
_ ()
j=1,...Db-1, Notice that the ground state population has been split off,
that being the reason why the above sum begims=a2. The
Axtp(r,x=0)=dyih(r,x=Lp)=0, (4)  sequence of eigenvalug$0) is such that the above men-
o _ tioned BEC criterion is satisfied. Consequently, Bose-
and then take the limits;—o, j=1,...D. After these Einstein condensation is expected to occur, although, in or-
Illets are taken, the eigenfunctions and eigenvalues ofjer to specify the critical temperature, it would be necessary
H{(g) read to sum up the series, which, to our knowledge, cannot be
done analytically. Nonetheless, one can estimate the critical
_expl(i/h) k-r} x Ai(kx+a)) 5 quantities using the asymptotic behavior Bf for large n
=0 e oe N Tl Aiap) [19):
2 En=—Ega,~E [3m(4n—3)/8]%% n>1. (13
Enx=5—-—Ega,, nel, keRP™H (6)
2m This corresponds to a density of states of the form
where Ai(x) is the Airy function[19], a; are the zeros of dn 1
Ai’(x), and the parametess and E, are defined as p(B)~ g5~ ;E§3’2E1’2, E>E,. (14)
2ng 1/3 mg ﬁsz ) o3
Kk=|—=]| . = = om (7) SinceEyxg“”, asg— 0 the energy spectrum becomes denser
h K m and denser and the ground state energy approaches zero.

All the zeros of Al (x) are negative; hence the ener IeveIsThus’ in a weak gravitational field it is reasonable to extrapo-
9 ' 9y late in the continuum the density of statgs) down to E

En, are positive. =0. We can then approximate the series in E®) by an

If D>1 the spectrum is pur_ely continuous gnd the Corr.e'integral, and eventually obtain
sponding improper eigenfunctions are normalized according

to \ J<30dE E;3/2E1/2
(U ger[¥n10) = 8 8P D (k—K). (€S) * Jo m exdB(E-p)]-1
On the other hand, in the one-dimensional case the spectrum =4m(kh1) " 3ga(€H), (15
is purely discrete, the normalized eigenfunctions and eigen-
values being, respectively, where Ay=h/{27mmkgT is the thermal wavelength and

gs(X)==,_,n k" is the Bose-Einstein functiofi]. To ob-
tain the critical temperature, we take the limit-0 in Eq.
The reason why we impose Neumann boundary condition, in{15) and equateN,, to the total number of particles in the
stead of the seemingly more natural Dirichlet one, will be explainedgas; solving forT then yields the approximate critical tem-
in Sec. Ill. perature
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(16)  uniform gravitational field. We shall now consider the two-
and three-dimensional cases. Due to the translation invari-
ance along the transverse direct®nthe proper quantity to

be discussed is the number of particles per unit ar&a

E 23 Let us return to the problem of an ideal boson gas in a
Te~ 2 (4m)Y3 )
Kg O32(1)

Below T, the fraction of particles occupying the ground state

©gvenby =lim_ _.N/L;---Lp_1. The density of particles in the ex-
N 4 Nex_l T\32 . cited states is then given by
N N Te & (D) i dP 1k
Nn., = _
= =) (2mn)Pt

The reasoning that led us to the conclusion that a one-
dimensional ideal boson gas in a uniform gravitational field
displays BEC can be easily generalized to higher dimensions X
and other types of potential. This is the content of the fol-
lowing theorem. .

Theorem 1 Suppose the single-particle energy spectrum =\7
of an ideal boson gas satisfies the following conditid(s:
there is a gap between the fundamental and the first excited n<—Egqaj. (20)
energy levels, i.e.E;—Ey=A>0; (ii) the single-particle _ _ _ _ _
partition function is finite, i.e.,Z=3_.d,exp(—AE,) The integral in Eq(20) is well defined for arbitrarnyD>1
<o, d, being the finite degeneracy of théh eigenvalue of due to the conditionu<—Ega; . Now, since lin_,;gs(x)
the single-particle Hamiltonian. Then this gas displays Bose=* if s<1, the first term of the series on the right-hand side

9o 1yd expB(Ega + )],

2ol -oi=al 1]
>

ex
D
]

