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Exact results on the dynamics of a multicomponent Bose-Einstein condensate
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We study the time evolution of a two-dimensional multicomponent Bose-Einstein condensate in an external
harmonic trap with arbitrary time-dependent frequency. We show analytically that the time evolution of the
total mean-square radius of the wave packet is determined in terms of the same solvable equation as in the case
of a single-component condensate. The dynamics of the total mean-square radius is also the same for a rotating
as well as a nonrotating multicomponent condensate. We determine the criteria for the collapse of the conden-
sate at a finite time. Generalizing our previous work on a single-component condensate, we show explosion-
implosion duality in the multicomponent condensate.
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The successful creation and observation of Bose-Einsteitopological defects like skyrmions, domain walls, vortices,
condensation(BEC) in dilute alkali-metal atoms have and Alice strings in these condensaf#§].
opened up a plethora of possibilities to test otherwise intrac- The purpose of this note is to extend the studies of Refs.
table many-body quantum phenomena in the laborgtbfy  [3.4] on the two-dimensional single-component BEC to the
The Gross-Pitaevskii equatiofGPE), the mean-field de- two dimensional multicomponent BEC. The experimentally
scription of the BEC, is successful enough in exp|ainingrealizable two-component and spinor condensates can be ob-
most of the observed results as well as in predicting additained as special cases of this general multicomponent BEC.
tional phenomena. The methods involved in studying thé/e study the exact time evolution of the second moment of
GPE are mainly numerical and/or approximate: perturbativéhe two-dimensional multicomponent condensate in an arbi-
and variational. The exact and analytical results of a nonlinirary time-dependent harmonic trap. This particular second
ear equation, if known, not only act as a guide to determindnoment can be identified as thetal mean-square radiusf
the validity of different approximate and numerical methods the condensate. We show that the dynamics of the second
they also give rise to counterintuitive results in some casegnoment is determined by the same solvable equation as in
Unfortunately, no exact solution of the GPE is known excepithe case of a single-component condensate. No matter how
in one dimension. many components there are, or how they interact among

The two-dimensional GPE, like its counterparts in higherthemselves, or even whether they are rotating or nonrotating,
dimensions, is not exactly solvable. However, due to an unthe dynamics of the total mean-square radius is universally
derlying dynamical @,1) symmetry[2], the time evolution determined by the same equation. The detailed information
of certain moments related to the two-dimensional GPE cafn the system is encoded, through the Hamiltonian, into a
be described exactfi8]. This result is valid even if the con- constant of motion appearing in this universal equation.
densate is considered in a time-dependent harmonic traghus, the dynamics of the system can be studied in terms of
This leads to the prediction of explosion-implosion duality the same set of initial conditions for any number of compo-
[4] and extended parametric resonarde5] in the two- ~ Nents. We determine the criteria for the collapse of the con-
dimensional BEC. Both of these phenomena are universal fg#énsate of this system. We also show that the multicompo-
any nonrelativistic theory ha\/ing dynamica[m) symme- nent BEC, in its full generallty, exhibits an eprOSIOn-
try [3,4,6. Interestingly enough, apart from the two- implosion duality and extended parametric resonance for
dimensional BEC, the same explosion-implosion duality carfPecial choices of the time dependence of the trap. All these
also be observed in supernova explosions and in laser ifesults are exact and analytical.
duced implosions in plasni,8]. This shows the importance ~ Consider the following Lagrangian in+21 dimensions:
of exact methods, based on an underlying symmetry, in re-
lating diverse areas of physics such as the BEC and the su- e 1 )
pernova explosion. L= za: V3 97pa— ﬁW’M

The results described above are for a single-component

condensate, where the spin degrees of freedom have been 1 v %

frozen though the use of a magnetic trap. Recently, a spinor ~ ~ 3 abzéd GavedVa ¥b Yetby,  ab,C,d=12,... 1,
condensate with independent spin degrees of freedom has

also been created and observed in the labord®kySimi- 1)

