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Structure and properties of small sodium clusters
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We have investigated the structure and properties of small metal clusters using all-electronab initio theo-
retical methods based on the Hartree-Fock approximation, density functional theory, and perturbation theory
and compared the results of our calculations with the available experimental data and the results of other
theoretical work. We have systematically calculated the optimized geometries of neutral and singly charged
sodium clusters having up to 20 atoms, their multipole moments~dipole and quadrupole!, static polarizabilities,
binding energies per atom, ionization potentials, and frequencies of normal vibration modes. Our calculations
demonstrate the important role of many-electron correlations in the formation of the electronic and ionic
structure of small metal clusters and form a good basis for further detailed study of their dynamic properties,
as well as the structure and properties of other atomic cluster systems.
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I. INTRODUCTION

Atomic clusters and small nanoparticles have been rec
nized as distinct physical objects with their own propert
relatively recently. This became clear after such experime
successes as the discovery of electron shell structure in m
clusters @1#, observation of plasmon resonances in me
clusters@2–4# and fullerenes@5,6#, formation of singly and
doubly charged negative cluster ions@7#, and many more.
The interest in cluster physics is also closely connected w
the fact that cluster properties explain the transition fr
single atoms or molecules to the solid state. A compreh
sive survey of the field can be found in review papers a
books; see, e.g.,@8–14#.

There are many different types of cluster, such as meta
clusters, fullerenes, molecular clusters, semiconductor c
ters, organic clusters, quantum dots, and positively and n
tively charged clusters, which all have their own features a
properties. In this paper we focus on a detailed system
study of the structure and properties of small metal clus
and in particular sodium clusters usingab initio all-electron
many-body theory methods.

So far, systematic calculations of sodium cluster prop
ties on the same level of theory as in our present work~i.e.,
all-electronab initio calculations! have been performed onl
for clusters withN<10 @13,15–19#, whereN is the number
of atoms in a cluster. In our work we extend this limit up
N<20. Note that most of the cited papers are focused on
investigation of neutral cluster properties rather than ions
our present work we perform a systematic compara
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analysis of the properties of neutral and singly charged
dium clusters in the specified size range.

During the last decade, numerous experimental and th
retical investigations of the properties of small metal clust
were performed, as well as of processes involving the
Here we are not able to review even all the essential res
obtained in the field and only refer to those that are rela
most closely to the subject of our paper. In@1#, it was ex-
perimentally proved that metal clusters have the shell e
tronic structure, and the magic cluster numbers have b
determined by observation of sodium cluster abundance
mass spectra. Experimental studies of the electronic struc
and properties of small metal clusters are reported in@20,21#
~for reviews, see also@8,10,11,13,14#!. In @20#, the ionization
potentials for a sequence of small neutral and positiv
charged sodium metal clusters were measured, which in
pendently proved their shell structure. The dipole polariza
ities of sodium clusters were experimentally determined
@21#. The dissociation energies of neutral and positive
charged small sodium and potassium metal clusters w
measured in@22–24#. The dynamical properties of cluster
have been studied by means of photon, electron, and
scattering. These methods are the traditional tools for pr
ing the properties and internal structure of various phys
objects. Using these methods, for example, plasmon exc
tions in metal clusters@2,25# and fullerenes@6# have been
observed~for reviews, see also@8,10#!.

Metal clusters have also been studied theoretically. T
structural properties of small metal clusters have been wid
investigated using quantum chemistry methods. Here we
fer to the papers@15–18,26–29#, in which optimized geom-
etries, binding energies, ionization potentials, electron str
ture, and electron transport properties of small lithium a
sodium clusters have been calculated. In these papers
systematic analysis of the cluster properties was limited
cluster sizesN<10. In the present paper we extend this lim
up to N<20 and perform a systematic analysis of vario

e
rs-
i-
©2002 The American Physical Society03-1



g

d
of

siz
e

es
or

s
h

ro
la
n

rip

ta
th
-
v

f-
o
in
e

v
s
r,
le

y

o

n
n
us
O
th

s
o

s
u

m
d
b
o
e

on
a
m
ow

nd
m

sis,

atic
um

ma-
for
ns.
tral
20

ion
We
ble
ork
el
uci-
es.
on
ies
the
ers
ster

us
ture
ot
ret-

es,
ve
ge.
in-

in
In-
for
lds.
of

ape

ion
ster
ith

the

all

ries

ters

SOLOV’YOV, SOLOV’YOV, AND GREINER PHYSICAL REVIEW A65 053203
cluster characteristics for both neutral clusters and sin
charged cluster ions.