1

Einstein condensation at finite temperature. (RHY) of Eq. (20) diverges foD <3 asu— —Eg4a} . There-
Proof. If w<E,, the number of particles in the excited fore, a two- or three-dimensional ideal boson gas in a uni-
states is bounded from above by form gravitational fielddoes notdisplay Bose-Einstein con-
densation af #0.
“dyexd —B(E,— )] Some remarks are in order here.
Nee= >, — L (a) At first sight, Eq.(20) seems to imply absence of BEC

i=1 1=exd = B(Ey—p)] in D=1 too. It should be noted, however, that in one dimen-

sion there is no integration over transverse momenta. Hence,

< — ex_p(,[:’,u) — E d,exp—BE,). (18 in order to remove the contribution of the ground state from
1-exd - B(E1— )] i=1 the sum over states in ECRO), one has to begin it gt=2.
Thenn{) (=N, has a finite limit asu— — E4a; .
Therefore (b) It is easy to see that the absence of BEC in a two- or
three-dimensional ideal boson gas in a uniform gravitational
exp(BEo) field in thex direction is due to the quantization of the mo-

lIm Ng,=

LBy T—exp — ga) £~ doexH(—BEg)] <=, (19

tion in that direction. Thus, any potentidithat depends only
on x, and such that the one-dimensional Hamiltonian

since, by hypothesi&, andd, are finite andA > 0. | p2
We notice that the above statement may be generalized to Hy==—+V(X) (21
some cases in which part of the spectrum is continuous or 2m

there are infinitely degenerate energy levels. This is donggas a discrete spectrum, will do the job of hindering BEC in
under the suitable introduction of the density of particles inp_» 3

the excited states and of the single-particle partition function (c)’There are claims in the literatuf&,5—1( that a three-
per unit volume. Some explicit examples of this generalizagimensional ideal boson gas in a uniform field may undergo
tion are discussed in Reff4] and in Sec. Il of the present Bec 41740, This is an artifact of approximating the sum in

paper. Eq. (20) by an integra[remember that Eq20) holds true for

There are many papers that discuss the problem of Bos®>1]. Indeed, using the density of states given by @d)
Einstein condensation of an ideal gas confined in a powerse optain

law potential[14—18, mainly using some kind of semiclas-

sical approximation. In particular, they predict that a one- -

dimensional gas displays BEC if and only if the power-law Z 9o-1)d expB(Eqga + )]
potential islessconfining than the parabolic one, i.&/(x) )=

«x”, ~ n<2. Theorem 1 shows that this condition is too 1 o ? e NBE-w)
strong: BEC occurs for any positivg. It should be clear that ~ ;EQ’S’ZL dEEY2Y, ——

. . . . — D-1)/2
the reason for such a discrepancy is not the semiclassical i=1
approximationper se but the substitution of the discrete w ng

. . . 1 e M
spectrum by a smooth density of states, which may miss = —(BE )‘3’21“(3/2)2
some relevant features of the energy spectrum. w9 n=1 n(@+2)72
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=47 (kh7) 3G+ 2)A €7H). (22 GP(z;x,x") =GP (z;x,x")

Inserting this result into E(20), one would be led to the G (z;x,0 GP)(z,0,x")
incorrect conclusion that BEC occurs at finite temperature in - D) -

D=2 andD=3 in the presence of a uniform field, because Ao+ Go(2:0,0)
|imM_,og(D+2)/2(eﬂ“)<oo if D>0.

(d) It should be clear by now that none of our conclusionsAs we shall see belongD)(z;O, 0) is formally divergent for
so far depends crucially on the use of the Neumann boundafy =2, but one can still give a well defined meaning to Eq.
condition. They would remain correct, at least qualitatively,(27) by renormalizing the coupling parametep. The re-
had we used Dirichlet or Robin boundary conditions insteadsulting expression, which then makes sense als®fei2,3,

is known as Krein's formulg11] and encodes the one-

(27)

I1l. D-DIMENSIONAL BOSON GAS INTERACTING WITH parameter family of self-adjoint extensions of the symmetric
A POINTLIKE IMPURITY AT THE BOTTOM Hamiltonian operatoH gD)(g). This precisely corresponds to
OF THE CONTAINER the mathematically rigorous description of thepotential.

To complete the construction @8(®) we sitill have to

In_th|s sect!on we f|r_1ally come to the mo_st |_ntere§t|ngobtain the Green’s function in the absence of the impurity.
physical case in which, in addition to the gravitational f'eld’This is done in Appendix A, with the result

there is a pointlike impurity at the bottom of the vessel con-
taining the gas. As we shall show here, such an impurity is

enough to restore BEC in the three-dimensional case—and to - dP- 1k i
allow its existence in the two-dimensional case, in which it is GgD)(z;x,x’)= - —exp{—k- (r —r’)]
absent with or without the gravitational field. The single- EgJ (2mh)P71 h
particle Hamiltonian now takes the form
u[&(x<) Ju[ £(x~)]
02 X — , (28
H®)(g,\p)= ﬁ+mgx+)\D5(D)(x) AI'[£(0)]
=HP)(g)+XpP(x). (23)  where the functionsi(§) andv(¢) are defined in Eq(A7),

