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Absorption and recurrence spectra of hydrogen in crossed electric and magnetic fields
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The absorption spectrum of the hydrogen atom in crossed electric and magnetic fields was measured. The
magnetic field was set at 6.002 T, and the electric field was fixed at several values from 750 to 1000 V/cm. The
observations require several different theoretical methods for their interpretétiomhe spectrum is “un-
scaled,” the recurrences are weak, and their periods vary with energy over the interval of the observations. This
observation caused us to develop a chirped Fourier transform method to extract closed orbits from the mea-
sured spectra2) The absorption spectrum consists of quasidiscrete peaks superposed on a smoothly rising
continuum. To interpret this observation, a theoretical model of the continuum absorption is created, and we get
results consistent with the measureme(8$.The experiments distinguish between “prompt” and “delayed”
electrons, corresponding to lifetimes of the excited hydrogen atoms that are, respectively, less than or greater
than about 100 ng4) At high energies, the measured absorption spectrum contains some regular quasidiscrete
states. We use an Einstein-Brillouin-Keller quantization method to identify these as states that lie close to the
plane perpendicular to the magnetic field.
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I. INTRODUCTION electric and in crossed electric and magnetic fields were stud-
ied in [8]. In these experiments, the excitation energy was
Studies of the behavior of atoms in crossed fields go backixed within a small range, and the time spectrum of escaping
to the earliest days of quantum mechanics, and today there éectrons was measured. The theoretical interpretation in-
renewed interest in this problefh]. Recently, Tong and Chu volved classical trajectory calculations including both elastic
[2] and Rao, Delande, and Taylf8] carried out quantum and inelastic scattering of the electron from the molecular
calculations of high Rydberg states of hydrogen in crossegbn core. Since the organic molecule constitutes a large, po-
fields, and the latter interpreted the results using closed orbjtr, and excitable core, we expect the behavior to be rather
theory. A few years ago, Raithel and Walthdl reported a  different from that in hydrogen.
detailed experimental study of rubidium atoms in crossed Rakovic and Chu[9] discovered an integrable Hamil-
fields. They observed many recurrences associated wittbnian system which is similar to the hydrogenic crossed-
closed orbits, examined long-lived vs short-lived states, anfield system, but which possesses a full set of conservation
studied the “threshold” energy for ionization. They defined laws. This is a stimulating discovery, but since the hydrogen
this “threshold” to be the energy at which half of the excited atom undergoes chaotic ionization, it is unclear how helpful
atoms have lifetime less than 20s. They found that it this integrable model can be.
seems to follow classical scaling laws, and they proposed a In this paper, we report observations of the absorption
mixed quantum-classical theory to explain its behavior.  spectrum of the hydrogen atom in crossed fields, and we
Several other studies have also focused on the thresholéport our theoretical interpretation of these results. In Sec.
for ionization. Uzer and Farrellf5] examined the hydrogen II, we discuss the crossed-fields system and its Hamiltonian,
atom in crossed fields theoretically, and they argued that thend we give an overview of our experimental results in Sec.
threshold should simply correspond to the saddle point, antll. Section IV is devoted to the interpretation of large-scale
thus should be independent of the magnetic field. Subsestructure in the absorption spectrum. Our computational
quently, Jaffeet al.[6] examined planar orbits of this system method, the chirped Fourier transform, is applied to extract
in more detail, and they interpreted ionization using a fractakhort closed orbits.(Additional information about the
tiling of the Poincareplane. Presently these theories are notchirped Fourier transform is given in the AppendiyeSec-
fully in accord with experiments; perhaps part of the problemtion V focuses on the interpretation of the observed con-
is that they do not take account of the fact that electrons mustnuum intensity and the ionization “threshold.” A theoreti-
begin close to the nucleus. cal model for calculating the continuum intensity is
Other experiments and calculations focused on the lifeprovided, and the results are presented. In Sec. VI, we report
times of excited states of atoms in fields. Koch and Marianthe observation of “prompt” vs “delayed” signals, but we
[7] measured the lifetimes of hydrogen atoms in electrideave the interpretation for future research. Long-lived regu-
fields. Lifetimes of excited states of organic molecules in arlar quasidiscrete states are discussed in Sec. VIl and a semi-
classical theony Einstein-Brillouin-Keller (EBK) quantiza-
tion] is applied to interpret them. Section VIII gives a
*Deceased. summary.
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Il. THE SYSTEM AND ITS HAMILTONIAN

Assuming that the nucleus is fix¢dO0], the Hamiltonian
function for an electron in a hydrogen atom with electric
field along the+ x direction and magnetic field along thez
direction is given by
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With the following energy, electric field, coordinates, and FIG. 1 | ;
momenta transformations:f=FB~ %3, e=EB 23 - 4. INNEr apparatus.

=rB%%,  P=PB~ 3 the scaled Hamiltoniahi is axis, which is called the axis in this paper. To reduce any
P2 1 1 1 effects of blackbody radiation on the high-Rydberg states,
H= — — 24 fx+ =L+ —(x2+Vv2). 2 the chamber is cooled to 77 K. . _
2 r 277 8( ¥ @ Electrons from atoms promptly ionized within the inter-

) ) ) . _action region(short-lived statgsare prevented fronkx B
The equations of motion are singular at the origin, and thigyrift by turning off the electric field about 100 ns after exci-
leads to difficulties in numerical computations. A method totation. After the laser pulse, electrons are trapped for about
eI|_m|nate the smgula.rlty was mven?ed by Kustaanheimo and; g us, and then they are guided by the ring electrodes to
Stiefel (KS) [11]. This transformation expresses the closethe detector. These electrons constitute what we call the
relationship between the three-dimensional hydrogen atorrompt” signal. They arrive in a short pulse which is arti-
mation, configuration space is augmented from three coordipeak can be measured accurately. Meanwhitedfoms in
nates to four coordinates, and phase space goes from Signg-lived states are continuing to move at thermal velocity.
dimensions to eight dimensiofhe eight-dimensional phase apout 30—180 ks after the laser pulse, the atoms arrive
space is called KS spacerhe regularized Hamiltoniahis 4t the grid and are detected via electrons created by field
given by ionization. These electrons constitute the “delayed” signal.
The total absorption spectrum is the sum of the “prompt”
h=4= p2/2_4U2€_8f(U2U1_U4U3)U2+ 2(U2p3 Signal and udelayedn Signal.
—ugp,)u+2(ud+ud)(ud+u?)u?, 3y Itisimportant to understand the wide range of time scales
involved in this experiment, because the interpretation of the
with p?=p2+ p3+p3+p2 andu®=u+uz+u3+uZ. Inthis ~ measurements involves this rangee Fig. 2 Following we
KS space, variables evolve in a fictitious timewheresis  list the time scales and their connections with our observa-

defined by tions.
(1) At the lowest energy in our observation&
dt ) ~—200 cm?, the principal quantum number is about 24,
gs - Aut=4r (4)  and the Kepler orbit time is (24¥ 1.4x 10* atomic units, or
3x10 ¥ s,
and the equations of motion in KS space have canonical (2) At the magnetic field of 6 T, the cyclotron time is
form. 2.46x 10° atomic units, or 5.95 10 '? s. Recurrences cor-
responding to orbits having closure times of 0.3 to 1 cyclo-
lll. EXPERIMENTAL RESULTS tron times are observed.

