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Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate
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We show that there exists bistability in coherent photoassociation of a Bose-Einstein condensate and inves-
tigate the corresponding quantum fluctuations. The simple analytical expressions obtained demonstrate clearly
how to sweep adiabatically the frequency of the driving laser to convert a condensate of atoms into a conden-
sate of molecules in an optimum and deterministic way.
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Over the last few years, there has been considerable effort S K

devoted to the photoassociation of a Bose-Einstein conden- H=— EaTa— E(aabTﬂL ba'a'), (1)
sate which occurs when an atom pair interacts with a photon,
thereby making a transition from the two-atom continuum to
a bound state of the molecul@é—5,7—11. Quantizing the Wherea andb are annihilation operators for atofwith a
molecular dissociation continuum allows one to describezero momentumand molecule(with a momentuma), re-
such free-bound transitions using standard few-level quarspectively,« is the photoassociatiofand photodissociation
tum optics[1-5,7—9. One of the most important findings is coupling parameter and without any loss of generality, we
the observatiorf1-5] that it is the Bose enhancement that have chosern to be real and non-negative, the real param-
ultimately facilitates coherent transients such as Rabi flopeter 6= §,+ q2/2m is the detuning corrected for the photon
ping, adiabatic following, and stimulated Raman adiabatiGecoil energy of the molecule, and the detunifig-0 corre-
passage in photoassociation of a condensate. Based on a tWsonds to tuning of the laser by the enetuf, above the
mode model for coherent photoassociation of a Bosephotassociation threshold. Obviously, there exists a con-
Einstein condensate, Javanainen and Maf&jehave found served quantitg’a+2b'b=N for such a system. Herd\ is
by numerical calculations that for a large positive detuningy,q o141 atom number for a condensate of all atoms or twice
g}grggovljﬂﬂes;g:eaﬁ;:gg Elég;g\c/)geder,\rt]gr?i?wlglsittigetr?éaia\:gt\?vi?rln he total molecule number for a condensate of all molecules.

It is pointed out that in the two-mode model considered
all molecules. Therefore they have put forward a photoassqg- tomsmolecules d ibed b i taf
ciation scheme that starting with all atoms and a large posi- eTre, atomsimolecuies described by creation operata

b") and annihilation operata (b) are assumed to be in the

tive detuning, one sweeps the detuning slowly from a Iargé . ) ;
ositive detuning to a large negative detuning so that th&2™€ atomi¢moleculay Bose-Einstein condensatgd sjcatg S0
P g 9 g 9 hata' (b") creates an atorfmoleculé whose spatial distri-

system will move adiabatically from the state with all atoms,_ "% d ibed b : functb

to the state with all molecules. Such a scheme has subs \-‘fft'on IS Hescrl he Y @ macroscopic ]\C/vave'— unc m)d
qguently been generalized to a Raman-type three-mode situg- m(r)]. Here the macroscopic wave- unctios,(r) an

tion [4—6]. m(r) for the mean-field condensates can be modeled by a

In this paper, we shall show that there exists in fact bistaSet of two coupled Gross.-Pitaev.sk.ii nonlinea}r equatiqns
bility in coherent photoassociation of a Bose-Einstein con£6’14] which take the spatial variations and inter-atomic

densate based on the same two-mode model proposed B-moleculaif interactions into account. The spatial variations

Javanainen and Macki&], and investigate the correspond- a}qd_particle interactions can be similarly discussed by nu-
erically solving a set of two coupled Gross-Pitaevskii non-

ing quantum fluctuations of atom, molecule numbers, and . hich identical in f he f
certain phase difference at the bistable states. We shall derivi€ar equations which are identical in form to the first two

the simple analytical expressions of the bistable states arfeluations in Eq(5) of Ref. [6] except for taking theiK)

the corresponding quantum fluctuations. These expressions?- Consequently, we shall here focus on the bistability and

clearly demonstrate how to sweep adiabatically the fre_quan'tum_ fluctuation behaviors described by the model

quency of the driving laser to convert a condensate of atom&@miltonian(l). _ _

into a condensate of molecules in an optimum and determin- 1h€ Heisenberg equations of motion ®andb are

istic way. In particular, to achieve efficient photoassociation,

one needs to sweep the frequency of the drive laser from a .0 + . K

large positive detuning to a large negative detuning in certain a=izatixab, b=iz

circumstance while the frequency sweeping should be in a

reverse directio.n in another circumstancg. _Besides, the d%\?hich, after the replacemeat—a, b— B, become

tuning in both circumstances should be within certain range.
We consider the following two-mode model for coherent

phf)tgassociation of a Bose-Einstein condend&®&| (4 d=iga+ixa*,8, B=i%a2, ®)

a?, %)
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FIG. 1. The H contours in
phase space of the scaled atom
numberx=n/N (horizontal axi$
and the phase differencg (verti-
cal axig. The scaled detuning
=0 for the two top plots, and
=0.4 for the two bottom plots.
The plots on the left are the same
as their (horizontally right ones
except that the left plots have con-
tour shading while the right ones
have not. The lighter contour
shading represents a greater value
of the H contour.

