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We have investigated the structure and properties of small metal clusters using all-etdcirotio theo-
retical methods based on the Hartree-Fock approximation, density functional theory, and perturbation theory
and compared the results of our calculations with the available experimental data and the results of other
theoretical work. We have systematically calculated the optimized geometries of neutral and singly charged
sodium clusters having up to 20 atoms, their multipole mom@hp®le and quadrupolestatic polarizabilities,
binding energies per atom, ionization potentials, and frequencies of normal vibration modes. Our calculations
demonstrate the important role of many-electron correlations in the formation of the electronic and ionic
structure of small metal clusters and form a good basis for further detailed study of their dynamic properties,
as well as the structure and properties of other atomic cluster systems.
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[. INTRODUCTION analysis of the properties of neutral and singly charged so-
dium clusters in the specified size range.

Atomic clusters and small nanoparticles have been recog- During the last decade, numerous experimental and theo-
nized as distinct physical objects with their own propertiesretical investigations of the properties of small metal clusters
relatively recently. This became clear after such experimentalere performed, as well as of processes involving them.
successes as the discovery of electron shell structure in metélere we are not able to review even all the essential results
clusters[1], observation of plasmon resonances in metalobtained in the field and only refer to those that are related
clusters[2—4] and fullereneg5,6], formation of singly and most closely to the subject of our paper.[t], it was ex-
doubly charged negative cluster iofig], and many more. perimentally proved that metal clusters have the shell elec-
The interest in cluster physics is also closely connected withronic structure, and the magic cluster numbers have been
the fact that cluster properties explain the transition fromdetermined by observation of sodium cluster abundances in
single atoms or molecules to the solid state. A comprehenmass spectra. Experimental studies of the electronic structure
sive survey of the field can be found in review papers andand properties of small metal clusters are reportd@®21]
books; see, e.g[8—14]. (for reviews, see als[8,10,11,13,14. In[20], the ionization

There are many different types of cluster, such as metallipotentials for a sequence of small neutral and positively
clusters, fullerenes, molecular clusters, semiconductor clusharged sodium metal clusters were measured, which inde-
ters, organic clusters, quantum dots, and positively and neg@endently proved their shell structure. The dipole polarizabil-
tively charged clusters, which all have their own features andties of sodium clusters were experimentally determined in
properties. In this paper we focus on a detailed systematif21]. The dissociation energies of neutral and positively
study of the structure and properties of small metal clustersharged small sodium and potassium metal clusters were
and in particular sodium clusters usiag initio all-electron  measured if22—-24. The dynamical properties of clusters
many-body theory methods. have been studied by means of photon, electron, and ion

So far, systematic calculations of sodium cluster properscattering. These methods are the traditional tools for prob-
ties on the same level of theory as in our present Wbek,  ing the properties and internal structure of various physical
all-electronab initio calculation$ have been performed only objects. Using these methods, for example, plasmon excita-
for clusters withN=10[13,15-19, whereN is the number tions in metal cluster$2,25] and fullereneg6] have been
of atoms in a cluster. In our work we extend this limit up to observedfor reviews, see alsf8,10]).

N=20. Note that most of the cited papers are focused on the Metal clusters have also been studied theoretically. The
investigation of neutral cluster properties rather than ions. Irstructural properties of small metal clusters have been widely
our present work we perform a systematic comparativenvestigated using quantum chemistry methods. Here we re-
fer to the paper§15—18,26—29 in which optimized geom-
etries, binding energies, ionization potentials, electron struc-
*Email address: solovyov@rpro.ioffe.rssi.ru ture, and electron transport properties of small lithium and
"Permanent address: A. F. loffe Physical-Technical Institute of thesodium clusters have been calculated. In these papers the
Russian Academy of Sciences, Politechnicheskaya 26, St. Petersystematic analysis of the cluster properties was limited to
burg, Russia 194021. Email address: solovyov@th.physik.unicluster sizedN<10. In the present paper we extend this limit
frankfurt.de up to N=<20 and perform a systematic analysis of various
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cluster characteristics for both neutral clusters and singlyedge of the ranges of applicability of the jellium model and
charged cluster ions. the level of its accuracy is important, because the jellium
In the last few years, a number of papers have been denodel often gives a much more efficient theoretical basis,
voted to calculation of the dipole static polarizabilities of particularly when dealing with larger cluster systems.
neutral sodium and lithium clustefd9,30—33. Note that In this paper we have undertaken a detailed systematic
most of these studies were performed within the cluster sizéheoretical study of the structure and properties of sodium
rangeN<20. The results of different theoretical approachesclusters beyond the jellium model using all-electedminitio
were compared with the experimental data fri2a]. How- theorencal_ methods based on the Hartree—F_ock approxima-
ever, only in[19], were calculations of the cluster geometries!ion, density functional theory, and perturbation theory, for

and polarizabilities performed on the same level of theonf!USters whose size is large enough for jellium calculations.
(i.e., all-electronab initio calculation$ as in our work and hat is, we have calculated optimized geometries of neutral

they were limited taN<8. and singly charged sodium clusters consisting of up to 20
Alternatively, the jellium model for metal clusters has &0ms, their multipole momentdipole and quadrupole
been suggested. This model explains well enough the shetfatic polarlzabllltles, bmdmg energies per atom, ionization
structure of metal clusters and their essential dynamic propPotentials, and frequencies of normal vibration modes. We
erties, such as plasmon excitations. Initially, jellium calcula-cOMpare the results of our calculations with the available
tions for metal clusters were based on the density functiondf*Perimental data and with results of other theoretical work
formalism with the use of pseudopotentials for the descripP€rformed both within the framework of the jellium model
tion of electron relaxation effects and lattice struct[@d]. ~ @nd beyond, using quantum chemistry methods, and eluci-
Fully self-consistent calculations for spherical jellium metaldate the level of accuracy of different theoretical approaches.
clusters have been performed within the framework of the IS0, We demonstrate the important role of many-electron
spin-density-functional methd@5] and the Kohn-Sham for- correlations in the formation of the structure and properties
malism for the self-consistent determination of electron wave®’ Small metal clusters. Our results form a good basis for the
functions [36,37. The Hartree-Fock scheme for self- detailed study of dynamic properties of small metal clusters
consistent determination of the electron wave functions oftS Well as the structure and properties of other atomic cluster

spherical jellium metal clusters was introduced later inSYStems. _ _ .
[38,39. This approach was generalized for axially deformed Our calculations elucidate the level of accuracy of various
cluster systems ifi40]. The dynamical jellium model for theoretical schemes for the treatment of electronic structure

metal clusters, which treats simultaneously the collective vil metal clusters, which it is important to know and is not
brational modes(volume vibrations, i.e., breathing, plus obvious in advance because of the complexity of the theoret-
shape vibrationsof the ionic jellium background in a cluster, i@ methods involved. Some characteristiatipole and
quantized electron motion, and interaction between the ele@uadrupole moments or spectra of normal vibration modes,
tronic and ionic subsystems, was develope@ib,42. for example, WhICh we have calculated_ in this paper have
The jellium model provides a very useful basis for study-”Ot been studled. bgfore, at least aqcordmg to our knowled_ge.
ing various collision processes, such as photoabsorpt@i These charactenstl'cs, _however, m|ght be, important, for in-
photoionization[5,44,48, elastic[46,47 and inelastic scat- Stance, when considering the dynamics of a cluster beam in
tering[47-50, electron attachmefi61,57, photon emission &N external nonho_mogeneous electric or magnetic flt_eld. In-
[53,54 and others, involving metal clusters. On the basis ofd€€d, cluster multipole moments should be responsible for
the jellium model one can develap initio many-body theo- cluster isomer separation in nonhomogeneous external fields.
ries, such as the random phase approximation with exchang%@e analyze the connection between the principal values of
or the Dyson equation method, and effectively solve a many-he cluster quadrupo_le moment tensor and the cluster shape
electron correlation problem even for relatatively large clus-Plate, prolate, or triaxially deformed L
ter systems containing up to 100 atoms or even more. One 1he frequencies of the surface and volume vibration
can find a review of these methods in their application to thén°des have been determined in the spectra of the cluster
electron scattering of metal clusters[B6]. As elucidated in normal vibration frequencies and their correspondence with
the papers cited above, many-electron correlations are essdfi€ Predictions of the dynamical jellium modéil, 42 estab-

tial for the correct description of various characteristics of'Shed: _ _
cluster systems. Our calculations have been performed with the use of the

In spite of the fact that the jellium model with all its GAUSSIAN 98 software packagg56]. We have used the

modifications is rather successful in explaining numeroudtomic system of units in this papér= me=e[=1, unless
phenomena involving metal clusters, it obviously has its lim-Other units are indicated.

its, because this model does not take into account the de-
tailed ionic structure of clusters. The correspondence be-
tween predictions of the jellium model and the results of
more advanced quantum chemistry calculations has not been In this work we study the structure and properties of small
examined in a systematic way so far. Partially, this is consodium clusters on the basis of all-electran initio many-
nected to the fact that quantum chemistry calculations arbody theory methods. We calculate the optimized geometries
usually limited to small sizes of clusters, while the jellium of clusters consisting of up tN<20 atoms, wherd is the
model becomes adequate for larger cluster systems. Knowhumber of atoms in the cluster. For the sequence of clusters