In the last few years, a number of papers have been
voted to calculation of the dipole static polarizabilities
neutral sodium and lithium clusters@19,30–33#. Note that
most of these studies were performed within the cluster
rangeN<20. The results of different theoretical approach
were compared with the experimental data from@21#. How-
ever, only in@19#, were calculations of the cluster geometri
and polarizabilities performed on the same level of the
~i.e., all-electronab initio calculations! as in our work and
they were limited toN<8.

Alternatively, the jellium model for metal clusters ha
been suggested. This model explains well enough the s
structure of metal clusters and their essential dynamic p
erties, such as plasmon excitations. Initially, jellium calcu
tions for metal clusters were based on the density functio
formalism with the use of pseudopotentials for the desc
tion of electron relaxation effects and lattice structure@34#.
Fully self-consistent calculations for spherical jellium me
clusters have been performed within the framework of
spin-density-functional method@35# and the Kohn-Sham for
malism for the self-consistent determination of electron wa
functions @36,37#. The Hartree-Fock scheme for sel
consistent determination of the electron wave functions
spherical jellium metal clusters was introduced later
@38,39#. This approach was generalized for axially deform
cluster systems in@40#. The dynamical jellium model for
metal clusters, which treats simultaneously the collective
brational modes~volume vibrations, i.e., breathing, plu
shape vibrations! of the ionic jellium background in a cluste
quantized electron motion, and interaction between the e
tronic and ionic subsystems, was developed in@41,42#.

The jellium model provides a very useful basis for stud
ing various collision processes, such as photoabsorption@43#,
photoionization@5,44,45#, elastic@46,47# and inelastic scat-
tering @47–50#, electron attachment@51,52#, photon emission
@53,54# and others, involving metal clusters. On the basis
the jellium model one can developab initio many-body theo-
ries, such as the random phase approximation with excha
or the Dyson equation method, and effectively solve a ma
electron correlation problem even for relatatively large cl
ter systems containing up to 100 atoms or even more.
can find a review of these methods in their application to
electron scattering of metal clusters in@55#. As elucidated in
the papers cited above, many-electron correlations are es
tial for the correct description of various characteristics
cluster systems.

In spite of the fact that the jellium model with all it
modifications is rather successful in explaining numero
phenomena involving metal clusters, it obviously has its li
its, because this model does not take into account the
tailed ionic structure of clusters. The correspondence
tween predictions of the jellium model and the results
more advanced quantum chemistry calculations has not b
examined in a systematic way so far. Partially, this is c
nected to the fact that quantum chemistry calculations
usually limited to small sizes of clusters, while the jelliu
model becomes adequate for larger cluster systems. Kn
05320
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edge of the ranges of applicability of the jellium model a
the level of its accuracy is important, because the jelliu
model often gives a much more efficient theoretical ba
particularly when dealing with larger cluster systems.

In this paper we have undertaken a detailed system
theoretical study of the structure and properties of sodi
clusters beyond the jellium model using all-electronab initio
theoretical methods based on the Hartree-Fock approxi
tion, density functional theory, and perturbation theory,
clusters whose size is large enough for jellium calculatio
That is, we have calculated optimized geometries of neu
and singly charged sodium clusters consisting of up to
atoms, their multipole moments~dipole and quadrupole!,
static polarizabilities, binding energies per atom, ionizat
potentials, and frequencies of normal vibration modes.
compare the results of our calculations with the availa
experimental data and with results of other theoretical w
performed both within the framework of the jellium mod
and beyond, using quantum chemistry methods, and el
date the level of accuracy of different theoretical approach
Also, we demonstrate the important role of many-electr
correlations in the formation of the structure and propert
of small metal clusters. Our results form a good basis for
detailed study of dynamic properties of small metal clust
as well as the structure and properties of other atomic clu
systems.

Our calculations elucidate the level of accuracy of vario
theoretical schemes for the treatment of electronic struc
in metal clusters, which it is important to know and is n
obvious in advance because of the complexity of the theo
ical methods involved. Some characteristics~dipole and
quadrupole moments or spectra of normal vibration mod
for example!, which we have calculated in this paper ha
not been studied before, at least according to our knowled
These characteristics, however, might be, important, for
stance, when considering the dynamics of a cluster beam
an external nonhomogeneous electric or magnetic field.
deed, cluster multipole moments should be responsible
cluster isomer separation in nonhomogeneous external fie
We analyze the connection between the principal values
the cluster quadrupole moment tensor and the cluster sh
~oblate, prolate, or triaxially deformed!.