larly, the two-component condensate, where two different

hyperfine states of the same atomic species are condensetieren is the total number of components. The coupling
simultaneously, has been experimentally realige@dl. The constantsg,,.q are related to thes-wave scattering length
spinor condensatgl1-14 and the two-component conden- matrix. The possible values of,,.4, and hence of the scat-
sate[15] have a very rich structure compared to the single-tering length matrix, may be constrained by symmetry re-
component condensate. This is manifested in the existence glirements. For example, the special case of a two-
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component condensate can be obtained by choasing  cause the transformation of the scalar fields is coupled with
and gapeg= 3 (SacOpa+ 5ad5bc)§ab so that the system has a that of the space-time coordinates. If we choose some special
global U(1¥ symmetry. A phase separation occurs for such a/alues for the coupling constants,.q such that the La-
system if all the scattering lengths are positive and satisfy thgrangian has an internal global symmetry, say, for example,
inequalityg?,= g2,> 0119, [15]. Similarly, the spin-1 spinor SU(n), we certainly have the fre_edom of varying the ph:_;\se
condensate can be obtained by choosing3 and gap.q f_actors_ up to a global SLmo rotation. However, such addi-

= 1191840804+ 922 o(Sa) ac( So)ba+ (2c=b)],  where  the tional internal symmetne; are complete[y decoupled from
S,’s are three spin matrices. A positige defines an antifer- the symmetry transformations described in E@s.and(3),
romagnetic regime, while the ferromagnetic regime is char@nd do not have any effect on our results.

acterized by a negativg,. It is known that the ferromagnetic L€t us now introduce two momentg and| in terms of

or antiferromagnetic nature of the interaction plays an importh€ densityp and the current, as

tant role in characterizing different properties of the conden-

sate[11,12. Both the phenomenon of phase separation and

the ferromagnetic or antiferromagnetic nature of the ground p(T.0)= 2 i,

state are specific to multicomponent condensatesfeP. a

Further, note that we have additional terms describing the

interaction among different components as we go from the i

single-component to the two-component, to the spinor, and i(rr)=—— VY — .V U*

to the general multicomponent condensate described by Eq. n==5n 2a (VaVia=vaVia).

(1). However, to our surprise, the dynamics of the total

mean-square radius is independent of such variation in the (4)

intercomponent interaction and universally determined by

the same solvable equation as in the case of a single-

component K=1) condensate. Consequently, the criterion 1y (7)= Tj d2rr2p,

for the collapse of the condensate at a finite time is also the 2

same for anyn-component condensate. For the very special

case of an additional global U(21symmetry in Eq(1), such

a result has been obtained previously in R&7). We remark ()= TJ 42 -

that our results are much more general. Moreover, the known 2 2 I

results are reproduced in a very elegant way. We will con-

sider only the most general form gffrom now on, since our ) ) )

result is independent of particular details of the interaction. We are dealing with a conservative system and the total num-
All the coupling constantg),,.q have inverse-mass di- ber of particlesN(r)=[d’rp is a constant of motion. The

mension in the natural units with=h= 1. This allows us to global U1) symmetry of C can be enlarged to U(1)for

have a scale and conformally invariant theory. The actiorf:.ertaln special ch0|pes.cgabcd. The total number of par-
A=[drd’ L is invariant under the following time- ticles for each species is conserved separately for this case.

dependent transformatiofi$8—24; However, as emphasized earlier, such an additional internal
symmetry does not have any significant effect on our results.

dr(t) Thus, only the conservation of the total number of particles

ar N is important for our study. The momehtis the sum of the
mean-square radii corresponding to each and every compo-
. nent. This moment can be interpreted as the square of the
h _ . dia im 2 width of the wave packet for the single-component conden-
a7 1) = hp(t,rp) =17 eXP( Im—-rh) pa(7.1), (2)
T

r—rp=m(t) Y2

T, rot=t(r), 7(t)=

sate, when confined in an external harmonic {faj How-
ever, for the multicomponent case, the momigntannot be
with the scale factotr given by identified as the total width of the wave packet. As empha-
sized in our previous work3], the moment; has been used
_at+p _ extensively in the analysis of the nonlinear Salinger
T t+o ad=pBy=1. 3) equation(NLSE) [5,6,25—-27 and the BE([28], and in op-
tics [29]. The dynamics ofl;, when the systenfl) is im-
Note that all the components of the order parameter are muersed in an external time-dependent harmonic trap, is the
tiplied by the same time dependent scale-factor and phase oentral subject of the investigation of this paper. We show
the symmetry transformation above. One might naively thinkthat the dynamics df; is universally determined by the same
that the requirement of identical phase factors for all thesolvable equation as in the case of a single-component BEC.
components of the order parameter is due to the interaction Particular choices of(t) =t+ 3,a?t, andt/(1+ yt), cor-
term. However, this is not the case. Even if we consider theespond to time translation, dilatation, and special conformal
free theory, i.e.g.,cq=0 for all values of the indices, the transformation. The corresponding generators of these trans-
requirement of identical phases in Ef) is essential in order formations, the Hamiltoniaid, the dilatation generatdD,
for it to be a symmetry transformation. This is precisely be-and the conformal generatétr are