Il. THEORETICAL METHODS
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with N=<20, we determine the size dependence of the clusteals. The Hartree-Fock equation for the determination of the
ionization potentials, total energies, multipole momeidis ~ molecular orbitals); reads(see, e.g9.[]57])

pole and quadrupolebonding distances, and dipole polariz-

abilities. We also calculate and analyze the vibration spectra (= A2+ Uionst Upp) ¢hi=sith; . Y

of clusters. _ o _

We have done these calculations using different theoretitiere, the first term represents the kinetic energy ofithe
cal schemes. We calculated cluster characteristics in the af/ectron, andJj,, describes its attraction to the ions in the
electron Hartree-Fock approximation. This approximationCluster. The Hartree-Fock potentidlr represents the Cou-
does not take into account many-electron correlations in th€omb and exchange interactions of the electramith other
system, which turn out to play an essential role in the forma€l€ctrons in the cluster, ang is the single-electron energy.
tion of cluster properties. Therefore, we also calculate all the [N GAUSSIAN 98 the molecular orbitals); are approxi-
characteristics using post-Hartree-Fock theories accountingated by a linear combination of a predefined set of single-
for many-electron correlations. This was done in théllsto ~ €lectron functiong,, known as basis functions. This expan-
and Plesset perturbation theory of the second and the fourion reads as follows:
order and using the three-parameter Becke gradient-corrected N
exchange functional with the gradient-corrected correlation
functional of Lee, Yang, and Pa(B3LYP). ‘pi:;l CpiXp @)

Note that the post-Hartree-Fock perturbation theories and
the density functional approximation are two different theo-yhere the coefficients - are the molecular orbital expan-

retical schemes for the solution of many-electron correlatiorgiOn coefficients. antll is the number of basis functions that
problems based on different physical principles. The impor4re chosen to be normalized.

tant featur(_a of the density functional method consists in the  The pasis functiong,, are defined as linear combinations
fac;t that _thls method takes |r_1t0 account many—elect'ron COIMes¢ primitive Gaussians:
lations via a phenomenological exchange-correlation poten-
tial. However, so far, there has not been found a unique
potential that is universally applicable for different systems XM:E d,p9p ©)
and conditions. As a result there is a “zoo of potentigse, P
e.g.,[68]) valid for special cases. These potentials, of course, ) - . :
do exist in principle as unique quantities but are not actuallyVNeréd,p are fixed constants within a given basis set. The
understood, so alone they cannot serve as a satisfactory baBidmitive Gaussiang,=g(a,r) are Gaussian-type atomic
for achieving a physical interpretation. unctions having the following form:

Alternatively, one can develop direab initio methods for )
the description of electronic properties of metal clusters. This g(a,r)=cxymze ", 4
can be achieved by using the Hartree-Fddk) approxima-
tion and construction on this basis Systema‘[ic many-body"ere,c is the normalization constant. The choice of the in-
theories such as the random phase approximation with exegersn, m, and| defines the type of primitive Gaussian
change or many-body perturbation theory, an example ofunction:s, p, d, or f (for details, se¢58]).
which we use in the present work, or the Dyson equation Substituting these expansions in the Hartree-Fock equa-
method(see, e.g[43]). Based on fundamental physical prin- tions (1), one can rewrite them in the forknown also as
ciples, these models can be refined by extending the qualitie Roothaan and Hall equations
of the approximations, while the physical meaning of the

. . N

effects included is clearly demonstrated, and thus they often
give more accurate and reliable characteristics of metal clus- 2:1 (Hu—€i5,,)¢,i =0, u=12,...N. ©)
ters than does density functional theory. Thus, in the present
work, we use both theoretical schemes for calculations angyyitten in the matrix form, this equation reads
take advantage of the clear physical meaning and reliability
of the post-Hartree-Fock perturbation theories and the nu- HC=SCs, (6)
merical efficiency of the density functional methods.

Below, we discuss theoretical methods used in our workyhere each element is a matrix. Heteis a diagonal matrix
The aim of this dlsc_:ussmn is to present the essential ideas @f orpital energies, each of its elements is the single-
the m_ethods an_d give _the necessary references, rather thand@ctron energy of the molecular orbital, H is the Hamil-
describe them in detail. tonian matrix as follows from Eq1), andS s the overlap
matrix, describing the overlap between orbitals. For more
details regarding this formalism, s€&8]. Equations(6) are
nonlinear and must be solved iteratively. The procedure

In the Hartree-Fock approximation, the many-electronwhich does so is called theelf-consistent fieldhethod.
wave function of a cluster is expressed as the antisymme- The equations written above refer to the restricted
trized product of the single-electron wave functiopsof  Hartree-Fock method. For open shell systems, the unre-
cluster electrons, which are also often called molecular orbitstricted Hartree-Fock method has to be used. In this case, the

A. Hartree-Fock method
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a and B electrons with spins up and down are assigned to N
different orbitals, resulting in two sets of molecular orbital p(r)="2, |4i(n)|% (11)
expansion coefficients: v=1

whereV,. is the local exchange-correlation potenti@},are
the electronic orbitals, ani is the number of electrons in
the cluster.

The exchange-correlation potential is defined as the func-

N
’/fia:;l CouiXp

N tional derivative of the exchange-correlation energy func-
wiﬁ:;l C,ﬁiXM- (7) tional
v :5EXC[P] (12)
The two sets of coefficients result in two sets of Hamiltonian X Sp(r)

matrices and two sets of orbitals.
The approximate functionals employed by DFT methods par-
tition the exchange-correlation energy into two parts, re-
ferred to as thexchangeand correlation parts

The Hartree-Fock theory provides an inadequate treat-
ment of electron motion within a molecular system, because Exd p]=Ex(p)+Ec(p). (13
it does not properly treat many-electron correlations. The , )
many-electron correlations can be accounted for using differ”hysically, these two terms correspond to same-spin and
ent methods. The most straightforward way to achieve thié?,“"(e‘j'Sp'n Interactions, regpectlv'ely. Both parts are fgnc-
goal is based on perturbation theory. Indeed, the total Hamilionals of the electron density, which can be of two distinct

B. Mdller-Plesset perturbation theory method

tonianH of the cluster can be divided into two parts: types: either docal functional depending on only the elec-
tron densityp or a gradient-correctedunctional depending
H=Hy+V. (80  on bothp and its gradien¥ p.

In the literature, there is a variety of exchange-correlation
Here H, is the Hamiltonian corresponding to the Hartree-functionals. Below, we refer only to those that are related to
Fock level of theory and is the residual interelectron inter- the calculation performed in this work.
action, which can be treated as a small perturbation_ The local exchange functional is Virtually always defined
ConsideringV as a small perturbation one can constructas follows:
the solution of the Schrdinger equation for a many-electron

113
system in an arbitrary order of perturbation theory. Perturba- ELDA_ _ §(i) J p¥3d3r . (14)

tion theory of this type is well known since the work by X 2\4m

Mdller and Plesselt59] and can be found in numerous text-

books on quantum mechanitsee, e.g.[60]). This form was developed to reproduce the exchange energy

Mdller-Plesset(MP) perturbation theory59] of the second ~cient for the adequate description of atomic clusters.

of the perturbation theory. Becke[61] and based on the LDA exchange functional reads
p4/3X2
C. Density functional methods EX'388= E!;DA— 7J —_ﬂdgl’ (15
1+6ysinh = x

The density functional theorfDFT) is based upon a strat-
egy of modeling electron correlation via general functionalswherex:p—4/3|Vp| andy=0.0042 is a parameter chosen to

of the electron density. Within the DFT one has to solve the;t the known exchange energies of the noble gas atoms.
Kohn-Sham equations, which reésee, €.9.[8,9,11-19) Analogous to these exchange functionals, there are local

and gradient-corrected correlation functionals, for example,
wi= e 9) those introduced. by Perdew and Wafsge, e.9.[62] anq
references therejnand by Lee, Yang, and Paf63]. Their
explicit expressions are somewhat lengthy and thus we do
where the first term represents the kinetic energy ofithe not present them here, referring readers to the original pa-
electron,U,,,s describes its attraction to the ions in the clus- pers.
ter, Vy, is the Hartree part of the interelectronic interaction,  In pure DFT, an exchange functional usually pairs with a
correlation functional. For example, the well-known BLYP
p(r') functional pairs Becke's gradient-corrected exchange func-
Vy(r)= f dr’, (10)  tional (15) with the gradient-corrected correlation functional
Ir=r’]| of Lee, Yang, and Pafi63].
In spite of the success of the pure DFT theory in many
andp(r'’) is the electron density, cases, one has to admit that the Hartree-Fock theory accounts

