
PHYSICAL REVIEW A, VOLUME 65, 053412
Phase fluctuations of an electron cyclotron: Nondissipative decoherence
in a quantum stochastic oscillator

S. Brouard and J. Plata
Departamento de Fı´sica Fundamental II, Universidad de La Laguna, La Laguna E38204, Tenerife, Spain

~Received 25 September 2001; published 8 May 2002!

The phase damping induced in the cyclotron mode of a trapped electron by the coupling to the axial
fluctuations is studied analytically. This system, described as a nonlinear oscillator stochastically driven in
frequency, allows testing the generality of some elements present in the phenomenology of decoherence. In our
approach, the reduced density matrix is obtained by performing a statistical average from the propagator for
each noise realization. For short times, the decay of the coherences presents a nonexponential form, rooted in
the non-Gaussian character of the stochastic driving. For large times, the decay becomes purely exponential,
the rate showing a complex dependence on the difference between the Fock indices. As the populations do not
change, the asymptotic state corresponds to a nonthermalized statistical mixture.
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Decoherence in open quantum systems, i.e., the evolu
of a quantum superposition into a statistical mixture in
‘‘preferred’’ basis, has been the subject of intense theoret
research@1–7#. In diverse contexts, different decoherin
mechanisms have been identified, and a standard metho
ogy, based on a system-plus-reservoir approach@8#, has been
widely applied. The problem, relevant to fundamental iss
such as quantum measurement@8#, quantum-to-classica
transition@1#, or generation of superpositions of macrosco
cally distinguishable states~cat states! @2#, is also crucial for
applications, such as quantum-information processing@9#,
which require highly coherent operations. Recently, so
predictions of the theory relative to decoherence rates of
soscopic superpositions have been experimentally verifie
cavity radiation fields@3# and in trapped ions@2#. In some of
these experiments, different reservoirs have been ‘‘en
neered’’ by incorporating classical fluctuations in paramet
of the microscopic systems. In particular, a phase reser
and the associated nondissipative decoherence process
been simulated by randomly driving the frequency of
trapped ion@2#. Here, we present analytical work on a relat
mechanism of phase damping, namely, the dephasing
duced in the cyclotron mode of an electron in a Penning t
by the fluctuations of the axial coordinate@10#. This system,
modeled as an anharmonic oscillator driven in frequency
non-Gaussian noise, provides a realizable scenario for a
riety of fundamental effects@9–16#. Our study, which in-
cludes the harmonic and Gaussian regimes as partic
cases, uncovers important elements in the phenomenolog
decoherence and gives a framework for testing their ge
ality. Specifically, the emergence of nonexponential de
and nontrivial dependence of the dephasing on thesepara-
tion of states is discussed.

An electron in a Penning trap is described in terms
three modes~magnetron, axial, and cyclotron! with widely
different time scales. Following standard treatments@10#, we
first eliminate adiabatically the magnetron motion. The ax
coordinate,z, is coupled to a measuring external circuit th
introduces resistive damping and noise in the mode, driv
it to equilibrium at a temperatureTz . A classical description
of this process is allowed@see Eq.~3! below#; moreover,
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assuming that its relaxation time is much smaller than a
other relevant time scale@10,14,15#, we can interpret the
stationary axial coordinate as an effective dynamical para
eter for the cyclotron evolution, which is then governed
the Hamiltonian@11,12#

H5\@vc1Dvc~ t !#a†a2
1

2
\d~a†a!2. ~1!

Relativistic corrections enter this description through t
nonlinear term, characterized byd5\vc

2/mc2 (m is the
mass of the electron!, and through the coupling toz, incor-
porated into the dynamical shift in frequencyDvc

r (t)5
2vcEz/2mc2, whereEz is the axial energy. This coupling
between axial and cyclotron modes can be enhanced
means of a ‘‘magnetic bottle,’’ i.e., by including magnet
field inhomogeneities in the trap. In particular, the arran
ment implemented in Ref.@11#, leads to the interaction term
V52mBB2(a†a11/21Sz /\)z2, wheremB is the Bohr mag-
neton,B2 is a parameter of the additional magnetic field, a
Sz is the spin operator~a constant of motion in this scheme!.
This potential displacesvc in Dvc

m(t)52mBB2Ez /\mvz
2 .

