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Phase fluctuations of an electron cyclotron: Nondissipative decoherence
in a quantum stochastic oscillator
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The phase damping induced in the cyclotron mode of a trapped electron by the coupling to the axial
fluctuations is studied analytically. This system, described as a nonlinear oscillator stochastically driven in
frequency, allows testing the generality of some elements present in the phenomenology of decoherence. In our
approach, the reduced density matrix is obtained by performing a statistical average from the propagator for
each noise realization. For short times, the decay of the coherences presents a nonexponential form, rooted in
the non-Gaussian character of the stochastic driving. For large times, the decay becomes purely exponential,
the rate showing a complex dependence on the difference between the Fock indices. As the populations do not
change, the asymptotic state corresponds to a honthermalized statistical mixture.
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Decoherence in open quantum systems, i.e., the evolutioassuming that its relaxation time is much smaller than any
of a quantum superposition into a statistical mixture in aother relevant time scalfl0,14,19, we can interpret the
“preferred” basis, has been the subject of intense theoreticadtationary axial coordinate as an effective dynamical param-
research[1-7]. In diverse contexts, different decohering eter for the cyclotron evolution, which is then governed by
mechanisms have been identified, and a standard methodahe Hamiltonian 11,12
ogy, based on a system-plus-reservoir appr¢8grhas been
widely applied. The problem, relevant to fundamental issues
such as quantum measuremdi®], quantum-to-classical
transition[1], or generation of superpositions of macroscopi-
cally distinguishable stategat states[2], is also crucial for Relativistic corrections enter this description through the
applications, such as quantum-information proces$@lg  nonlinear term, characterized b§=#%wi/mc® (m is the
which require highly coherent operations. Recently, soménass of the electronand through the coupling tg incor-
predictions of the theory relative to decoherence rates of megporated into the dynamical shift in frequencywg(t)=
soscopic superpositions have been experimentally verified in- w.E,/2mc?, whereE, is the axial energy. This coupling
cavity radiation field§3] and in trapped iong2]. In some of between axial and cyclotron modes can be enhanced by
these experiments, different reservoirs have been “engimeans of a “magnetic bottle,” i.e., by including magnetic
neered” by incorporating classical fluctuations in parametergield inhomogeneities in the trap. In particular, the arrange-
of the microscopic systems. In particular, a phase reservoiment implemented in Refl11], leads to the interaction term
and the associated nondissipative decoherence process have 2ugB,(a’a+1/2+S,/)z?, whereug is the Bohr mag-
been simulated by randomly driving the frequency of aneton,B, is a parameter of the additional magnetic field, and
trapped iorf2]. Here, we present analytical work on a relatedS, is the spin operatofa constant of motion in this scheme
mechanism of phase damping, namely, the dephasing irfhis potential displaces in Aw(t)=2ugB,E,/Amw?.
duced in the cyclotron mode of an electron in a Penning trafGiven that both, relativistic and magnetically induced, shifts
by the fluctuations of the axial coordindtk0]. This system, are proportional t&,, and, therefore, to the square of the
modeled as an anharmonic oscillator driven in frequency by, i amplitude|?|2 [z:?expawzt)] [10], we will make a

non-Gaussian noise, provides a realizable scenario for a Viified treatment of both effects by considering in Eb.a
riety of fundamental effect§9—16. Our study, which in- displacement of the form

cludes the harmonic and Gaussian regimes as particular

cases, uncovers important elements in the phenomenology of Aw(H)=\|Z?,

decoherence and gives a framework for testing their gener-

ality. Specifically, the emergence of nonexponential decay referring to the total coupling constant. Note that this in-

and nontrivial dependence of the dephasing onsigara-  teraction shifts the axial frequency proportionally to the cy-

tion of states is discussed. clotron occupation number; the measurement of this shift is
An electron in a Penning trap is described in terms ofthe usual way of obtaining information on the cyclotron

three modegmagnetron, axial, and cyclotrpnvith widely  state.