(3) Continuum absorption is also observed. We will show
In this section, we summarize the experimental procedur¢hat this continuum is made up of states having lifetimes up
and give an overview of the results. The experiments argo about 25 cyclotron times.
performed as in12], with modifications in the inner appara- (4) The “resolution time” is 2r#/SE, where SE is the
tus (see Fig. 1L best resolution for this experimefite., the smallest observ-
Deuterium atoms in a beam collimated along the magnetiable linewidth. The limiting resolution for this measurement
field axis (z axis) are excited at the center of the crossedis about 170 MHz, so the “resolution time” is>610° s.
fields by pulsed lasers perpendicular to the atomic beam. (5) The effective laser pulse duration experienced by an
They are raised to high-energy states in two steps. In the firgitom is 12 ns. After this duration of the laser pulse, some of
step from D(B) to D(2p), we use an excimer-laser-pumped the electrons are in long-lived quasibound states, while oth-
dye laser, frequency tripled to 121.6 nm, withyv;  ers have gone to unstable states and quickly escape from the
~1.8 GHz. In the second step from O¢Pto high-Rydberg atom. The latter are the “prompt” electrons.
states D(n,m=0) we use an excimer-laser-pumped dye (6) The electric field is switched off about 100 ns after
laser, seeded by a single-frequency Ti:sapphire laser, freexcitation. The promptly ionized electrons are trapped
qguency doubled tox,~365 nm, with Av,~170 MHz. briefly, and then guided to the detector. In the process of
Both lasers are linearly polarized along the magnetic-fieldswitching off the electric field, the long-lived neutral atoms
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10 “short-lived" and FIG. 3. The measured prompt and delayed absorption spectrum
1((6)1(1)‘03_1112\661%) states at B=6.002 T, F=1000 V/cm. The vertical axis represents
0 -6 measured relative absorption rate in arbitrary units vs energy. The
1 - dotted line markedEg is the energy of the saddle point
s (3.5 s - 18us) (—193 cm?).
10 Prompt electrons
— detected . L . . .
prompt signal becomes significant. At still higher energies,
-4 dD;LaCYtgg electrons nearc, continuum absorption becomes evident. The spectrum
10 E— (30ps- 180ps) is a set of narrow, quasidiscrete absorption lines superposed
3 on this continuum. As the energy is raised further, more and
10 more quasidiscrete states become broad and disappear into

. ) . the continuum. Nead in the delayed signal, only a few
_ FIG. 2._ Time scales involved in these measurements and thetﬁuasidiscrete states survive and they seem to fall into a regu-
interpretation. lar pattern. At energies nea all the signal comes from
prompt electrons, only a few narrow lines survive, and most
evolve, presumably adiabatically, from crossed-field states tgf the absorption is continuum or broad lines. Figure 4 dis-
pure-magnetic-field states. Long-lived neutral atoms wergjays the measured total absorption spectrum superposed on
created at negative energies, and presumably remain at negie convoluted spectrum. Again we observe the clear distinc-
tive energies after the field is switched off, and therefore theyion between saddle point and continuum threshold.
are stable after 120 ns. We say, then, that the “prompt” elec- |n the following sections, we provide theoretical interpre-
trons are those that are excited to states having lifetimes legations of these measurements. In Sec. IV, we show recur-
than or of the order of 100 ns. rences corresponding to the short closed orbits having return
(7) After about 30—180us, the neutral atoms have trav- times between 0.3 and 1 cyclotron times. The continuum that
eled to a region of strong electric field where they are ionizeds plainly visible near markc in Fig. 3 and in Fig. 4 is
and detected. These are the “delayed” electrons, which arisgliscussed in Sec. V. We show that this continuous absorption
from crossed-field states having lifetimes greater than or o€orresponds to that subset of the “prompt” electrons which

the order of 100 ns. arise from states having lifetimes less than 20—25 cyclotron
To test whether the overall detection efficiencies of long-times.

lived and short-lived states are equal, we smooth the two |n Sec. VI, we give additional information about the mea-
data sets and sum them to see if the smoothed total absorgured “prompt” and “delayed” electron signals, and we
tion is reasonably independent of energy. The result suggesshow how this signal changes with changing electric field.
that we should multiply the delayed-electron signal by about = Finally, the regular long-lived states visible in Fig. 3 near
1.43 before comparing it with the prompt-electron signal. Wed are discussed in Sec. VII. These states correspond to a
have done this in all of our calculations. regular family of quasiperiodic orbits that oscillate about a
Spectra are measured over a wide ran@gel95 to  stable periodic orbit which lies in the plane perpendicular to
+5 cm ') at B=6.002 T andF=1 kV/cm, and then at the magnetic field.
higher resolution over a narrow rangé—138 to
—112 cm ) at F=750 to 1000 V/cm in steps of 50 V/cm.
An overview of the experimental observations is shown in
Fig. 3 and Fig. 4. In Fig. 3, the saddle eneffyis marked at
—193 cm ! Most of the recorded spectrum is above this In Fig. 4, the wiggly line is a convolution of the measured
saddle energy. Just above this saddle energy, in the regi@bsorption spectrum with a Gaussian function having stan-
markeda, all the electrons belong to the delayed signal, anddard deviation 2 cm®. The wavy structure in this line is
the prompt signal is small. At higher energies neéarthe correlated with short closed orbits. In order to extract the

IV. EXTRACTION OF RECURRENCES: THE CHIRPED
FOURIER TRANSFORM
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whereT;(E) is the return time of the orbit. If the return time

is nearly independent dE over the range of the measure-
ment, then Eq(5) gives a nearly sinusoidal oscillation hav-
ing wavelength(on the energy axjsequal to 274/T;, and

the Fourier transform will show a peak a=T;. This
method has been successfully applied to several measure-
ments[13,14]. However, our measurements in crossed fields
are different from those 0f13,14 in the following two
aspects.

(a) The paperq13,14 consider cylindrically symmetric
systems. According tpl5], the recurrences in a noncylindri-
cally symmetric system are weaker than those found in cy-
lindrically symmetric systems. In a cylindrically symmetric
system, each “closed orbit” is actually a cylindrical family
of closed orbits and each family may be identified by the
initial polar angleé of the outgoing electron which returns
regardless of its initial azimuthal anglg. In the crossed-
field system, the electron returns to the atom only if both the
initial polar and azimuthal angles of the outgoing electron
are correct. Therefore the recurrence amplitu@gsin the
crossed-field system are smaller than those in cylindrically
symmetric systems. Using notation defined in R&8], the
f ‘ formula for C; is [16]

-195{0 -155.oT 1150 750 -35.0

DA(E) %

4.0

0.0

—1/2

E(cm1) Ci(E)=(E— Ei)zglzﬂ'rb . Aj(drer)

FIG. 4. The measured total absorption spectrum Bat XY* (Oret DredY (Oput Dour) - )
=6.002 T, F=1000 V/icm. The vertical axis represents
oscillator-strength density in atomic units. The wiggly line is a con-Here
volution of the measurement with a Gaussian function having a
standard deviation of 2 crt; its fluctuations are correlated with
closed (_)rblts. The oth_er curves are _calculatlons based on a model y(6,¢)= 2 I(n,l v|1)b|1 lellml(a’d)) (8
for continuum absorption, discussed in Sec. V. From lowest to high- I
est, they havel;;=15T., 20T., and 29 (respectively, long-

dashed line, dotted line, and solid inéight arrow: saddle energy jg the angular distribution of outgoing electrons evaluated at
Es (193 cm 7). Heavy arrow: vicinity of fuzzy threshold for e o1g0ing and returning angles of the orbit; it involves
continuum absorptiof —140,~135) cm' . The experimental re- o jia| harts of dipole integralg(n,l,l;) between the initial
sults have been normalized o theoretical values. state and a zero-energy Coulomb wave, and Clebsch-Gordan

coefficientsh A< is the square root of the classical
closed orbits from the measured absorption spectrum, wé hh i(Gred) q

developed a computational technique called the chirped Fo&jens'ty*
rier transform(CFT).