The frequencies of the surface and volume vibrat
modes have been determined in the spectra of the clu
normal vibration frequencies and their correspondence w
the predictions of the dynamical jellium model@41,42# estab-
lished.

Our calculations have been performed with the use of
GAUSSIAN 98 software package@56#. We have used the
atomic system of units in this paper,\5me5ueu51, unless
other units are indicated.

II. THEORETICAL METHODS

In this work we study the structure and properties of sm
sodium clusters on the basis of all-electronab initio many-
body theory methods. We calculate the optimized geomet
of clusters consisting of up toN<20 atoms, whereN is the
number of atoms in the cluster. For the sequence of clus
3-2



st

z-
ct

e
a

io
th
a

th
ti

u
c
io

an
o
io
o
th
rr
te
u

m

s
all
ba

h

od
e

io
-

al
he
fte
lu
se
an
ili
n

rk
s
a

o
m

bi

the

e
-

.

le-
n-

-
t

s

he
c

in-
n

ua-

ore

ure

ed
nre-
, the
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with N<20, we determine the size dependence of the clu
ionization potentials, total energies, multipole moments~di-
pole and quadrupole!, bonding distances, and dipole polari
abilities. We also calculate and analyze the vibration spe
of clusters.

We have done these calculations using different theor
cal schemes. We calculated cluster characteristics in the
electron Hartree-Fock approximation. This approximat
does not take into account many-electron correlations in
system, which turn out to play an essential role in the form
tion of cluster properties. Therefore, we also calculate all
characteristics using post-Hartree-Fock theories accoun
for many-electron correlations. This was done in the Mo” ller
and Plesset perturbation theory of the second and the fo
order and using the three-parameter Becke gradient-corre
exchange functional with the gradient-corrected correlat
functional of Lee, Yang, and Parr~B3LYP!.

Note that the post-Hartree-Fock perturbation theories
the density functional approximation are two different the
retical schemes for the solution of many-electron correlat
problems based on different physical principles. The imp
tant feature of the density functional method consists in
fact that this method takes into account many-electron co
lations via a phenomenological exchange-correlation po
tial. However, so far, there has not been found a uniq
potential that is universally applicable for different syste
and conditions. As a result there is a ‘‘zoo of potentials’’~see,
e.g.,@68#! valid for special cases. These potentials, of cour
do exist in principle as unique quantities but are not actu
understood, so alone they cannot serve as a satisfactory
for achieving a physical interpretation.

Alternatively, one can develop directab initio methods for
the description of electronic properties of metal clusters. T
can be achieved by using the Hartree-Fock~HF! approxima-
tion and construction on this basis systematic many-b
theories such as the random phase approximation with
change or many-body perturbation theory, an example
which we use in the present work, or the Dyson equat
method~see, e.g.,@43#!. Based on fundamental physical prin
ciples, these models can be refined by extending the qu
of the approximations, while the physical meaning of t
effects included is clearly demonstrated, and thus they o
give more accurate and reliable characteristics of metal c
ters than does density functional theory. Thus, in the pre
work, we use both theoretical schemes for calculations
take advantage of the clear physical meaning and reliab
of the post-Hartree-Fock perturbation theories and the
merical efficiency of the density functional methods.

Below, we discuss theoretical methods used in our wo
The aim of this discussion is to present the essential idea
the methods and give the necessary references, rather th
describe them in detail.

A. Hartree-Fock method

In the Hartree-Fock approximation, the many-electr
wave function of a cluster is expressed as the antisym
trized product of the single-electron wave functionsc i of
cluster electrons, which are also often called molecular or
05320
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als. The Hartree-Fock equation for the determination of
molecular orbitalsc i reads~see, e.g.,@57#!

~2D/21Uions1UHF!c i5« ic i . ~1!

Here, the first term represents the kinetic energy of thei th
electron, andUions describes its attraction to the ions in th
cluster. The Hartree-Fock potentialUHF represents the Cou
lomb and exchange interactions of the electroni with other
electrons in the cluster, and« i is the single-electron energy

In GAUSSIAN 98, the molecular orbitalsc i are approxi-
mated by a linear combination of a predefined set of sing
electron functionsxm known as basis functions. This expa
sion reads as follows:

c i5 (
m51

N

cm ixm , ~2!

where the coefficientscm i are the molecular orbital expan
sion coefficients, andN is the number of basis functions tha
are chosen to be normalized.

The basis functionsxm are defined as linear combination
of primitive Gaussians:

xm5(
p

dmpgp , ~3!

wheredmp are fixed constants within a given basis set. T
primitive Gaussiansgp5g(a,r ) are Gaussian-type atomi
functions having the following form:

g~a,r !5cxnymzle2ar 2
. ~4!