7(t)
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1 The constant of motiorQ is the Casimir operator of the
HZJ dr >m 2 | Vil? 0O(2,1) symmetry. Note that the information on the Hamil-
a tonian H is solely contained iQ. Thus, the effect of the
1 interaction, say, for example, the strongly repulsive or attrac-
+ > a%d QabcdVa ¥ z//cz//d}, tive intercomponent and intracomponent interactions, will be
manifested through initial conditions dh Equation(9) can
be interpreted as the equation of motion of a particle moving
in an inverse-square potential. Interestingly enough, this sys-
tem also has a dynamical()1) symmetry. This reduced
system of a particle in an inverse-square potential is a well-
studied problem and the solution is given [[1y8]

D=7rH-1,, (5
K=—-7mH+27D+l;.
These generators close under the algebra

[H.D]=iH, [HK]=2iD, [KD]=-iK (6 XP=(a+br+ 272 (10
a

if we promote the fields), to the operators}a1 with the . .
following bosonic commutation relations among themselvesVNerea andb are integration constants. Although any exact
solution of the equation of motion of the actiof is not
“ Sk (] — o known, it is surprising to note how the exact time depen-
[Yar), 475 (1) 1= Gapd(r—r"), dence of the momernit; can be obtained easily using the
- - - - underlying symmetry. We would like to stress that we are
[a(r),ghn(r")]1=[43 (r), ¥ (r')]=0. (7)  able to determine the dynamics of the total mean-square ra-
_ i dius of the condensate only. The dynamics of the individual
The algebra given by Eq6) defines a conformal group, mean-square radii associated with each component cannot be
which is isomorphic to the group(@,1) [18]. Thus, the sys-  ghtained using our method even when there is an additional
tem (1) has a dynamical @,1) symmetry with the interpre-  j(1)" symmetry in the system or there is no intercomponent
tation of the fieldsy, as the operatorg, satisfying Eq.(7). interaction.
In this article, we will be considering only the fieldgs,, not The criterion for the collapse of the condensate at a finite
the operators), . We do not make use of the relatiof@ or ~ and real timer* is Q=<0. In particular, the moment? van-
the algebra given by Ed6) in our subsequent discussion; ishes at a finite time™,
what is required for our study is the conserved Noether )
chargesH, D, andK. We just mention, in passing, that the . a [—ab=+ \/—_Q]
results described in this article are valid for any nonrelativ- 7  (a?b?+Q) - ’
istic theory with a dynamical @,1) symmetry.
The generatorsl, D, andK are constant in time and lead which is real if Q<0. Note that we have the freedom of

11)

to the following equations: making 7* either positive or negative by choosing appropri-
ate values for the integration constartsand b. With the
dH dly dl, interpretation of Eq(9) as a particle moving in an inverse-
EZO’ EZZI? E:H' (8) square potential, the collapse of the condensate can be un-

derstood as the fall of the particle to the center for attractive
For time-independent solutions, neithgmor |, depends on interaction. Recall that the momeht is semipositive defi-
7. As a consequence, the energy of the static solutiorts of nite by definition. Thus, the exact expression @implies
vanishes. This is also the case for the single-component BEthat the condensate collapses for any initial conditioh if
in 24+ 1 dimensions. Even though there are extra terms dues0. On the other hand, ifi>0, the condition for the col-
to intercomponent interaction in the case of a multicompoJapse is given by
nent BEC, the vanishing of the energy is a universal conse- dl