62

7 + Uions+ VH + ch
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for the electron exchange more naturally and precisely. Thusrgy spectrum for a number of clusters. In this calculation
Becke has suggestg@1] functionals which include a mix- particular attention has been paid to the identification of the
ture of Hartree-Fock and DFT exchange along with DFTbreathing and surface vibration modes, and their frequencies

correlations, conceptually definirtg, . as have been compared with those predicted[4d,42 for
_ spherical sodium clusters on the basis of the dynamical jel-
Em¥=cyeE 4+ cperER T, (16)  lium model.
where cye and cper are constants. Following this idea, a . RESULTS OF CALCULATIONS AND DISCUSSION
Becke-type three-parameter functional can be defined as fol-
lows: In this section we present the results of calculations per-
formed with the use of the methods described above. We
EB3LYP=ELPAL o (EFF— ELPA) + ¢ (EBB—ELPA) calculated the optimized geometries of neutral and singly
charged sodium clusters consisting of up to 20 atoms, their
+Eg Ve (Eg P-ELMY). (17 multipole momentgdipole and quadrupoe static polariz-

abilities, binding energies per atom, ionization potentials,
Here,cy=0.2, ¢,=0.72, andc.=0.81 are constants, which and frequencies of the normal vibration modes. We compare
were defined by fitting to the atomization energies, ionizatiorthe results of our calculations with the available experimen-
potentials, proton affinities, and first-row atomic energiestal data and the results of other theoretical works performed
[58]. EL°# and EZ®® are defined in Eqs(14) and (15), re-  both within the framework of the jellium model and beyond,
spectively. E;'F is the functional corresponding to the using quantum chemistry methods, and establish the level of
Hartree-Fock equationd). The explicit form for the Vosko- accuracy of different theoretical approaches. Particular atten-
Wilk-Nusair correlation functionaky "™ as well as for the tion is paid to clusters in the range <4< 20, because some
gradient-corrected correlation functional of Lee, Yang, andcharacteristics of the clusters in this size range have been
Parr,EtYP, can be found in64] and[63], respectively. Note ~calculated on amb initio basis in our paper for the first time
that instead oEY"™ andEL"® in Eq. (17) one can also use 0 0ur knowledge. Also, we demonstrate the important role

the Perdew and Wang correlation functiorise, e.g.[62] ~ Of many-electron correlations in the formation of the struc-
and references thergin ture and properties of small metal clusters.

. +
D. Geometry optimization A. Geometry optimization of Na, and Na,™ clusters

The cluster geometries that we have calculated in our Results of the cluster geometry optimization for neutral

work have been determined using a geometry optimizatior"fmd singly charged sodium clusters consisting of up to 20

procedure. This procedure implies calculation of the multidi—atoms are shown in Figs. 1 and 2, respectively. The cluster

. . eometries were determined using the methodology de-
mensional potential energy surface for a cluster and thep - . . z o
S - ; ; . _scribed in Sec. Il; namely, the optimization of the cluster
finding local minima on this surface. The key point for this eometries was performed with the use of B3LYP and,MP
search is fixing the starting geometry of the cluster, which® P
. . ; methods.
might converge during the calculation to the local or global

minimum. There is no unique way to achieve this goal with For cIustlers WithN=<6, we preferably useq the MP
GAUSSIAN 93 method. This method leads to results that are in reasonable

In our calculations, we have created the starting geomggreement with those derived by other methesize, e.g.,

etries empirically, often assuming certain cluster symmetrieém’lﬂ)' For example, the_ side bond length in the rhomboi-
Note that during the optimization process the geometry o al Na, C'“S‘ef calculated ifi16] by th? a_II—eIectron Ha_rtree—
the cluster as well as its initial symmetry sometimes chang o%ksngeg]qu_f:s equalllto i‘.m A, IWh':e mfour case I ISI fqual
dramatically. All the characteristics of clusters that we have? > - The smaller diagonal value for Nes equal to

calculated and present in the next section are obtained fo?f‘z_?h Al\l/lnp[16],t\rl]vh(|jlebwe determine it %S 3.18 A. ter ti
clusters with optimized geometry. e MR, method becomes more and more computer time

In our calculations, we have made no assumptions abmﬂemandir]g with growth in _cluster si_ze. This _happens due to
' Increase in the number of integrals involved in the computa-
flons. It turns out that for larger cluster systems the B3LYP

that all electrons available in the system, have been take . L
into account when computing the potential energy Surfacemethod is more efficient. The accuracy of the B3LYP method

For clusters withN>10, this process becomes rather com—iS comparable to the accuracy of the MRethod, as is clear

puter time demanding. Thus, in this work we have Iimitedfro.m the_ comparison of the B3LYP and I\,q_!llélgster geom-
our calculations to clusters up < 20. etries with those computed iri6] by the configuration in-

teraction method.
Clusters of a certain size can possess various isomeric
forms, whose number grows dramatically with increasing
Knowledge of the potential energy surface in the vicinity cluster size. We illustrate the situation and calculate several
of a local minimum allows one easily to determine the cor-isomers of the Ng Nas, Nag, Naj, and Na, clusters.
responding normal vibration modes of the system. We hav@&hey are all presented in Fig. 1. Note that the linear and
performed this calculation and determined the vibration enequilateral triangular Naisomers were not described in the

E. Normal vibrations
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Na,- Dy Na,- D, a. Naz-C,,, b.Nas-C,, Naz-D,,  Nas-D,,
MP2/6-31G(d) MP2/6-31G(d)  B3LYP/6-31G(d)  B3LYP/6-31G(d) B3LYP/6-31G(d) MP2/6-31G(d)
3.153 60°
m 326 g
Nayy-Cpy Nagy-G Nagp-Cay
B3LYP/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d)
Nag - Dyp Nag- Cyy Nag- Gy, Nag- Dy,

B3LYP/6-31G(d) MP2/6-31G(d) MP2/6-31G(d) B3LYP/6-311G(d)

Nag3- Cy Nagy-Coy

Na,- D, Nag- T Na,- C. Na,,- D,
7" "5h 8 d 9" “2v 10" “4d B3LYP/6-31G(d) B3LYP/6-31G(d)

B3LYP/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d)

3.573

Nago-Ty
B3LYP/6-31G(d)

Nayg- Cgy
B3LYP/6-316(d)

L L

VIR
.

Al
()

(b)

Najg-Dygp, Nagy-Ty Nagg-Cay
B3LYP/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d)

FIG. 1. Optimized geometries of neutral sodium clusters-NNg;o (a), Na;1—Nayg (b), and Nag and Naq (c). The interatomic distances
are given in angstroms. The label above each cluster image indicates its point symmetry group and the calculation method by which the
cluster was optimized.

earlier paper$15-17 (see alsd11,13,14), in which isos- Sodium clusters witiN<5 have a plane structure, while
celes triangular isomers were considered. A comparison dor N=6 both plane and spatial isomers are possible. This
the propertiegdipole and quadrupole moments, total ener-feature is consistent with the jellium picture and can be ex-
gies, bonding distance®f these clusters will be given be- plained by the minimization principle for the cluster surface.
low. Indeed, the surface of small plane cluster isomers is smaller
Using the example of the Nacluster, we demonstrate than the surface of possible three-dimensional forms.
how the multiplicity of an electronic state of the system can A comparison of the geometries of the neutral and singly
influence its geometry. Figure 1 shows that the, Nuster  charged clusters presented in Figs. 1 and 2 shows significant
has the rhomboidal geometry corresponding to@bg point  differences. For smaller sizedN&8), singly charged and
symmetry group, if the multiplicity of the cluster is equal to neutral clusters sometimes have different point symmetry
1, while, if the multiplicity is equal to 3, the cluster has the groups and bonding distancésee images of the Na Nas,
quadratic geometry characterized by g, point symmetry  Nag, and Ng@ clusters and their ionsThe alteration in the
group. geometry of cluster ions occurs due to the excess positive
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4+ 4 + + +
Naj - Doy Naj- Dy Nay - Dy, Nay-C,, Nag- D,
MP2/6-31G(d)  MP2/6-31G(d) MP2/6-31G(d) MP2/6-31G(d) MP2/6-31G(d)
’ + + +
)23 Najp-Cay Naj3-C4 Naj,-C,,
3,652 .ﬁ 531 3,500 B3LYP/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d)
+ + + +
Nag- Dyy Nag-Cpy Naz- Dgp, Nag-Cypy
B3LYP/6-31G(d) MP2/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d)
3.196 34644
3.578 ,
3614 + + .
3.55 . /‘ Naje-Cg Nayz-Cg Najg-Cs
>4 B3LYP/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d)
: el N 7
3.241 3.110/
. "]
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Najo-Ty Nayy-Cg Najq-Dyp

B3LYP/6-31G(d) B3LYP/6-31G(d)
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FIG. 2. Optimized geometries of singly charged sodium clusters NNa;* (a) and Na,"—Na,;* (b). The interatomic distances are
given in angstroms. The label above each cluster image indicates the point symmetry group and the calculation method by which the cluster
was optimized.