Here,c is the normalization constant. The choice of the
tegersn, m, and l defines the type of primitive Gaussia
function: s, p, d, or f ~for details, see@58#!.

Substituting these expansions in the Hartree-Fock eq
tions ~1!, one can rewrite them in the form~known also as
the Roothaan and Hall equations!

(
n51

N

~Hmn2« iSmn!cn i50, m51,2, . . . ,N. ~5!

Written in the matrix form, this equation reads

HC5SC«, ~6!

where each element is a matrix. Here,« is a diagonal matrix
of orbital energies, each of its elements« i is the single-
electron energy of the molecular orbitalc i , H is the Hamil-
tonian matrix as follows from Eq.~1!, andS is the overlap
matrix, describing the overlap between orbitals. For m
details regarding this formalism, see@58#. Equations~6! are
nonlinear and must be solved iteratively. The proced
which does so is called theself-consistent fieldmethod.

The equations written above refer to the restrict
Hartree-Fock method. For open shell systems, the u
stricted Hartree-Fock method has to be used. In this case
3-3
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SOLOV’YOV, SOLOV’YOV, AND GREINER PHYSICAL REVIEW A65 053203
a and b electrons with spins up and down are assigned
different orbitals, resulting in two sets of molecular orbit
expansion coefficients:

c i
a5 (

m51

N

cm i
a xm ,

c i
b5 (

m51

N

cm i
b xm . ~7!

The two sets of coefficients result in two sets of Hamilton
matrices and two sets of orbitals.

B. Mo” ller-Plesset perturbation theory method

The Hartree-Fock theory provides an inadequate tr
ment of electron motion within a molecular system, beca
it does not properly treat many-electron correlations. T
many-electron correlations can be accounted for using dif
ent methods. The most straightforward way to achieve
goal is based on perturbation theory. Indeed, the total Ha
tonianH of the cluster can be divided into two parts:

H5H01V. ~8!

Here H0 is the Hamiltonian corresponding to the Hartre
Fock level of theory andV is the residual interelectron inter
action, which can be treated as a small perturbation.

ConsideringV as a small perturbation one can constru
the solution of the Schro¨dinger equation for a many-electro
system in an arbitrary order of perturbation theory. Pertur
tion theory of this type is well known since the work b
Mo” ller and Plesset@59# and can be found in numerous tex
books on quantum mechanics~see, e.g.,@60#!.

Below we refer to this theoretical method as to t
Mo” ller-Plesset~MP! perturbation theory@59# of the second
or fourth order, MP2 or MP4. Indices here indicate the orde
of the perturbation theory.

C. Density functional methods

The density functional theory~DFT! is based upon a strat
egy of modeling electron correlation via general function
of the electron density. Within the DFT one has to solve
Kohn-Sham equations, which read~see, e.g.,@8,9,11–14#!

S p̂2

2
1Uions1VH1VxcDc i5« ic i , ~9!

where the first term represents the kinetic energy of thei th
electron,Uions describes its attraction to the ions in the clu
ter, VH is the Hartree part of the interelectronic interactio

VH~r !5E r~r 8!

ur2r 8u
dr 8, ~10!

andr(r 8) is the electron density,
05320
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uc i~r !u2, ~11!

whereVxc is the local exchange-correlation potential,c i are
the electronic orbitals, andN is the number of electrons in
the cluster.

The exchange-correlation potential is defined as the fu
tional derivative of the exchange-correlation energy fun
tional

Vxc5
dExc@r#

dr~r !
. ~12!

The approximate functionals employed by DFT methods p
tition the exchange-correlation energy into two parts,
ferred to as theexchangeandcorrelation parts

Exc@r#5Ex~r!1Ec~r!. ~13!

Physically, these two terms correspond to same-spin
mixed-spin interactions, respectively. Both parts are fu
tionals of the electron density, which can be of two distin
types: either alocal functional depending on only the elec
tron densityr or a gradient-correctedfunctional depending
on bothr and its gradient“r.

In the literature, there is a variety of exchange-correlat
functionals. Below, we refer only to those that are related
the calculation performed in this work.

The local exchange functional is virtually always defin
as follows:

Ex
LDA52

3

2 S 3

4p D 1/3E r4/3d3r . ~14!

This form was developed to reproduce the exchange en
of a uniform electron gas. By itself, however, it is not suf
cient for the adequate description of atomic clusters.