where a=|ale'?« and B=|p|e'?s are two complex num- the scaled detuning=0, 0.4. We have plotted the phase
bers. Such replacement is the so-called semiclassical agiagrams in Fig. 1 for &x<1 and—27< ¢<2 for clar-

proach analogous to the Gross-Pitaevskii approximation usegy although the phase space’s actual range can be chosen as
to describe an alkali condensdtg12). 0<¢<2m and Osx<1.

Letn=|a|® andp=2¢,— ¢4, noting 2 8/>=N—n and The fixed points g, ¢o) correspond to steady-state solu-
introducing the scaled time= \2N«t, scaled detuningd  tions satisfying (x/d7,dgp/dT)—x, 4-9,=0. It readily

=6/ 2Nk, and scaled atom number=n/N, we can from  shows that there exist two fixed points for the canonical
Eq. (3) obtain a couple of canonical Hamiltonian equationsHamiltonian systent4), and their explicit analytical expres-

for the conjugate variablesand ¢ as follows: sions are
dx oH . 2 . _
dr~ g XViTXxsing, (4a) $0=0, Xo=g[3-o°+4oVe*+3], 6=-1, (63
d¢p H — X 2 - — _
o0 J1—x— = =—[3—86°— 6V 6+ S5<1.
ar = ax S+ +1 N CoS¢, (4b) =1, Xo 9[3 3], S (6b)
H=§x+xﬂcos¢. ) In Fig. 2, we have plotted the diagram of the scaled atom

numberxy=ny/N versus the scaled detuni@according to

In general, the analytical solutions to Hd) can be obtained Ed. (6). The expressiong) or the Fig. 2 clearly demonstrate
and expressed in terms of elliptic functiofk3]. However, how to vary the detuning or é so that the steady states of
the canonical Hamiltonian form of E¢4) allows us to grasp the system will follow the slowly varying detuning to move
quickly and clearly the global behaviors of all the solutionsadiabatically from a condensate with all atoms=(1) to a
by drawing phase diagrams, i.e., plotting the solution curvegondensate with all moleculex=0). It is worthwhile to

in the phase space spanned by the canonical conjugate vanmention two important points. First, just as is shown in Fig.
ablesx and ¢. Obviously, the solution curves are nothing but 2 and Eq.(6), to achieve efficient photoassociation for the
the contours of the Hamiltoniafb), as shown in Fig. 1 for steady state witlp,=0, one needs to vary adiabatically the
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Xo It is then straightforward to see that batlp and 6x perform
----- -—— 1t simple harmonic oscillations with the frequency
\\ =Xo(1—3x0/4)/(1—x,) no matter whethegpo=0 or ¢,
Y| =. Consequently, the two steady states described by Eg.
\ (6) are indeed stable.

Now we are ready to investigate the quantum fluctuations
*\‘ of the atom numbemn (as well as the molecule number
\ =(N—n)/2) and phase differenag¢ around the fixed points.
I ‘. One advantage of the Hamiltonian formalig#) and(5) of
\ the semiclassical approach is to provide a natural basis for
" describing quantum mechanically the atom number and
“ phase statistics. We first substitute=ng+ 7 (or X=X,
\ + N~ 15 with ng=Nxy) and¢= ¢+ ¢ into the Hamiltonian
R (5) and expand it as the series of the variabjesnd s up to
ot g the orderO( %2, 7,42 (see the Appendix for the derivation
of such a serigs Then by utilizing the standard quantization
FIG. 2. Diagram of the scaled atom numbgr=no/N (vertical  procedurg 15,16 n—n=ng+ 7 (or x—x=X,+N"1%) and

axis) at the fixed points versus the scaled detunighorizontal —)(}5: bo+ ;ﬁ with the commutative relatiOI[lﬁ <Ai>]:i or
axis). The solid and dashed lines correspond to the fixed points gt~ '

$o=0 and =, respectively. 7 ]=i, it is nowAstraightforward to obtain an operator-
valued Hamiltoniar#{ which has the following form in the

detuning (by sweeping the frequency of the driven laser representationy=» and = —id/d7 (see the Appendix for

from a high positive values to a negative value just as the derivation of the following equation

mentioned by Javanainen and Mackie through numerical cal-

culations[3]. However, a fact is that the detuning should

- E; ° E
vary in a reverse direction, i.e., from a high-negative vajue H~H & + 7(: 7, (8