According to closed-orbit theory, the photoabsorption Aj(qret):\/J(t:O)/J(tret), 9)
spectrum is given by a slowly varying background plus a
sum of sinusoidal terms of the form

///\ / ¥/ VAN ﬂ\/F\ AVAVAYAVaVED
Dfoed E)=> C(E)sinS,(E)/h—mu;f2], (5 (VAR
J

v\\ /f\ AN //\\ //\\ ﬁ\ AAN /m\ I @
, _ . Lo Y AVARAVAAV ARV VIRVIRVARVIRVARVERVARY
wherej labels the closed orbits and their repetitiops.is a

Maslov index for the orbit(not important for this papér N /\ non /

. i ' i / u 3)
Ci(E) is the recurrence amplitude of each closed orbit. .!t /\A/ U \/ \/ V \J \ // L
contains information about the stability of the orbit, the ini v, V
tial and final angles of the orbit, and the matrix element of -195.0 1350 E(om 1) 750 -15.0

the dipole operator between the initial state and the zero-
energy Coulomb waveS;(E) is the classical action of the FIG. 5. (1) Theoretical absorptior(i.e., oscillator-strength-

closed orbit, which satisfies density in arbitrary unitsvs energy associated with the shortest
trajectory; (2) sin(TE); (3) exd y(E—Eg)]siNT(E—Eg) +a(E
JS;(E)/GE=T;(E), (6)  —Eoq)?+B(E-Eo)°l.
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. Experiment .
(22,3,0) (22,3,0)
(12,2,0) (12,2,0)
6,17,8) 5 (6,17,8)
(0,0,0) ‘ i ! (0,0,0)
0. 0.0 0.5 T
FIG. 6. Theoretical recurrence spectra f&=6 T, F FIG. 7. Chirped Fourier transforms of the experimental spec-

=1 kV/cm using the chirped Fourier transform, at appropriate val-trum, as in Fig. 6.

ues ofa,B,y. Time is measured in units of the cyclotron time at

§.002 T (5.9510 2 s). The dasheq lines represent the returngq, (5). As a function of energyC,(E) gradually decreases
times of the three shortest closed orbits shown in Fige,®B,y are  \yhile T,(E) increases, and we get a chirped sine wave. If we
the coefficients in the chirped Fourier transform and they are i'berform an ordinary Fourier transform, we multiply a
units of 1/cm?,  cyclotron times/cm?,  cyclotron times/cm?. chirped wave by a perfect sine wateee cu’rve 2 in Fig. B
a3,y should be multiplied by 10°,10"°,10"%, respectively; tUS, and then integrate. Over the range of integration, waves 1
for example, the calculated and observed valuexpis 6x 10 “. and 2 keep drifting in and out of phase, so we may get only

(Units of the vertical axis are undefingdn the ordinary Fourier .
. e . alow and broad peak in the recurrence spectrum. However,
transform(lowest curve, no signal of closed orbits is visible, butin .

the chirped transform, each closed orbit gives a clear peak. See al%foWe multlpl)_/ th_e chlr_ped wave by anothe_)r chirped wave
Fig. 15 below. see curve 3 in Fig.)Bwith the same change in phase and the

opposite change in amplitude compared to the original
chirped wave, and then integrate, we get a sharp peak in the

where J is the Jacobiam(x,y,2)/d(L, Gout, boud, Which is recurrence spectrum. This is the basic idea of the chirped

assoc.iated with the classicgl density. All quantities in thesie:ourier transform
equations are defined fully in RefL3]. I . Let us represent the return time of each closed orbit as a
(b) Our measurements are done with fixed field strengthﬁ.a lor expansion in ener
and varying photon energy, whereas the measurements in Y P 9y:
[13,14,4 were done by the scaled-variables method. In the T.(E)=T{(Eg)+2a(E—Eg)+38,(E—Ey)? (10)
present case, the return time of each orbit varies with energy, ! A ! 0 ! o
so each corresponding peak in the Fourier transform is lowynd approximate the amplitud€;(E) by an exponential
and broad. More precisely, many cannot be seen at alfynction
Therefore we need a different computational method to ex-
tract the recurrences from this spectrum. Ci(E)=C(Ep)exd — y;(E—Ep)/%]. (12)
In Fig. 5 curve 1, we show the contribution of the shortest
closed orbit to the absorption spectrum, as calculated frord corresponding chirped Fourier transform is definedl1ad

ﬁf(T;a,ﬁ;y)z fEZDf(E)e—i[T(E—EO)+a(E—Eo)2+ﬁ(E—EO)3]/ﬁ+y(E—EO)/th' (12)
Eq

whereE, is some point in the middle of the observed range,curves havex, 3,y as indicated. We arrived at these values
and «, 8,y are three independent parameters. by both experimental and theoretical methods. With no
Figures 6 and 7 display the chirped Fourier transform ofknowledge ofT;,«;,8;,v;, one can search in the parameter
the energy spectrum as a functionTofvith various selected space to make a peak in the CFT as a functiof af high
values ofa, B, andy. The family of curves marked “experi- and narrow as possible. In this case, we had already com-
ment” are the CFTs of the total absorption spectrum showrputed theoretical values df , so we knew where to look for
in Fig. 4. The family of curves marked “theory” were ob- peaks. We gradually increased to sharpen a peak, then
tained by calculating the actio§;(E) and the recurrence turned ong, then(if necessaryturned ony. (2) By comput-
amplitudeC;(E) for the five shortest orbits, and then taking ing properties of classical orbits, we found theoretical values
the CFTs of Eq.(5). The dashed lines indicate the return of T;,«;,8;,7;. These different approaches gave consistent
times of the three shortest closed orbits illustrated in Fig. 8results.
In each figure, the lowest curve,=0,8=0,y=0, is the or- The experimental and theoretical results agree with each
dinary Fourier transform. We see hardly any relationship beether adequately. The experiment shows many additional,
tween the results and the known closed orbits. The otheffalse” peaks, and in the Appendixes we show how the CFT
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tor pass over the saddle and then escape. As the energy in-
creases fronkg to zero, this critical angle moves from the
downhill to the uphill direction until no stable bound motion
is left. This classical behavior is manifested in the absorption
spectrum. Above the saddland belowE=0), the absorp-
tion spectrum exhibits narrow quasidiscrete states super-
posed on a smooth background. The continuous background
arises from the electrons that leave the atom in the escape
sector, while the quasidiscrete states are correlated with elec-
trons that leave in the bound sector. The observed threshold
of the continuum is precisely the saddle point energy, and
absorption to the continuum is proportional to the current of
electrons leaving the atom in the escape sector. As the energy
is raised from the saddle energy Eo=0, and the critical
angle moves fromr (downhill) to O (uphill), absorption into
the continuum increases, and each quasidiscrete state be-
comes broad until it becomes part of the continuum.

