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Absorption and recurrence spectra of hydrogen in crossed electric and magnetic fields
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The absorption spectrum of the hydrogen atom in crossed electric and magnetic fields was measured. The
magnetic field was set at 6.002 T, and the electric field was fixed at several values from 750 to 1000 V/cm. The
observations require several different theoretical methods for their interpretation:~1! The spectrum is ‘‘un-
scaled,’’ the recurrences are weak, and their periods vary with energy over the interval of the observations. This
observation caused us to develop a chirped Fourier transform method to extract closed orbits from the mea-
sured spectra.~2! The absorption spectrum consists of quasidiscrete peaks superposed on a smoothly rising
continuum. To interpret this observation, a theoretical model of the continuum absorption is created, and we get
results consistent with the measurements.~3! The experiments distinguish between ‘‘prompt’’ and ‘‘delayed’’
electrons, corresponding to lifetimes of the excited hydrogen atoms that are, respectively, less than or greater
than about 100 ns.~4! At high energies, the measured absorption spectrum contains some regular quasidiscrete
states. We use an Einstein-Brillouin-Keller quantization method to identify these as states that lie close to the
plane perpendicular to the magnetic field.

DOI: 10.1103/PhysRevA.65.053408 PACS number~s!: 32.80.Rm, 03.65.Sq, 32.60.1i
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I. INTRODUCTION

Studies of the behavior of atoms in crossed fields go b
to the earliest days of quantum mechanics, and today the
renewed interest in this problem@1#. Recently, Tong and Chu
@2# and Rao, Delande, and Taylor@3# carried out quantum
calculations of high Rydberg states of hydrogen in cros
fields, and the latter interpreted the results using closed o
theory. A few years ago, Raithel and Walther@4# reported a
detailed experimental study of rubidium atoms in cross
fields. They observed many recurrences associated
closed orbits, examined long-lived vs short-lived states,
studied the ‘‘threshold’’ energy for ionization. They define
this ‘‘threshold’’ to be the energy at which half of the excite
atoms have lifetime less than 20ms. They found that it
seems to follow classical scaling laws, and they propose
mixed quantum-classical theory to explain its behavior.

Several other studies have also focused on the thres
for ionization. Uzer and Farrelly@5# examined the hydrogen
atom in crossed fields theoretically, and they argued that
threshold should simply correspond to the saddle point,
thus should be independent of the magnetic field. Sub
quently, Jaffe´ et al. @6# examined planar orbits of this syste
in more detail, and they interpreted ionization using a frac
tiling of the Poincare´ plane. Presently these theories are n
fully in accord with experiments; perhaps part of the probl
is that they do not take account of the fact that electrons m
begin close to the nucleus.

Other experiments and calculations focused on the l
times of excited states of atoms in fields. Koch and Mari
@7# measured the lifetimes of hydrogen atoms in elec
fields. Lifetimes of excited states of organic molecules in
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electric and in crossed electric and magnetic fields were s
ied in @8#. In these experiments, the excitation energy w
fixed within a small range, and the time spectrum of escap
electrons was measured. The theoretical interpretation
volved classical trajectory calculations including both elas
and inelastic scattering of the electron from the molecu
ion core. Since the organic molecule constitutes a large,
lar, and excitable core, we expect the behavior to be ra
different from that in hydrogen.

Raković and Chu @9# discovered an integrable Hami
tonian system which is similar to the hydrogenic cross
field system, but which possesses a full set of conserva
laws. This is a stimulating discovery, but since the hydrog
atom undergoes chaotic ionization, it is unclear how help
this integrable model can be.

In this paper, we report observations of the absorpt
spectrum of the hydrogen atom in crossed fields, and
report our theoretical interpretation of these results. In S
II, we discuss the crossed-fields system and its Hamilton
and we give an overview of our experimental results in S
III. Section IV is devoted to the interpretation of large-sca
structure in the absorption spectrum. Our computatio
method, the chirped Fourier transform, is applied to extr
short closed orbits.~Additional information about the
chirped Fourier transform is given in the Appendixes.! Sec-
tion V focuses on the interpretation of the observed c
tinuum intensity and the ionization ‘‘threshold.’’ A theoret
cal model for calculating the continuum intensity
provided, and the results are presented. In Sec. VI, we re
the observation of ‘‘prompt’’ vs ‘‘delayed’’ signals, but we
leave the interpretation for future research. Long-lived re
lar quasidiscrete states are discussed in Sec. VII and a s
classical theory@Einstein-Brillouin-Keller ~EBK! quantiza-
tion# is applied to interpret them. Section VIII gives
summary.
©2002 The American Physical Society08-1
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FREUND, UBERT, FLOTHMANN, WELGE, WANG, AND DELOS PHYSICAL REVIEW A65 053408
II. THE SYSTEM AND ITS HAMILTONIAN

Assuming that the nucleus is fixed@10#, the Hamiltonian
function for an electron in a hydrogen atom with elect
field along the1x direction and magnetic field along the1z
direction is given by

Ĥ5
P̂2

2
2

1

r̂
1Fx̂1

B

2
L̂z1

B2

8
~ x̂21 ŷ2!. ~1!

With the following energy, electric field, coordinates, a
momenta transformations: f 5FB24/3, e5EB22/3, r

5 r̂ B2/3, P5 P̂B21/3, the scaled HamiltonianH is

H5
P2

2
2

1

r
1 f x1

1

2
Lz1

1

8
~x21y2!. ~2!

The equations of motion are singular at the origin, and t
leads to difficulties in numerical computations. A method
eliminate the singularity was invented by Kustaanheimo a
Stiefel ~KS! @11#. This transformation expresses the clo
relationship between the three-dimensional hydrogen a
and a four-dimensional harmonic oscillator. In this transf
mation, configuration space is augmented from three coo
nates to four coordinates, and phase space goes from
dimensions to eight dimensions~the eight-dimensional phas
space is called KS space!. The regularized Hamiltonianh is
given by

h545p2/224u2e28 f ~u2u12u4u3!u212~u2p3

2u3p2!u212~u2
21u3

2!~u1
21u4

2!u2, ~3!

with p25p1
21p2

21p3
21p4

2 andu25u1
21u2

21u3
21u4

2. In this
KS space, variables evolve in a fictitious times, wheres is
defined by

dt

ds
54u254r ~4!

and the equations of motion in KS space have canon
form.

III. EXPERIMENTAL RESULTS

In this section, we summarize the experimental proced
and give an overview of the results. The experiments
performed as in@12#, with modifications in the inner appara
tus ~see Fig. 1!.

Deuterium atoms in a beam collimated along the magn
field axis ~z axis! are excited at the center of the cross
fields by pulsed lasers perpendicular to the atomic be
They are raised to high-energy states in two steps. In the
step from D(1s) to D(2p), we use an excimer-laser-pumpe
dye laser, frequency tripled to 121.6 nm, withDn1
'1.8 GHz. In the second step from D(2p) to high-Rydberg
states D* (n,ml50) we use an excimer-laser-pumped d
laser, seeded by a single-frequency Ti:sapphire laser,
quency doubled tol2'365 nm, with Dn2'170 MHz.
Both lasers are linearly polarized along the magnetic-fi
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axis, which is called thez axis in this paper. To reduce an
effects of blackbody radiation on the high-Rydberg stat
the chamber is cooled to 77 K.