different time scales. Following standard treatmét, we We aim at describing the influence of the axial noise on

first eliminate adiabatically the magnetron motion. The axialthe cyclotron mode. The importance of the role played by the

coordinatez, is coupled to a measuring external circuit thatfluctuations ofw. in the heating and decoherence of the sys-

introduces resistive damping and noise in the mode, drivingem has been pointed out in previous wik,12. Here, to

it to equilibrium at a temperaturg,. A classical description isolate this aspect of the dynamics, we assume that sponta-

of this process is allowefisee Eq.(3) below]; moreover, neous emission, caused by the interaction with the electro-

1
H=%[w.+Aw(t)]a’a— Eh&(a*a)z. (1)
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magnetic field of the cavity, is inhibited through a proper 0
tuning of the cavity frequenclll]. For the model system of 0
Eq. (1), it is known that, in the absence of the noisy driving,
an initial coherent statpr) evolves att= 7/ § into a super- —0.5 1
position of coherent states with opposed phases, namely -1 ) N
(e a)—e "™ — a))/\/2, a complete revival taking place __ N 4 ‘
att=47/5 [17-19,14. These findings have led to conjec- € N 0 0002 0004
tures on generation of cat states in this scenario. The study c& _ |
the robustness of these features against noise is one of o€ m-n=2 AN
objectives. In our approach, the exact time propagator for&Ei AN \\\\
each noise realization is obtained first. Then, a statistical av= \\\ RS
erage is performed to find the reduced density matrix of the -3 1 AN RS
cyclotron modd20], the results being particularized to spe- \\\ RN
cific axial-noise characteristics. Finally, thielelity [4,5] of AN
different states is calculated. AN

In the ro.tating frame d'efined by the unitary transformati.on -4 0 0.01 0.02 0.03 > 0.04 0.05
U;=exp(—ina'at), the time evolution for each stochastic time ]

realization is given by

FIG. 1. Logarithmic plot of|p, n(t)/pm n(0)| versus time for
|(0)), different values ofm—n. Q/27=47.75 s! and y,=10/3 s?
(solid line) or y,=100/3 s! (dashed ling The inset magnifies the
short-time region.

lp(t))= exr{ —i0(t)ata+i %5(aTa)2t

where® (t) is a variable defined by

t w.; the fluctuations around this average lead to the decay of
@(t)zf Awg(t")dt’, the coherences. Both effects are properly accounted for by
0 the average present in E@), which is obtained ag23,10

which depends on the axial dynamics and corresponds to(ai(nfm)@(t)
nonstationary random procefal]. The evolution of the re- {® )t
duced density matrix is obtained by averaging over fluctua- 4!
tions ((- - - )¢); hence, in the Fock states, it reads Ymn?z

(Vi + ¥2)260ma 12 ()2 Oma® 7U2"

(4)

—i(n2=m2 i(h—m)E
pm,n(t)zpm,n(o)e i(n m)é‘t/2<e|(n m)O(t)>f. (2)