When the magnetic field is added, the boundary between
bound and free motions becomes fuzzy. We have calculated
the escape time of an electron as a function of its polar and

FIG. 8. Three shortest closed orbits identified in Fig. 7 Bor
=6 T, F=1 kV/cm.

can give significant “aliasing.” Nevertheless, the largest
peaks have the correct values df,&,3,y). This consis-

tency confirms the validity and applicability of the appropri- =™ e
ate closed-orbit formula for this system. It also establishegzimuthal angles from the downhil directi¢@6,27. Com-

that the CFT is a useful tool for extracting recurrences V\/eolex structure is observed, and when calculations are carried
notice that the observations give measured values:,gf out to higher resolution, structure within structure is found. It

within uncertainties less than 1%,+5%. In many applica- is reasonable to believe that there is some sort of fractal
tions of closed-orbit or periodic-orbit theory, scaled—variableboulmllary l_)et\(/jveeln bount()j_ an(fj I]r_ee motions. (Ijndeed, Jzﬁe
spectroscopy might be difficult or impossible to use. In suc etal. (Ialei_mmef rﬁ)anar orbits of t 'Sf SKSt(;m_' an prozose a
cases, the chirped Fourier transform gives a way to extra factal tiling of the escape region of the oincatane[6].
classical information from a quantum spectrum diref1l§]. . The intensity of continuum absorption should be propor-
In Appendix A, we give additional theory of the CFT and tional to the flux of escaping electrons, which is defined as
another application is shown in Appendix B. [19]

V. THE OBSERVED AND CALCULATED CONTINUUM e e 2
INTENSITY AND THRESHOLD FOR CHAOTIC Di(E)=4(E-E) escapiy(91¢)| singdédg, (13
IONIZATION

If we examine either the prompt signal in Fig. 3 or the where |y(6,#)|? is the angular distribution of outgoing
total signal in Fig. 4, it is reasonable to say that at lowwaves, and the integral is carried out over the escape sector.
energies(from a to b), we have only narrow quasidiscrete In the pure-electric-field case, the escape sector has a sharp
absorption lines, at intermediate enerdi@oundc), we have  boundary, and there is no ambiguity about the meaning of
quasidiscrete lines superposed on a continuum, and at higeqg. (13). However, in crossed fields, the escape sector has no
energies, the quasidiscrete lines have become sparse. Taract definition. We define the escape sector so that it in-
threshold of continuum absorption is not sharp, but we mayludes electrons that escape in times less than some chosen
reasonably say that substantial continuum absorption beging,;; -
near the heavy arrow in Fig. 4, aroune 140 to Specifically we calculate the integrdl3) in the following
—135 cm L. This is well above the saddle point, which is way. We sampled and ¢ uniformly in solid angle(equal
near—195 cm !, In this section, we provide a theoretical number of trajectories in equal increments of solid apgle
model to compute the continuum intensity and interpret thisvith Ad~1° and A¢ proportional toAd/siné. At each
fuzzy threshold. (6;, i), we launch a trajectory and find the time required for

First let us review the behavior of a hydrogen atom in aescape.(We choose the escape conditipd>2|x,| where
pure electric field B=0). In that casq19], the potential X is the position of the saddle poiptf the escape time is
energy has a saddle point with saddle enefgy: —2F2, less than Tg, we include the increment
For energies betwee, and zero, the classical electron has|y(#6;,¢;)|?sinA8Ad, in the integral; otherwise we do not.
both bound and free states. There is a sharp boundary be- To get a preliminary estimate df.,;;, we examined the
tween these bound and free states, defined by a critical angébsorption spectrum at high resolution, and asked what are
of ejection from the atomg,=arccos(t+ E?/2F). The sec- the broadest structures that would reasonably be called qua-
tor with ejection angle from¥, to 7 is called the escape sidiscrete states. We found such structures with widths about
sector and the sector with ejection angle from Oéois  0.25 cm !, which correspond to lifetime$ =27#/AE of
called the bound sector. Electrons ejected in the bound sectabout 22 cyclotron times. Therefore we tried valued gf;
are bound forever, while electrons ejected in the escape sebetween 15 and 30 cyclotron times.
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rapidly in size as the energy is increased above the saddle
energy. However, electrons that start from the nuclews (
=0) remain on regular, bound orbits until the chaotic zone
touches the momentum axis. When we continue to increase
the energy, an increasing portion of the momentum axis lies
within the chaotic and escape zones, which means that elec-
trons which start from the origin in a range of directions
escape. Comparison between these calculated surfaces of
. . section and the measurements indicate that the observed
FIG. 9. A COI.leCtlon O.f surfaces of section &=6 T. F fuzzy boundary of the continuum is the energy at which the
=1000 V/cm with varying energy. From left to rightE . g . .
=193 cni! (saddle energy —150 cnil, —140 cni?, and chgotlc zone first touches the r_n(_)mentum axis. At this energy,
—135 cml. [-140-135 cm ! is the vicinity of the fuzzy trajectories launched at the origin may escape from the atom
threshold for ionization. within a short time. From Fig. 9, we observe that this fuzzy
boundary for chaotic ionization of electrons that begin at the

. . H =1
Finally, to compare with the measured spectrum, we norhucleus is around-140 cni =

malize the measured spectrum so that its average at high Measurements and calculations at other electric fields also
energies is equal to support this interpretation. The observed fuzzy threshold of

the continuum corresponds to the calculated boundary for

27 [ chaotic ionization of electrons ejected from the origin, and

DfOE4(E_Ei)fO fo y(6,¢)|? sinodod . this observed fuzzy boundary is higher than the saddle
energy.