Electrons from atoms promptly ionized within the inte
action region~short-lived states! are prevented fromE3B
drift by turning off the electric field about 100 ns after exc
tation. After the laser pulse, electrons are trapped for ab
3.5 ms, and then they are guided by the ring electrodes
the detector. These electrons constitute what we call
‘‘prompt’’ signal. They arrive in a short pulse which is art
ficially broadened by aRC circuit so that the area under th
peak can be measured accurately. Meanwhile D* atoms in
long-lived states are continuing to move at thermal veloc
About 30–180ms after the laser pulse, the D* atoms arrive
at the grid and are detected via electrons created by fi
ionization. These electrons constitute the ‘‘delayed’’ sign
The total absorption spectrum is the sum of the ‘‘promp
signal and ‘‘delayed’’ signal.

It is important to understand the wide range of time sca
involved in this experiment, because the interpretation of
measurements involves this range~see Fig. 2!. Following we
list the time scales and their connections with our obser
tions.

~1! At the lowest energy in our observations,E
;2200 cm21, the principal quantum number is about 2
and the Kepler orbit time is (24)351.43104 atomic units, or
3310213 s.

~2! At the magnetic field of 6 T, the cyclotron time i
2.463105 atomic units, or 5.95310212 s. Recurrences cor
responding to orbits having closure times of 0.3 to 1 cyc
tron times are observed.

~3! Continuum absorption is also observed. We will sho
that this continuum is made up of states having lifetimes
to about 25 cyclotron times.

~4! The ‘‘resolution time’’ is 2p\/dE, wheredE is the
best resolution for this experiment~i.e., the smallest observ
able linewidth!. The limiting resolution for this measuremen
is about 170 MHz, so the ‘‘resolution time’’ is 631029 s.

~5! The effective laser pulse duration experienced by
atom is 12 ns. After this duration of the laser pulse, some
the electrons are in long-lived quasibound states, while o
ers have gone to unstable states and quickly escape from
atom. The latter are the ‘‘prompt’’ electrons.

~6! The electric field is switched off about 100 ns aft
excitation. The promptly ionized electrons are trapp
briefly, and then guided to the detector. In the process
switching off the electric field, the long-lived neutral atom

FIG. 1. Inner apparatus.
8-2
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ABSORPTION AND RECURRENCE SPECTRA OF . . . PHYSICAL REVIEW A 65 053408
evolve, presumably adiabatically, from crossed-field state
pure-magnetic-field states. Long-lived neutral atoms w
created at negative energies, and presumably remain at n
tive energies after the field is switched off, and therefore th
are stable after 120 ns. We say, then, that the ‘‘prompt’’ el
trons are those that are excited to states having lifetimes
than or of the order of 100 ns.

~7! After about 30–180ms, the neutral atoms have trav
eled to a region of strong electric field where they are ioniz
and detected. These are the ‘‘delayed’’ electrons, which a
from crossed-field states having lifetimes greater than o
the order of 100 ns.

To test whether the overall detection efficiencies of lon
lived and short-lived states are equal, we smooth the
data sets and sum them to see if the smoothed total abs
tion is reasonably independent of energy. The result sugg
that we should multiply the delayed-electron signal by ab
1.43 before comparing it with the prompt-electron signal. W
have done this in all of our calculations.

Spectra are measured over a wide range~2195 to
15 cm21! at B56.002 T andF51 kV/cm, and then at
higher resolution over a narrow range~2138 to
2112 cm21! at F5750 to 1000 V/cm in steps of 50 V/cm

An overview of the experimental observations is shown
Fig. 3 and Fig. 4. In Fig. 3, the saddle energyEs is marked at
2193 cm21. Most of the recorded spectrum is above th
saddle energy. Just above this saddle energy, in the re
markeda, all the electrons belong to the delayed signal, a
the prompt signal is small. At higher energies nearb, the

FIG. 2. Time scales involved in these measurements and
interpretation.
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prompt signal becomes significant. At still higher energi
nearc, continuum absorption becomes evident. The spect
is a set of narrow, quasidiscrete absorption lines superpo
on this continuum. As the energy is raised further, more a
more quasidiscrete states become broad and disappear
the continuum. Neard in the delayed signal, only a few
quasidiscrete states survive and they seem to fall into a re
lar pattern. At energies neare, all the signal comes from
prompt electrons, only a few narrow lines survive, and m
of the absorption is continuum or broad lines. Figure 4 d
plays the measured total absorption spectrum superpose
the convoluted spectrum. Again we observe the clear dist
tion between saddle point and continuum threshold.

In the following sections, we provide theoretical interpr
tations of these measurements. In Sec. IV, we show re
rences corresponding to the short closed orbits having re
times between 0.3 and 1 cyclotron times. The continuum
is plainly visible near markc in Fig. 3 and in Fig. 4 is
discussed in Sec. V. We show that this continuous absorp
corresponds to that subset of the ‘‘prompt’’ electrons wh
arise from states having lifetimes less than 20–25 cyclot
times.

In Sec. VI, we give additional information about the me
sured ‘‘prompt’’ and ‘‘delayed’’ electron signals, and w
show how this signal changes with changing electric field

Finally, the regular long-lived states visible in Fig. 3 ne
d are discussed in Sec. VII. These states correspond
regular family of quasiperiodic orbits that oscillate abou
stable periodic orbit which lies in the plane perpendicular
the magnetic field.

IV. EXTRACTION OF RECURRENCES: THE CHIRPED
FOURIER TRANSFORM

In Fig. 4, the wiggly line is a convolution of the measure
absorption spectrum with a Gaussian function having st
dard deviation 2 cm21. The wavy structure in this line is
correlated with short closed orbits. In order to extract t

ir

FIG. 3. The measured prompt and delayed absorption spec
at B56.002 T, F51000 V/cm. The vertical axis represen
measured relative absorption rate in arbitrary units vs energy.
dotted line markedEs is the energy of the saddle poin
(2193 cm21).
8-3
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FREUND, UBERT, FLOTHMANN, WELGE, WANG, AND DELOS PHYSICAL REVIEW A65 053408
closed orbits from the measured absorption spectrum,
developed a computational technique called the chirped F
rier transform~CFT!.

According to closed-orbit theory, the photoabsorpti
spectrum is given by a slowly varying background plus
sum of sinusoidal terms of the form

D f osc~E!5(
j

Cj~E!sin@Sj~E!/\2pm j /2#, ~5!

wherej labels the closed orbits and their repetitions.m j is a
Maslov index for the orbit~not important for this paper!.
Cj (E) is the recurrence amplitude of each closed orbit
contains information about the stability of the orbit, the in
tial and final angles of the orbit, and the matrix element
the dipole operator between the initial state and the ze
energy Coulomb wave.Sj (E) is the classical action of the
closed orbit, which satisfies

]Sj~E!/]E5Tj~E!, ~6!

