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Exact results on the dynamics of a multicomponent Bose-Einstein condensate

Pijush K. Ghosh
Department of Physics, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

~Received 29 November 2001; published 15 April 2002!

We study the time evolution of a two-dimensional multicomponent Bose-Einstein condensate in an external
harmonic trap with arbitrary time-dependent frequency. We show analytically that the time evolution of the
total mean-square radius of the wave packet is determined in terms of the same solvable equation as in the case
of a single-component condensate. The dynamics of the total mean-square radius is also the same for a rotating
as well as a nonrotating multicomponent condensate. We determine the criteria for the collapse of the conden-
sate at a finite time. Generalizing our previous work on a single-component condensate, we show explosion-
implosion duality in the multicomponent condensate.
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The successful creation and observation of Bose-Eins
condensation~BEC! in dilute alkali-metal atoms have
opened up a plethora of possibilities to test otherwise intr
table many-body quantum phenomena in the laboratory@1#.
The Gross-Pitaevskii equation~GPE!, the mean-field de-
scription of the BEC, is successful enough in explaini
most of the observed results as well as in predicting ad
tional phenomena. The methods involved in studying
GPE are mainly numerical and/or approximate: perturba
and variational. The exact and analytical results of a non
ear equation, if known, not only act as a guide to determ
the validity of different approximate and numerical metho
they also give rise to counterintuitive results in some cas
Unfortunately, no exact solution of the GPE is known exc
in one dimension.

The two-dimensional GPE, like its counterparts in high
dimensions, is not exactly solvable. However, due to an
derlying dynamical O~2,1! symmetry@2#, the time evolution
of certain moments related to the two-dimensional GPE
be described exactly@3#. This result is valid even if the con
densate is considered in a time-dependent harmonic
This leads to the prediction of explosion-implosion dual
@4# and extended parametric resonance@4,5# in the two-
dimensional BEC. Both of these phenomena are universa
any nonrelativistic theory having dynamical O~2,1! symme-
try @3,4,6#. Interestingly enough, apart from the two
dimensional BEC, the same explosion-implosion duality c
also be observed in supernova explosions and in lase
duced implosions in plasma@7,8#. This shows the importanc
of exact methods, based on an underlying symmetry, in
lating diverse areas of physics such as the BEC and the
pernova explosion.

The results described above are for a single-compon
condensate, where the spin degrees of freedom have
frozen though the use of a magnetic trap. Recently, a sp
condensate with independent spin degrees of freedom
also been created and observed in the laboratory@9#. Simi-
larly, the two-component condensate, where two differ
hyperfine states of the same atomic species are conde
simultaneously, has been experimentally realized@10#. The
spinor condensate@11–14# and the two-component conden
sate@15# have a very rich structure compared to the sing
component condensate. This is manifested in the existenc
1050-2947/2002/65~5!/053601~6!/$20.00 65 0536
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topological defects like skyrmions, domain walls, vortice
and Alice strings in these condensates@16#.

The purpose of this note is to extend the studies of R
@3,4# on the two-dimensional single-component BEC to t
two dimensional multicomponent BEC. The experimenta
realizable two-component and spinor condensates can be
tained as special cases of this general multicomponent B
We study the exact time evolution of the second momen
the two-dimensional multicomponent condensate in an a
trary time-dependent harmonic trap. This particular seco
moment can be identified as thetotal mean-square radiusof
the condensate. We show that the dynamics of the sec
moment is determined by the same solvable equation a
the case of a single-component condensate. No matter
many components there are, or how they interact am
themselves, or even whether they are rotating or nonrotat
the dynamics of the total mean-square radius is univers
determined by the same equation. The detailed informa
on the system is encoded, through the Hamiltonian, int
constant of motion appearing in this universal equati
Thus, the dynamics of the system can be studied in term
the same set of initial conditions for any number of comp
nents. We determine the criteria for the collapse of the c
densate of this system. We also show that the multicom
nent BEC, in its full generality, exhibits an explosion
implosion duality and extended parametric resonance
special choices of the time dependence of the trap. All th
results are exact and analytical.