Figure 4 shows our normalized calculated continuum absorp-
tion for three selected values ©f,;; , together with the mea-
sured total absorption spectrum. We find that continuum-
absorption in this system can be interpreted as the flux of The measurements also give some information about the
electrons that escape within 20—25 cyclotron times. lifetimes of long-lived excited states. Such information can
Next we consider the fuzzy boundary of the continuum. Ingive clues about the mechanism of ionization of these states,
Fig. 4, we put a heavy arrow &~ (—140-135) cmi*to  or at least provide a check of theory.
indicate a reasonable location of this fuzzy boundary, which In the introduction, we cited other studies of lifetimes of
is substantially higher than the saddle point energyatoms in fields. Onl\[7] examines hydrogen, and no mag-
(—193 cm ). Therefore we observe that the magnetic fieldnetic field is present in that experiment. i8], electric and
stabilizes the classical motion. This is consistent with obsermagnetic fields are fixed, energy is fixed within a small
vations in[4] but inconsistent with the theoretical argumentsrange, and the time spectrum of electrons escaping from an
in [5]. organic molecule is measured. The experiment most similar
This discrepancy is not hard to resolve. Uzer and Farrellyto ours is that done by Raithel and WaltHd; at various
are correct in their observation that at all energies above thenergies and field strengths, they distinguish “prompt” and
saddle point there is a region of phase space correspondirigelayed” electrons escaping from Rb. In their apparatus,
to chaotic ionization. However, in these spectroscopic exthe boundary between prompt electrdishort-lived atomic
periments, all electrons begin their orbits close to thestatey and delayed electronong-lived atomic statgsis
nucleus. Only at an energy significantly higher than theabout 20 us.
saddle energy can these electrons escape from the atom onin our experiments on hydrogen, the prompt signals cor-
classically allowed orbits. respond to excited atoms with lifetime less than 120 ns and
To see this, let us examine motions in the plane perpenthe delayed signals correspond to excited atoms with lifetime
dicular to the magnetic field. Figure 9 shows some surface ofireater than 120 n¢Note that there is no relation between
section calculations. In our calculation, we use semiparaboli¢his boundary and the value ®f,;=130 ps associated with
coordinates in the plane perpendicularBpthat is,u=(r  continuum absorptiohFigure 3 shows the measured prompt
+x)¥2p = (r—x) 2 Then theu axis coincides with the posi- and delayed signals &=6.002 T andF=1000 V/cm. In
tive x axis (uphill) and thev axis coincides with the negative this section, we show how the prompt and delayed signals
x axis (downhill). In the surface of section, we plap(,u) at  change as the electric field changes.
v=0,p,>0. Therefore, the, axis in this figure corresponds Figure 10 displays the convoluted prompt and delayed
to the location of the nucleushe origin of coordinatgsand  signals. The prompt signal increases with energy and the
p,=0 means that all the energy is “in thedirection,”i.e.,  delayed signal decreases with energy. The crossing of the
downhill. fast and slow signals moves toward lower energy with in-
From Fig. 9, we observe a regular region on the rightcreasing electric field. Oscillatory structures mostly are in
where electrons stay bound forever, and a chaotic zone gphase in both prompt and delayed signals, and we believe
the left, where electrons remain for a while before escapingthem to be associated with closed orbits. Currently, there are
as well as a “white hole” on the left, where electrons escapeno theoretical calculations to interpret these results, and we
rapidly. We find that the chaotic and escape zones increadeave this as an open problem.

VI. “PROMPT” VS “DELAYED” ELECTRONS
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-135.0 -125.0-115.0-135.0 -1256.0 -115.0 of the angle-parametrized torus from a numerically inte-
totdl 800V/em grated regular trajectory by Fourier transformation.
750V/icm tot
dolaye pt A. The theory of the Fourier transform method
m
The main theme of the Fourier transform method can be
deiaved summarized in three points.
(1) The time dependent Fourier series of the variables of a
0.0 E —E regular trajectory. By integrating equations of motion, we
obtain a numerical representation[af (s),p;(s),t(s)] for a
W 7\@4\/\, regular trajectory11]. By putting[u;,p;] into the KS trans-
900V/c formation, we can convert the KS variables
W [ui(s),pi(s),t(s)] to the Cartesian variabldsy;(s),P;(s)]
850V/icm or [q;(t),P;(t)]. According to[24], regular motion is quasi-
delayed /\d@ periodic with three independent fundamental frequenaies
0.0 =(w;,w,w3), SO the variables can be expressed 2§
1:0 E _E
1000V/orh A =2 aeexilik-(wt+p)], (14
051}
P(t)=>, Pyexdik-(wt+B)] (15)
prémpt "\ delayed “
%f00 400 900 E 400 or
FIG. 10. Measured relative convoluted prompt and delayed ab- _
sorption spectra &=6.002 T and various electric fields labeled in q(s)=2 acexdik-(ws+p)], (16)
the graphs. The energy is in crh K
P(s)= P exdik- (ews+ 1
VIl. LONG-LIVED REGULAR QUASIDISCRETE STATES ®) Ek exil ( Pl (7

In Fig. 3 neard, we observe the presence of a regularypere k=(kq,ko,ks) is a vector of integers, and8
sequence of narrow absorption lines in the “delayed” Spec— (g, ,3,,B,) are the initial phases.

trum. In this section, we show that these lines correspond to |, gyr system, coordinates expressed as functions of

a regular family of quasiperiodic orbits. For the crossed—fielq,ary more smoothly than those expressed as functiorts of
system, there are two elementary periodic orbBs {S_)  therefore the Fourier series tare simpler and have better
which were well studied by Ftamann and Welgd20].  convergence than those in[see Figs. 1b) and 11d)].
These two lie in the plane perpendicular to the magneticrherefore, we Fourier-transform the numerical data of the
field, andS, goes around in a right hand sense relativB1o variables ins to determine the fundamental frequencies, the
On this orbit, the Coulomb force and the Lorentz force bothamplitude of each oscillatory term, and the initial phases.
point inward. This orbit is stable and quasielliptical in the  One more aspect of the numerical procedure is interest-
energy range we study. Quasiperiodic orbits oscillate abouhg. We carry out numerical integration of trajectories in
S, , and these orbits occupy a sufficient volume of phaseight-dimensional KS space. In this space, the tori are four-
space to support quantum states. dimensional, and there are four independent fundamental fre-
In EBK theory, each quantum state corresponds to a toruguencies(In KS space, the periodic orb&, is a two-torus).
having classical actions restricted to certain integer or halfHowever, when we evaluate the Cartesian variables, there
integer values. The main challenge involved in EBK quanti-are only three independent frequencies. We conclude that the
zation is the determination of the action variables, which argonlinear KS transformatioru(p) — (q,P) eliminates one of
defined as integrations around independent loops on thge four frequencies. Further details are presentd@6h
torus. Hence we need to determine the independent loops in (2) The angle-parametrized torus from a regular trajec-
our system. For systems with one or two degrees of freedomery. Regular motion admits action-angle variable Y

caustics[21] or Poincaresurfaces of sectiofi22] provide  with properties that the actions=(l,,l,,13) are constant
convenient methods to determine the independent loop$nd the angle®=(6,,6,,63) evolve linearly in time:

However, for systems with more than two degrees of free-

dom, these methods become difficL28]. 0(s) = ws+ B. (18
Another method, based on the Fourier transform, was de-

veloped by Martens and Ezf{@4,25. In this section, we Then the Fourier series of the variables can be interpreted as

adapt the same idea to obtain the independent loops and thiee transformation equations fron#,() to (q,P) with fixed

action variables. The key point of this method is calculationactions:
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FIG. 11. Behavior of variables for the trajectory drawn in Fig.
12 below.(a),(b) x(t) and its Fourier transfornic),(d) x(s) and its
Fourier transformx(t) has rather sharp cusps when the electron )
comes close to the nucleus, so its Fourier transform has many high FIG. 12. The torus explored by the trajectory launchec=at

_ -1 — — o — o
harmonics.x(s) is smoother, so its Fourier transform has fewer 110 cm or e= 0.5779, 6=87°, and $=140°, _and the
harmonics. three loopsC; with i=(1,2,3) used to calculate the actions.(&)

and (b) we show the loops and the trajectory in two-dimensional
spacesxy and xz, and below we show the trajectory in a three-

q(e,)=>, qe'k? (190  dimensional graph(Note the small range of motion) The first
3 loop C; touches two caustics, and includes one loop of angular
motion and one loop of radial motion; the second I&pis a loop
; of angular motion and it touches no caustics; the third loop is one
P(6,)=> Pk, (20 9 P

k

This is the angle-parametrized torus.

loop of z motion, touching two caustics.