0o . 2
to a positive value, for the steady state with= 7. Second, 2 an
there exists one and only one steady state if the scaled de-

tuning satisfie$s|>1. To be more specific, the steady statewhere, is ac number equal td+ in Eq. (5) evaluated at
with ¢o=0 does not exist at all if< — 1, while neither does the fixed points Xo, ¢¢), and

the steady state witlpg= 7 if 5>1. This fact carries the

implication for the efficient photoassociation. For instance, COScho(4— 3Xo)

when the system is initially in the steady state with=0, if E,=—c0SdoXo\1—Xg,Ec=— — 0ot = (9)
the detuning is swept from a high-positive value to a high- AN?(1—xg)%?
negative value so that< — 1, the large-amplitude Rabi-type

qscillqtiqns Qf coherent phqtoa;socigtion and phOtOdiSSOCiaEquation(8) for ¢o= is nothing but a simple harmonic-
tion will inevitably set in, which is obvious a detriment result

: : " _ oscillator model. However, botk; andE. are negative for
that should be avoided in efficient photoassociation. ¢o=0. But this circumstance also corresponds to a simple
There accurs naturally the question whe’gher the WO armonic oscillator model which can be imagined as a par-
stgady states described by K6} are stable..A have thought ticle with negative mass moving in an upside down harmonic
might be that the stea_dy state withy= is stable while otential and hence also represents a stable simple harmonic
another _steady state s _unsFabIe k_)ecause contours of t Ecillation in agreement with our semiclassical stability
Hamiltonian(5) as shown in Fig. 1 display a hilpeaked at analysis in the last paragraph.
the fixed point with¢y=0) and valley(its lowest is the fixed

. th o b It is well known that the width of the probability density
point with o=m) structure. However, as will be seen o 5 gimple harmonic oscillator characterizes its position un-

shortly, both steady states are in fact stable or neutral stablg,ainty Consequently, the statistical deviation for the quan-

in more accurate terminology. To llustrate this point_, SUbSti'tum fluctuation of the scaled atom number described by the
:Eggg ‘tz’ejn‘f’;”;fétﬁeag‘rjé(e:r z%;aﬁzrlq%(?g@(?x?n\?vgn;ggg simple harmonic-oscillator mode9) is easily shown to
) ) — — 1/4_ 1474 1209 _ —1/4
the linearized equations as follows: be An=A47=(E;/Ec) ™= Nx5(1—xo) "1~ 3xo/4)
when the harmonic oscillator is in its ground state. The sta-
d tistical deviationA ¢= A ¢y can then be obtained by using the
X =g\ 1—Xg COShy5¢h, (7g  Minimum uncertainty rglanom z//_ArAlel/Z _Whlch is obtained
dr by using the commutative relatigm,]=1 and the fact that
the ground state of a harmonic oscillator is a minimum un-
4—3x certainty state. Consequently we finally obtain the results for
— Sp=— —Oslzcos%ﬁx_ (7b)  the quantum fluctuations of the relative atom number and
dr 4(1-Xo) phase difference around the fixed points as follows:
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An (1—xo)Y2 1 (1—x) 12 ecules in an optimum and deterministic way. They have also
= T T (10 rgvealed two features concerning the efficient photo_assoma—
Mo N¥X5" (1—3Xo/4) N"Xo tion: (1) one needs to sweep the frequency of the drive laser
from a large positive detuning to a large negative detuning in
(1—3xo/4) ¥ 1 one circumstance while the frequency sweeping should be in
= ~ , (11 a reverse direction in another circumstance; é)dthe de-
2NYAGH(1-%0) "2 2NYAGH(1—xg) M2 tuning should not vary outside a certain range explicitly

given in Eq.(6). In addition, the analytical expressi@h0)

where the factors (& 3x,/4) ¥* and (1—3x,/4)Y42 are of ~ describing the quantum fluctuation of atom and molecule
the order one throughout the interwaj<[0,1] and hence numbers implies that the scheme should be suitable so long
have little effect on estimation of the quantum fluctuations.as the remaining atom number satisfies/N>N"23 In
The above analytical expressions display that the quanturather words, we have shown that the scheme is basically
fluctuation of the relative atom number is at most the ordeimmune from quantum fluctuations at least in the thermody-
O(N~?) except for a very small regime negg=0. In ad-  hamic limit. Before ending this paper, we would like to men-
dition, the quantum fluctuation of the phase difference is alsgion that the solutiongh= *+ /2 andx(7) = 1—tanr(#/2) to
of the orderO(N~%?) except for two very small regimes Eq. (4) are unsuitable for an efficient photoassociation be-
nearxo=0 andxy,=1, respectively. cause it can be shown that even an infinitesimal perturbation