&(x) is defined in EQ.(A4), and X. (X=)=min (max)
Our main task will be to show that thé potential creates a X{x,X'}. Settingx=x"=0 in Eq. (28) we formally obtain
bound state in the two- and three-dimensional cases, thus
paving the way for the occurrence of Bose-Einstein conden-

sation, at variance with the impurity-free situation discussed D), . K d® 1tk
in the previous section. Go (2,0,00=— E_g (2mh)P~1
Our basic tool to tackle this problem is the Green’s func-
tion " Al (K?12mEg) —(2/Ey)]
GO (z;x,x")=(X[HP)(g,Ap)—2] Y x"), zeC, Ai'[(K?/2mEy) — (Z/Ey)]
(24 .
_ ” D—3)/2 Al(y—{)
from which it is possible to extract the energy spectrum. A =—Co 0 dyy! Ai’(y—g)’ (29
formal expression fo66(°)(z;x,x’) can be obtained by solv-
ing the Lippmann-Schwinger integral equation,
where
6Ozxx) =GP zxx) - [ Py zxyVey)
B KD(47T)(1_D)/2 B z
xG®)(zy,x"), (25) Co=Ero-va T (30)

where G(®) and G(®) are the Green's functions associated _ _ . .
with H(()D) and H®) = H(OD)+V(X)' respectively. FON/(x) It follows from the asymptotic behavior of the Airy function

=\p6P(x) the integral in Eq.(25) can be done trivially, Ai(X) for largex [19],

resulting in

— 0

GON(z;x,x') =GP (z;x,x") Ai(X) ~

exp( - §x3’2)[1+0(x*3’2)], (31

1/4
—ApGP(z;x,0) GP(z;0,x). (26) 2\mx \ '

If we now setx=0, we obtain an algebraic equation for that the integral in Eq(29) diverges in the uv region fdD
G(P)(z;0,x"). Solving that equation and inserting the result=2, as anticipated(The integral is finite in the ir foD
into Eq. (26), we end up with >1)
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Before we show how to make sense of EQ7) for D hence, the integrand @gD’(A,z;O,O)HD(A,z, a) behaves
=2,3, let us discuss the one-dimensional case, which dodike y(® =92 for largey. This allows us to remove the uv
not need renormalization. In this case, the energy spectrumegulator (i.e., to take the limitA—o) for D<4. At the

can be obtained by solviAg same time, since we have addegito G{®, we must sub-
1 tract it from Ag* in order to keep the combination,®
= +G6{M (20,0 =0, 32 +GP(z,0,0) unaltered. We may then define the renormal-
M ized coupling parameters as
or, more explicitly(see Appendix A
1 1
1 x Ai(—z2/E —=Ilm|——1p(A,z,a)|, (37
- _ _Mzo_ (33 Ap  A—=lAD

Mo By Ai'(—zZ/Ey)

This equation is equivalent to the imposition of the RobinWhere Itis gnde_rstood thaip dgpends O.m in such a way
that the limit exists. We then finally arrive at a meaningful

bound diti t the origin, i.e’ (0)+c(0)=0. It
oundary condition at the origin, i.&'(0)+ ¢y/(0) ?xpression for the Green’s functio&(®)(z;x,x’) for D

interpolates between the Neumann boundary condition, for’ ; . . .
N;—0, and the Dirichlet one, foik;—«. Any of these _2’3' n which the denominator of Eq27) is replaced by
gwe finite expression

boundary conditions prevents the flow of particles across th
origin, so any of them can be used to represent an impen-
etrable wall at the bottom of the container. Nevertheless, it is R o D-3)2
more convenient to impose the Neumann boundary condition gp({,a,Ap)= N CDL dyyl
in the impurity-free case, because it is then possible to model D
an impurity at the bottom of the container bydsgpotential.
This would not be possible had we imposed the Dirichlet X
boundary condition instead. In any case, the energy spectrum
obtained by solving Eq(33) will be purely discrete and
bounded from below. As a consequence, we can say that in It is possible to showsee Appendix Bthat, for any finite
the one-dimensional case the Bose-Einstein condensation agalue of A}, go( £, @, \J) has a single zerdy in the inter-
tually occurs at the lowest discrete energy level, although th@al — o< 7 < —ayj . In physical terms, this means the exis-
ground state energy itself as well as the critical quantities argance of a bound state with energy= Eq {o- The rest of the
shifted with respect to the previously discussed impurity-fre€snergy spectrum forms a continuum startingat — Ega).
case. _ _ _ The presence of this gap in the energy spectrum is enough to
Let us now discuss the two- and three-dimensional casegyarantee the occurrence of BEC. The proof of this fact is
In order to make sense of the denominator in EXY), we  gimjlar to that of Theorem 1, the only difference being that
first have to regulariz&((z;0,0). We shall do this by in-  \yhat saturates in the limji— Eq is notN,,, butn® . Some
troducing a uv cutoff in Eq(29), namely, examples of this phenomenon are discussed in detail in Ref.
G(P)(2:0,00—GL)(A,Z;0,0) [4], where it is also shown how to obtain the critical quanti-
ties. Working in close analogy, one can obtain an estimate of