Then the actions along the loops are

Sinceq andP must be real, then, and P, must satisfy
di=q-x and Pf=P_,. Let qgc=|qi/e's and Py
=|P.|e'?P.. We rewrite the angle-parametrized torus equa-
tion as

d
= (L1/2m) fﬁ P-dq=(1/2m) ﬂg P~£d6i- (25

Substituting the loop functions af( ;) and P(#6;) into Eq.

25) and performing the integration give us
0(02,02,09) = aag 23 [aJoosk- 04 gq), (1) 0 o PerOTMINg fe fntegraton o
|i:22, kilal [Pl cog g — ép,)- (26)
P(01,05,05)=Pooot 22" |Plcostk- 0+ ¢y,), (22 _ _
The actions depend dnnot only through the amplitudes;
and P, but also through the phases qf and P,. This is
different from Refs[24,25, where the actions depend &n
gnly through the amplitudes afl,. The determination of
?pases requires high precision in the determination of the
undamental frequencies. We develop a method to achieve
precision 107 in the determination of the frequencies. This
method is discussed i26]. Examining Fig. 12, we rename
the loops C,,C;,,C3) as C,+4,Cy,C,), and the corre-
sponding action variables as,( 4,1 ,.1,).

where the primed summation includes the terms Witlew
>0 only.

(3) Three independent loops and the actions along th
loops. Three independent loops can be defined as loops wi
one angle variable varying from O ton2and the other two
angles fixed. The independent loo@s in Fig. 12 are the
loops with ¢; varying from O to 2r and ¢;, 6, equal to zero:

A(6) =doog 225 'lailcoskifi+ dq),  (23)
B. The semiclassical energy spectrum
_ / We are interested only in the energy eigenvalues, so we
P(6i)= P°°°+22 |Pulcostki6i+ ). @4 calculate the actions f+4:14,1,) of trajectories with vary-
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ing initial conditions at varying energies and then fit the data TABLE I. List of the energy eigenvalueSe,,, Equantum and

set (,+4.l4.12,E) to a smooth function, Esemi:
E:ao+allp+¢+azl¢+a3|2+a4|§+¢+a5|(2;5 n n¢ Eexpt (Cmil) Equantum (Cmil) EEBK (Cmil)
+as|§a7|p+¢|¢+ agl 1 4l + a0l 4, (27) 26 9  -118.66132 —118.62790
26 10 —115.71537 —115.73 —115.71750
Then we input the quantized actions to find the correspondz6 11  —112.77931 —112.79 —112.78747
ing energy eigenvalue22]. Numerical experiment shows 26 12  —109.86435 —109.86 —109.83005
that the fit function of EQ.(27) is accurate to about 25 13 —106.96499 —~106.97 —106.96124
102 cm 1. Further details are presented[26]. 26 14 —104.11635 ~104.10 —104.09301
According to EBK quantization theory, the quantization »g 15 —101.23860 ~101.23 ~101.22536
conditions forl . 4,1,1, are 26 16  —98.27655 ~98.30 —98.25884
| -n +1/2 26 17 —95.37632 —95.39 —95.34356
préTetd ’ 26 18  —92.48411 —92.51 —92.54291
| »=Ng, 26 19 —89.92901 —89.94 —89.95688
27 4 —119.83373 —119.82059
I,=n,+1/2, 27 5 —116.74612 —116.80 —116.75103
27 6 —113.66907 -113.71 —113.69182
where the half integer results from the fact that the loop27 7  —110.61467 —110.64 —110.60441
C,+4 and C, each touch caustics twice. We also define a27 8 —107.57874 —107.61 —107.58828
total actionl as 27 9 —104.57000 —104.59 —104.57163
27 10 —101.59217 —101.25 —101.50445
I=1p otz 27 11  —98.61679 —98.65 ~98.61998
so the quantization condition fdris 2r 12 —95.70321 —95.72 —95.65637
27 13 —92.80433 —-92.82 —92.80165
l=n=n,, 4+ +1. 27 14  —89.65549 —89.65 —89.71642
27 15 —87.07754 —87.09 —87.07008
We call n the principal quantum number. Since there is a27 16  —84.26893 —84.26 —84.27282
one-to-one correspondence between the eigetMiose ac- 27 17 —81.47313 —81.46 —81.47466

tions satisfy the quantization conditipmnd the quantum

states, we can usen(, ,,n,,n,) or (n,n4,n,) to label the

states. Here we use the latter. rior method when it is available, the CFT is an effective way
Our calculation shows that the states we identify all haveao extract closed orbits in systems for which scaled-variable

n, equal to zero: they have only “zero-point” motion out of spectra are impossible or unavailable.

plane. Therefore we use only,n,) to label the states. In (2) We built a theoretical model to calculate continuum

Table |, we list the semiclassical energy eigenvalues with th@bsorption. It is related in this case to classical orbits of the

guantum numbers. We also list the experimental values anelectron that escape within 20—25 cyclotron times.

the values obtained by a quantum mechanical mef2dd (3) We identified a regular family of nearly planar quan-

for comparison. The accuracy of the experiment istum states by quantizing three-dimensional tori. We labeled

0.007 cm!. We mark the identified states on the measureceach state with three integer numbenss the total action,

absorption spectrum graplsee Fig. 18 The states in the n, is the action of the angular motion, andis the action of

energy range neat in Fig. 3 fall into several sequences. thez motion.

Each sequence is distinguished by the principal quantum

numbern, and the members of a sequence are distinguished

by the azimuthal quantum number,. Hence we have

proved that the regular quasidiscrete states in the absorption The authors thank NSF and DFG for financial support.

spectrum correspond to regular tori which stay close to th@lso, D.M.W. and J.B.D. thank V. Kondratovich for many

Xy plane and oscillate around the stable periodic dghit discussions.
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Viil. CONCLUSION APPENDIX A: THEORY OF THE CHIRPED FOURIER

In this paper, we have presented experimental measure- TRANSFORM
ments of the absorption spectrum of a hydrogen atom in Suppose we have a signa() that is a superposition of
crossed electric and magnetic fields, and we have provideghirped waves and is defined as
an interpretation of the measured data.