FIG. 4. The measured total absorption spectrum atB
56.002 T, F51000 V/cm. The vertical axis represen
oscillator-strength density in atomic units. The wiggly line is a co
volution of the measurement with a Gaussian function havin
standard deviation of 2 cm21; its fluctuations are correlated wit
closed orbits. The other curves are calculations based on a m
for continuum absorption, discussed in Sec. V. From lowest to h
est, they haveTcrit515Tc , 20Tc , and 25Tc ~respectively, long-
dashed line, dotted line, and solid line!. Light arrow: saddle energy
Es (2193 cm21). Heavy arrow: vicinity of fuzzy threshold for
continuum absorption@2140,2135# cm21. The experimental re-
sults have been normalized to theoretical values.
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whereTj (E) is the return time of the orbit. If the return tim
is nearly independent ofE over the range of the measure
ment, then Eq.~5! gives a nearly sinusoidal oscillation hav
ing wavelength~on the energy axis! equal to 2p\/Tj , and
the Fourier transform will show a peak atT5Tj . This
method has been successfully applied to several meas
ments@13,14#. However, our measurements in crossed fie
are different from those of@13,14# in the following two
aspects.

~a! The papers@13,14# consider cylindrically symmetric
systems. According to@15#, the recurrences in a noncylindr
cally symmetric system are weaker than those found in
lindrically symmetric systems. In a cylindrically symmetr
system, each ‘‘closed orbit’’ is actually a cylindrical famil
of closed orbits and each family may be identified by t
initial polar angleu of the outgoing electron which return
regardless of its initial azimuthal anglef. In the crossed-
field system, the electron returns to the atom only if both
initial polar and azimuthal angles of the outgoing electr
are correct. Therefore the recurrence amplitudesCj in the
crossed-field system are smaller than those in cylindric
symmetric systems. Using notation defined in Ref.@13#, the
formula for Cj is @16#

Cj~E!5~E2Ei !2
9/2pr b

21/2Aj~qret!

3y* ~u ret
j ,f ret

j !y~uout
j ,fout

j !. ~7!

Here

y~u,f!5 (
l 1m1

I ~n,l ,l 1!bl 1 ,m1
Yl 1m1

~u,f! ~8!

is the angular distribution of outgoing electrons evaluated
the outgoing and returning angles of the orbit; it involv
radial parts of dipole integralsI (n,l ,l 1) between the initial
state and a zero-energy Coulomb wave, and Clebsch-Go
coefficientsbl 1 ,m1

. Aj (qret) is the square root of the classic
density,

Aj~qret!5AJ~ t50!/J~ t ret!, ~9!

FIG. 5. ~1! Theoretical absorption~i.e., oscillator-strength-
density in arbitrary units! vs energy associated with the shorte
trajectory; ~2! sin(TE); ~3! exp@g(E2E0)#sin@T(E2E0)1a(E
2E0)21b(E2E0)3#.
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ABSORPTION AND RECURRENCE SPECTRA OF . . . PHYSICAL REVIEW A 65 053408
where J is the Jacobian](x,y,z)/](t,uout ,fout), which is
associated with the classical density. All quantities in th
equations are defined fully in Ref.@13#.

~b! Our measurements are done with fixed field streng
and varying photon energy, whereas the measuremen
@13,14,4# were done by the scaled-variables method. In
present case, the return time of each orbit varies with ene
so each corresponding peak in the Fourier transform is
and broad. More precisely, many cannot be seen at
Therefore we need a different computational method to
tract the recurrences from this spectrum.

In Fig. 5 curve 1, we show the contribution of the short
closed orbit to the absorption spectrum, as calculated f

FIG. 6. Theoretical recurrence spectra forB56 T, F
51 kV/cm using the chirped Fourier transform, at appropriate v
ues ofa,b,g. Time is measured in units of the cyclotron time
6.002 T (5.95310212 s). The dashed lines represent the retu
times of the three shortest closed orbits shown in Fig. 8.a,b,g are
the coefficients in the chirped Fourier transform and they are
units of 1/cm21, cyclotron times/cm21, cyclotron times/cm22.
a,b,g should be multiplied by 1024,1026,1023, respectively; thus,
for example, the calculated and observed value ofa1 is 631024.
~Units of the vertical axis are undefined.! In the ordinary Fourier
transform~lowest curve!, no signal of closed orbits is visible, but i
the chirped transform, each closed orbit gives a clear peak. See
Fig. 15 below.
e
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Eq. ~5!. As a function of energy,C1(E) gradually decrease
while T1(E) increases, and we get a chirped sine wave. If
perform an ordinary Fourier transform, we multiply
chirped wave by a perfect sine wave~see curve 2 in Fig. 5!,
and then integrate. Over the range of integration, wave
and 2 keep drifting in and out of phase, so we may get o
a low and broad peak in the recurrence spectrum. Howe
if we multiply the chirped wave by another chirped wa
~see curve 3 in Fig. 5! with the same change in phase and t
opposite change in amplitude compared to the origi
chirped wave, and then integrate, we get a sharp peak in
recurrence spectrum. This is the basic idea of the chir
Fourier transform.

Let us represent the return time of each closed orbit a
Taylor expansion in energy,

Tj~E!5Tj~E0!12a j~E2E0!13b j~E2E0!2, ~10!

and approximate the amplitudeCj (E) by an exponential
function

Cj~E!5Cj~E0!exp@2g j~E2E0!/\#. ~11!

A corresponding chirped Fourier transform is defined as@17#

l-

n

lso

FIG. 7. Chirped Fourier transforms of the experimental sp
trum, as in Fig. 6.
D̃ f ~T;a,b;g!5E
E1

E2
D f ~E!e2 i [T(E2E0)1a(E2E0)21b(E2E0)3]/\1g(E2E0)/\dE, ~12!
es

er

om-

n

es
ent

ach
nal,
FT
whereE0 is some point in the middle of the observed rang
anda,b,g are three independent parameters.

Figures 6 and 7 display the chirped Fourier transform
the energy spectrum as a function ofT with various selected
values ofa, b, andg. The family of curves marked ‘‘experi
ment’’ are the CFTs of the total absorption spectrum sho
in Fig. 4. The family of curves marked ‘‘theory’’ were ob
tained by calculating the actionSj (E) and the recurrence
amplitudeCj (E) for the five shortest orbits, and then takin
the CFTs of Eq.~5!. The dashed lines indicate the retu
times of the three shortest closed orbits illustrated in Fig
In each figure, the lowest curve,a50,b50,g50, is the or-
dinary Fourier transform. We see hardly any relationship
tween the results and the known closed orbits. The o
,

f

n

.

-
er

curves havea,b,g as indicated. We arrived at these valu
by both experimental and theoretical methods.~1! With no
knowledge ofTj ,a j ,b j ,g j , one can search in the paramet
space to make a peak in the CFT as a function ofT as high
and narrow as possible. In this case, we had already c
puted theoretical values ofTj , so we knew where to look for
peaks. We gradually increaseda to sharpen a peak, the
turned onb, then~if necessary! turned ong. ~2! By comput-
ing properties of classical orbits, we found theoretical valu
of Tj ,a j ,b j ,g j . These different approaches gave consist
results.