The gradient-corrected exchange functional introduced
Becke@61# and based on the LDA exchange functional rea

Ex
B885Ex

LDA2gE r4/3x2

116g sinh21 x
d3r ~15!

wherex5r24/3u“ru andg50.0042 is a parameter chosen
fit the known exchange energies of the noble gas atoms

Analogous to these exchange functionals, there are lo
and gradient-corrected correlation functionals, for examp
those introduced by Perdew and Wang~see, e.g.,@62# and
references therein! and by Lee, Yang, and Parr@63#. Their
explicit expressions are somewhat lengthy and thus we
not present them here, referring readers to the original
pers.

In pure DFT, an exchange functional usually pairs with
correlation functional. For example, the well-known BLY
functional pairs Becke’s gradient-corrected exchange fu
tional ~15! with the gradient-corrected correlation function
of Lee, Yang, and Parr@63#.

In spite of the success of the pure DFT theory in ma
cases, one has to admit that the Hartree-Fock theory acco
3-4
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for the electron exchange more naturally and precisely. Th
Becke has suggested@61# functionals which include a mix-
ture of Hartree-Fock and DFT exchange along with D
correlations, conceptually definingExc as

Exc
mix5cHFEx

HF1cDFTExc
DFT , ~16!

where cHF and cDFT are constants. Following this idea,
Becke-type three-parameter functional can be defined as
lows:

Exc
B3LY P5Ex

LDA1c0~Ex
HF2EX

LDA!1cx~Ex
B882Ex

LDA!

1Ec
VWN31cc~Ec

LY P2Ec
VWN3!. ~17!

Here,c050.2, cx50.72, andcc50.81 are constants, whic
were defined by fitting to the atomization energies, ionizat
potentials, proton affinities, and first-row atomic energ
@58#. Ex

LDA and Ex
B88 are defined in Eqs.~14! and ~15!, re-

spectively. Ex
HF is the functional corresponding to th

Hartree-Fock equations~1!. The explicit form for the Vosko-
Wilk-Nusair correlation functionalEc

VWN3 as well as for the
gradient-corrected correlation functional of Lee, Yang, a
Parr,Ec

LY P , can be found in@64# and@63#, respectively. Note
that instead ofEc

VWN3 andEc
LY P in Eq. ~17! one can also use

the Perdew and Wang correlation functional~see, e.g.,@62#
and references therein!.

D. Geometry optimization

The cluster geometries that we have calculated in
work have been determined using a geometry optimiza
procedure. This procedure implies calculation of the multi
mensional potential energy surface for a cluster and t
finding local minima on this surface. The key point for th
search is fixing the starting geometry of the cluster, wh
might converge during the calculation to the local or glob
minimum. There is no unique way to achieve this goal w
GAUSSIAN 98.

In our calculations, we have created the starting geo
etries empirically, often assuming certain cluster symmetr
Note that during the optimization process the geometry
the cluster as well as its initial symmetry sometimes cha
dramatically. All the characteristics of clusters that we ha
calculated and present in the next section are obtained
clusters with optimized geometry.

In our calculations, we have made no assumptions ab
the core electrons in the optimized clusters, which me
that all electrons available in the system, have been ta
into account when computing the potential energy surfa
For clusters withN.10, this process becomes rather co
puter time demanding. Thus, in this work we have limit
our calculations to clusters up toN<20.

E. Normal vibrations

Knowledge of the potential energy surface in the vicin
of a local minimum allows one easily to determine the c
responding normal vibration modes of the system. We h
performed this calculation and determined the vibration
05320
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ergy spectrum for a number of clusters. In this calculat
particular attention has been paid to the identification of
breathing and surface vibration modes, and their frequen
have been compared with those predicted in@41,42# for
spherical sodium clusters on the basis of the dynamical
lium model.

III. RESULTS OF CALCULATIONS AND DISCUSSION

In this section we present the results of calculations p
formed with the use of the methods described above.
calculated the optimized geometries of neutral and sin
charged sodium clusters consisting of up to 20 atoms, t
multipole moments~dipole and quadrupole!, static polariz-
abilities, binding energies per atom, ionization potentia
and frequencies of the normal vibration modes. We comp
the results of our calculations with the available experim
tal data and the results of other theoretical works perform
both within the framework of the jellium model and beyon
using quantum chemistry methods, and establish the leve
accuracy of different theoretical approaches. Particular at
tion is paid to clusters in the range 10,N,20, because some
characteristics of the clusters in this size range have b
calculated on anab initio basis in our paper for the first tim
to our knowledge. Also, we demonstrate the important r
of many-electron correlations in the formation of the stru
ture and properties of small metal clusters.

