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Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate
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We show that there exists bistability in coherent photoassociation of a Bose-Einstein condensate and inves-
tigate the corresponding quantum fluctuations. The simple analytical expressions obtained demonstrate clearly
how to sweep adiabatically the frequency of the driving laser to convert a condensate of atoms into a conden-
sate of molecules in an optimum and deterministic way.
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Over the last few years, there has been considerable e
devoted to the photoassociation of a Bose-Einstein cond
sate which occurs when an atom pair interacts with a pho
thereby making a transition from the two-atom continuum
a bound state of the molecule@1–5,7–11#. Quantizing the
molecular dissociation continuum allows one to descr
such free-bound transitions using standard few-level qu
tum optics@1–5,7–9#. One of the most important findings i
the observation@1–5# that it is the Bose enhancement th
ultimately facilitates coherent transients such as Rabi fl
ping, adiabatic following, and stimulated Raman adiaba
passage in photoassociation of a condensate. Based on a
mode model for coherent photoassociation of a Bo
Einstein condensate, Javanainen and Mackie@3# have found
by numerical calculations that for a large positive detun
the ground state of the two-mode model is the state with
atoms while for a large negative detuning it is the state w
all molecules. Therefore they have put forward a photoas
ciation scheme that starting with all atoms and a large p
tive detuning, one sweeps the detuning slowly from a la
positive detuning to a large negative detuning so that
system will move adiabatically from the state with all atom
to the state with all molecules. Such a scheme has su
quently been generalized to a Raman-type three-mode s
tion @4–6#.

In this paper, we shall show that there exists in fact bis
bility in coherent photoassociation of a Bose-Einstein c
densate based on the same two-mode model propose
Javanainen and Mackie@3#, and investigate the correspon
ing quantum fluctuations of atom, molecule numbers, an
certain phase difference at the bistable states. We shall de
the simple analytical expressions of the bistable states
the corresponding quantum fluctuations. These express
clearly demonstrate how to sweep adiabatically the
quency of the driving laser to convert a condensate of ato
into a condensate of molecules in an optimum and determ
istic way. In particular, to achieve efficient photoassociati
one needs to sweep the frequency of the drive laser fro
large positive detuning to a large negative detuning in cer
circumstance while the frequency sweeping should be
reverse direction in another circumstance. Besides, the
tuning in both circumstances should be within certain ran

We consider the following two-mode model for cohere
photoassociation of a Bose-Einstein condensate@3,5# (\
51):
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H52
d

2
a†a2

k

2
~aab†1ba†a†!, ~1!

where a and b are annihilation operators for atom~with a
zero momentum! and molecule~with a momentumq), re-
spectively,k is the photoassociation~and photodissociation!
coupling parameter and without any loss of generality,
have chosenk to be real and non-negative, the real para
eterd5d01q2/2m is the detuning corrected for the photo
recoil energy of the molecule, and the detuningd0.0 corre-
sponds to tuning of the laser by the energyhd0 above the
photassociation threshold. Obviously, there exists a c
served quantitya†a12b†b5N for such a system. Here,N is
the total atom number for a condensate of all atoms or tw
the total molecule number for a condensate of all molecu

It is pointed out that in the two-mode model consider
here, atoms~molecules! described by creation operatora†

(b†) and annihilation operatora ~b! are assumed to be in th
same atomic~molecular! Bose-Einstein condensated state
thata† (b†) creates an atom~molecule! whose spatial distri-
bution is described by a macroscopic wave-functionCa(r )
@Cm(r )#. Here the macroscopic wave-functionsCa(r ) and
Cm(r ) for the mean-field condensates can be modeled b
set of two coupled Gross-Pitaevskii nonlinear equatio
@6,14# which take the spatial variations and inter-atom
~-molecular! interactions into account. The spatial variatio
and particle interactions can be similarly discussed by
merically solving a set of two coupled Gross-Pitaevskii no
linear equations which are identical in form to the first tw
equations in Eq.~5! of Ref. @6# except for taking theirV
50. Consequently, we shall here focus on the bistability a
quantum fluctuation behaviors described by the mo
Hamiltonian~1!.