. .‘é‘“‘:e’;’;
SN

charge available in the system. The structural changes afhells of delocalized electrons have a spherical shape, while

cluster ions become less profound with increasing clusteclusters with open electron shells are deformed. The jellium

size (see clusters witiN=10), because the excess positive model predicts spherical shapes for the clusters with the

charge in this case turns out to be insufficient to producenagic numberdN=_8,20,34,40. . ., having respectively the

substantial change in a massive cluster, although sometimésllowing electronic shells filled: 4°1p°®,1d%2s? 1f14,

(compare Ng and Nas") noticeable change in the cluster 2p5, .. ..

geometry is also possible. We have also found thg&; symmetry group isomer for the
The striking difference in the geometries of small singly Nay, cluster. However, this cluster isomer is not the lowest

charged and neutral clusters is closely linked to the problenenergy isomer of Ng (see Table | in the AppendixA simi-

of cluster fission. It is natural to assume that with increasindar situation occurs in the jellium model, where the

cluster charge small clusters should become unstable aris?1p®, 2s? closed shell electronic configuration does not

fragment into two parts, while for larger cluster sizes one caminimize the cluster total energy.

expect quasistable configurations, which should decay via Note also that both the local density approximation and

the fission process. Calculation of such configurations is aiF jellium models predict some deviation from sphericity

interesting task, because it may provide essential informatiofor the Nag cluster[40], which has the d subshell filled, as

on the predominant fission channels in the system. We do nat result of electron configuration mixing. This fact is also in

perform such an analysis in our work, but point out that thequalitative agreement with the results of @l initio calcu-

geometries of cluster ions like &, Na™, Na*™, and lations. The point group symmetry of the Naluster,Cs,

Nay;s* give obvious hints on the possible fragmentationis lower thanT, which is the point symmetry group for the

channels in these cluster systems. Nag and Ngg clusters, and even lower than the point sym-
Figure 1 shows that the clusters \and Ng, have higher  metry group for some open shell clusters, like;,dad Naq,

point symmetry groupTy than to the other clusters. This which have the point symmetry groups;, .

result is in qualitative agreement with the jellium model.  Note that there are some clusters possessing relatively low

According to the jellium moddl36—44, clusters with closed point symmetry group that nevertheless are quite close to a
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higher point symmetry group. The higher symmetry breaking Average interatomic distance in neutral sodium clusters
can be explained via the Jahn-Teller effg80]. This situa- o LI L R RN BN L AL
tion occurs, for example, in the Rand Na, clusters, which E E
possess th€,, point symmetry group, but their geometry is
close to the geometry of thasy, group.

The jellium prediction on the sphericity of the magic clus-
ters does not work so well for cluster ions. Indeed, the ge-
ometry and the point symmetry group of Nado not allow & ™ 3
one to infer the higher sphericity of this cluster as comparedé’ 6t
to its neighbors. The analysis of the quadrupole moments antv.
cluster deformations performed below demonstrates this con

7 g 3
363

353

3.3 3

clusion quite clearly. This happens because the forces emerg E
ing in the cluster during its transition from neutral to singly 3 :
charged state turn out to be insufficient to rearrange the clus E E
ter geometry from a deformed to a spherical one. ]

We have found two isomers of the pealuster that have 2 4 6 8 10 12 14 16 18 20
rather regular structure and differ significantly one from an- N

other. The cluster geometries presented in Fig. 1 allow one to

assume that there exist at least two independent paths to FIG. 3. Averaged bonding distance as a function of cluster size
cluster structure formation. Indeed. the isomers for optimized geometries of neutral sodium clusters. For some clus-

ter numbers more than one isomer has been considered. In these
cases, labels indicate the point symmetry group of the correspond-
ing isomers. Geometries of the optimized clusters can be found in

Fig. 1.

Nag %' — Nay— Na % —Nays— Nays
— Na16—> Na17—> Na18—> Na19—> Nagg”

probably belong to the chain leading to the formation of theThese features have a quantum origin and can be explained
C,, isomer of the Na, cluster, while the clusters by the delocalization of the valence atomic electrons. Indeed,

the odd-even oscillations arise due to the spin pairing of the
delocalized electrons. This type of behavior is also typical of
other cluster characteristics and will be discussed below in
—Nay,— Nay,— Na;g more detail. The reason for the relatively large increase of
the average distance seen for small sodium cluster ions with
N=9 is also qualitatively clear. It can be explained by the

form the path by which th& 4 isomer of the Ng, cluster is : o o o .
formed. Figure 1 clearly shows the steps of the cluster fc)rTCoulomb instability developing in the cluster with increasing

mation process along these two paths. Although for mbst lonization rate.

we have calculated isomers belonging to one path or another,

it is natural to assume that the two different types of geom- Average interatomic distance in singly charged sodium clusters
etry exist for allN, as for Ng and Na, clusters. For clusters A I B A B N R B I R PR Y-
smaller than Ng one cannot distinguish the two paths E
clearly enough as is seen from Fig. 1. Conclusions made fol
neutral clusters regarding the growth process are applicabli

Nap "~ Nag— Nag—Nayg —Nal?

3.70 3 3

to a great extent to singly charged cluster ions as is clea 3'65'; S . & '\ ]
from Fig. 2, although cluster ion geometries sometimes differ ;- 3 \ * & \ v ]
substantially from their neutral prototypes. < N T E\‘ \_d

Cluster geometries allow one easily to compute and ana- s 3 °—¢" 0. E

lyze the average bonding distance as a function of cluster" E
size. The result of this analysis for neutral and singly charged 3.0 3
sodium clusters is presented in Figs. 3 and 4. These figure E
show how the average bonding distance converges to th s.45-§ - -
bulk limit indicated in the figures by horizontal lines. When E
calculating the average bonding distance in a cluster, only s403%7—+—+—+F+—+—+—+—++—7—++——7—
interatomic distances smaller than 4.1 A have been consid € & &8 & & W W % % a =
ered. This upper limit on the interatomic distances was cho- N

sen as a distance that is 10% larger than the bcc lattice near- g, 4. Averaged bonding distance as a function of cluster size

est neighbor distance in bulk sodium. for optimized geometries of singly charged sodium clusters. For

Figures 3 and 4 show that the dependence of the averag@me cluster numbers more than one isomer has been considered. In
bonding distancé€R) on cluster size is nonmonotonic. For these cases, labels indicate the point symmetry group of the corre-
neutral clusters, one can see odd-even oscillationéRyf  sponding isomers. Geometries of the optimized clusters can be
atop its systematic growth and approach to the bulk limit.found in Fig. 2.
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RiJ tensor components for neutral sodium clusters R“ tensor components for singly charged sodium clusters
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FIG. 5. The principal values of the tens®; for optimized FIG. 6. Principal values of the tens&;; for optimized singly

neutral sodium clusters as a function of cluster size calculated b§harged sodium clusters as a function of cluster size calculated by
the B3LYP method. Squares, circles, and triangles represent ti§€ B3LYP method. Squares, circles, and triangles represent the
R Ry, andR,, tensor principal values, respectively. For some Rxx: Ry, andR,, tensor principal values, respectively. For some
clusters, more than one isomer has been considered. In these casgysters, more than one isomer has been considered. In these cases,
labels indicate the point symmetry group of the corresponding isolabels indicate the point symmetry group of the corresponding iso-
mers. Geometries of the optimized clusters can be found in Fig. 1Mers. Geometries of the optimized clusters can be found in Fig. 2.

The cluster shape can be characterized by the oblate, prters. In many cases two of the three principal value&pf
late, or triaxial deformation. The prolate deformation of theare equal or nearly equal. Using the definition of the prolate
cluster is characterized by a larger distortion of the ionicand oblate cluster distortions given above and Figs. 5 and 6,
charge distribution along the axis as compared to distor- one can easily determine the type of cluster deformation. For
tions along thex andy axes. In the oblate deformation case example, the clusters MaNa;y, Najg, and Nag have the
the situation is opposite. Deformations of the ionic chargeprolate deformation along the principal axis, because the
distribution in thex andy directions are larger than in tte  condition R,,=R,y<R,, is satisfied. The clusters jand
direction. In both cases the deformations alongndy di- Na, possess the prolate deformation because in this case
rections are equal. The triaxial shape deformation is chara®R,,=R,,>R,,. Figures 5 and 6 show that most of the clus-
terized by unequal distortions of the ionic charge distributionters are trlaX|aIIy deformed. However, it is often possible to
alongx, y, andz directions. Often, however, two of the three assign clusters the triaxially deformed prolate or oblate
deformations are close to each other and this allows one tshape, because two of the three principal values are close to
discuss the triaxially deformed prolate or oblate caseseach other. Thus, for instance, Nare Nas are triaxially
Knowledge of the type of cluster deformation is quite usefulprolate clusters, while Nais a triaxially oblate one. Figures
for comparison with the jellium model results and analysis of5 and 6 also show the relative values of prolate and oblate
metal cluster photon absorption spedsae[13)). deformations in various clusters.