Ai(y—20)
Ai'(y—9)

+(y+a)1’2]. (39

A Ai(y—2?) the critical quantities in the present situation, taking &%)
=— CDJ dyy(P=32_—=_>~ ~ (34) suitably into account. If the energy gap created by the impu-
0 Ai'(y=90) rity is much greater than the energy splitting due to the gravi-

tational field, i.e., A=—Eqa;—Eo>—Egas+Ega;, one
can obtain a good approximation to the critical temperature
T. by solving the equation

We now add toGgD)(A,z;O,O) the integral

A
Ip(A,z,0)= —Cof dyy® %y +a) 2  a>0. (35
’ N2~ In®) =41k 1) 3G (o 2y d €Xp(— AlkgTo)].

It follows from Eq. (31) that (39
Ai(y—¢) ¥~ 12y o _2 It is worthwhile to stress that now, because the bound state
Ai'(y—20) y=9 [(y=0""] energy Ey is strictly below the continuum threshold

(—Ega;), we can safely use E@22) to estimate the critical
~—y Y2102y %?); (36)  quantities inD=2,3.

We close this section with a somewhat technical remark.
Aside from being positive, the parameterin Eq. (38) is
2One can easily check that the residue @§(z;x,x') at z= arbitrary, and has to be fixed by some renormalization pre-
—Ega,, cancels the residue of the second term on the RHS of Egscription. One possibility is the so called Bergmann-Manuel-
(27) at the same pole. Therefore, all the poles3t)(z;x,x’') are  Tarrach(BMT) [20] renormalization prescription, in which
given by the solutions to Eq32). the bound state enerdyy labels the one-parameter family of
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self-adjoint extensions of the symmetric Hamiltonianfield, and(ii) the energy gap created by the impuritithe

HE,D)(g). Then Eq.(38) becomes equivalent to the pair of latter is present This condition, however, is likely to be

equations violated as more and more particles accumulate in the lowest
energy level, until the interaction between the particles can-

* _ not be neglected anymore. What happens then awaits further
gD(§|§O)|BMT:CDf0 dyy®=3"2 investigati%n. Y PP
Ai(y—¢o)  Ai(y—0) 40 ACKNOWLEDGMENTS
Ai'(y=4o) AI'(y-0] R.M.C. acknowledges the kind hospitality of Universiia
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_ I D—3)/2
\E(a) CDL dyy APPENDIX A
Aily—Zo) The Green’s functionG{®(z;x,x’) satisfies the partial
% _,y—°+(y+ @) V2| (41  differential equation
AI"(y= o) [HP(9)-ZIGP (zix,x) =8P (x=x"). (A1)

where {o=Eo/Eq<—a;. The Paramet?n>0 is thus the  \we can reduce EqA1) to an ordinary differential equation
subtraction point at which the “running” coupling parameter py Fourier transforming in the transverse coordinates:

AR is defined. ( V2 o2 ) g ) )g( o
— o— —+ =—+mgx—2z|G(z,k;x,x
IV. CONCLUSIONS 2m gx2  2m
In this paper we have explicitly solved the quantum dy- =3(x=x"); (A2)