Given that both, relativistic and magnetically induced, sh
are proportional toEz , and, therefore, to the square of th
axial amplitudeuz̄u2 @z5 z̄ exp(ivzt)# @10#, we will make a
unified treatment of both effects by considering in Eq.~1! a
displacement of the form

Dvc~ t !5luz̄u2,

l referring to the total coupling constant. Note that this
teraction shifts the axial frequency proportionally to the c
clotron occupation number; the measurement of this shif
the usual way of obtaining information on the cyclotro
state.

We aim at describing the influence of the axial noise
the cyclotron mode. The importance of the role played by
fluctuations ofvc in the heating and decoherence of the s
tem has been pointed out in previous work@11,12#. Here, to
isolate this aspect of the dynamics, we assume that spo
neous emission, caused by the interaction with the elec
©2002 The American Physical Society12-1
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magnetic field of the cavity, is inhibited through a prop
tuning of the cavity frequency@11#. For the model system o
Eq. ~1!, it is known that, in the absence of the noisy drivin
an initial coherent stateua& evolves att5p/d into a super-
position of coherent states with opposed phases, nam
(eip/4ua&2e2 ip/4u2a&)/A2, a complete revival taking plac
at t54p/d @17–19,14#. These findings have led to conje
tures on generation of cat states in this scenario. The stud
the robustness of these features against noise is one o
objectives. In our approach, the exact time propagator
each noise realization is obtained first. Then, a statistical
erage is performed to find the reduced density matrix of
cyclotron mode@20#, the results being particularized to sp
cific axial-noise characteristics. Finally, thefidelity @4,5# of
different states is calculated.

In the rotating frame defined by the unitary transformat
U15exp(2ivca

†at), the time evolution for each stochast
realization is given by

uc~ t !&5expF2 iQ~ t !a†a1 i
1

2
d~a†a!2t G uc~0!&,

whereQ(t) is a variable defined by

Q~ t ![E
0

t

Dvc~ t8!dt8,

which depends on the axial dynamics and corresponds
nonstationary random process@21#. The evolution of the re-
duced density matrix is obtained by averaging over fluct
tions (̂ •••& f); hence, in the Fock states, it reads

rm,n~ t !5rm,n~0!e2 i (n22m2)dt/2^ei (n2m)Q(t)& f . ~2!

The effect of the axial output is encapsulated in^exp@i(n
2m)Q(t)#&f . The nonzero mean value ofEz leads to a linear
time increase in̂ Q(t)& f and consequently, to an oscillatio
in the coherences, which modulates the effect of the qua
potential. Moreover, from the time increasing variance ofQ,
the decay of the coherences can be predicted. Obviously
populations do not change as the Fock states are eigens
of the complete Hamiltonian.

Now let us explicitly consider the statistical properties
Q(t). The axial motion is typically monitored by driving i
with a nearly resonant field@10#. In this case, the stochast
evolution ofz is described by

z̈1gzż1vz
2z5h~ t !, ~3!

where h(t) is Gaussian white noise witĥh(t)& f50 and
^h(t)h(t8)& f5(4gzkBTz /m)d(t2t8), gz being the resis-
tive damping rate@21#. For small noise and friction, analyti
cal solutions of Eq.~3! can be found as, in the rotating fram
defined byz̄5exp(2ivzt)z, the evolution corresponds to a
Ornstein-Uhlenbeck process@22#. It is then shown that the
non-Gaussian variableuz̄u2 has an exponential correlatio
function; its stationary probability density parallels the Bo
zmann distribution forEz . Q(t) is also characterized: th
mean value,̂ Q(t)& f5Vt, with V52lkBTz /mvz

2 , shifts
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vc ; the fluctuations around this average lead to the deca
the coherences. Both effects are properly accounted fo
the average present in Eq.~2!, which is obtained as@23,10#

^ei (n2m)Q(t)& f

5
4gm,n8 gz

~gm,n8 1gz!
2e(gm,n8 2gz)t/22~gm,n8 2gz!