Consider the following Lagrangian in 211 dimensions:

L5(
a

S ica* ]tca2
1

2m
u“cau2D

2
1

2 (
abcd

gabcdca* cb* cccd , a,b,c,d51,2, . . . ,n,

~1!

where n is the total number of components. The coupli
constantsgabcd are related to thes-wave scattering length
matrix. The possible values ofgabcd, and hence of the scat
tering length matrix, may be constrained by symmetry
quirements. For example, the special case of a tw
©2002 The American Physical Society01-1



a
h
th

a
c
o
en
an
n

th
th
an
E

ta
th
b
gl
on
th
ia

ow
on

n
-

io
-

u
e

in
th
tio
th

e

ith
cial

ple,
se
-
om

um-

ase.
rnal
lts.

les

po-
the

en-

a-

the
ow
e
EC.

al
ans-

PIJUSH K. GHOSH PHYSICAL REVIEW A 65 053601
component condensate can be obtained by choosingn52
and gabcd5

1
2 (dacdbd1daddbc)ḡab so that the system has

global U(1)2 symmetry. A phase separation occurs for suc
system if all the scattering lengths are positive and satisfy
inequalityg12

2 5g21
2 .g11g22 @15#. Similarly, the spin-1 spinor

condensate can be obtained by choosingn53 and gabcd
5 1

2 @g1dacdbd1g2(a(Sa)ac(Sa)bd1(a↔b)#, where the
Sa’s are three spin matrices. A positiveg2 defines an antifer-
romagnetic regime, while the ferromagnetic regime is ch
acterized by a negativeg2. It is known that the ferromagneti
or antiferromagnetic nature of the interaction plays an imp
tant role in characterizing different properties of the cond
sate@11,12#. Both the phenomenon of phase separation
the ferromagnetic or antiferromagnetic nature of the grou
state are specific to multicomponent condensates forn>2.
Further, note that we have additional terms describing
interaction among different components as we go from
single-component to the two-component, to the spinor,
to the general multicomponent condensate described by
~1!. However, to our surprise, the dynamics of the to
mean-square radius is independent of such variation in
intercomponent interaction and universally determined
the same solvable equation as in the case of a sin
component (n51) condensate. Consequently, the criteri
for the collapse of the condensate at a finite time is also
same for anyn-component condensate. For the very spec
case of an additional global U(1)n symmetry in Eq.~1!, such
a result has been obtained previously in Ref.@17#. We remark
that our results are much more general. Moreover, the kn
results are reproduced in a very elegant way. We will c
sider only the most general form ofL from now on, since our
result is independent of particular details of the interactio

All the coupling constantsgabcd have inverse-mass di
mension in the natural units withc5h̄51. This allows us to
have a scale and conformally invariant theory. The act
A5*dtd2rL is invariant under the following time
dependent transformations@18–24#:

r→rh5 ṫ~ t !21/2r , t→t5t~t!, ṫ~ t !5
dt~ t !

dt
,

ca~t,r !→ca
h~ t,rh!5 ṫd/4 expS 2 im

ẗ

4ṫ
r h

2D ca~t,r !, ~2!

with the scale factort given by

t~ t !5
at1b

gt1d
, ad2bg51. ~3!

Note that all the components of the order parameter are m
tiplied by the same time dependent scale-factor and phas
the symmetry transformation above. One might naively th
that the requirement of identical phase factors for all
components of the order parameter is due to the interac
term. However, this is not the case. Even if we consider
free theory, i.e.,gabcd50 for all values of the indices, the
requirement of identical phases in Eq.~2! is essential in order
for it to be a symmetry transformation. This is precisely b
05360
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cause the transformation of the scalar fields is coupled w
that of the space-time coordinates. If we choose some spe
values for the coupling constantsgabcd such that the La-
grangian has an internal global symmetry, say, for exam
SU(n), we certainly have the freedom of varying the pha
factors up to a global SU(n) rotation. However, such addi
tional internal symmetries are completely decoupled fr
the symmetry transformations described in Eqs.~2! and ~3!,
and do not have any effect on our results.

Let us now introduce two momentsI 1 and I 2 in terms of
the densityr and the currentj , as

r~t,r !5(
a

ca* ca ,

j ~t,r !52
i

2m (
a

~ca*“ca2ca“ca* !,

~4!

I 1~t!5
m

2 E d2r r 2r,

I 2~t!5
m

2 E d2rr • j .

We are dealing with a conservative system and the total n
ber of particlesN(t)5*d2rr is a constant of motion. The
global U~1! symmetry ofL can be enlarged to U(1)n for
certain special choices ofgabcd. The total number of par-
ticles for each species is conserved separately for this c
However, as emphasized earlier, such an additional inte
symmetry does not have any significant effect on our resu
Thus, only the conservation of the total number of partic
N is important for our study. The momentI 1 is the sum of the
mean-square radii corresponding to each and every com
nent. This moment can be interpreted as the square of
width of the wave packet for the single-component cond
sate, when confined in an external harmonic trap@5#. How-
ever, for the multicomponent case, the momentI 1 cannot be
identified as the total width of the wave packet. As emph
sized in our previous work@3#, the momentI 1 has been used
extensively in the analysis of the nonlinear Schro¨dinger
equation~NLSE! @5,6,25–27# and the BEC@28#, and in op-
tics @29#. The dynamics ofI 1, when the system~1! is im-
mersed in an external time-dependent harmonic trap, is
central subject of the investigation of this paper. We sh
that the dynamics ofI 1 is universally determined by the sam
solvable equation as in the case of a single-component B