namics and studied the thermodynamic equilibrium of an ’ (D) ]
ideal D-dimensional boson gas in the presence of a unifornihe Green's functiorGy™ will then be given by
gravitational field and a pointlike impurity at the bottom of D-1) i
the vessel containing the gas. For convenience, in the present G (z;x,x") = f ﬁexp[gk%f—r')]
analysis we have imposed the Neumann boundary condition (2mh)
at the bottom of the container, but our results might be gen- X G(z,k:x,X"). (A3)
eralized to Dirichlet or Robin boundary conditions without
any substantial modification in the physical behavior. In theUpon the change of variable
impurity-free case it has been shown that Bose-Einstein con- K2
densation at finite temperature is possible only in the one- &= KkX+ E;(Z——z), (A4)
dimensional case and an estimate of the critical temperature m
in this case has been obtained. It has also been eIUCidat%uation(AZ) becomes
why the conventional wisdom that BE@ith a phase sepa-
ration) might occur in the three-dimensional case does actu-
ally fail: the reason eventually lies in the illegitimate use of a
continuous approximation to the density of states in the com-
putation of the average number of particles in the excited When £+ &', Eq. (A5) reduces to the Airy differential
states. equation. Its solution must satisfy the Neumann boundary
On the other hand, it has been proved that the presence obndition atx=0, i.e.,d;G(&,£")|x—o=0, and it must vanish
a pointlike impurity is enough to allow BEC at#0 also in  at infinity, lim;_.. G(¢£,£')=0. Thus,
two and three dimensions. The reason is that the impurity G(&E)=Cqu(&) (& — &)+ Cov(E)O(E—E'), (AB)
creates a bound state in the single-particle spectrum, where
particles can now accumulate. It should also be emphasizegihere §(x) is the Heaviside step function and
that a4 potential in the presence of a uniform field is always  (£)=Bi’(&,)Ai(&)—Ai'(&)Bi(&), v(&)=Ai(§),
attractive in two and three dimensions, irrespective of the (A7)
sign of the renormalized coupling parameter.
The main interest in the study of the present model is inwith £&,=¢&(x=0). To fix the constant€; andC,, one im-
its exact solvability. Nonetheless, it is evident that the keyposes continuity ofi(§,&') até=¢’,
physical features here exhibited will persist even if more G(E+0,£)=G(¢ -0, (A8)
realistic impurity potentials are used. The situation is less
clear if one considers an interacting boson ¢fas the gen-  and a jump ind.G(¢,£") at the same point,
eral definition of BEC, applicable to this case, see R&f]).
It is reasonable to assume that our results still hold if the——
mean field interaction between the particles in the gas is®in the one-dimensional case we have inste@l(zx,x’)
smaller than(i) the energy splitting due to the gravitational =g(z,k=0;x,x").

2

T )g N=— L se-e) (A5)
ko= e
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K — —0o0
agg(f’+0.§’)—859(§’—0,§’)=—E—g. (A9) g3(§,a,)\§)§ ~ %—mgw——g— Ja). (B2)
3
obtained by integrating EqA5) from ¢ —€ to ¢’ +€ and
letting €| 0. Applying conditions(A8) and(A9) to the solu- |n both cases, |irZL7ng(§,a,)\g): —o, On the other
tion (A6), and using the fact that the Wronskianufff) and  hand, the integral in Eq38) becomes divergent at the origin
v(§) is given by for D<3 if {1 —a], as
W{u(§),v(€)}=—Ai"(&)WIBI(£),Ai(&)}
Ai(y+aj) y—0 Ai(ay) 1

=£Ai’(§ ) (A10) » ; TNy ot (B3)
T on Ai'(y+ag) Ai"(ap))y ayy
we finally obtain (The last equality is a consequence of the Airy differential
G(E.£")= mrU(E<)v(é-) (AL1) equation). Sincea; <0, it follows that Iimm,aigD(g,a,)\g)
’ EqAi’ (&) ’ =+ (D=2,3). By continuity, we may conclude that

. ’ o do(Z,@,\R) vanishes at least once in the intervabo</
where£_ (&-)=min (max)¢,é'}. Substituting EQ(ALL) < _a; To show that it vanishes only once, it suffices to
into Eqg. (A3) gives us the desired integral representation Ofprove thatgp(Z,a,\R) is a monotonically increasing func-

(D) (- ’ R . . . . N
Eq. (28) for Gy ’(z;x,x"). tion of ¢ in that interval. This follows from the identity

APPENDIX B

J Jl1
—p({,a\5)=Eg—> —+G(D)(z;0,0)}
Here we show thagiy( £, a, A}) has one(and only ong e o7 Taz[np TP

zero in the |ntervaFm<§§—gl. Indeed, for{ large and =Eg<0|[HgD)(g)—z]’2|O). (B4)
negative we may use the first line of E86) to evaluate the

integral in Eq.(38), obtaining

It shows thato'?ggD(g,a,)\g)>O if zis real and does not

gz(z,a,xé‘)ﬁ ) —-C In( — é) (B1)  belong to the spectrum ¢1$”)(g). This occurs, as we have
2 seen in Sec. Il, for<—Ega;, or {<—a;.
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