The effect of the axial output is encapsulated({axdi(n
—m)@(t)]);. The nonzero mean value Bf, leads to a linear With v}, ,=[v5—4iy,(n—m)Q]"2 Figure 1 illustrates the
time increase i(O(t)); and consequently, to an oscillation dependence o, ,(t) on time. Remarkably, the decay, iso-
in the coherences, which modulates the effect of the quartitated from the deterministic and noise-induced oscillations,
potential. Moreover, from the time increasing varianc&®of is nonexponential for short times. This feature, which is also
the decay of the coherences can be predicted. Obviously, thiesent, with different origin, in other decoherence schemes
populations do not change as the Fock states are eigenstat@s4], is rooted in the non-Gaussian character of the random
of the complete Hamiltonian. o _ driving, i.e., of |z]2. In effect, if we artificially assign a
Now let us explicitly consider the statistical properties of g4y ssjan statistic with an arbitrary correlation timézg, a
O(t). The axial motion is typically monitored by driving it gingle exponential is found. Note that the applicability of
with a_nearly resonant fieldLO]. In this case, the stochastic nonexponential decay to implemegtiantum Zeno effect
evolution ofz is described by suggested in other contexig,4], could also be feasible in
this model. In Eq(4), an exponential behavior for long times
is also apparent, the decay rafes Re(yy, ,— v,)/2, depend-
ing in a complex way onT,, A, and (—m). These non-
trivial characteristics of the dephasing are directly related to
tive damping raté21]. For small noise and friction, analyti- the non-Lorentzian Iine profiles calculated' and meas'ur_ed in
cal solutions of Eq(3). can be found as, in the rotat'ing frame Ref. [10]'. We emphasize that our res;_ults, with no restrictions,
] = ] A are applicable to the Penning trap if the experimental setup
defined byz=exp(-iwt)z the evolution corresponds to an can pe arranged to hazeduring the whole process of decay,
Ornstein-Uhlenbeck proce$82]. It is then shown that the i, the stationary state corresponding to the population of the
non-Gaussian variabléz|? has an exponential correlation initially prepared cyclotron state. If, on the contrazys out
function; its stationary probability density parallels the Bolt- of equilibrium at some point in the process, the validity of
zmann distribution forE,. ®(t) is also characterized: the our approach is restricted to the reginyg>T", where the
mean value,(0O(t));=Qt, with Q=2)\kBTZ/mw§, shifts  assumed fast relaxation afis justified.

Z+ y,z+ w?z=7(1), (3

where 7(t) is Gaussian white noise witlin(t));=0 and
(p() p(t"))i=(4ykgT,/m)S(t—t"), v, being the resis-
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0 dence ofl" on (n—m)Y? for parameters of previous experi-
mental realizationg10]; note that the effect of noise be-
comes stronger ag, increases.

(b) In the limit y,5Q, a Gaussian approximation ffz|?
is valid and, consistently with the previous discussion, the
decay becomes exponential, the average being

<ei(n—m)(—)(t)>f _ e—(n—m)ZQZt/yzei(n—m)ml (5)

N[ .(8)/p.. (O]

40 N This behavior parallels that corresponding, in a Born-
N Markov approach8], to an oscillator coupled to a phase
N reservoir throughH;,,=a'aZ;(b;+b]), whereb; denotes
N the annihilation operator of a bath mode. This interaction
AN induces the decay, purely exponential, of the coherences, the
—60 N rate scaling with §—m)?2. As the populations do not change,
2 3 4 the asymptotic state is a statistical mixture with nonthermal-
(n-m)"® ized weights. This model corresponds to a couplng(t)
=\z in our scheme; indeed, the found analogy is a conse-

quence of the similar statistical propertied of andz in the
limit considered. Note that a standard treatment of a system-
plus-reservoir model, which implies a second-order approxi-
mation for the interaction, and, therefore, up to two-time
correlations for the bath operatdi&|, cannot account for the
Let us now consider two limiting cases that correspond taeffect of non-Gaussian noise.
qualitatively different behaviors. A simple analysis of how the phase damping affects the
(& As the limit Q> 1y, is reached, the non-Lorentzian stability of different initially prepared states can be made
shape of the lines becomes more apparent, and so does tba@lculating thefidelity, defined as==(|(#(0)|y(t))|?); .
nonexponential character of the decay for short times. More- (i) For a Fock state, i.e., for an eigenstate of the Hamil-
over, the rate for large times can be approximatedl’as tonian, we trivially haveF=1. The effect of noise is a ran-
~(n—m)¥2y12012 Figure 2 illustrates the linear depen- dom driving of the phase, the energy changingsass dis-