The Heisenberg equations of motion fora andb are

ȧ5 i
d

2
a1 ika†b, ḃ5 i

k

2
a2, ~2!

which, after the replacementa→a, b→b, become

ȧ5 i
d

2
a1 ika!b, ḃ5 i

k

2
a2, ~3!
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FIG. 1. The H contours in
phase space of the scaled ato
numberx5n/N ~horizontal axis!
and the phase differencef ~verti-

cal axis!. The scaled detuningd̄

50 for the two top plots, andd̄
50.4 for the two bottom plots.
The plots on the left are the sam
as their ~horizontally! right ones
except that the left plots have con
tour shading while the right one
have not. The lighter contou
shading represents a greater val
of the H contour.
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where a5uaueifa and b5ubueifb are two complex num-
bers. Such replacement is the so-called semiclassical
proach analogous to the Gross-Pitaevskii approximation u
to describe an alkali condensate@4,12#.

Let n5uau2 andf52fa2fb , noting 2ubu25N2n and
introducing the scaled timet5A2Nkt, scaled detuningd̄
5d/A2Nk, and scaled atom numberx5n/N, we can from
Eq. ~3! obtain a couple of canonical Hamiltonian equatio
for the conjugate variablesx andf as follows:

dx

dt
52

]H
]f

5xA12x sinf, ~4a!

df

dt
5

]H
]x

5 d̄1FA12x2
x

2A12x
Gcosf, ~4b!

H5 d̄x1xA12x cosf. ~5!

In general, the analytical solutions to Eq.~4! can be obtained
and expressed in terms of elliptic functions@13#. However,
the canonical Hamiltonian form of Eq.~4! allows us to grasp
quickly and clearly the global behaviors of all the solutio
by drawing phase diagrams, i.e., plotting the solution cur
in the phase space spanned by the canonical conjugate
ablesx andf. Obviously, the solution curves are nothing b
the contours of the Hamiltonian~5!, as shown in Fig. 1 for
05360
p-
ed

s
ari-

the scaled detuningd̄50, 0.4. We have plotted the phas
diagrams in Fig. 1 for 0<x<1 and22p<f,2p for clar-
ity although the phase space’s actual range can be chose
0<f,2p and 0<x<1.

The fixed points (x0 ,f0) correspond to steady-state sol
tions satisfying (dx/dt,df/dt)x5x0 ,f5f0

50. It readily
shows that there exist two fixed points for the canoni
Hamiltonian system~4!, and their explicit analytical expres
sions are

f050, x05
2

9
@32 d̄21 d̄Ad̄213#, d̄>21, ~6a!

f05p, x05
2

9
@32 d̄22 d̄Ad̄213#, d̄<1. ~6b!

In Fig. 2, we have plotted the diagram of the scaled at
numberx05n0 /N versus the scaled detuningd̄ according to
Eq. ~6!. The expressions~6! or the Fig. 2 clearly demonstrat
how to vary the detuningd or d̄ so that the steady states o
the system will follow the slowly varying detuning to mov
adiabatically from a condensate with all atoms (x51) to a
condensate with all molecules (x50). It is worthwhile to
mention two important points. First, just as is shown in F
2 and Eq.~6!, to achieve efficient photoassociation for th
steady state withf050, one needs to vary adiabatically th
3-2
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BISTABILITY AND QUANTUM FLUCTUATIONS IN . . . PHYSICAL REVIEW A 65 053603
detuning ~by sweeping the frequency of the driven lase!

from a high positive valued̄ to a negative value just a
mentioned by Javanainen and Mackie through numerical
culations @3#. However, a fact is that the detuning shou
vary in a reverse direction, i.e., from a high-negative valud̄
to a positive value, for the steady state withf05p. Second,
there exists one and only one steady state if the scaled
tuning satisfiesud̄u.1. To be more specific, the steady sta
with f050 does not exist at all ifd̄,21, while neither does
the steady state withf05p if d̄.1. This fact carries the
implication for the efficient photoassociation. For instan
when the system is initially in the steady state withf050, if
the detuning is swept from a high-positive value to a hig
negative value so thatd̄,21, the large-amplitude Rabi-typ
oscillations of coherent photoassociation and photodisso
tion will inevitably set in, which is obvious a detriment resu
that should be avoided in efficient photoassociation.

There occurs naturally the question whether the t
steady states described by Eq.~6! are stable. A naive though
might be that the steady state withf05p is stable while
another steady state is unstable because contours o
Hamiltonian~5! as shown in Fig. 1 display a hill~peaked at
the fixed point withf050) and valley~its lowest is the fixed
point with f05p) structure. However, as will be see
shortly, both steady states are in fact stable or neutral st
in more accurate terminology. To illustrate this point, sub
tuting f5f01df andx5x01dx into Eq. ~4! and omitting
those terms of the order greater thanO(df,dx), we obtain
the linearized equations as follows:

d

dt
dx5x0A12x0 cosf0df, ~7a!

d

dt
df52

423x0

4~12x0!3/2
cosf0dx. ~7b!