uence of the underlying @,1) symmetry. The second equa- 21 o T a4l

gon of (8) shows tha){ tr?e momyen§ is )[;roportional to t%e ar |0=72 il —olH]. (12
time variation of the momerlt;. Recalling that the moment ) ]
I, is identified as the total mean-square radius of the condenVe have used the second equatior&)fin the exact expres-
sate, the momerit, can be related to the speed of growth of Sion for Q in deriving the above equation. As far as we are
the condensate. This interpretation is also evident in the deffWare, this is the first instance in the literature where the
nition of 1, in Eq. (4) after decomposing the currejias a criterion for the collapse of the condensate of the most gen-

product of the density and the velocity. eral two-dimensional multicomponent NLSE with cubic non-
Defining X= 17, it is easy to find a decoupled equation linearity is given. The criterion is independent of the total
for X from Eq. (8): ’ number of components and any additional global internal

symmetry. Thus, the well-known results on the single-
X 0 40 componenf25] and the multicomponei7] NLSE’s in two
— ==, Q=1;H-1%3, —==0 (99  dimensions are easily reproduced from our general result.
2 3’ 1 2r : : S i
dr T Consider the following time-dependent transformation:
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_ dr(t) where b(t) and 7(t) are determined from Eq15). Thus,
T—t=t(7), ()= a9t even though the exact solution of the equation of motion of
A, is not known, the dynamics of;, can be described ex-
. cosf(t)  sinf(t) actly. | _
r—rn=7(t) 2 ) r, (13) An alternative but useful expression f&y, can be deter-
—sinf(t) cosf(t) mined from the following equatiof8]:
: T d2x
wa<7,r>w2<t,rh)=rd’4exp(—|m4—-7rﬁ)¢a<nr), dt2“+w<t>xh=%, Qn=lipHn=13,, (1D
h

with arbitrary 7(t) and f(t). Note that this transformation \yhereQ, is a constant of motion. BotH,, andl,,, have the
can be obtained by first using the transformati@nand then  game expressions as and | ,, respectively, with 61, 0)
a time-dependent rotation ground theaxis with a time- replaced by (,ry, ,l/jg)_ Note that Eq{(17) can also be inter-
dependent anglé(t). For arbitrary7(t) andf(t), the trans-  reted as describing the motion of a classical particle in a
formation (13) is not a symmetry transformation OE the ac- combined harmonic and inverse-square potential. The par-
tion A; instead, it mapsd to a new actiond,=/dtdrLy. el falls to the center for an attractiveQ(<0) inverse-
The new Lagrangiaif,, reads as square potential, independent of the time dependence of the
1 harmonic trap. This implies that the condensate collapses at a
Ln=2, ( Y% 9yl — —|Vh¢2|2) finite time for Q,<0. Analyzing the exact expression Q¥
a 2m further, we find that the condensate collapses for any initial
condition ifH,<0. ForH;>0, the condition for the collapse

1 .
=5 2 Gavedla® U5* eVl 's given by
abcd
dlyp
1 ; —— | <—=2J(l1pHp)li=0, (18
-2 (Emw<t>rﬁ|¢2|2+f¢2*Lz¢2), (14 dt |,_g t
where thez component of the angular momentuln= where the reIatior[_S] I1p=2l,, valid for the system de-
—ir XV, and the time-dependent frequeneyt) of the scribed by the actiod,,, has been used. As far as we are
harmonic trap is determined as aware, this is the first time in the literature that a criterion for
the collapse of the condensate in the most general two-
b+w(t)b=0, b(t)=7 2 (15) dimensional multicomponent GPE with cubic nonlinearity

and an arbitrary time-dependent harmonic trap is given. Note

The Lagrangiar(, is that of a rotating multicomponent BEC that the criterion is independent of the total number of com-
in an arbitrary time-dependent harmonic well. Note that thePonentsn and any additional internal global symmetry. The
external harmonic potentials are identical for all the compoknown results for the single-compond@6] and multicom-
nents of the condensate. This is not by choice. In fact, we dgonent[17] GPE's with time-independent harmonic trap in
not have the freedom of generating different harmonic poten2+ 1 dimensions are easily reproduced from this very gen-
tials for different components using the transformation in Eqeral result. Further, the criterion for collapse in a system
(13). This is even true for the free theory, i.ga,.c=0. The  Without or with a harmonic trap is also identical, except that
reason is that the transformation of the scalar fields ighere is no equality sign in E18) for the latter casgcom-
coupled with that of the space-time coordinates. Consepare with Eq(12)]. This is precisely because, f@,Q,=0,
quently, unphysical and unwanted terms will be generated if=gs.(9) and(17) describe the dynamics of a free particle and
the Lagrangian’;, unless all the components of the conden-that of a particle in a time-dependent harmonic trap, respec-
sate transform identically. tively. Thus, nothing can be said conclusively about the dy-