Let us discuss the impact of the quantum fluctuations owould cause them to become solutions describing large os-
the scheme of photoassociation mentioned in the paragragtillations around one of the two fixed points, which can also
after Eq.(6). As we have mentioned in the last paragraph, thgeadily be understood by looking at the solution curves in
quantum fluctuation of the relative atom number is at mosfig. 1.

the orderO(N~%?) except for a very small regime neag . L . .
=0 where the quantum fluctuation of relative atom number We acknowledge the stimulating discussion with Juha Ja-

. . 12— i he support from the National Science Foun-
behaves according to the scaling law/ng~N- Y234~ vanainen, and t
Thorstore <o |ong oS ne /NgN,z,g (obtained from  dation through Grant No. PHYS-9970757. Y.W. also ac-

) 2 . knowledges support from the National Natural Science
An/ng<<1) is satisfied, quantum fluctuations would affect ; :
little on the scheme. Takinl=10°, one finds that such a Foundation of China through Grant Nos. 90108026,

condition requiresi,/N>10"4, implying that the scheme is 60078023, and 10125419, and from the Chinese Academy of

S . ; ien hrough th Talents Projectan rant No.
still suitable when nearly all atoms have photoassociated mt&jéxg?své_ 4oug tha00 Talents Projecand Grant No

molecules. Even for the moderatesuch asN=10%, such a
condition ng/N>1% places not much restriction to the
scheme in most of practical situations. APPENDIX

In summary, we have shown that there exists bistability in
coherent photoassociation of a Bose-Einstein condensate In this appendix, we present the detailed derivation of Eq.
based on a two-mode model, and have obtained the analyt{8) in the main text. We first substitute=ngy+ 7 (or X=X,
cal expressions of the bistable steady states. It is interestingg N7 with ng=NXx,) and¢ = ¢+ ¢ into the Hamiltonian
to note that the phenomenon of multiple solutions also exist$5) and expand it as the series of the variabjesnd up to
in the four-wave mixing with matter waves in a Bose- the orderO(#?, 7y, y?) as follows:
Einstein condensate but only one of them is stddlé].
While in our case, both steady states are stable ones. We
have shown that the two-mode model under the semiclassical
approximation can be put into a couple of canonical Hamil- H=Ho+t
tonian equations for the conjugate variables atom number
and a phase difference. Such canonical Hamiltonian formal-
ism not only permits one to understand the global behaviors 1 9?H 1
of the whole solutions clearly but also offers a natural basis + E(_Z) (X—Xo)?+ 5
to study the quantum fluctuations of atom, molecule num- X"/
bers, and the phase difference around the bistable states. In
this way, we have obtained the analytical expressions de- 9PH
scribing such quantum fluctuations. + ( Ihax

Besides, we have based our above-mentioned results to
investigate the scheme of photoassociation through sweeping
adiabatically the frequency of the driving laser originally (A1)
proposed by Javanainen and Mackie and studied by them
through numerical calculations]. In this regard, the ana-
lytical expressiong6) of the bistable steady states appear towhereH,, (dH/dx)q, etc., areH, IH/ X, etc., evaluated at
be particularly useful because they demonstrate clearly hothe fixed points X, ¢) = (Xq, ¢o). Using the explicit expres-
to sweep adiabatically the frequency of the driving laser tosion of Hamiltonian(5), noting singy=0 and that the fixed
convert a condensate of atoms into a condensate of mopoints (xy,¢o) correspond to steady-state solutions satisfy-

aH)
7% 0(¢>— ®o)

—Xo) +
ax (X—Xo)

0

(92_7_[) _ )2
2] (94

) (= bo)(X—Xo) +O( 7%, 7, ),
0
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ing (dx/d7,d/d7)x—x,,¢=,=0 OF (IHIIX)o=(IHII})o
=0 according to Eqg.(4), we can readily obtain
(6°HI ddx) (=0, and

E, Ec
H=Ho+ — 4+ == 0+ 007, i, §)

|

(A2)
with

PPH
Jp?

E; ) = —CO0S¢XpV1—Xq, (A3a)
0

PHYSICAL REVIEW A 65 053603

)O:

Then by utilizing the standard quantization proceduren
=ng+7 (or x—=x=Xo+N"1%) and ¢— d= o+ ¢ with
the commutative relatiofin,é]=i or [7,¢]=i, it is now
straightforward to obtain an operator-valued Hamiltorifan
which has the form of Eq(5) in the main text in they
representatiomy= z and /= —id/ 7.

PH
NG

1
Ec—m

COSeho(4—3Xgp)
AN(1—x0)*?

(A3b)
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