(1) We developed a computational method, the chirped
Fourier transform, to extract closed orbits from an unscaled A(w)zE exdiSi(@)]f(@)Cy. (A1)
spectrum. Although scaled-variable spectroscopy is a supe- K
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2.0 ; : 1. Definition A

Let the parametep be a multiplicative constanp=a,
and r(w;a)=a§(w), g(w)=[dS(w)/dw]/f;(w), and
assumefj(w) # 0 in the observation range. Then

R@)=3 f“zexmi[a%m)—sk(w)]

1.0 4
[M fk(w)dew.

fj(w)

DI(E)
This is similar to the form used by Bonmassar and Schwartz
[17]. The term withk= is

 (Smax ,

oo bbb UL b Ri(a)= | “exi ~i(a- 1S ()1Cds

19
—2sif(a—1)(AS/2
18 n=29 =C;exd —i(a—1)9] i a—;( )],
17 n=28 (A4)
19 n=27 _
~ where S= (S axt Smin)/2 andAS=S;,,x— Smin- Therefore
N=

19000 s00 80.0 700 60.0 -50.0 ) ) a—1

IRj(@)|*=|Cj|*(7AS) bxs| —5—|, (AS5)
Ecm-1) 2

FIG. 13. The measured delayed absorption spectruni at Whereé,,(u)=sinz(77u)/(myu2) is a wideneds function. Thus
=1000 V/cm andB=6.002 T. The quantum states are organizedihe termk=j by itself produces a peak at=1, which is
by the principal quantum numbensand the angular quantum num- -gjled the “physically interesting” peak. The height of the

bern, corresponding to the principal action and the azimuthal achagk is proportional to[(S)z while its width is proportional
. . p prop ) prop
tion. The states with the same quantum numbérelong to a se- to (As)fl_

guence and the states in the sequence are distinguished by the

The terms withk#] give
quantum numben,, .

w.

In our casew corresponds tcE,_A(w) corresponds to the Rk;éj:Ckf eXp—i[aﬁ(w)—Sk(w)]f'f(w) dS(w)
absorption spectrum as a function of enerigyw)Cy corre- filo) do
sponds to the recurrence amplitude of a classical orbit, and
S«(w) corresponds to the action of the classical orbit. WeWe want these terms to be as small as possible. However,
defineT(w) =0S(w)/dw. they may give significant contributions in two cases:

For a first example, suppose we know the functiSg(a») Case 1 For somek=k, there exists a valua=a, such
and f (w), but not the constant coefficien®,. To deter- that aOSj(w)—Sko(w)wconsleQO, a constant over the

mine the coefficient<C,, we multiply the signal by some \hole range of integration, that i§k0(w)~aosj(w)—5(<0
chosen function We approximateCkoka(w)/fj(w)%conleC{(O. Then the
g(w)exd —ir(w;p)] (A2) term withk=Kkq is

wherep is a collection of parameters. T (w) and T;(w) L (Smax dS(o)
are “well separated” in a sense that will be defined below, Rkoﬂzclﬁoe"skof e (a-20)S(«) wa,
we may define the integral

Smin

R(p)= J:Zg(w)exp: —ir(w;p)]JA(w)do,  (A3) IRyl 2= |C|20|27TA55A3( _a—zao) :

with appropriate specification @f(w) andr(w;p). We call  Then we get a “physically uninteresting” peakat a,. The
R(p) the chirped Fourier transform. Note that our definition conditionayS;(w) =S (@) + S, implies
0 0

of the CFT in Sec. IV is a special case of this definition.
There are several possibilities for definirgfw) and

r(w,p) a0=Tk0(w)/Tj(w).
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We say that the “uninteresting” peak af, and the “inter-  chirped Fourier transform can give significant aliasing. For
esting” peak aa=1 are “well separated”ifap,— 1| is larger  the systems we consider in this paper, we find that a different

than the width of the broadenetifunction, definition gives better results.
1 N
_ 2. Definition B
|a0 1| ’ 1> AS

Change the origin such thatw,=-—w,, let g(w)

If this condition holds, the uninteresting peak may be large=1/f;(»), and letp represent the set of three parameters
but it is distinct from the interesting one. (t,a ﬁ) andr(w,p)=tw+ aw?’+ Bw>. Then

Case 2 For somek=k;, the integral has a stationary
phase point, and can be evaluated by the stationary phase
approximation. Typically, there exists a range afvalues
such that for anya=a, in this range, there exists a frequency
o= wg in the domain of integration such that +B0*)]9(w)f(w)Cidw. (A6)

R(t;a,,B)IEk fwb expi[Sw)— (tw+ aw?

a; =Ty, (wo)/Tj(wo). Let us examine the terrk=j first. We expandSj(w) in a
i power series
Then Ry, +j can be rewritten as
Sj(w)=8?+Tjw+ajw2+,8jw3+qj(w),

Rkﬁizcklf‘u - exp-ifaS(o) whereg;(w) is equal to the remainder of the Taylor series,
mn which is the difference between the three-jgrms up to
fi (w) third ordey and the exac§;(w); we presumey;(w) is small.
—Sqy(@) I+ (@) Ti(w)dw Then the ternk=j is
fi (o) e A isQJ"’b i(Ti—Do
Ckl fl( . eXp—I[als(wo) RJ(t,aJ,[B’J) CJe ] wae i do
—sin([(T,—t)/2) ]Aw
®max — IS |(T o
~Sq(0)]ITj(wg) | exp =Cjeie (T]—t)/2 :
alTj((l)O),_Tkl(wo)’ |R](t!a1 1BJ)|2=CJ27TA0)6A¢»((T]_t)/z)! (A7)
—i (w—wg)?|dw _
2 wherew=(w,+ w,)/2 andA w= w,— w, . As before, we get
~C! expila:S _ T a wideneds-function, which is centered at=T;. We call
i @XP112151(wo) = S, (wo)ITj(wo) R(t;«,B) the («,B)-chirped time spectrum of the signal.
20 Next we examine a term witk# ] to look at aliasing.

Any term withk+#j is

|a1Tj(w0),_Tk1(w0)/|1/2
Rkﬂ(t,aJ,BJ)

a
X exp|i—sgna;T;(wg) — Ty, (@ ’),
p( 7 Sgnar Tj( 0)' ~ T, (wo)") :ckeisﬁf o (T D+ (a— ap)o?+ (8~ a3+ Gy ()

where Cﬁlzcklfkl(wo)/fj(wo)- Then again we get a

“physically uninteresting” peak ah=a;. The height of the ka(“’) .
peak is fi(w)
) 2m ‘2 Then there is a stationary point when
IRe,(a=ay)[*=| Cy Tj(wo) - | - ,
;T j(wo)’ ~ Ty (wo)' ¥4 (Te— ) +2(a— aj) 0+3(8;— Bi) w?>=0.