The experimental and theoretical results agree with e
other adequately. The experiment shows many additio
‘‘false’’ peaks, and in the Appendixes we show how the C
8-5
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FREUND, UBERT, FLOTHMANN, WELGE, WANG, AND DELOS PHYSICAL REVIEW A65 053408
can give significant ‘‘aliasing.’’ Nevertheless, the large
peaks have the correct values of (T,a,b,g). This consis-
tency confirms the validity and applicability of the approp
ate closed-orbit formula for this system. It also establis
that the CFT is a useful tool for extracting recurrences.
notice that the observations give measured values ofa,b
within uncertainties less than61%,65%. In many applica-
tions of closed-orbit or periodic-orbit theory, scaled-variab
spectroscopy might be difficult or impossible to use. In su
cases, the chirped Fourier transform gives a way to ext
classical information from a quantum spectrum directly@18#.
In Appendix A, we give additional theory of the CFT an
another application is shown in Appendix B.

V. THE OBSERVED AND CALCULATED CONTINUUM
INTENSITY AND THRESHOLD FOR CHAOTIC

IONIZATION

If we examine either the prompt signal in Fig. 3 or th
total signal in Fig. 4, it is reasonable to say that at lo
energies~from a to b!, we have only narrow quasidiscre
absorption lines, at intermediate energies~aroundc!, we have
quasidiscrete lines superposed on a continuum, and at
energies, the quasidiscrete lines have become sparse.
threshold of continuum absorption is not sharp, but we m
reasonably say that substantial continuum absorption be
near the heavy arrow in Fig. 4, around2140 to
2135 cm21. This is well above the saddle point, which
near2195 cm21. In this section, we provide a theoretic
model to compute the continuum intensity and interpret t
fuzzy threshold.

First let us review the behavior of a hydrogen atom in
pure electric field (B50). In that case@19#, the potential
energy has a saddle point with saddle energyEs522F1/2.
For energies betweenEs and zero, the classical electron h
both bound and free states. There is a sharp boundary
tween these bound and free states, defined by a critical a
of ejection from the atom,uc5arccos(12E2/2F). The sec-
tor with ejection angle fromuc to p is called the escape
sector and the sector with ejection angle from 0 touc is
called the bound sector. Electrons ejected in the bound se
are bound forever, while electrons ejected in the escape

FIG. 8. Three shortest closed orbits identified in Fig. 7 forB
56 T, F51 kV/cm.
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tor pass over the saddle and then escape. As the energ
creases fromEs to zero, this critical angle moves from th
downhill to the uphill direction until no stable bound motio
is left. This classical behavior is manifested in the absorpt
spectrum. Above the saddle~and belowE50!, the absorp-
tion spectrum exhibits narrow quasidiscrete states su
posed on a smooth background. The continuous backgro
arises from the electrons that leave the atom in the esc
sector, while the quasidiscrete states are correlated with e
trons that leave in the bound sector. The observed thres
of the continuum is precisely the saddle point energy, a
absorption to the continuum is proportional to the current
electrons leaving the atom in the escape sector. As the en
is raised from the saddle energy toE50, and the critical
angle moves fromp ~downhill! to 0 ~uphill!, absorption into
the continuum increases, and each quasidiscrete state
comes broad until it becomes part of the continuum.

When the magnetic field is added, the boundary betw
bound and free motions becomes fuzzy. We have calcula
the escape time of an electron as a function of its polar
azimuthal angles from the downhill direction@26,27#. Com-
plex structure is observed, and when calculations are car
out to higher resolution, structure within structure is found
is reasonable to believe that there is some sort of fra
boundary between bound and free motions. Indeed, J´
et al. examined planar orbits of this system, and propose
fractal tiling of the escape region of the Poincare´ plane@6#.

The intensity of continuum absorption should be prop
tional to the flux of escaping electrons, which is defined
@19#

D f ~E!54~E2Ei !E
escape

uy~u,f!u2 sinududf, ~13!

where uy(u,f)u2 is the angular distribution of outgoing
waves, and the integral is carried out over the escape se
In the pure-electric-field case, the escape sector has a s
boundary, and there is no ambiguity about the meaning
Eq. ~13!. However, in crossed fields, the escape sector ha
exact definition. We define the escape sector so that it
cludes electrons that escape in times less than some ch
Tcrit .

Specifically we calculate the integral~13! in the following
way. We sampleu and f uniformly in solid angle~equal
number of trajectories in equal increments of solid ang!,
with Du'1° and Df proportional toDu/sinu. At each
(u i ,f i), we launch a trajectory and find the time required f
escape.~We choose the escape conditionuxu.2uxsu where
xs is the position of the saddle point.! If the escape time is
less than Tcrit , we include the incremen
uy(u i ,f i)u2 sinuiDuiDfi in the integral; otherwise we do no

To get a preliminary estimate ofTcrit , we examined the
absorption spectrum at high resolution, and asked what
the broadest structures that would reasonably be called
sidiscrete states. We found such structures with widths ab
0.25 cm21, which correspond to lifetimesT52p\/DE of
about 22 cyclotron times. Therefore we tried values ofTcrit
between 15 and 30 cyclotron times.
8-6
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Finally, to compare with the measured spectrum, we n
malize the measured spectrum so that its average at
energies is equal to

D f 0[4~E2Ei !E
0

2pE
0

p

uy~u,f!u2 sinududf.

Figure 4 shows our normalized calculated continuum abs
tion for three selected values ofTcrit , together with the mea
sured total absorption spectrum. We find that continuu
absorption in this system can be interpreted as the flux
electrons that escape within 20–25 cyclotron times.

Next we consider the fuzzy boundary of the continuum.
Fig. 4, we put a heavy arrow atE'(2140,2135) cm21 to
indicate a reasonable location of this fuzzy boundary, wh
is substantially higher than the saddle point ene
(2193 cm21). Therefore we observe that the magnetic fie
stabilizes the classical motion. This is consistent with obs
vations in@4# but inconsistent with the theoretical argumen
in @5#.

This discrepancy is not hard to resolve. Uzer and Farr
are correct in their observation that at all energies above
saddle point there is a region of phase space correspon
to chaotic ionization. However, in these spectroscopic
periments, all electrons begin their orbits close to
nucleus. Only at an energy significantly higher than
saddle energy can these electrons escape from the ato
classically allowed orbits.

To see this, let us examine motions in the plane perp
dicular to the magnetic field. Figure 9 shows some surfac
section calculations. In our calculation, we use semiparab
coordinates in the plane perpendicular toB, that is, u5(r
1x)1/2,v5(r 2x)1/2. Then theu axis coincides with the posi
tive x axis ~uphill! and thev axis coincides with the negativ
x axis~downhill!. In the surface of section, we plot (pu ,u) at
v50,pv.0. Therefore, thepu axis in this figure correspond
to the location of the nucleus~the origin of coordinates!, and
pu50 means that all the energy is ‘‘in thev direction,’’ i.e.,
downhill.

From Fig. 9, we observe a regular region on the rig
where electrons stay bound forever, and a chaotic zone
the left, where electrons remain for a while before escap
as well as a ‘‘white hole’’ on the left, where electrons esca
rapidly. We find that the chaotic and escape zones incre

FIG. 9. A collection of surfaces of section atB56 T, F
51000 V/cm with varying energy. From left to right,E
52193 cm21 ~saddle energy!, 2150 cm21, 2140 cm21, and
2135 cm21. @2140,2135# cm21 is the vicinity of the fuzzy
threshold for ionization.
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rapidly in size as the energy is increased above the sa
energy. However, electrons that start from the nucleusu
50) remain on regular, bound orbits until the chaotic zo
touches the momentum axis. When we continue to incre
the energy, an increasing portion of the momentum axis
within the chaotic and escape zones, which means that e
trons which start from the origin in a range of directio
escape. Comparison between these calculated surface
section and the measurements indicate that the obse
fuzzy boundary of the continuum is the energy at which
chaotic zone first touches the momentum axis. At this ene
trajectories launched at the origin may escape from the a
within a short time. From Fig. 9, we observe that this fuz
boundary for chaotic ionization of electrons that begin at
nucleus is around2140 cm21.