A. Geometry optimization of Nan and Nan
¿ clusters

Results of the cluster geometry optimization for neut
and singly charged sodium clusters consisting of up to
atoms are shown in Figs. 1 and 2, respectively. The clu
geometries were determined using the methodology
scribed in Sec. II; namely, the optimization of the clus
geometries was performed with the use of B3LYP and M2
methods.

For clusters withN<6, we preferably used the MP2
method. This method leads to results that are in reason
agreement with those derived by other methods~see, e.g.,
@16,17#!. For example, the side bond length in the rhomb
dal Na4 cluster calculated in@16# by the all-electron Hartree
Fock method is equal to 3.74 Å, while in our case it is eq
to 3.56 Å. The smaller diagonal value for Na4 is equal to
3.25 Å in @16#, while we determine it as 3.18 Å.

The MP2 method becomes more and more computer ti
demanding with growth in cluster size. This happens due
increase in the number of integrals involved in the compu
tions. It turns out that for larger cluster systems the B3L
method is more efficient. The accuracy of the B3LYP meth
is comparable to the accuracy of the MP2 method, as is clear
from the comparison of the B3LYP and MP2 cluster geom-
etries with those computed in@16# by the configuration in-
teraction method.

Clusters of a certain size can possess various isom
forms, whose number grows dramatically with increasi
cluster size. We illustrate the situation and calculate sev
isomers of the Na3 , Na6 , Na10, Na11, and Na20 clusters.
They are all presented in Fig. 1. Note that the linear a
equilateral triangular Na3 isomers were not described in th
3-5
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FIG. 1. Optimized geometries of neutral sodium clusters Na2–Na10 ~a!, Na11–Na18 ~b!, and Na19 and Na20 ~c!. The interatomic distances
are given in angstroms. The label above each cluster image indicates its point symmetry group and the calculation method by
cluster was optimized.
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earlier papers@15–17# ~see also@11,13,14#!, in which isos-
celes triangular isomers were considered. A comparison
the properties~dipole and quadrupole moments, total en
gies, bonding distances! of these clusters will be given be
low.

Using the example of the Na4 cluster, we demonstrat
how the multiplicity of an electronic state of the system c
influence its geometry. Figure 1 shows that the Na4 cluster
has the rhomboidal geometry corresponding to theD2h point
symmetry group, if the multiplicity of the cluster is equal
1, while, if the multiplicity is equal to 3, the cluster has th
quadratic geometry characterized by theD4h point symmetry
group.
05320
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Sodium clusters withN<5 have a plane structure, whil
for N56 both plane and spatial isomers are possible. T
feature is consistent with the jellium picture and can be
plained by the minimization principle for the cluster surfac
Indeed, the surface of small plane cluster isomers is sma
than the surface of possible three-dimensional forms.

A comparison of the geometries of the neutral and sin
charged clusters presented in Figs. 1 and 2 shows signifi
differences. For smaller sizes (N<8), singly charged and
neutral clusters sometimes have different point symme
groups and bonding distances~see images of the Na4 , Na5 ,
Na6, and Na8 clusters and their ions!. The alteration in the
geometry of cluster ions occurs due to the excess pos
3-6
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FIG. 2. Optimized geometries of singly charged sodium clusters Na2
1 –Na11

1 ~a! and Na12
1 –Na21

1 ~b!. The interatomic distances ar
given in angstroms. The label above each cluster image indicates the point symmetry group and the calculation method by which
was optimized.
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charge available in the system. The structural change
cluster ions become less profound with increasing clu
size ~see clusters withN>10), because the excess positi
charge in this case turns out to be insufficient to prod
substantial change in a massive cluster, although somet
~compare Na15 and Na15

1) noticeable change in the cluste
geometry is also possible.

The striking difference in the geometries of small sing
charged and neutral clusters is closely linked to the prob
of cluster fission. It is natural to assume that with increas
cluster charge small clusters should become unstable
fragment into two parts, while for larger cluster sizes one c
expect quasistable configurations, which should decay
the fission process. Calculation of such configurations is
interesting task, because it may provide essential informa
on the predominant fission channels in the system. We do
perform such an analysis in our work, but point out that
geometries of cluster ions like Na4

1, Na5
1, Na6

1, and
Na15

1 give obvious hints on the possible fragmentati
channels in these cluster systems.

Figure 1 shows that the clusters Na8 and Na20 have higher
point symmetry groupTd than to the other clusters. Thi
result is in qualitative agreement with the jellium mod
According to the jellium model@36–40#, clusters with closed
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shells of delocalized electrons have a spherical shape, w
clusters with open electron shells are deformed. The jelli
model predicts spherical shapes for the clusters with
magic numbersN58,20,34,40, . . . , having respectively the
following electronic shells filled: 1s21p6,1d102s2,1f 14,
2p6, . . . .