2e2(gm,n8 1gz)t/2
,

~4!

with gm,n8 5@gz
224igz(n2m)V#1/2. Figure 1 illustrates the

dependence ofrm,n(t) on time. Remarkably, the decay, iso
lated from the deterministic and noise-induced oscillatio
is nonexponential for short times. This feature, which is a
present, with different origin, in other decoherence schem
@2,4#, is rooted in the non-Gaussian character of the rand
driving, i.e., of uz̄u2. In effect, if we artificially assign a
Gaussian statistic with an arbitrary correlation time touz̄u2, a
single exponential is found. Note that the applicability
nonexponential decay to implementquantum Zeno effect,
suggested in other contexts@2,4#, could also be feasible in
this model. In Eq.~4!, an exponential behavior for long time
is also apparent, the decay rate,G[Re(gm,n8 2gz)/2, depend-
ing in a complex way onTz , l, and (n2m). These non-
trivial characteristics of the dephasing are directly related
the non-Lorentzian line profiles calculated and measured
Ref. @10#. We emphasize that our results, with no restrictio
are applicable to the Penning trap if the experimental se
can be arranged to havez, during the whole process of deca
in the stationary state corresponding to the population of
initially prepared cyclotron state. If, on the contrary,z is out
of equilibrium at some point in the process, the validity
our approach is restricted to the regimegz@G, where the
assumed fast relaxation ofz is justified.

FIG. 1. Logarithmic plot ofurm,n(t)/rm,n(0)u versus time for
different values ofm2n. V/2p547.75 s21 and gz510/3 s21

~solid line! or gz5100/3 s21 ~dashed line!. The inset magnifies the
short-time region.
2-2
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Let us now consider two limiting cases that correspond
qualitatively different behaviors.

~a! As the limit V@gz is reached, the non-Lorentzia
shape of the lines becomes more apparent, and so doe
nonexponential character of the decay for short times. Mo
over, the rate for large times can be approximated aG
;(n2m)1/2gz

1/2V1/2. Figure 2 illustrates the linear depen

FIG. 2. Logarithmic plot ofurm,n(t)/rm,n(0)u at t51 s versus
the square root of the separation between states, (n2m)1/2. V/2p
547.75 s21 and gz510/3 s21 ~solid line! or gz5100/3 s21

~dashed line!.
05341
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dence ofG on (n2m)1/2 for parameters of previous exper
mental realizations@10#; note that the effect of noise be
comes stronger asgz increases.

~b! In the limit gz@V, a Gaussian approximation foruz̄u2
is valid and, consistently with the previous discussion,
decay becomes exponential, the average being

^ei (n2m)Q(t)& f5e2(n2m)2V2t/gzei (n2m)Vt. ~5!

This behavior parallels that corresponding, in a Bo
Markov approach@8#, to an oscillator coupled to a phas
reservoir throughHint5a†a( i(bi1bi

†), where bi denotes
the annihilation operator of a bath mode. This interact
induces the decay, purely exponential, of the coherences
rate scaling with (n2m)2. As the populations do not chang
the asymptotic state is a statistical mixture with nontherm
ized weights. This model corresponds to a couplingDvc(t)
5lz in our scheme; indeed, the found analogy is a con
quence of the similar statistical properties ofuz̄u2 andz̄ in the
limit considered. Note that a standard treatment of a syst
plus-reservoir model, which implies a second-order appro
mation for the interaction, and, therefore, up to two-tim
correlations for the bath operators@8#, cannot account for the
effect of non-Gaussian noise.