The type of cluster deformation can be easily determined One can define a tensor analogousRip, but for elec-
by the principal values of the tens&;=Xx;x;. Here, the trons. We do not plot the principal values of this tensor be-
summation is performed over all ions in the system. Thecause they are very close in absolute value to the principle
principal values of this tensd®,,, Ryy, andR,, define the values shown in Figs. 5 and 6 and can be traced from the
dimensionsR,, Ry, andR, of the ionic charge distribution principal values of the cluster total quadrupole moment ten-
in the cluster along the principal axesy, andz via the  sor considered below in Sec. Il D.
relations R,=VR,«/N, Ry=+R,,/N, and R,=R,,/N.
Note that the tensoR;; is closely connected to the cluster
moment of inertia tensor and the quadrupole moment tensor
of the ionic distribution. o )

In Figs. 5 and 6 we present the principal valigs, R, The binding energy per atom for small neutral and singly
andR,, for a sequence of neutral and singly charged cluster§hargecj sodium clusters is defined as follows:
respectively. Figures 5 and 6 demonstrate how the cluster e
deformation changes as a function of cluster size. Figure 5 Ep/N=E,~En/N, (18)
shows that all three principal values are equal for the tetra- N P
hedral group isomers of the magic clusterssNad Nag. Ep/N=((N-DE;+E; —E\)/N, (19
This feature is in qualitative agreement with the jellium
model, which predicts spherical shapes for the magic cluswhere Ey and Ey; are the energies of a neutral and singly

B. Binding energy per atom for small neutral and singly
charged sodium clusters

053203-9



SOLOV’'YOV, SOLOV'YOV, AND GREINER PHYSICAL REVIEW A65 053203

Binding energy per atom for neutral sodium clusters Binding energy per atom for singly charged sodium clusters
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FIG. 7. Binding energy per atom for neutral sodium clusters as FIG. 8. Binding energy per atom for singly charged sodium

a function of cluster size. Circles represent the binding energies p&fusters as a function of cluster size. Circles represent the binding
atom calculated by the B3LYP method; lower and upper triangle£n€rgies per atom calculated by the B3LYP method; lower and up-
correspond to the energies obtained by the,MRthod and in the Per triangles correspond to the energies obtained by thg MP
HF approximation respectively. Squares show the results of th&ethod and in the HF approximation, respectively. Squares show
configuration-interaction approach from the work by Bdgac the results of the configuration-interaction approach from the work
Kotecky et al. (for details sed16,18). Some points in the figure DY Bonadc-Kotecky et al. (for details se¢16,18). Some points in

have labels indicating the point symmetry group of the isomerdhe figure have labels indicating the point symmetry group of the

represented. Geometries of the corresponding clusters can be foulRPmers represented. Geometries of the corresponding clusters can
in Fig. 1. be found in Fig. 2.

place for neutral clusters. In this case, even cluster numbers
have higher binding energies as compared to their odd neigh-
rQors. Note that for neutral clusters this phenomenon occurs
aimultaneously with a slight systematic growth of the bind-
&g energies per atom with increasing cluster size.

Figures 7 and 8 also show that the binding energy per

chargedN-particle atomic cluster, respectivellg, and E;
are the energies of a single sodium atom and an ion.
Figures 7 and 8 show the dependence of the binding e
ergy per atom for neutral and singly charged clusters as
function of cluster size. The energies of the clusters hav

been computed using the B3LYP, iWRnd HF methods de- ) . . ;
scribed in Sec. Il. For clusters with=<8, computations of atom in the magic neutral clusters Nand Nay is a little

the energies have been performed by the three methods fgf,ghe_r as compared to other cluster§ of S‘m”a_f size. AS‘”_‘”"”
the sake of comparison. We wanted to compare the methomfétuat'on oceurs for t.he.N’é cluster in the ionic case. This
for their accuracy and computation efficiency. The results o €ature can be qualitatively understood on the basis of the

our calculations have also been compared with those derive'&IIIum model: the increase in the magic cluster binding en-
by the configuration interactiof€l) method in[15—17. Fig- ergy takes place due to the delocalized electron shell closure.

ures 7 and 8 demonstrate that the results of the, Mifd Note that the binding energy per atom for the magig,Na

B3LYP methods are in reasonable agreement with each oth&yrns out to be smaller than thf"‘t for t.he neighboring gluster
and with the CI results. The HF points significantly differ lons. This hqppens because _th|s particular cluster ion isomer
from the MR, B3LYP, and CI ones, which demonstrates the'> characterized by theh point symmetry group. Cluster

4 ! | isomers based on this point symmetry group usually have

importance of many-electron correlations, taken into accounlower binding energy per atom as compared to isomers based
in the MPB,, B3LYP and CI methods and omitted in the HF ; 4 )
on icosahedral point symmetry group like those with

approximation. Note that the energy of & computed in — 13 shown in Figs. 1 and 2

the pure HF approximation, is close to zero, which means . ) . .
P PP Tables | and Il given in the Appendix provide accurate

that bonding in this molecule takes place mainly due to .
many-electron correlations. values of the cluster total energies calculated by,MP

The energies of clusters larger thangNand Na* have B3LYP, and HF methods. For neutral clusters Witk 8, we

been computed by the B3LYP method only, because thiglso present the cluster energies calculated & by the CI

method is more efficient than MRind the accuracy of both method. The values given in these tables have been used to
methods is comparable plot Figs. 7 and 8. For some clusters, the energies of different

Figures 7 and 8 demonstrate the even-odd oscillation peyMmetry isomers are also given in the tables.

havior in the dependence of binding energy on cluster size.
Indeed, for singly charged clusters, odd numbers correspond-
ing to the singlet multiplicity have higher energies as com- Let us now consider how the ionization potentials of so-
pared to their even neighbors. An analogous situation takedium clusters evolve with increasing cluster size. Experi-

C. lonization potentials
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lonization potential for neutral sodium clusters Dipole moments of neutral sodium clusters
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FIG. 9. lonization potentials of neutral sodium clusters as a F|G. 10. Dipole moments of the optimized neutral sodium clus-
function of cluster size. Circles show the results derived by theers as a function of cluster size calculated by the B3LYP method.
B3LYP method. Triangles and rhomboids represent the ionizationegr some clusters, more than one isomer has been considered. In
potentials calculated by the HF and Mmnethods, respectively. these cases, labels indicate the point symmetry group of corre-
Filled and open squares are the experimental values taker[2@m  sponding isomers. Geometries of the optimized clusters can be
and [8], respectively. For some clusters, more than one neutrajound in Fig. 1. 1 B=0.3935 a.u.
and/or singly charged cluster isomer has been considered. In these

cases, labels indicate the point symmetry group of the initial neutal,yqN clusters are different, being equal to 1 and 2, respec-
and the final charged cluster isomers used for the calculation of thﬁvely Interestingly enough, the B3LYP method reproduces
lonization potential. correctly even the experimentally observed irregularity in the
i . odd-even oscillatory behavior, that happensNat 16 and
mentally, this dependence was measured for sodium clustef$— 17 and some other minor details of the experimental

in [8,20:!. . . . o data.

The ionization potentiaV; of a cluster consisting oN A significant steplike decrease in the ionization potential
atoms is defined as the difference between the energies of thg e happens at the transition from the dimer to the trimer
singly charged and neutral clusters: cluster and also in the transition from N#o Na,. Such

et irregular behavior can be explained by the closure of the
V,=E;—Ey. (20)

electronic 5 and 1p shells of the delocalized electrons in
) o the clusters Naand Na, respectively. The next significant
Figure 9 shows the dependence of the cluster ionization pQyrop in the ionization potential value takes place in the tran-
tential onN. Figure 9 demonstrates the comparison of thesition from the magic Ng to the Na; cluster.
results derived by the different methods B3LYP, MRnd
HF (see Sec. )l with the experimental data frorf8] and
[20]. The results of the B3LYP and MPmethods are in
reasonable agreement with the experimental data, while the We have calculated multipole momer(tipole, quadru-
ionization potentials calculated on the basis of the HF appole, octapole, and hexadecapofer the sodium clusters
proximation differ substantially from the experimental obser-whose geometry is shown in Figs. 1 and 2. In Figs. 10 and
vations. This comparison shows the role of many-electroril, we plot the absolute values of the dipole moments for
correlations in the formation of the cluster ionization poten-neutral and singly charged sodium clusters as a function of
tials. The correlation effects are taken into account by theluster size.
B3LYP and MR, methods and omitted in the HF approxima- The dipole moments of some sodium clustésse Fig.
tion. 10), that we predict here arise due to the fact that the electron
Figure 9 demonstrates that the ionization potentials drogharge distribution does not always match the ionic charge
with increasing cluster size, which is consistent with predic-distribution and can be shifted with respect to the cluster
tions of the classical spherical droplet model. However, thisenter of mass. Our calculations show that only clusters with
process has many irregularities, which have a quantum ori€ point symmetry groups, like the isosceles triangle isomers
gin. Indeed, the dependences derived by the kil B3LYP  of Nag, the pentagonal Ngyramid isomer, Ng, Na;g, and
methods as well as the experimental one have a prominewthers, possess dipole moments. These clusters have either
odd-even oscillatory tendency. The maxima in these deperan axis of a certain order or a plane of symmetry, but no
dencies correspond to the evlrelusters, which means their perpendicular symmetry elemer{fganes or axes This rule
higher stability as compared to the neighboring dtidius-  remains correct even for the hacluster isomer with the
ters. This happens because the multiplicities of the even- ansymmetry C,,, which has the closed shell configuration