Particular choices oft(t)5t1b,a2t, andt/(11gt), cor-
respond to time translation, dilatation, and special conform
transformation. The corresponding generators of these tr
formations, the HamiltonianH, the dilatation generatorD,
and the conformal generatorK are
1-2
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EXACT RESULTS ON THE DYNAMICS OF . . . PHYSICAL REVIEW A 65 053601
H5E d2r F 1

2m (
a

u“cau2

1
1

2 (
abcd

gabcdca* cb* cccdG ,
D5tH2I 2 , ~5!

K52t2H12tD1I 1 .

These generators close under the algebra

@H,D#5 iH , @H,K#52iD , @K,D#52 iK ~6!

if we promote the fieldsca to the operatorsĉa with the
following bosonic commutation relations among themselv

@ĉa~r !,ĉb* ~r 8!#5dabd~r2r 8!,

@ĉa~r !,ĉb~r 8!#5@ĉa* ~r !,ĉb* ~r 8!#50. ~7!

The algebra given by Eq.~6! defines a conformal group
which is isomorphic to the group O~2,1! @18#. Thus, the sys-
tem ~1! has a dynamical O~2,1! symmetry with the interpre-
tation of the fieldsca as the operatorsĉa satisfying Eq.~7!.
In this article, we will be considering only the fieldsca , not
the operatorsĉa . We do not make use of the relations~7! or
the algebra given by Eq.~6! in our subsequent discussio
what is required for our study is the conserved Noet
chargesH, D, andK. We just mention, in passing, that th
results described in this article are valid for any nonrela
istic theory with a dynamical O~2,1! symmetry.

The generatorsH, D, andK are constant in time and lea
to the following equations:

dH

dt
50,

dI1

dt
52I 2 ,

dI2

dt
5H. ~8!

For time-independent solutions, neitherI 1 nor I 2 depends on
t. As a consequence, the energy of the static solutions oH
vanishes. This is also the case for the single-component B
in 211 dimensions. Even though there are extra terms
to intercomponent interaction in the case of a multicom
nent BEC, the vanishing of the energy is a universal con
quence of the underlying O~2,1! symmetry. The second equa
tion of ~8! shows that the momentI 2 is proportional to the
time variation of the momentI 1. Recalling that the momen
I 1 is identified as the total mean-square radius of the cond
sate, the momentI 2 can be related to the speed of growth
the condensate. This interpretation is also evident in the d
nition of I 2 in Eq. ~4! after decomposing the currentj as a
product of the densityr and the velocity.

Defining X5AI 1, it is easy to find a decoupled equatio
for X from Eq. ~8!:

d2X

dt2
5

Q

X3
, Q5I 1H2I 2

2 ,
dQ

dt
50. ~9!
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The constant of motionQ is the Casimir operator of the
O~2,1! symmetry. Note that the information on the Ham
tonian H is solely contained inQ. Thus, the effect of the
interaction, say, for example, the strongly repulsive or attr
tive intercomponent and intracomponent interactions, will
manifested through initial conditions onH. Equation~9! can
be interpreted as the equation of motion of a particle mov
in an inverse-square potential. Interestingly enough, this s
tem also has a dynamical O~2,1! symmetry. This reduced
system of a particle in an inverse-square potential is a w
studied problem and the solution is given by@18#

X25~a1bt!21
Q

a2
t2, ~10!

wherea andb are integration constants. Although any exa
solution of the equation of motion of the actionA is not
known, it is surprising to note how the exact time depe
dence of the momentI 1 can be obtained easily using th
underlying symmetry. We would like to stress that we a
able to determine the dynamics of the total mean-square
dius of the condensate only. The dynamics of the individ
mean-square radii associated with each component cann
obtained using our method even when there is an additio
U(1)n symmetry in the system or there is no intercompon
interaction.