Measurements and calculations at other electric fields
support this interpretation. The observed fuzzy threshold
the continuum corresponds to the calculated boundary
chaotic ionization of electrons ejected from the origin, a
this observed fuzzy boundary is higher than the sad
energy.

VI. ‘‘PROMPT’’ VS ‘‘DELAYED’’ ELECTRONS

The measurements also give some information about
lifetimes of long-lived excited states. Such information c
give clues about the mechanism of ionization of these sta
or at least provide a check of theory.

In the introduction, we cited other studies of lifetimes
atoms in fields. Only@7# examines hydrogen, and no ma
netic field is present in that experiment. In@8#, electric and
magnetic fields are fixed, energy is fixed within a sm
range, and the time spectrum of electrons escaping from
organic molecule is measured. The experiment most sim
to ours is that done by Raithel and Walther@4#; at various
energies and field strengths, they distinguish ‘‘prompt’’ a
‘‘delayed’’ electrons escaping from Rb. In their apparatu
the boundary between prompt electrons~short-lived atomic
states! and delayed electrons~long-lived atomic states! is
about 20 ms.

In our experiments on hydrogen, the prompt signals c
respond to excited atoms with lifetime less than 120 ns
the delayed signals correspond to excited atoms with lifet
greater than 120 ns.~Note that there is no relation betwee
this boundary and the value ofTcrit.130 ps associated with
continuum absorption.! Figure 3 shows the measured prom
and delayed signals atB56.002 T andF51000 V/cm. In
this section, we show how the prompt and delayed sign
change as the electric field changes.

Figure 10 displays the convoluted prompt and delay
signals. The prompt signal increases with energy and
delayed signal decreases with energy. The crossing of
fast and slow signals moves toward lower energy with
creasing electric field. Oscillatory structures mostly are
phase in both prompt and delayed signals, and we bel
them to be associated with closed orbits. Currently, there
no theoretical calculations to interpret these results, and
leave this as an open problem.
8-7
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VII. LONG-LIVED REGULAR QUASIDISCRETE STATES

In Fig. 3 neard, we observe the presence of a regu
sequence of narrow absorption lines in the ‘‘delayed’’ sp
trum. In this section, we show that these lines correspon
a regular family of quasiperiodic orbits. For the crossed-fi
system, there are two elementary periodic orbits (S1 ,S2)
which were well studied by Flo¨thmann and Welge@20#.
These two lie in the plane perpendicular to the magn
field, andS1 goes around in a right hand sense relative toB¢ .
On this orbit, the Coulomb force and the Lorentz force bo
point inward. This orbit is stable and quasielliptical in th
energy range we study. Quasiperiodic orbits oscillate ab
S1 , and these orbits occupy a sufficient volume of pha
space to support quantum states.

In EBK theory, each quantum state corresponds to a to
having classical actions restricted to certain integer or h
integer values. The main challenge involved in EBK quan
zation is the determination of the action variables, which
defined as integrations around independent loops on
torus. Hence we need to determine the independent loop
our system. For systems with one or two degrees of freed
caustics@21# or Poincare´ surfaces of section@22# provide
convenient methods to determine the independent lo
However, for systems with more than two degrees of fr
dom, these methods become difficult@23#.

Another method, based on the Fourier transform, was
veloped by Martens and Ezra@24,25#. In this section, we
adapt the same idea to obtain the independent loops an
action variables. The key point of this method is calculat

FIG. 10. Measured relative convoluted prompt and delayed
sorption spectra atB56.002 T and various electric fields labeled
the graphs. The energy is in cm21.
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of the angle-parametrized torus from a numerically in
grated regular trajectory by Fourier transformation.

A. The theory of the Fourier transform method

The main theme of the Fourier transform method can
summarized in three points.

~1! The time dependent Fourier series of the variables o
regular trajectory. By integrating equations of motion, w
obtain a numerical representation of@ui(s),pi(s),t(s)# for a
regular trajectory@11#. By putting @ui ,pi # into the KS trans-
formation, we can convert the KS variable
@ui(s),pi(s),t(s)# to the Cartesian variables@qi(s),Pi(s)#
or @qi(t),Pi(t)#. According to@24#, regular motion is quasi-
periodic with three independent fundamental frequenciesv
5(v1 ,v2 ,v3), so the variables can be expressed as@24#

q~ t !5(
k

qk exp@ ik•~v̂t1b!#, ~14!

P~ t !5(
k

Pk exp@ ik•~v̂t1b!# ~15!

or

q~s!5(
k

qk exp@ ik•~vs1b!#, ~16!

P~s!5(
k

Pk exp@ ik•~vs1b!# ~17!

where k5(k1 ,k2 ,k3) is a vector of integers, andb
5(b1 ,b2 ,b3) are the initial phases.

In our system, coordinates expressed as functionss
vary more smoothly than those expressed as functionst;
therefore the Fourier series ins are simpler and have bette
convergence than those int @see Figs. 11~b! and 11~d!#.
Therefore, we Fourier-transform the numerical data of
variables ins to determine the fundamental frequencies, t
amplitude of each oscillatory term, and the initial phases

One more aspect of the numerical procedure is inter
ing. We carry out numerical integration of trajectories
eight-dimensional KS space. In this space, the tori are fo
dimensional, and there are four independent fundamental
quencies.~In KS space, the periodic orbitS1 is a two-torus.!
However, when we evaluate the Cartesian variables, th
are only three independent frequencies. We conclude tha
nonlinear KS transformation (u,p)→(q,P) eliminates one of
the four frequencies. Further details are presented in@26#.

~2! The angle-parametrized torus from a regular traj
tory. Regular motion admits action-angle variables (u,I )
with properties that the actionsI5(I 1 ,I 2 ,I 3) are constant
and the anglesu5(u1 ,u2 ,u3) evolve linearly in time:

u~s!5vs1b. ~18!

Then the Fourier series of the variables can be interprete
the transformation equations from (u,I ) to (q,P) with fixed
actions:

b-
8-8
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ABSORPTION AND RECURRENCE SPECTRA OF . . . PHYSICAL REVIEW A 65 053408
q~u,I !5(
k

qke
ik•u, ~19!

P~u,I !5(
k

Pke
ik•u. ~20!

This is the angle-parametrized torus.
Sinceq andP must be real, thenqk andPk must satisfy

qk* 5q2k and Pk* 5P2k . Let qk5uqkueifqk and Pk
5uPkueifPk . We rewrite the angle-parametrized torus equ
tion as

q~u1 ,u2 ,u3!5q00012( 8
k

uqkucos~k•u1fqk
!, ~21!

P~u1 ,u2 ,u3!5P00012( 8
k

uPkucos~k•u1fpk
!, ~22!

where the primed summation includes the terms withk•v
.0 only.