D. Multipole moments

053203-11



SOLOV’'YOV, SOLOV'YOV, AND GREINER

Dipole moments of singly charged sodium clusters
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FIG. 11. Dipole moments for the optimized singly charged so-
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Quadrupole moments of singly charged sodium clusters

FIG. 13. Principal values of the quadrupole moment tensor for

dium clusters as a function of cluster size calculated by the BSLYF;he qptlmlzed singly charged sodium clusters as a functlon of clus.-
method. For some clusters, more than one isomer has been consf§! Size calculated by the B3LYP method. Squares, circles, and tri-
ered. In these cases, labels indicate the point symmetry group &f19/es represent th®,,, Qyy, and Q,, tensor principal values,

corresponding isomers. Geometries of the optimized clusters can 6gsp§ctlvely. For some clusters, r_nor_e than one_ isomer has been
found in Fig. 2 considered. In these cases, labels indicate the point symmetry group

of corresponding isomers. Geometries of the optimized clusters can

15?1p51d%2s? of delocalized electrons according to the jel- P& found in Fig. 2.

lium model. The geometries of the cluster ions differ signifi-

cantly from the geometries of the corresponding neutral clusaxis of symmetry, this axis has been chosen asthgis of

ters, but the rule formulated above for the appearance of théde coordinate system, in which the calculation of the quad-

cluster dipole moments remains valid in this case also, as igipole moments was performed. The quadrupole moment

clear from Fig. 11. tensor is defined as the average value of the following op-
The principal values of the quadrupole moments, tensogrator:

for optimized neutral and singly charged clusters are pre-

sented in Figs. 12 and 13, respectively. For clusters with an Q; 22 q(3%i%;— 5ijf2)- (21)

60 5—

Quadupole moments of neutral sodium clusters
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Here, the summation is performed over all electronic and
ionic charges in the cluster. Note that the trace of the tensor
Qj; is equal to zero.

The ionic part ofQ;; can be expressed via the components
of the tensoR;; discussed in Sec. Il A. Note that knowledge
of Q;; and R;; allows one to construct easily the tensor
analogous tdz;; , but for electrons. This might be useful for
the analysis of deformations of electron density distribution
in a cluster.

The quadrupole moment tensor can be expressed via the

tensor@ij =(2qxx;) characterizing the average dimensions
of the total charge distribution. Here, the angular brackets
mean averaging over the electronic charge distribution. The
principal values of the tens@ij should be negative at least
for neutral clusters, because electron density is spilled out of
the cluster, which makes its distribution a little broader than

FIG. 12. Principal values of the quadrupole moment tensor fokhe distribution of ions. A similar situation occurs for cluster

the optimized neutral sodium clusters as a function of cluster size;< put in this case there is a noncompensated positive
calculated by the B3LYP method. Squares, circles and triangleﬁharge in the system, which brings a certain positive contri-

represent the,,, Q,y, andQ,, tensor principal values, respec- . ~ L ~ S
tively. For some clusters, more than one isomer has been consid®Ution t0Q;; and makes the principal values Qf; positive
Jp some cases.

ered. In these cases, labels indicate the point symmetry group : . . .
corresponding isomers. Geometries of the optimized clusters can be 1he numerical analysis performed in this work shows that

found in Fig. 1. for neutral sodium clusters the principal vaIues@j are

053203-12



STRUCTURE AND PROPERTIES OF SMALL SODIUM CLUSTERS PHYSICAL REVIEWG5 053203

always negative, while for the small cluster ions,Na significantly enough to make a magic cluster ionyNahav-
Na;*, and Na* (C,,) some of the principal values are ing a closed shell electronic structure of delocalized elec-
positive. trons, spherical-like without a quadrupole moment. Instead,
The principle values of the quadrupole moment tensoNa,* retains a noticeable deformation.
characterize the distortion of the total cluster charge distribu- Let us now discuss an idea for which the cluster multipole
tion. Indeed, Fig. 12 shows that the ]\@nd Ng, tetrahedral moments play a crucial role and consider the possibility of
group isomers have zero quadrupole moments, which refleciuster isomer separation by placing the mass selected cluster
the closeness to sphericity of the magic clusters. Our calcseam in an inhomogeneous external field. As we have seen
lations demonstrate that for some open shell clusters likérom the calculations presented above, different cluster iso-
Na;; and Na, the quadrupole moments turn out to be rathermers of the same mass often possess different structure and
small, although the ionic charge distribution in these clustersis a result of that different multipole momer(tipole or
has a prominent deformation as is clear from Figs. 1 and 5quadrupolg However, such cluster isomers are indistin-
The small quadrupole moments in these clusters are the rguishable in experiments nowadays with mass selected clus-
sult of compensation of the electron and ion components afer beams. They can nevertheless be separated if one puts the
Qij - mass selected cluster beam in an inhomogeneous external
The quadrupole moment diagram allows one to makdield. Let us estimate this effect for the characteristic values
some conclusions about the type of shape of the total chargaf the dipole and quadrupole moments calculated above.
distribution in a cluster. The average dimensions of the clus- From the dipole moment diagrams shown in Figs. 10 and
ter total charge distribution in the y, andz directions can be 11 one can conclude that the difference in dipole moments
characterized by the quantitieQ% Q,~(3e?), Q} for some cluster isomers can be as largeleD and for the

~0,=(3ex), and Q§=(~3yy=(26y2>- Here, the summa- quadrupole often it is about 40 D A or even larger. The force

tion is performed over all electrons and ions in the clus'teraCtIng on a cluster W'th the d|po!e momeDtin an external
homogeneous electric fiel(r) is equal to[65]

and the angular brackets mean averaging. These quantiti'ens
are connected with the quadrupole moments tensor defined
in Eg. (21). Indeed, in both the prolate and oblate cases, FP(r)=V{D-E(r)}. (23
whenQ, =Q, =Q" andQl=Ql, the principal values of the

tensorQ;; read ] )
The component of the force acting on the cluster with quad-

Q,,=2(Ql-q"h, rupole momen®;; is as follows[65]:
Q
=(0t—oly=— =# _
Q@ mm T Fon=v | 2w e, 24
—Qu- - (22)
Quy= Q= 2 Here, summation is assumed over the repeated injliaed

k of the vector and tensor components in the right hand side
These equations define the important relationships betweedf Eq. (24).
the principal values of the quadrupole moment tensor in the Let us introduce the time periodduring which the clus-
oblate and prolate cases and help understand the quadrupdés beam passes through the inhomogeneous electric field.
moments diagrams shown in Figs. 12 and 13. One can estimate the distanaeby which isomers will be

Equations(22) show that the sign of the principal values separated during this period of time As-F 7%/2M, where
Qux» Qyy,» andQ,, depends on the relative values@fand M is the mass of the isomer considered @his the force
Q*. With the use of Eqs(22) and the cluster quadrupole acting on either the dipolesee Eq(23)] or quadrupoldsee
moment diagrams shown in Figs. 12 and 13, one can easiltq. (24)] moment of the cluster. Substituting in these equa-
analyze the total charge distribution of the clusters shown iions the characteristic values for the dipole and quadrupole
Figs. 1 and 2. Note that conclusions made about the shape ofoments, assuming that the inhomogeneity of the electric
the total charge distribution and the shape of the ionic comfield is aboutVE~5x10* V/cm?, one derives from Egs.
ponent(see Figs. 5 and)&ometimes differ significantly one (23) and (24) that during the period~10"2 s the isomers
from another for some clusters. For example, the ioniovith N=3 andsD~1 D become separated y~0.7 mm
charge distribution in the Na cluster has a prolate shape, and thatA ~2.8 mm for6Q~40 DA, 7~10 s,N=5, and no
while the total charge distribution is oblate. dipole moment.

The quadrupole moments of singly charged sodium clus- These estimates demonstrate that one can create signifi-
ters differ substantially from those for the correspondingcant separation distances for reasonably short periods of time
neutral ones. The excess positive charge leads to the reawith the electric field strengths and their gradients achievable
rangement of the cluster structure and to the appearance ofimlaboratory conditions. Experiments with mass selected and
quadrupole moment in cluster ions like fNaand Nagg". isomer separated cluster beams might provide the most ac-
Although the electron exchange-correlation force in a clustecurate information on the structure and properties of atomic
turns out to be insufficient to change the cluster geometryglusters.
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Static dipole polarizability of neutral sodium clusters
T ('; T X d ¥ T ¥ T y T L T ¥ T * T ¥ T 4
aCy D, n T Ca T ] 145.07 115.81 127.60 127.15

] cn -
1.0 c, —am— Knight et al (experiment) |
] D., —e— B3LYP/6-311G(d) ]
] A Kummel at al q
1 ° * Rayane at al ]
0:9+1 * EP=141.231 a.u. E
] —e ]

115.20 114.11 105.99 96.25

1 A
| W el By

" " " " " " R Quadrupole vibration modes
2 4 6 8 10 12 14 16 18 20
92.99 75.65 59.98 78.82 83.30

N
FIG. 14. Static mean polarizability per atom for neutral sodium
clusters normalized to the polarizability of a single sodium atom.
Circles show the results derived in this work by the B3LYP method.