The solutions of4 and A, are related to each other namical (in)stability for the latter case, unless the time de-
through the transformations in E(.3) with 7(t) determined pendence of the frequency of the trap is explicitly specified.
for a specific trap frequency by EL5). The scale factor For a time-independent trap, the equality sign is recovered in
7(t) can obviously be exactly determined for a large class ofd- (18); and, of course, the known res{ilt7,2§ is identi-
w(t). However, the exact solutions are not known for eithercally reproduced.
A or Ah' This is a major prob|em in making use of the We have shown that the criterion for the COIIapse of the
mapping relating4 to .4;, and vice versa. However, note that condensate in a (21)-dimensional system governed by the
the dynamics of the momery is uniquely determined by Lagrangianly, is independent of the total number of compo-
Eq. (10) independent of whether any exact solutionfis ~ nentsn. It is known[26] that the same criterion for the col-
known or not. Thus, the transformati¢h3) can be used to lapse of the condensate is also valid for the Lagrangiam
find the dynamics of the momeht,=3,/d?rrZ|40|% from  dimensionsd=2+1 with n=1, w(t)=wy=const, andf

I1. In particular, they are related to each other by =0. So the criterion for collapse is independent of the un-
derlying Q2,1 symmetry, which the cubic NLSE has only
Xn=Vl1p=b(t)X((1)), (16) ind=2+1. The dynamical @,1) symmetry only helps us
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in deriving the exact result in a much more simple and el-exhibits extended parametric resonance for a periadi)
egant way. Based on this observation, we conjecture that thend arbitraryf(t), and(c) the dynamic(in)stability of the
criterion for the collapse of the condensatefpfin dimen-  system is independent éft), i.e., the same for both rotating
sionsd=2+1, with w(t)=wg andf=0, is independent of and nonrotating BEC’s. We refer the readers to RESH]
the total number of components and the criterion is the for further details.

same as stated in this article for=2+1. Note that the Finally, we conclude with the following comment. The

physically interesting case df=3+1 is also included in our results presented in this article for the multicomponent BEC

conjecture. are a generalization of what is already known for the single-
The solution forX,, is given by component BEC in two dimensions. The results obtained in

both these cases are also identical with the identification of
the moment ; as the total mean square radius. In particular,
the dynamics of the momenj is determined from the same
solvable equation as in the case of a single-component BEC
whereu(t) andv(t) are two independent solutions of Eq. with all the information about the Hamiltonian encoded into
(15) satisfying u(te)=Xn(to), U(te)=Xn(to), v(te)=0, the constant of motio®Q,. Apart from its relevance to the
andu(to) #0. The above solution is valid for arbitrafy,: ~ ©ngoing experiments on BEC's, the importance of this result
positive, negative, or zero. We will be considering the casdies in its universality. No matter how many components
Q,,=0 from now on, since we have already argued that théhere are, or how they interact among themselves_, or even
condensate collapses f@,<0. We obtained the same ex- Whether they are rotating or nonrotating, the dynamics of the
pressiong16) and(19) in Refs.[3,4] for the dynamics of the total mean-square radius is universally determined by the
W|dth of the wave packet Of a Sing|e_component Condensatéame equa“on. Th|S IS |ndeed a counterintuitive result and
in 2+1 dimensions. So the results of the Ref3,4] are ~ May be realized in the laboratory in the near future.

equally- valid_for thg general multicom[)zopent .c.ondensate iN" | would like to thank T. Deguchi and T. K. Ghosh for a
2+1 dimensions with the moment =X, identified as the  careful reading of the manuscript and comments. | would
total mean-square radius. In particulés) the system de- jike to thank J. leda, H. Morise, N. Uesugi, M. Wadati, and
scribed byZ;, has an explosion-implosion duality fdi(t) especially T. Tsurumi for useful discussions. This work was
=0 and eitherw(t)=0 or w(t)=t"2, (b) the condensate supported by JSPS.

Xp=u?(t)+ \%sz(t), W(H=uv—vu, (19
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