~3! Three independent loops and the actions along
loops. Three independent loops can be defined as loops
one angle variable varying from 0 to 2p and the other two
angles fixed. The independent loopsCi in Fig. 12 are the
loops withu i varying from 0 to 2p andu j ,uk equal to zero:

q~u i !5q00012(
k

8uqkucos~kiu i1fqk
!, ~23!

P~u i !5P00012( 8
k

uPkucos~kiu i1fpk
!. ~24!

FIG. 11. Behavior of variables for the trajectory drawn in F
12 below.~a!,~b! x(t) and its Fourier transform.~c!,~d! x(s) and its
Fourier transform.x(t) has rather sharp cusps when the elect
comes close to the nucleus, so its Fourier transform has many
harmonics.x(s) is smoother, so its Fourier transform has few
harmonics.
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Then the actions along the loops are

I i5~1/2p! R
ci

P•dq5~1/2p! R
ci

P•
dq

du i
du i . ~25!

Substituting the loop functions ofq(u i) and P(u i) into Eq.
~25! and performing the integration give us

I i52( 8
k

ki uqkuuPkucos~fqk
2fpk

!. ~26!

The actions depend onk not only through the amplitudesqk
and Pk but also through the phases ofqk and Pk. This is
different from Refs.@24,25#, where the actions depend onk
only through the amplitudes ofqk. The determination of
phases requires high precision in the determination of
fundamental frequencies. We develop a method to ach
precision 1027 in the determination of the frequencies. Th
method is discussed in@26#. Examining Fig. 12, we rename
the loops (C1 ,C2 ,C3) as (Cr1f ,Cf ,Cz), and the corre-
sponding action variables as (I r1f ,I f ,I z).

B. The semiclassical energy spectrum

We are interested only in the energy eigenvalues, so
calculate the actions (I r1f ,I f ,I z) of trajectories with vary-

n
gh FIG. 12. The torus explored by the trajectory launched atE
52110 cm21 or e520.5779, u587°, and f5140°, and the
three loopsCi with i 5(1,2,3) used to calculate the actions. In~a!
and ~b! we show the loops and the trajectory in two-dimension
spacesxy and xz, and below we show the trajectory in a thre
dimensional graph.~Note the small range ofz motion.! The first
loop C1 touches two caustics, and includes one loop of angu
motion and one loop of radial motion; the second loopC2 is a loop
of angular motion and it touches no caustics; the third loop is
loop of z motion, touching two caustics.
8-9
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FREUND, UBERT, FLOTHMANN, WELGE, WANG, AND DELOS PHYSICAL REVIEW A65 053408
ing initial conditions at varying energies and then fit the d
set (I r1f ,I f ,I z ,E) to a smooth function,

E5a01a1I r1f1a2I f1a3I z1a4I r1f
2 1a5I f

2

1a6I z
2a7I r1fI f1a8I r1fI z1a9I fI z . ~27!

Then we input the quantized actions to find the correspo
ing energy eigenvalues@22#. Numerical experiment show
that the fit function of Eq.~27! is accurate to abou
1022 cm21. Further details are presented in@26#.

According to EBK quantization theory, the quantizatio
conditions forI r1f ,I f ,I z are

I r1f5nr1f11/2,

I f5nf ,

I z5nz11/2,

where the half integer results from the fact that the loo
Cr1f and Cz each touch caustics twice. We also define
total actionI as

I 5I r1f1I z ,

so the quantization condition forI is

I 5n5nr1f1nz11.

We call n the principal quantum number. Since there is
one-to-one correspondence between the eigentori~whose ac-
tions satisfy the quantization condition! and the quantum
states, we can use (nr1f ,nf ,nz) or (n,nf ,nz) to label the
states. Here we use the latter.

Our calculation shows that the states we identify all ha
nz equal to zero: they have only ‘‘zero-point’’ motion out o
plane. Therefore we use only (n,nf) to label the states. In
Table I, we list the semiclassical energy eigenvalues with
quantum numbers. We also list the experimental values
the values obtained by a quantum mechanical method@27#
for comparison. The accuracy of the experiment
0.007 cm21. We mark the identified states on the measu
absorption spectrum graph~see Fig. 13!. The states in the
energy range neard in Fig. 3 fall into several sequence
Each sequence is distinguished by the principal quan
numbern, and the members of a sequence are distinguis
by the azimuthal quantum numbernf . Hence we have
proved that the regular quasidiscrete states in the absorp
spectrum correspond to regular tori which stay close to
xy plane and oscillate around the stable periodic orbitS1 .

VIII. CONCLUSION

In this paper, we have presented experimental meas
ments of the absorption spectrum of a hydrogen atom
crossed electric and magnetic fields, and we have prov
an interpretation of the measured data.

~1! We developed a computational method, the chirp
Fourier transform, to extract closed orbits from an unsca
spectrum. Although scaled-variable spectroscopy is a su
05340
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rior method when it is available, the CFT is an effective w
to extract closed orbits in systems for which scaled-varia
spectra are impossible or unavailable.

~2! We built a theoretical model to calculate continuu
absorption. It is related in this case to classical orbits of
electron that escape within 20–25 cyclotron times.

~3! We identified a regular family of nearly planar qua
tum states by quantizing three-dimensional tori. We labe
each state with three integer numbers:n is the total action,
nf is the action of the angular motion, andnz is the action of
the z motion.
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APPENDIX A: THEORY OF THE CHIRPED FOURIER
TRANSFORM

Suppose we have a signalA(v) that is a superposition o
chirped waves and is defined as

A~v!5(
k

exp@ iSk~v!# f k~v!Ck . ~A1!

TABLE I. List of the energy eigenvaluesEexpt, Equantum, and
Esemi.

n nf Eexpt (cm21) Equantum (cm21) EEBK (cm21)

26 9 2118.66132 2118.62790
26 10 2115.71537 2115.73 2115.71750
26 11 2112.77931 2112.79 2112.78747
26 12 2109.86435 2109.86 2109.83005
26 13 2106.96499 2106.97 2106.96124
26 14 2104.11635 2104.10 2104.09301
26 15 2101.23860 2101.23 2101.22536
26 16 298.27655 298.30 298.25884
26 17 295.37632 295.39 295.34356
26 18 292.48411 292.51 292.54291
26 19 289.92901 289.94 289.95688
27 4 2119.83373 2119.82059
27 5 2116.74612 2116.80 2116.75103
27 6 2113.66907 2113.71 2113.69182
27 7 2110.61467 2110.64 2110.60441
27 8 2107.57874 2107.61 2107.58828
27 9 2104.57000 2104.59 2104.57163
27 10 2101.59217 2101.25 2101.50445
27 11 298.61679 298.65 298.61998
27 12 295.70321 295.72 295.65637
27 13 292.80433 292.82 292.80165
27 14 289.65549 289.65 289.71642
27 15 287.07754 287.09 287.07008
27 16 284.26893 284.26 284.27282
27 17 281.47313 281.46 281.47466
8-10
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In our casev corresponds toE, A(v) corresponds to the
absorption spectrum as a function of energy,f k(v)Ck corre-
sponds to the recurrence amplitude of a classical orbit,
Sk(v) corresponds to the action of the classical orbit. W
defineTk(v)5]Sk(v)/]v.