Breathing vibration modes

1

<a>/Na,
o
[+
1
*

For some clusters, more than one isomer has been considered. |
these cases, labels indicate the point symmetry group of corre
sponding isomers. Stars and triangles represent the polarizabilitie

calculated if19] and[32], respectively. Squares are the experimen-
tal values taken fronp21]. 2
E. Polarizabilities

We have calculated the polarizabilities for the optimized
neutral sodium cluster&ee Fig. 1 as a function of cluster FIG. 16. Surface and volume vibration modes for the selected
size. Results of this calculation are shown in Fig. 14. In thisneutral sodium clusters. Number near each cluster image indicates
figure, we also plot experimental points frd@l]. Calcula- the frequency of the corresponding normal vibration mode. The
tion of the polarizabilites was performed by the B3LYP values are given in cit.
method. Figure 14 demonstrates quite reasonable agreement

of the B3LYP results with the experimental data. _ o
In Fig. 14 we also compare the polarizabilities calculated

i in our work with those derived by other theoretical methods
160 4 ‘ —— — [19,32. This figure demonstrates a satisfactory agreement of
] ‘ I ; the results of different approaches with each other and with
the experimental data. This comparison is quite important,
because in our work as well as ji9] the polarizabilities
have been calculated using an all-electabninitio approach,
while in [32] they were obtained with the use of pseudopo-
tentials. Note that our points are closer to the experimental
values than those froril9], in spite of the fact that both
calculations have been performed on the basis of density
functional theory. The differences between the two schemes
of calculation arise in the form of the density functional and
the set of basis functions employed. [19], the so-called
Perdew-Wang 91 density functionaee, e.g.[62] and ref-
erences therejrwas used, while we applied its B3LYP form.
Let us also compare the polarizabilities for thegNand
Nay clusters calculated in the random phase approximation
FIG. 15. Normal vibration frequencies calculated by the B3LYPwith exchange in the spherical jellium modela
method for the neutral sodium clusters wi< 20. For each cluster _ 755 4 ;. anday, =1808 a.u.[66]) with our results
we mark the breathing mode in the spectrum by dotted line and th %0
surface quadrupole vibration modes by dashed lines. The numb IaNas:797 a.u. andaNa20= 1964 a.u.). The closeness of
near some of the lines indicate the degeneracy of the correspondirije values shows that the detailed ionic core structure does
quadrupole surface vibration mode. not much influence the values of the cluster polarizabilities.
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This comparison shows that the jellium model turns out to bémages of the breathing and quadrupole vibration modes for
quite a reasonable approximation. some clusters to illustrate how the identification of the modes
Figure 14 shows that the disagreement between theoretitas been performed.
cal and experimental points is not always less than the ex- The results of this analysis are shown in Fig. 15, where
perimental error bars. This disagreement might indicate thabr each cluster we mark the breathing mode in the spectrum
for certainN cluster isomers have been experimentally de-by dotted lines and the surface quadrupole vibration modes
tected other than those calculated in our work. For examplehy dashed lines. The number near some of the lines indicate
the calculated va|ue§gg=659 a.u. lies beyond the experi- the degeneracy of the corresponding quadrupole surface vi-
S Dap_ L bration mode. The degeneracy rate and the number of quad-
mental error bars, Wh'lf'D‘Nae_706'876 a.u. is within the rupole surface vibration modes can easily be understood with
range of the experimental error. the help of the cluster images shown in Fig. 1. This figure
Note that the polarizabilities of the clusters feNayp,  shows that the prototype of the breathing mode exists already
and Nag, possessing th&y point symmetry group, surpass in the Ng and Na clusters. For the Nacluster, one can
the corresponding experimental values a little, although beidentify the quadrupole surface vibration mode, although it is
ing quite close to them. For the pNland Nag clusters, the meaningful to discuss surface vibrations only for theg Na
disagreement of the theoretical and experimental values iguster and larger. Figure 15 shows that the frequencies of
within the range of the experimental error. the breathing and surface vibration modes decrease system-
A similar situation occurs for the Nacluster, character- atically with increasing cluster size, although this decrease
ized by theC,, point symmetry group. This cluster likely has numerous irregularities, particularly for the clusters with
belongs to the cluster chain leading to the formation of thdN<8. The frequency of the breathing mode decreases faster
tetrahedral Ng, cluster from the tetrahedral Nasee our With the growth ofN than the frequency of the quadrupole
discussion in Sec. Ill A This situation allows us to assume surface vibration mode.
that the polarizabilities of other clusters of this chain, which ~Let us compare the calculated frequencies of the breathing
we have not analyzed in this paper because they are energedind surface vibration modes with the predictions of the jel-
cally not favorable, will also be quite close to the experimen-lium model. In[42], it was shown that the breathing vibra-
tal values. tion mode frequencies calculated for the sphericabgNa
Nayg, and Na, within the framework of the dynamical jel-
E. Normal vibration modes lium model are quite close to the values derived from the

) Phonon dispersion law for metdl§7]
Using the B3LYP method, we have calculated the norma

vibration frequencies for the optimized neutral sodium clus- 3v2k?

ters. The results of this calculation are shown in Fig. 15. In Qéﬁ, (25

this figure, we indicate the point symmetry group for those Mnao(9+KvErg

clusters for which more than one cluster isomer has been

consideredsee Fig. 1L Numerous frequencies shown in Fig.

15 are degenerate or nearly degenerate. This explains whyhere My,=4.2< 10 is the mass of the sodium atom;

the total number of frequencies for most clusters is less thar (97/4)Y3/r, is the velocity of cluster electrons on the

the number of vibrational degrees of freedom available in thd=ermi surface, and, is the Wigner-Seitz radius. In the long

system. In the more symmetric clusters, like ;NeNag, wave limit, Eq.(25) reduces to the Bohm-Staver formula for

Nayo, or Nay, the rate of degeneracy of the normal vibra- the velocity of sounddQ/dk=vg/3My~3X10° cm/s.

tion modes is higher. This number is quite close to the real value of the velocity of
Knowledge of the normal vibration modes and their fre-sound in bulk sodium: 3.210° cml/s.

quencies is important for a physical understanding and quan- Using the dispersion lay25), we estimate the breathing

titative description of the relaxation of electron plasmon ex-mode frequencies for the magic Nand N3, clusters. The

citations in metal clusterf42]. One can visualize normal results of this calculation are as follows;QNag

vibration m_odes, showing the d|rect|ons and amplltl_Jdes_o_f: 104.09 cm?, QNa2 =80.49 cml In this calculation we

the atom displacements by corresponding vectors. Since it is dro=a 0

difficult to show all such pictures in this paper due to theirus?l_hro; ' | btained f ) | i

large number, we focus instead only on the two types o£hosee rriggﬁ?:g \{ﬁ ug_s 0 1;')% :rfzn; 1? c;‘r? c?lse 0

breathing modes and quadrupole surface vibration modes. P ! '9. **Nag ' 1 ¥Nay

These modes were considered[#2] within the dynamical = 78-11 cm''. The agreement of the frequencies is rather
jellium model[41] for the treatment of electron-phonon cou- 900d for the Ng, cluster. For Ng, the agreement is reason-
pling in the spherical metal clusters ja Na,o, and Na,. able, but not as good as for hja Some disagreement arises

In this paper, we discuss the appearance of these specifit/e to the fact that the Wigner-Seitz radius for the; Nais-
vibration modes in a cluster System and Compare their freter iS about 10% Sma”el’ than ItS bulk Value. Indeed, Substi'
quencies with the predictions made/#®] on the basis of the tuting ro=3.6 in Eq.(25) one derives)y, =127.10 cm*,
jellium model. For this purpose, we have analyzed all calcuwhich is in nearly perfect agreement with thk initio result.
lated vibration modes and identified the breathing and quadfhe decrease of the Wigner-Seitz radius can be easily under-
rupole vibrations for each cluster. In Fig. 16, we presentstood from analysis of the cluster geometry shown in Fig. 1.
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Now let us compare the quadrupole surface vibratiormethods, because they account for many-electron correla-
mode frequencies calculated hegze Fig. 15 with those tions, provide much better agreement with the available ex-
following from the dynamical jellium model. According to perimental data and theoretical results based on the