We have also found theTd symmetry group isomer for the
Na10 cluster. However, this cluster isomer is not the lowe
energy isomer of Na10 ~see Table I in the Appendix!. A simi-
lar situation occurs in the jellium model, where th
1s21p6,2s2 closed shell electronic configuration does n
minimize the cluster total energy.

Note also that both the local density approximation a
HF jellium models predict some deviation from spheric
for the Na18 cluster@40#, which has the 1d subshell filled, as
a result of electron configuration mixing. This fact is also
qualitative agreement with the results of ourab initio calcu-
lations. The point group symmetry of the Na18 cluster,C5v ,
is lower thanTd , which is the point symmetry group for th
Na8 and Na20 clusters, and even lower than the point sym
metry group for some open shell clusters, like Na7 and Na19,
which have the point symmetry groupD5h .

Note that there are some clusters possessing relatively
point symmetry group that nevertheless are quite close
3-7
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higher point symmetry group. The higher symmetry break
can be explained via the Jahn-Teller effect@60#. This situa-
tion occurs, for example, in the Na9 and Na11 clusters, which
possess theC2v point symmetry group, but their geometry
close to the geometry of theD3h group.

The jellium prediction on the sphericity of the magic clu
ters does not work so well for cluster ions. Indeed, the
ometry and the point symmetry group of Na9

1 do not allow
one to infer the higher sphericity of this cluster as compa
to its neighbors. The analysis of the quadrupole moments
cluster deformations performed below demonstrates this c
clusion quite clearly. This happens because the forces em
ing in the cluster during its transition from neutral to sing
charged state turn out to be insufficient to rearrange the c
ter geometry from a deformed to a spherical one.

We have found two isomers of the Na20 cluster that have
rather regular structure and differ significantly one from a
other. The cluster geometries presented in Fig. 1 allow on
assume that there exist at least two independent path
cluster structure formation. Indeed, the isomers

Na6
C5v→Na7→Na10

C4v→Na13→Na15

→Na16→Na17→Na18→Na19→Na20
C2v

probably belong to the chain leading to the formation of
C2v isomer of the Na20 cluster, while the clusters

Na6
D3h→Na8→Na9→Na10

Td→Na11
C1

→Na12→Na14→Na20
Td

form the path by which theTd isomer of the Na20 cluster is
formed. Figure 1 clearly shows the steps of the cluster
mation process along these two paths. Although for mosN
we have calculated isomers belonging to one path or ano
it is natural to assume that the two different types of geo
etry exist for allN, as for Na6 and Na20 clusters. For clusters
smaller than Na6, one cannot distinguish the two path
clearly enough as is seen from Fig. 1. Conclusions made
neutral clusters regarding the growth process are applic
to a great extent to singly charged cluster ions as is c
from Fig. 2, although cluster ion geometries sometimes di
substantially from their neutral prototypes.

Cluster geometries allow one easily to compute and a
lyze the average bonding distance as a function of clu
size. The result of this analysis for neutral and singly char
sodium clusters is presented in Figs. 3 and 4. These fig
show how the average bonding distance converges to
bulk limit indicated in the figures by horizontal lines. Whe
calculating the average bonding distance in a cluster, o
interatomic distances smaller than 4.1 Å have been con
ered. This upper limit on the interatomic distances was c
sen as a distance that is 10% larger than the bcc lattice n
est neighbor distance in bulk sodium.

Figures 3 and 4 show that the dependence of the ave
bonding distancêR& on cluster size is nonmonotonic. Fo
neutral clusters, one can see odd-even oscillations of^R&
atop its systematic growth and approach to the bulk lim
05320
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These features have a quantum origin and can be expla
by the delocalization of the valence atomic electrons. Inde
the odd-even oscillations arise due to the spin pairing of
delocalized electrons. This type of behavior is also typica
other cluster characteristics and will be discussed below
more detail. The reason for the relatively large increase
the average distance seen for small sodium cluster ions
N<9 is also qualitatively clear. It can be explained by t
Coulomb instability developing in the cluster with increasi
ionization rate.

FIG. 3. Averaged bonding distance as a function of cluster s
for optimized geometries of neutral sodium clusters. For some c
ter numbers more than one isomer has been considered. In
cases, labels indicate the point symmetry group of the corresp
ing isomers. Geometries of the optimized clusters can be foun
Fig. 1.