For a first example, suppose we know the functionsSk(v)
and f k(v), but not the constant coefficientsCk . To deter-
mine the coefficientsCk , we multiply the signal by some
chosen function

g~v!exp@2 ir ~v;p!# ~A2!

wherep is a collection of parameters. IfTk(v) and Tj (v)
are ‘‘well separated’’ in a sense that will be defined belo
we may define the integral

R~p!5E
v1

v2
g~v!exp@2 ir ~v;p!#A~v!dv, ~A3!

with appropriate specification ofg(v) and r (v;p). We call
R(p) the chirped Fourier transform. Note that our definiti
of the CFT in Sec. IV is a special case of this definition.

There are several possibilities for definingg(v) and
r (v;p).

FIG. 13. The measured delayed absorption spectrum aF
51000 V/cm andB56.002 T. The quantum states are organiz
by the principal quantum numbersn and the angular quantum num
ber nf corresponding to the principal action and the azimuthal
tion. The states with the same quantum numbern belong to a se-
quence and the states in the sequence are distinguished b
quantum numbernf .
05340
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1. Definition A

Let the parameterp be a multiplicative constant,p5a,
and r (v;a)5aSj (v), g(v)5@dSj (v)/dv#/ f j (v), and
assumef j (v)5” 0 in the observation range. Then

R~a!5(
k
E

v1

v2
exp2 i @aSj~v!2Sk~v!#

3FdSj~v!/dv

f j~v! G f k~v!Ckdv.

This is similar to the form used by Bonmassar and Schwa
@17#. The term withk5 j is

Rj~a!5E
Smin

Smax
exp@2 i ~a21!Sj~v!#CjdSj

5Cj exp@2 i ~a21!S̄#
2 sin@~a21!~DS/2!#

a21
,

~A4!

whereS̄5(Smax1Smin)/2 andDS5Smax2Smin . Therefore

uRj~a!u25uCj u2~pDS!dDSS a21

2 D , ~A5!

wheredh(u)5sin2(hu)/(phu2) is a widenedd function. Thus
the termk5 j by itself produces a peak ata51, which is
called the ‘‘physically interesting’’ peak. The height of th
peak is proportional to (DS)2, while its width is proportional
to (DS)21.

The terms withk5” j give

Rk5” j5CkE exp2 i @aSj~v!2Sk~v!#
f k~v!

f j~v!

dSj~v!

dv
dv.

We want these terms to be as small as possible. Howe
they may give significant contributions in two cases:

Case 1. For somek5k0, there exists a valuea5a0 such
that a0Sj (v)2Sk0

(v)'const[Sk0
8 , a constant over the

whole range of integration, that is,Sk0
(v)'a0Sj (v)2Sk0

8

We approximateCk0
f k0

(v)/ f j (v)'const[Ck0
8 . Then the

term with k5k0 is

Rk05” j5Ck0
8 e2 iSk0

8 E
Smin

Smax
e2 i (a2a0)Sj (v)

dSj~v!

dv
dv,

uRk05” j u25uCk0
8 u2pDSdDSS a2a0

2 D .

Then we get a ‘‘physically uninteresting’’ peak ata5a0. The
conditiona0Sj (v)'Sk0

(v)1Sk0
8 implies

a05Tk0
~v!/Tj~v!.

-

the
8-11
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We say that the ‘‘uninteresting’’ peak ata0 and the ‘‘inter-
esting’’ peak ata51 are ‘‘well separated’’ ifua021u is larger
than the width of the broadenedd function,

ua021u5UTk0

Tj
21U@ 1

DS
.

If this condition holds, the uninteresting peak may be lar
but it is distinct from the interesting one.

Case 2. For somek5k1, the integral has a stationar
phase point, and can be evaluated by the stationary p
approximation. Typically, there exists a range ofa values
such that for anya5a1 in this range, there exists a frequen
v5v0 in the domain of integration such that

a15Tk1
~v0!/Tj~v0!.

ThenRk15” j can be rewritten as

Rk15” j5Ck1
E

vmin

vmax
exp2 i @aSj~v!

2Sk1
~v!#

f k1
~v!

f j~v!
Tj~v!dv

'Ck1

f k1
~v0!

f j~v0!
exp2 i @a1Sj~v0!

2Sk1
~v0!#Tj~v0!E

vmin

vmax
exp

2 i Fa1Tj~v0!82Tk1
~v0!8

2
~v2v0!2Gdv

'Ck1
8 exp i @a1Sj~v0!2Sk1

~v0!#Tj~v0!

3
2p

ua1Tj~v0!82Tk1
~v0!8u1/2

3 expS i
p

4
sgn~a1Tj~v0!82Tk1

~v0!8! D ,

where Ck1
8 5Ck1

f k1
(v0)/ f j (v0). Then again we get a

‘‘physically uninteresting’’ peak ata5a1. The height of the
peak is

uRk1
~a5a1!u25UCk1

8 Tj~v0!
2p

ua1Tj~v0!82Tk1
~v0!8u1/2U2

.

Such peaks might be substantial, but they will typically n
be as large as those that occur in case 1. In case 1, the p
of the exponential is essentially constant over the wh
range of the integration, while in case 2 there is only
isolated stationary phase point; therefore, case 2 gives p
having heights independent of the range of integrationDS.

Again such uninteresting peaks are troublesome onl
they occur too near toa51.

We use the word ‘‘aliasing’’ to mean the presence
‘‘false’’ ~i.e., physically uninteresting! peaks inuR(a)u2 over-
lapping with the interesting peak ata51. This form of the
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chirped Fourier transform can give significant aliasing. F
the systems we consider in this paper, we find that a differ
definition gives better results.

2. Definition B

Change the origin such thatva52vb , let g(v)
51/f j (v), and let p represent the set of three paramete
(t,a,b), andr (v,p)5tv1av21bv3. Then

R~ t;a,b!5(
k
E

va

vb
exp i @Sk~v!2~ tv1av2

1bv3!#g~v! f k~v!Ckdv. ~A6!

Let us examine the termk5 j first. We expandSj (v) in a
power series

Sj~v!5Sj
01Tjv1a jv

21b jv
31qj~v!,

whereqj (v) is equal to the remainder of the Taylor serie
which is the difference between the three-jet~terms up to
third order! and the exactSj (v); we presumeqj (v) is small.
Then the termk5 j is

Rj~ t;a j ,b j !5Cje
iSj

0E
va

vb
ei (Tj 2t)vdv

5Cje
iSj

0
ei (Tj 2t)v̄

sin~@~Tj2t !/2!#Dv

~Tj2t !/2
,

uRj~ t;a j ,b j !u25Cj
2pDvdDv„~Tj2t !/2…, ~A7!

wherev̄5(vb1va)/2 andDv5vb2va . As before, we get
a widenedd-function, which is centered att5Tj . We call
R(t;a,b) the (a,b)-chirped time spectrum of the signal.

Next we examine a term withk5” j to look at aliasing.
Any term with k5” j is

RkÞ j~ t;a j ,B j !

5Cke
iSk

0E ei ~Tk2t !v1~ak2a j !v
21~b j 2bk!v31qj ~v!

3
f k~v!

f j~v!
dv.

Then there is a stationary point when

~Tk2t !12~ak2a j !v13~b j2bk!v
250.