[42], the quadrupole surface vibration frequendiesfor the  configuration-interaction method as compared to that for the
spherical Na,, Na,,, and Nga, clusters are equal to Hartree-Fock approximation. This was checked for various
56.48 cml, 48.41 cnl, and 32.28 cml, respectively. cluster characteristics: cluster geometries, binding energies
The value of the quadrupole surface vibration frequency foP€" &om, and ionization potentials.
the Nay, cluster calculated in the present work is equal to, Ve have also calculated and analyzed the dependence of
63.15 cm !, which is rather close to the value predicted in the ionic and tota}l qt_JadrupoIe moments of sodium clusters as
[42] a function of the|r_ size. It was demonstrated that the clpster

' shapes characterized by the quadrupole moments are in rea-

. The values of the quadrupole surface vibration frequen'sonable agreement with the predictions of the jellium model
cies calculated for Ng, Nayy, and Na, show relatively

: ! ' . and the results of experimental observations.
slow decrease with growth in cluster size. Extrapolating \ye have determined the normal vibration modes and their
these values toward smaller cluster sizes, we derive frégeq encies for a number of clusters and demonstrated their

quency values that are consistent with those shown in Figy ajitative agreement with the predictions based on the jel-
15. This comparison demonstrates that the jellium model caly, 1, model.

culation of the surface vibration frequencies is in reasonable e results of this work can be extended in various direc-
agreement with the more accura@ initio many-body  ons One can use similar methods to study the structure and
theory. , o , properties of various types of cluster. It would be interesting
The comparison of the jellium model results with thosey eytend the calculations toward larger cluster sizes and per-
derived by the more accuragb initio many-body theory is ¢ more comparisons with the results following from the
important, because it forms the theoretical background fofg|jiym model and other simplified theories, based either on
the jellium model calculations in larger cluster systems, for,se,qopotentials or effective interatomic potentials. Many
which ab initio methods are hardly possible. The comparisonyteresting problems arise when considering collisions and
with the jellium model that we performed in this paper cangeciron excitations in clusters with optimized geometries.
be extended toward larger cluster sizes and other collectivepase and many more other problems in atomic cluster phys-
modes of ion motion. ics can be tackled with the use of the methods considered in

our work.
IV. CONCLUSION
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APPENDIX: TABLES

In this appendix, we present tables of the essential cluster characteristics. The binding energies per atom for neutral and
singly charged clusters are compiled in Tables | and II. The principal values of the quadrupole moment tensors for neutral and
singly charged clusters are presented in Tables Il and V.

TABLE |. Total energies of the optimized neutral sodium clusters. Numbers of atoms in clusters are given
in the first column. In the second column, the point symmetry groups of the clusters are shown. In the next
three columns, the cluster total energies derived by the HE, siftd B3LYP methods are compiled. For the
sake of comparison, the total energies computed by the Cl metHddjimre presented in the sixth column.

En(a.u.)
N Symmetry HF/6-311G) MP4/6-311G(l,p) B3LYP/6-311G() Referencqd 16]
1 —161.8459 —161.8459 —162.2866
2 D..p, —323.6911 —323.7149 —324.5999 —323.3176
3 D..h —485.5405 —485.5626 —486.8963
a.Cop —485.5403 —485.5653 —486.8960 —484.9729
b.Coyp —485.5385 —485.5656 —486.8939
Dap —485.5282 —485.5626 —486.8889
4 Dy —647.3871 —647.4433 —649.2076 —646.6494
D —647.3897 —649.1965
5 C,, —809.2518 —809.3008 —811.5164 —808.3174
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TABLE I. (Continued.

En(a.u.)
N Symmetry HF/6-311&H) MP4/6-311G4,p) B3LYP/6-311G() Referencq 16]
6 Cs, —971.0915 —971.1880 —973.8324 —969.9899
Dy —971.0998 —971.1872 —973.8344 —989.9884
7 Dsp, —1132.9462 —1133.0634 —1136.1430 —1131.6610
8 Tyq —1294.8015 —1294.9410 —1298.4606 —1293.3395
9 C,, —1456.6466 —1460.7597
10 C, —1623.0758
D g —1623.0734
Ca —1623.0554
Ty —1623.0530
11 Co, —1785.3737
C, —1785.3726
12 C,, —1947.6917
13 C, —2110.0045
14 C,, —2272.3092
15 Cs —2434.6188
16 Cs —2596.9370
17 Cs —2759.2537
18 Cs, —2921.5704
19 Dsp, —3083.8730
20 Ty —3246.2015
C,, —3246.1981

TABLE Il. Total energies of the optimized singly charged sodium clusters. Numbers of atoms in clusters

are given in the first column. In the second column, the point symmetry groups of the clusters are shown. In
the next three columns, the cluster total energies derived by the HE,dnB B3LYP methods are compiled.

Ey (au.)
N Symmetry HF/6-311GH) MP4/6-311G(, p) B3LYP/6-311G¢l)
1 —161.6642 —161.6642 —162.0874
2 D.n —323.5447 —323.5447 —324.4114
3 Dap —485.4084 —485.4322 —486.7457
4 Don —647.2653 —647.2915 —649.0502
C,, —647.2681 —647.2919 —649.0489
5 Dan —809.1226 —809.1740 —811.3727
Doq ~811.3629
6 Cy, —970.9749 —971.0364 —973.6742
7 D5y, —1132.8278 —1132.9261 —1135.9994
8 C,, —1294.6866 —1294.7863 —1298.3082
9 Dap —1456.5346 —1460.6326
10 D.g —1622.9335
Cyp —1622.9278
Ty —1622.9273
11 Dan —1785.2509
Cs —1785.2455
12 C,, —1947.5479
13 C, —2109.8718
14 Cy, —2272.1654
15 Cs —2434.4907
16 Cs —2596.8051
17 Cs —2759.1222
18 Cs —2921.4365
19 D5y, —3083.7499
20 C,, —3246.0655
21 Oy —3408.3434
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TABLE III. Principal values of the quadrupole moment tensor  TABLE IV. Principal values of the quadrupole moment tensor
calculated for neutral sodium clusters. The first column shows numealculated for singly charged sodium clusters. The first column
bers of atoms in clusters. The second column gives their point symshows numbers of atoms in clusters. The second column gives their
metry groups. In the last three columns, the principal valQgs, point symmetry groups. In the last three columns, the principal
Qyy, andQ,, are given. They have been computed by the B3LYPvaluesQ,,, Q,,, andQ,, are given. They have been computed by

method. the B3LYP method.

N  Symmetry QMDA QMDA Q,,(DA) N  Symmety Q.(DA Q,DA Q,DA
2 Decp —115622  —11.5622 23.1244 2 D..n —-27.9109  —27.9109 55.8218
3 aCa —9.9300  —5.3883 15.3183 3 Dap, 21.8547 21.8547  —43.7094

bbcj _17;53?32059 _312'.223(’); gié’gfg 4 Do —67.8170  —12.6716 80.4886

4 D 129139 262865 133726 Co, —-86.4460  —27.4786 113.9246

Doy 51177 51177 102354 5 Don -101.2157 6.2746 94.9411

5 Ca —20.3760 23.0544  —2.6784 D2g —46.6091  —46.6091 93.2182
6 Cs, 6.5817 6.5817  —13.1634 6 Ca, —34.9108 53.8712  —18.9604
Dap, 14.4807 14.4807  —28.9614 7 Dy, 24.3267 24.3267  —48.6534

7 Dsh 13.3285 13.3285  —26.6570 8 Co, 4.4346 —51.8751 47.4405
8 Tq 0.0000 0.0000 0.0000 9 Dap 23.1994 23.1994  —46.3988
1‘3 CD:zzld *12?52231%2 *122278 _353'.%3396 10 Dag ~34.9547  —34.9547  69.9094
C, 31.6087 —-15.5561  —16.0526 Cav ~3.5448 —3.5448 7.0896

Cay ~14.6949 —14.6949  29.3898 Tq 0.0000 0.0000 0.0000

11 Co, —0.3816 3.6348 —3.2532 Cs 19.4836 —10.0197  —9.46382
C: —18.4455 13.9570 4.48848 12 Cy, -58.0823  —21.8996 79.9819

12 Ca, 0.0392 1.7777 -1.8169 13 C, 69.5400 25.4745  —95.0145

13 Ci 3.5616 7.3169  —10.8785 14 Cop -178.1183  149.0275 29.0908

14 C,, —40.2978 54.2376 ~ —13.9398 15 C. 374527 448750  —7.425

15 Cs —9.0476  —21.7878 30.8354 16 Cs —55.6664 58.5058  —2.8394

16 Cs —18.0272 1.6718 16.3554 17 C —47.1267 60.3728  —13.2461

17 Cs 2.2310 18.9437  —21.1747 s

18 Ce, 140456  —14.0540 28,0996 18 Cs —33.5207 65.9999  —32.4792

19 Dsp —2.0626 —2.0626 5.9252 19 Dsp, —57.3045 —57.3045 114.6090

20 Tq 0.0000 0.0000 0.0000 20 Ca, —79.3111 95.8676  —16.5565

Cs, —69.7510 79.8143  —10.0633 21 O, 0.0967 0.0967 —0.1934
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