The criterion for the collapse of the condensate at a fin
and real timet* is Q<0. In particular, the momentX2 van-
ishes at a finite timet* ,

t* 5
a2

~a2b21Q!
@2ab6A2Q#, ~11!

which is real if Q<0. Note that we have the freedom o
makingt* either positive or negative by choosing approp
ate values for the integration constantsa and b. With the
interpretation of Eq.~9! as a particle moving in an inverse
square potential, the collapse of the condensate can be
derstood as the fall of the particle to the center for attract
interaction. Recall that the momentI 1 is semipositive defi-
nite by definition. Thus, the exact expression forQ implies
that the condensate collapses for any initial condition ifH
<0. On the other hand, ifH.0, the condition for the col-
lapse is given by

dI1

dt u t50<22AI 1ut50uHu. ~12!

We have used the second equation of~8! in the exact expres-
sion for Q in deriving the above equation. As far as we a
aware, this is the first instance in the literature where
criterion for the collapse of the condensate of the most g
eral two-dimensional multicomponent NLSE with cubic no
linearity is given. The criterion is independent of the to
number of componentsn and any additional global interna
symmetry. Thus, the well-known results on the sing
component@25# and the multicomponent@17# NLSE’s in two
dimensions are easily reproduced from our general resu

Consider the following time-dependent transformation:
1-3
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PIJUSH K. GHOSH PHYSICAL REVIEW A 65 053601
t→t5t~t!, ṫ~ t !5
dt~ t !

dt
,

r→r h5 ṫ~ t !21/2S cosf ~ t ! sin f ~ t !

2sin f ~ t ! cosf ~ t !
D r , ~13!

ca~t,r !→ca
h~ t,rh!5 ṫd/4 expS 2 im

ẗ

4ṫ
r h

2D ca~t,r !,

with arbitrary t(t) and f (t). Note that this transformation
can be obtained by first using the transformation~2! and then
a time-dependent rotation around thez axis with a time-
dependent anglef (t). For arbitraryt(t) and f (t), the trans-
formation ~13! is not a symmetry transformation of the a
tion A; instead, it mapsA to a new actionAh5*dtd2rLh .
The new LagrangianLh reads as

Lh5(
a

S ica
h* ] tca

h2
1

2m
u“hca

hu2D
2

1

2 (
abcd

gabcdca
h* cb

h* cc
hcd

h

2(
a

S 1

2
mv~ t !r h

2uca
hu21 ḟ ca

h* Lzca
hD , ~14!

where thez component of the angular momentumLz5
2 i rh3“h , and the time-dependent frequencyv(t) of the
harmonic trap is determined as

b̈1v~ t !b50, b~ t !5 ṫ21/2. ~15!

The LagrangianLh is that of a rotating multicomponent BEC
in an arbitrary time-dependent harmonic well. Note that
external harmonic potentials are identical for all the com
nents of the condensate. This is not by choice. In fact, we
not have the freedom of generating different harmonic pot
tials for different components using the transformation in E
~13!. This is even true for the free theory, i.e.,gabcd50. The
reason is that the transformation of the scalar fields
coupled with that of the space-time coordinates. Con
quently, unphysical and unwanted terms will be generate
the LagrangianLh unless all the components of the conde
sate transform identically.

The solutions ofA and Ah are related to each othe
through the transformations in Eq.~13! with t(t) determined
for a specific trap frequency by Eq.~15!. The scale factor
t(t) can obviously be exactly determined for a large class
v(t). However, the exact solutions are not known for eith
A or Ah . This is a major problem in making use of th
mapping relatingA to Ah and vice versa. However, note th
the dynamics of the momentI 1 is uniquely determined by
Eq. ~10! independent of whether any exact solution ofA is
known or not. Thus, the transformation~13! can be used to
find the dynamics of the momentI 1,h5(a*d2rhr h

2uca
hu2 from

I 1. In particular, they are related to each other by

Xh5AI 1,h5b~ t !X„t~ t !…, ~16!
05360
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where b(t) and t(t) are determined from Eq.~15!. Thus,
even though the exact solution of the equation of motion
Ah is not known, the dynamics ofXh can be described ex
actly.