A simple analysis of how the phase damping affects
stability of different initially prepared states can be ma
calculating thefidelity, defined asF5Šu^c(0)uc(t)&u2

‹f .
~i! For a Fock state, i.e., for an eigenstate of the Ham

tonian, we trivially haveF51. The effect of noise is a ran
dom driving of the phase, the energy changing asvc is dis-
FIG. 3. Q function for a coherent stateua& (a53) at t50 ~a!, t5p/d ~b!, t54p/d ~c!; and, in the deterministic case att5p/d ~d!.
d51100 s21, V/2p547.75 s21, andgz510/3 s21.
2-3
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placed by V. It is worth recalling that quantum
nondemolition measurement ona†a has been implemente
in this system@11#.

~ii ! For a superposition of two Fock states, i.e., f
uc(0)&5cnun&1cmum&, we find

F5122ucnu2ucmu2F12
1

2
e2 i (n22m2)d/2^ei (n2m)Q(t)& f1c.c.G .

In the limit gz@V @see Eq.~5!#, the nonoscillating part ofF
has a form similar to that detected for a trapped ion driven
frequency by zero-mean Gaussian noise@2#. An exponential
dependence on (n2m)2 and on the variance is present
both systems; in our case, it is the variance ofuz̄u2 that is
relevant. As opposed to the model of Ref.@2#, our treatment
requires no adiabaticity condition for the noise correlat
time.

~iii ! For an initial coherent stateua&, the evolution of the
Q function reads

Q~q,p,t !5e2uau22ubu2 (
m50

`

(
n50

`
~ab* !n~a* b!m

n!m!

3e2 i (n22m2)dt/2^ei (n2m)Q(t)& f ,

FIG. 4. FidelityF of a coherent stateua& (a53) as a function
of time for gz510/3 s21 ~long-dashed line!, gz5100/3 s21 ~dot-
ted line!, gz5103 s21 ~short-dashed line!, and gz5104/3 s21

~solid line!. V/2p547.75 s21.
.
-

.
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with b5q1 ip. In Fig. 3, thisQ function is compared with
that corresponding to the noiseless case. The generatio
catlike states and the occurrence of revivals, present in
deterministic system and rooted in the nonlinear term,
still be identified for larged/G; the shifts from the determin
istic locations are due to the nonzero^Q(t)& f . To isolate the
effect of noise from the influence of the nonlinearity, w
perform the additional transformationU25exp@id(a†a)2t/2#.
In this new frame, the fidelity ofua& is

F5^e22uau2[12cosQ(t)]& f

5e22uau2F I 0~2uau2!12(
k51

`

I k~2uau2!

3^coskQ~ t !& f G ,

whereI k(x) are the modified Bessel functions@24#. F is plot-
ted as a function of time in Fig. 4. The partial revivals, whi
become less pronounced asG/V increases, are the combine
effect of the frequency shift and the damping in phase. As
averageŝ coskQ(t)&f , which incorporate the decay of th
different coherences present inua& (k[n2m), go to zero,
the asymptotic fidelity,e22uau2I 0(2uau2), is reached.

In conclusion, the coupling of an electron cyclotron to t
axial fluctuations, leads to a nondissipative decoherence
cess with nonstandard characteristics. Our study genera
previous theoretical work on phase damping: nonlinea
and unrestricted random properties are simultaneously c
sidered. As the nonlinear potential commutes with the nu
ber operator, its effect merely consists in adding an osci
tion to the Fock state coherences. In contrast, nontri
effects derive from the stochastic driving. Especially int
esting is the nonexponential decay of the coherences, fo
for short times, and rooted in the non-Gaussian propertie
the noise. For large times, a single exponential emerges
rate presenting a complex dependence onTz , l, and (n
2m). In the limit gz@V, where the noisy driving has ap
proximate Gaussian character, the decay becomes purel
ponential, the rate depending quadratically on bothTz andl,
and showing the standard linear dependence on (n2m)2.
The applicability of these results is not restricted to the P
ning trap: as the study traces back some elements of
decoherence phenomenology to characteristics of the fl
tuations, it can open the way to experimental tests in rela
systems.
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