FIG. 2. Logarithmic plot ofl py, o(t)/pmn(0)| att=1 s versus
the square root of the separation between statesnf)*? Q/27
=47.75 s! and y,=10/3 s (solid line or v,=100/3 s?
(dashed ling
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FIG. 3. Q function for a coherent stafer) (a=3) att=0 (a), t=a/4 (b), t=4=/5 (c); and, in the deterministic case tat 7/ 5 (d).
5=1100 s!, Q/27=47.75 s, andy,=10/3 sL.
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1 with B=q+ip. In Fig. 3, thisQ function is compared with
that corresponding to the noiseless case. The generation of
catlike states and the occurrence of revivals, present in the
0.8 1 deterministic system and rooted in the nonlinear term, can
still be identified for large5/T"; the shifts from the determin-
istic locations are due to the nonz€® (t));. To isolate the
effect of noise from the influence of the nonlinearity, we
perform the additional transformatidn,=exgi&aa)’t/2].

In this new frame, the fidelity ofa) is

o
o

Fidelity

I
»

F= <e—2|01\2[1—cos(~)(t)]>f

0.2 x
:e—zaz{lommmzz 2lal?
k=1

x(cosk@(t))f},

time [s]

FIG. 4. FidelityF of a coherent statey) (a=3) as a function ~Wherel(x) are the modified Bessel functio[&4]. F is plot-
of time for v,=10/3 s * (long-dashed ling y,=100/3 s (dot-  ted as a function of time in Fig. 4. The partial revivals, which
ted ling, y,=10° s ! (short-dashed line and y,=10%3 s  become less pronounced B&) increases, are the combined
(solid ling). Q/27=47.75 s'. effect of the frequency shift and the damping in phase. As the
averages(cosk®(t));, which incorporate the decay of the
placed by Q. It is worth recalling that quantum different coherences present|ia) (k=n—m), go to zero,
nondemolition measurement @ia has been implemented the asymptotic fide|itye_2|a|2|0(2|a|2), is reached.

in this systen{11]. . _ In conclusion, the coupling of an electron cyclotron to the
(i) For a superposition of two Fock states, i.e., forayia| fluctuations, leads to a nondissipative decoherence pro-
|#(0))=cqn)+cpnlm), we find cess with nonstandard characteristics. Our study generalizes
1 previous theoretical work on phase damping: nonlinearity
F=1-2|cy|?lcml? 1— Ee—i(nz—mz’)ﬁ/2<ei(n—rn)<~)(t)>f+C.C_ _ and unrestricted random properties are simultaneously con-

sidered. As the nonlinear potential commutes with the num-
ber operator, its effect merely consists in adding an oscilla-

h ¢ il hat d df dion dri _tion to the Fock state coherences. In contrast, nontrivial
as a form similar to that detected for a trapped ion driven iNytects derive from the stochastic driving. Especially inter-

frequency by zero-me?n Gaussian nc[@_]a An e_xponentlal_ esting is the nonexponential decay of the coherences, found
dependence onnt-m)“ and on the variance is present in ¢, short times, and rooted in the non-Gaussian properties of
both systems; in our case, it is the variance{aif that is  the noise. For large times, a single exponential emerges, the
relevant. As opposed to the model of REf], our treatment  rate presenting a complex dependenceTgn A, and (
requires no adiabaticity condition for the noise correlation—m). In the limit y,>, where the noisy driving has ap-

In the limit y,> Q) [see Eq(5)], the nonoscillating part of

time. proximate Gaussian character, the decay becomes purely ex-
(III) For an initial coherent Staﬂm), the evolution of the ponentiaL the rate depending quadratica”y on b'bzthnd)\’
Q function reads and showing the standard linear dependence ron )2
v - .o T_he applicability of these results is not restricted to the Pen-
Qqpt)—e 2B S (af*)"(a*B) ning trap: as the study traces back some elements of the
e M=0 n=0 n!'m! decoherence phenomenology to characteristics of the fluc-
tuations, it can open the way to experimental tests in related
™ e—i(nz—mz)ﬁt/2<ei(n—m)(~)(t)>f ’ systems.
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