An alternative but useful expression forXh can be deter-
mined from the following equation@3#:

d2Xh

dt2
1v~ t !Xh5

Qh

Xh
3

, Qh5I 1,hHh2I 2,h
2 , ~17!

whereQh is a constant of motion. BothHh andI 2,h have the
same expressions asH and I 2, respectively, with (t,r ,ca)
replaced by (t,rh ,ca

h). Note that Eq.~17! can also be inter-
preted as describing the motion of a classical particle i
combined harmonic and inverse-square potential. The
ticle falls to the center for an attractive (Qh,0) inverse-
square potential, independent of the time dependence o
harmonic trap. This implies that the condensate collapses
finite time forQh,0. Analyzing the exact expression forQh
further, we find that the condensate collapses for any ini
condition ifHh<0. ForHh.0, the condition for the collapse
is given by

dI1,h

dt U
t50

,22A~ I 1,hHh!u t50, ~18!

where the relation@3# İ 1,h52I 2,h , valid for the system de-
scribed by the actionAh , has been used. As far as we a
aware, this is the first time in the literature that a criterion
the collapse of the condensate in the most general t
dimensional multicomponent GPE with cubic nonlinear
and an arbitrary time-dependent harmonic trap is given. N
that the criterion is independent of the total number of co
ponentsn and any additional internal global symmetry. Th
known results for the single-component@26# and multicom-
ponent@17# GPE’s with time-independent harmonic trap
211 dimensions are easily reproduced from this very g
eral result. Further, the criterion for collapse in a syst
without or with a harmonic trap is also identical, except th
there is no equality sign in Eq.~18! for the latter case@com-
pare with Eq.~12!#. This is precisely because, forQ,Qh50,
Eqs.~9! and~17! describe the dynamics of a free particle a
that of a particle in a time-dependent harmonic trap, resp
tively. Thus, nothing can be said conclusively about the
namical ~in!stability for the latter case, unless the time d
pendence of the frequency of the trap is explicitly specifi
For a time-independent trap, the equality sign is recovere
Eq. ~18!; and, of course, the known result@17,26# is identi-
cally reproduced.

We have shown that the criterion for the collapse of t
condensate in a (211)-dimensional system governed by th
LagrangianLh is independent of the total number of comp
nentsn. It is known @26# that the same criterion for the co
lapse of the condensate is also valid for the LagrangianLh in
dimensionsd>211 with n51, v(t)5v05const, and ḟ
50. So the criterion for collapse is independent of the u
derlying O~2,1! symmetry, which the cubic NLSE has onl
in d5211. The dynamical O~2,1! symmetry only helps us
1-4
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EXACT RESULTS ON THE DYNAMICS OF . . . PHYSICAL REVIEW A 65 053601
in deriving the exact result in a much more simple and
egant way. Based on this observation, we conjecture tha
criterion for the collapse of the condensate ofLh in dimen-
sionsd>211, with v(t)5v0 and ḟ 50, is independent of
the total number of componentsn and the criterion is the
same as stated in this article ford5211. Note that the
physically interesting case ofd5311 is also included in our
conjecture.

The solution forXh is given by

Xh
25u2~ t !1

Qh

W2
v2~ t !, W~ t !5uv̇2vu̇, ~19!

whereu(t) and v(t) are two independent solutions of E
~15! satisfying u(t0)5Xh(t0), u̇(t0)5Ẋh(t0), v̇(t0)50,
andv(t0)Þ0. The above solution is valid for arbitraryQh :
positive, negative, or zero. We will be considering the ca
Qh>0 from now on, since we have already argued that
condensate collapses forQh,0. We obtained the same ex
pressions~16! and~19! in Refs.@3,4# for the dynamics of the
width of the wave packet of a single-component condens
in 211 dimensions. So the results of the Refs.@3,4# are
equally valid for the general multicomponent condensate
211 dimensions with the momentI 15Xh

2 identified as the
total mean-square radius. In particular,~a! the system de-
scribed byLh has an explosion-implosion duality forḟ (t)
50 and eitherv(t)50 or v(t)5t22, ~b! the condensate
v.

s

u

. P

. P

n-

.

, F

E

05360
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exhibits extended parametric resonance for a periodicv(t)
and arbitraryf (t), and ~c! the dynamic~in!stability of the
system is independent off (t), i.e., the same for both rotatin
and nonrotating BEC’s. We refer the readers to Refs.@3,4#
for further details.

Finally, we conclude with the following comment. Th
results presented in this article for the multicomponent B
are a generalization of what is already known for the sing
component BEC in two dimensions. The results obtained
both these cases are also identical with the identification
the momentI 1 as the total mean square radius. In particul
the dynamics of the momentI 1 is determined from the sam
solvable equation as in the case of a single-component B
with all the information about the Hamiltonian encoded in
the constant of motionQh . Apart from its relevance to the
ongoing experiments on BEC’s, the importance of this res
lies in its universality. No matter how many componen
there are, or how they interact among themselves, or e
whether they are rotating or nonrotating, the dynamics of
total mean-square radius is universally determined by
same equation. This is indeed a counterintuitive result
may be realized in the laboratory in the near future.
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