FIG. 2. Diagram of the scaled atom numberx05n0 /N ~vertical

axis! at the fixed points versus the scaled detuningd̄ ~horizontal
axis!. The solid and dashed lines correspond to the fixed point
f050 andf05p, respectively.
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It is then straightforward to see that bothdf anddx perform
simple harmonic oscillations with the frequencyv
5Ax0(123x0/4)/(12x0) no matter whetherf050 or f0
5p. Consequently, the two steady states described by
~6! are indeed stable.

Now we are ready to investigate the quantum fluctuatio
of the atom numbern ~as well as the molecule numbe
5(N2n)/2) and phase differencef around the fixed points
One advantage of the Hamiltonian formalism~4! and ~5! of
the semiclassical approach is to provide a natural basis
describing quantum mechanically the atom number a
phase statistics. We first substituten5n01h ~or x5x0
1N21h with n05Nx0) andf5f01c into the Hamiltonian
~5! and expand it as the series of the variablesh andc up to
the orderO(h2,hc,c2) ~see the Appendix for the derivatio
of such a series!. Then by utilizing the standard quantizatio
procedure@15,16# n→n̂5n01ĥ ~or x→ x̂5x01N21ĥ) and
f→f̂5f01ĉ with the commutative relation@ n̂,f̂#5 i or

@ĥ,ĉ#5 i , it is now straightforward to obtain an operato
valued HamiltonianĤ which has the following form in theh
representationĥ5h and ĉ52 i ]/]h ~see the Appendix for
the derivation of the following equation!:

Ĥ'H02
EJ

2

]2

]h2
1

EC

2
h2, ~8!

whereH0 is a c number equal toH in Eq. ~5! evaluated at
the fixed points (x0 ,f0), and

EJ52cosf0x0A12x0,EC52
cosf0~423x0!

4N2~12x0!3/2
. ~9!

Equation~8! for f05p is nothing but a simple harmonic
oscillator model. However, bothEJ andEC are negative for
f050. But this circumstance also corresponds to a sim
harmonic oscillator model which can be imagined as a p
ticle with negative mass moving in an upside down harmo
potential and hence also represents a stable simple harm
oscillation in agreement with our semiclassical stabil
analysis in the last paragraph.

It is well known that the width of the probability densit
of a simple harmonic oscillator characterizes its position
certainty. Consequently, the statistical deviation for the qu
tum fluctuation of the scaled atom number described by
simple harmonic-oscillator model~9! is easily shown to
be Dn5Dh5(EJ /EC)1/45ANx0

1/4(12x0)1/2(123x0/4)21/4

when the harmonic oscillator is in its ground state. The s
tistical deviationDf5Dc can then be obtained by using th
minimum uncertainty relationDcDn51/2 which is obtained
by using the commutative relation@ n̂,f̂#5 i and the fact that
the ground state of a harmonic oscillator is a minimum u
certainty state. Consequently we finally obtain the results
the quantum fluctuations of the relative atom number a
phase difference around the fixed points as follows:

at
3-3
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Dn

n0
5

~12x0!1/2

N1/2x0
3/4

1

~123x0/4!1/4
;

~12x0!1/2

N1/2x0
3/4

, ~10!

Df5
~123x0/4!1/4

2N1/2x0
1/4~12x0!1/2

;
1

2N1/2x0
1/4~12x0!1/2

, ~11!

where the factors (123x0/4)21/4 and (123x0/4)1/4/2 are of
the order one throughout the intervalx0P@0,1# and hence
have little effect on estimation of the quantum fluctuatio
The above analytical expressions display that the quan
fluctuation of the relative atom number is at most the or
O(N21/2) except for a very small regime nearx050. In ad-
dition, the quantum fluctuation of the phase difference is a
of the orderO(N21/2) except for two very small regime
nearx050 andx051, respectively.

Let us discuss the impact of the quantum fluctuations
the scheme of photoassociation mentioned in the parag
after Eq.~6!. As we have mentioned in the last paragraph,
quantum fluctuation of the relative atom number is at m
the orderO(N21/2) except for a very small regime nearx0
50 where the quantum fluctuation of relative atom num
behaves according to the scaling lawDn/n0;N21/2x0

23/4.
Therefore so long asx0[n0 /N@N22/3 ~obtained from
Dn/n0!1) is satisfied, quantum fluctuations would affe
little on the scheme. TakingN5106, one finds that such a
condition requiresn0 /N@1024, implying that the scheme is
still suitable when nearly all atoms have photoassociated
molecules. Even for the moderateN such asN5103, such a
condition n0 /N@1% places not much restriction to th
scheme in most of practical situations.