For example, whent5Tk , there is a stationary phase point
v50. Suppose the cubic term is negligible and ag
Ckf k(v)/ f j (v)'const5Ck8 ; then the integral is estimated a

uRk5” j u25UCk8E
v1

v2
ei (ak2a j )v

2
dvU2

5uCk8u
2

p

uak2a j u
.

The height of the main peak increases in proportion
(Dv)2, but this peak does not. Ifak and a j are well sepa-
rated anduCk /Cj u;O(1), then the ‘‘false’’ peaks are smalle
than the ‘‘real’’ peak.
8-12
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For the example in Sec. IV and another example in A
pendix B, definition B works better than definition A. It is
property of the orbits in our systems that ifTk;aTj , then
ak;aa j , bk;ab j ; therefore Sk2aSj;const over the
observed range. If we use definition A, case 1 frequen
occurs and the ‘‘false’’ peaks are as large as the physic
interesting one; on the other hand, when we use definition
the undesired integrals have only isolated stationary ph
points, and the ‘‘false’’ peaks are usually smaller than
physically interesting peak.

All our results in this paper are calculated by definition
For certain orbits, we include an additional parameterg, with
g(v)5exp(2gv). In our calculations, we have tried thre
methods to determine the parameters (a,b,g).

~1! Method 1: Experimental method. Suppose we w
analyzing experimental data without prior knowledge of t
parameters (a,b,g) of an orbit. Then we would search in th
parameter space to maximize the height of a peak att5Tj in
the CFT. We first setb,g to zero, and gradually adjusta to
make the peak att5Tj as high and narrow as possible. Aft

TABLE II. The (a,b,g) values for the five shortest closed o
bits from three different methods.

Orbit Parameters Taylor NLLS Experiment

1 a (units of 1022) 0.06 0.07 0.07
b (units of 1026) 17.0 20.0 20.0
g (units of 1022) 0.80 0.80 0.80

T 0.34 0.34 0.34
2 a (units of 1022) 0.12 0.12 0.12

b (units of 1026) 1.88 1.95 2.00
T 0.68 0.68 0.68

3 a (units of 1022) 0.22 0.22 0.22
b (units of 1026) 3.40 3.55 3.33

T 0.80 0.80 0.80
4 a (units of 1022) 0.30 0.30 0.30

b (units of 1026) 3.13 3.03 3.20
T 1.82 1.82 1.82

5 a (units of 1022) 0.17 0.17 0.17
b (units of 1026) 2.82 2.87 3.33

T 1.96 1.96 1.96

FIG. 14. Energy spectrum of the model Hamiltonian@Eq. ~B1!#.
Units are not defined for this model. The horizontal axis represe
energy, and a line of height 1 is placed at each energy eigenva
05340
-

y
ly
,

se
e

.

e

we reach the optimala, we then turn onb, and finally turn
on g. That would give an experimental determination
(a j ,b j ,g j ).

~2! Method 2: Taylor expansion. Suppose by some me
we know the values ofTj , dTj /dv, d2Tj /dv2 at some par-
ticular v0 within the integration range. Then we may seta
5 1

2 dTj /dv,b5 1
6 d2Tj /dv2.

~3! Method 3: Nonlinear least-squares~NLLS! fit. Sup-
pose we have determined theoretically the quantitySj (v)
over the whole measured range ofv. Then we can choose
(a,b) by a nonlinear least-squares fit over the whole ran

It is obvious that the morea priori information we have
about (Tj ,a j ,b j ,g j ), the better the result will be, that is, th
physically interesting peaks will be higher and narrow

ts
e.

FIG. 15. ~a! Chirped Fourier transform of the quantum ener
spectrum given in Fig. 14~units undefined!. From the bottom up,
we inputa values from 0.0 to 1.1 in steps of 0.1.a, b, c, d, e, and
f label peaks that correspond to periodic orbitsa, b, c, d, e, and f
shown in ~b!. ai( i 52,4,6,11,13) labels peaks that correspond
the i th return of the periodic orbita; bi( i 52,3,4) labels the
peaks that correspond to thei th return of the periodic orbitb.
8-13
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Also one can go to higher-order terms in a Taylor series
fit Sj (v) to some other functions to get better results. W
find that, in our case, a third-degree Taylor expansion is
ficient.

We give values ofT,a,b,g for five of the short orbits in
the crossed-field system in Table II.T is the return time of
the closed orbits in units of cyclotron times atE
5295 cm21. a,b,g are in units of cyclotron times/cm21,
cyclotron times/cm22, and cyclotron times/cm21 respec-
tively. These methods all give consistent results.

APPENDIX B: ANOTHER APPLICATION
OF THE CHIRPED FOURIER TRANSFORM

As we stated earlier, spectra can be measured by
scaled-variable method for an atom in crossed fields. Whe
is possible, scaled-variable spectroscopy is a more effec
way of extracting recurrences. However, for most syste
scaled-variable spectroscopy is impossible. In this Appen
we present another application of the CFT to calculate
recurrence spectrum for a model coupled-oscillator syste

The Hamiltonian is similar to that of the He´non-Heiles
system except that it has unequal force constants:

H5
1

2
~p1

21p2
21v1

2q1
21v2

2q2
2!1lq2~q2

21hq2
2! ~B1!

with v151.3, v250.7, l520.1, andh50.1.
The quantum energy spectrum, calculated by Noid@28#

with a 30330 ~900 functions! harmonic oscillator basis se
is shown in Fig. 14.

The formula for the quantum density of states is

r~E!5(
i

d~E2Ei !.
v.

n,

e,

05340
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We apply the chirped Fourier transform defined by Eq.~A6!
to this density of states:

r̃~T;a!5E e2 i [T(E2E0)1a(E2E0)2]r~E!dE

5(
i

e2 i [T(Ei2E0)1a(Ei2E0)2] , ~B2!

wherea is a parameter.
In this case, the calculation was done with no pr

knowledge of the periodic orbits. We evaluatedur̃(T;a)u2 vs
T with a ranging from 0 to 1.1 in steps of 0.1. The results a
shown in Fig. 15~a!. At various values ofa, we see sharp
well-resolved peaks. Then orbit calculations showed t
these peaks correspond to the periodic orbits drawn in
15~b!.

The peak a att/2p50.75, corresponding to periodic orb
a is weak, but several of its repetitionsa2, a4, a6, a11, and
a13 are plainly visible. Orbitb has a period that is slowly
varying with energy, so it appears in the ordinary Four
transform, witha50. However, the peak is sharper whena
is set to 0.1, and the successive repetitions of this orbit
visible as peaksb2, b3, andb4, at successively increasin
values ofa. Orbitsc–f are not visible at all in the ordinary
Fourier transform, but they show up as large, sharp peak
appropriate values ofa.

Theoretical values ofa for peaksa–f are 0.03, 0.07,
0.55, 0.64, 0.87, and 1.02, respectively. These are consis
with the values determined from the CFT graphs with
68%.

In cases like this, the scaled-variable-spectrosco
method is impossible. We notice that the CFT extra
strong, narrow, isolated peaks where the ordinary Fou
transform gives no signal. We believe that the CFT is a va
able tool for the study of periodic orbits and recurrences
the
nd

ve
the

l

e,

ev.
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@8# Annette Mühlpfordt, U. Even, Eran Rabani, and R. D. Levin

Phys. Rev. A51, 3922~1995!.
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