Such peaks might be substantial, but they will typically notFor example, wheh=T,, there is a stationary phase point at
be as large as those that occur in case 1. In case 1, the phase-0. Suppose the cubic term is negligible and again

of the exponential is essentially constant over the Wh0|€Ckfk(w)/f (w)~const=Cy ; then the integral is estimated as

range of the integration, while in case 2 there is only an ,

isolated stationary phase point; therefore, case 2 gives peaks 2 |~ (@ ap)w? A2
having heights independent of the range of integrati@ R I*=| Ci ” € P de| =[Cy la—ai|”
Again such uninteresting peaks are troublesome only if ' :
they occur too near ta=1. The height of the main peak increases in proportion to

We use the word “aliasing” to mean the presence of(Aw)?, but this peak does not. i, and a; are well sepa-
“false” (i.e., physically uninterestingeaks infR(a)|? over-  rated andCy/C;|~0O(1), then the “false” peaks are smaller
lapping with the interesting peak at=1. This form of the than the “real” peak
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TABLE Il. The (a,8,7y) values for the five shortest closed or- (A)
bits from three different methods. [ i ; i L :
Orbit Parameters Taylor NLLS  Experiment li1.0 Ai A‘ - ‘
1  « (unitsof 102) 006  0.07 0.07 oSy s “‘ :‘
B (unitsof 106 170 200 20.0 = PR I W
v (units of 10?) 0.80 0.80 0.80 0.8); 5 | :
T 034 034 0.34 e R LJ_._J.
> o (unitsof 10%) 012 012 0.12 L R
B (unitsof 106  1.88 1.95 2.00 (xym A ‘ L—‘L
T 0.68 0.68 0.68 4 ; d
3« (unitsof 102 022 022 0.22 oSt 4 L L'JL
B (unitsof 10° 340 355 3.33 (04: 9. b h b
T 0.80 0.80 0.80 h ! i : i
4  a (unitsof 10%) 030  0.30 0.30 o3 104 1-913‘&
B (units of 10°°) 3.13 3.03 3.20 | b3 i aalli. L
T 182 1.82 1.82 (02 a8
5 @ (unitsof 10%)  0.17 0.17 0.17 l b2a6, W . e s
B (unitsof 10%  2.82 2.87 3.33 o ; B i
T 196  1.96 1.96 0 1o a4 SR WP
Iéﬁlzo Ty
For the example in Sec. IV and another example in Ap- ® Tr2m
pendix B, definition B works better than definition A. It is a P c <
property of the orbits in our systems thatTif~aT;, then B )
ay~aa;, Pr~ap;; therefore S,—aS~const over the / Y
observed range. If we use definition A, case 1 frequently .
occurs and the “false” peaks are as large as the physically
interesting one; on the other hand, when we use definition B,
the undesired integrals have only isolated stationary phase e f

points, and the “false” peaks are usually smaller than the
physically interesting peak.

All our results in this paper are calculated by definition B.
For certain orbits, we include an additional parametewith
g(w)=exp(— yw). In our calculations, we have tried three
methods to determine the parametessf, y). . .

(1) Method 1: Experimental method. Suppose we were FIG. 15._(a) C_hlrp_ed Four_ler transform of the quantum energy
analyzing experimental data without prior knowledge of theSPECtrum given in Fig. 14units undefinel From the bottom up,
parametersd, 3,7) of an orbit. Then we would search in the W€ inputa values from 0.0 to 1.1 in steps of 04,b, ¢, d. & and
parameter space to maximize the height of a peak-at in f label peaks that correspond to periodic orta, ¢, d, e, andf
the CFT. We first seB, y to zero, and gradually adjust to shown in (b). ai(i=2,4,6,11,13) labels peaks that correspond to

- . h the ith return of the periodic orbit; bi(i=2,3,4) labels the
make the peak at= Tjas high and narrow as possible. After peaks that correspond to theh return of the periodic orbib.

2.0

we reach the optimak, we then turn org, and finally turn
on vy. That would give an experimental determination of
(a;.B;,7)-
(2) Method 2: Taylor expansion. Suppose by some means
10l . | e we know the values of, dT;/dw, d°T;/dw? at some par-
o ; | | sl ticular wq within the integration range. Then we may set
| RS = 1dT,/dw, B= LT, /dw?
| ! ;
00 ’ | AL

0.0 5.0 E 10.0

3 ' (3) Method 3: Nonlinear least-squaréNLLS) fit. Sup-
’ ’ pose we have determined theoretically the quarffw)
over the whole measured range of Then we can choose
(a,B) by a nonlinear least-squares fit over the whole range.
FIG. 14. Energy spectrum of the model Hamilton[&. (B1)]. It is obvious that the mora priori information we have
Units are not defined for this model. The horizontal axis represent@bout (T, @, S;,v;), the better the result will be, that is, the
energy, and a line of height 1 is placed at each energy eigenvalug@hysically interesting peaks will be higher and narrower.

I

i
|
!
[
i
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Also one can go to higher-order terms in a Taylor series, oie apply the chirped Fourier transform defined by &f)
fit Sj(w) to some other functions to get better results. Weto this density of states:
find that, in our case, a third-degree Taylor expansion is suf-
ficient. ;(T;a):f e i[TE-Eo+a(E-E0)?l ,(E)dE
We give values ofl,«a, B, v for five of the short orbits in
the crossed-field system in Table T.is the return time of _ ,
the closed orbits in units of cyclotron times & =2 e [ME-EgtalE~E)T (B2
=—-95 cm . a,B,y are in units of cyclotron times/cnt, '
cyclotron times/cm?, and cyclotron times/cimt respec- wherea is a parameter.

tively. These methods all give consistent results. In this case, the calculation was done with no prior
knowledge of the periodic orbits. We evaluatedT;«)|? vs
APPENDIX B: ANOTHER APPLICATION T with « ranging from O to 1.1 in steps of 0.1. The results are
OF THE CHIRPED FOURIER TRANSFORM shown in Fig. 16a). At various values ofr, we see sharp,

ell-resolved peaks. Then orbit calculations showed that

. Wi
As we stated earlier, spectra can be measured by t k R ; P
’ rr n h riodic orbi rawn in Fig.
scaled-variable method for an atom in crossed fields. Whenht%ese peaks correspond to the periodic orbits dra 9

is possible, scaled-variable spectroscopy is a more effective THe peak a at/2m=0.75, corresponding to periodic orbit
way of extracting recurrences. However, for most systems, s weak, but several of its repetition®, a4, a6, all, and
scaled-variable spectroscopy is impossible. In this Appendix13 are plainly visible. Orbib has a period that is slowly
we present another appllcatlon Of the CFT to Calculate th@ary”']g with energy’ SO it appears in the Ordinary Fourier
recurrence spectrum for a model coupled-ospillator systeM¢ransform, witha=0. However, the peak is sharper when

The Hamiltonian is similar to that of the IHen-Heiles s set to 0.1, and the successive repetitions of this orbit are
system except that it has unequal force constants: visible as peak®2, b3, andb4, at successively increasing
values ofa. Orbitsc—f are not visible at all in the ordinary
Fourier transform, but they show up as large, sharp peaks at
appropriate values ak.

. Theoretical values ofx for peaksa—f are 0.03, 0.07,
with w;=1.3, ,=0.7,\=—-0.1, andp=0.1. 0.55, 0.64, 0.87, and 1.02, respectively. These are consistent
The quantum energy spectrum, calculated by N@8]  with the values determined from the CFT graphs within

with a 30x 30 (900 function$ harmonic oscillator basis set, +8%.

1
H = (pi+p3+ il + wia3) +\az(a5+ 793) (B1)

is shown in Fig. 14. In cases like this, the scaled-variable-spectroscopy
The formula for the quantum density of states is method is impossible. We notice that the CFT extracts
strong, narrow, isolated peaks where the ordinary Fourier
p(E)= 2 S(E—E)). transform gives no signal. We believe that the CFT is a valu-

|

able tool for the study of periodic orbits and recurrences.
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