In summary, we have shown that there exists bistability
coherent photoassociation of a Bose-Einstein conden
based on a two-mode model, and have obtained the ana
cal expressions of the bistable steady states. It is interes
to note that the phenomenon of multiple solutions also ex
in the four-wave mixing with matter waves in a Bos
Einstein condensate but only one of them is stable@17#.
While in our case, both steady states are stable ones.
have shown that the two-mode model under the semiclas
approximation can be put into a couple of canonical Ham
tonian equations for the conjugate variables atom num
and a phase difference. Such canonical Hamiltonian form
ism not only permits one to understand the global behav
of the whole solutions clearly but also offers a natural ba
to study the quantum fluctuations of atom, molecule nu
bers, and the phase difference around the bistable state
this way, we have obtained the analytical expressions
scribing such quantum fluctuations.

Besides, we have based our above-mentioned resul
investigate the scheme of photoassociation through swee
adiabatically the frequency of the driving laser origina
proposed by Javanainen and Mackie and studied by t
through numerical calculations@3#. In this regard, the ana
lytical expressions~6! of the bistable steady states appear
be particularly useful because they demonstrate clearly
to sweep adiabatically the frequency of the driving laser
convert a condensate of atoms into a condensate of m
05360
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ecules in an optimum and deterministic way. They have a
revealed two features concerning the efficient photoasso
tion: ~1! one needs to sweep the frequency of the drive la
from a large positive detuning to a large negative detuning
one circumstance while the frequency sweeping should b
a reverse direction in another circumstance; and~2! the de-
tuning should not vary outside a certain range explici
given in Eq.~6!. In addition, the analytical expression~10!
describing the quantum fluctuation of atom and molec
numbers implies that the scheme should be suitable so
as the remaining atom number satisfiesn0 /N@N22/3. In
other words, we have shown that the scheme is basic
immune from quantum fluctuations at least in the thermo
namic limit. Before ending this paper, we would like to me
tion that the solutionsf56p/2 andx(t)512tanh2(t/2) to
Eq. ~4! are unsuitable for an efficient photoassociation b
cause it can be shown that even an infinitesimal perturba
would cause them to become solutions describing large
cillations around one of the two fixed points, which can a
readily be understood by looking at the solution curves
Fig. 1.
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APPENDIX

In this appendix, we present the detailed derivation of E
~8! in the main text. We first substituten5n01h ~or x5x0
1N21h with n05Nx0) andf5f01c into the Hamiltonian
~5! and expand it as the series of the variablesh andc up to
the orderO(h2,hc,c2) as follows:

H5H01S ]H
]x D

0

~x2x0!1S ]H
]f D

0

~f2f0!

1
1

2 S ]2H
]x2 D

0

~x2x0!21
1

2 S ]2H
]f2D

0

~f2f0!2

1S ]2H
]f]xD

0

~f2f0!~x2x0!1O~h2,hc,c2!,

~A1!

whereH0 , (]H/]x)0, etc., areH, ]H/]x, etc., evaluated a
the fixed points (x,f)5(x0 ,f0). Using the explicit expres-
sion of Hamiltonian~5!, noting sinf050 and that the fixed
points (x0 ,f0) correspond to steady-state solutions satis
3-4
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ing (dx/dt,df/dt)x5x0 ,f5f0
50 or (]H/]x)05(]H/]f)0

50 according to Eq. ~4!, we can readily obtain
(]2H/]f]x)050, and

H5H01
EJ

2
c21

EC

2
h21O~h2,hc,c2! ~A2!

with

EJ5S ]2H
]f2D

0

52cosf0x0A12x0, ~A3a!
et

s.

ev

ys

05360
EC5
1

N2 S ]2H
]x2 D

0

52
cosf0~423x0!

4N2~12x0!3/2
. ~A3b!

Then by utilizing the standard quantization proceduren→n̂

5n01ĥ ~or x→ x̂5x01N21ĥ) and f→f̂5f01ĉ with
the commutative relation@ n̂,f̂#5 i or @ĥ,ĉ#5 i , it is now
straightforward to obtain an operator-valued HamiltonianĤ
which has the form of Eq.~5! in the main text in theh
representationĥ5h and ĉ52 i ]/]h.
ev.
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