FIG. 4. Averaged bonding distance as a function of cluster s
for optimized geometries of singly charged sodium clusters.
some cluster numbers more than one isomer has been consider
these cases, labels indicate the point symmetry group of the co
sponding isomers. Geometries of the optimized clusters can
found in Fig. 2.
3-8
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The cluster shape can be characterized by the oblate,
late, or triaxial deformation. The prolate deformation of t
cluster is characterized by a larger distortion of the io
charge distribution along thez axis as compared to distor
tions along thex andy axes. In the oblate deformation ca
the situation is opposite. Deformations of the ionic cha
distribution in thex andy directions are larger than in thez
direction. In both cases the deformations alongx and y di-
rections are equal. The triaxial shape deformation is cha
terized by unequal distortions of the ionic charge distribut
alongx, y, andz directions. Often, however, two of the thre
deformations are close to each other and this allows on
discuss the triaxially deformed prolate or oblate cas
Knowledge of the type of cluster deformation is quite use
for comparison with the jellium model results and analysis
metal cluster photon absorption spectra~see@13#!.

The type of cluster deformation can be easily determin
by the principal values of the tensorRi j 5(xixj . Here, the
summation is performed over all ions in the system. T
principal values of this tensorRxx , Ryy , andRzz define the
dimensionsRx , Ry , andRz of the ionic charge distribution
in the cluster along the principal axesx, y, and z via the
relations Rx5ARxx /N, Ry5ARyy /N, and Rz5ARzz/N.
Note that the tensorRi j is closely connected to the cluste
moment of inertia tensor and the quadrupole moment ten
of the ionic distribution.

In Figs. 5 and 6 we present the principal valuesRxx , Ryy ,
andRzz for a sequence of neutral and singly charged clust
respectively. Figures 5 and 6 demonstrate how the clu
deformation changes as a function of cluster size. Figur
shows that all three principal values are equal for the te
hedral group isomers of the magic clusters Na8 and Na20.
This feature is in qualitative agreement with the jelliu
model, which predicts spherical shapes for the magic c

FIG. 5. The principal values of the tensorRi j for optimized
neutral sodium clusters as a function of cluster size calculated
the B3LYP method. Squares, circles, and triangles represen
Rxx , Ryy , andRzz tensor principal values, respectively. For som
clusters, more than one isomer has been considered. In these
labels indicate the point symmetry group of the corresponding
mers. Geometries of the optimized clusters can be found in Fig
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ters. In many cases two of the three principal values ofRi j
are equal or nearly equal. Using the definition of the prol
and oblate cluster distortions given above and Figs. 5 an
one can easily determine the type of cluster deformation.
example, the clusters Na2 , Na10, Na18, and Na19 have the
prolate deformation along thez principal axis, because th
condition Rxx5Ryy,Rzz is satisfied. The clusters Na6 and
Na7 possess the prolate deformation because in this c
Rxx5Ryy.Rzz. Figures 5 and 6 show that most of the clu
ters are triaxially deformed. However, it is often possible
assign clusters the triaxially deformed prolate or obl
shape, because two of the three principal values are clos
each other. Thus, for instance, Na4 are Na15 are triaxially
prolate clusters, while Na14 is a triaxially oblate one. Figures
5 and 6 also show the relative values of prolate and ob
deformations in various clusters.

One can define a tensor analogous toRi j , but for elec-
trons. We do not plot the principal values of this tensor b
cause they are very close in absolute value to the princ
values shown in Figs. 5 and 6 and can be traced from
principal values of the cluster total quadrupole moment t
sor considered below in Sec. III D.

B. Binding energy per atom for small neutral and singly
charged sodium clusters

The binding energy per atom for small neutral and sin
charged sodium clusters is defined as follows:

Eb /N5E12EN /N, ~18!

Eb
1/N5„~N21!E11E1

12EN
1
…/N, ~19!

whereEN and EN
1 are the energies of a neutral and sing

y
he

ses,
-

1.

FIG. 6. Principal values of the tensorRi j for optimized singly
charged sodium clusters as a function of cluster size calculate
the B3LYP method. Squares, circles, and triangles represent
Rxx , Ryy , andRzz tensor principal values, respectively. For som
clusters, more than one isomer has been considered. In these c
labels indicate the point symmetry group of the corresponding
mers. Geometries of the optimized clusters can be found in Fig
3-9
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chargedN-particle atomic cluster, respectively.E1 and E1
1

are the energies of a single sodium atom and an ion.
Figures 7 and 8 show the dependence of the binding

ergy per atom for neutral and singly charged clusters a
function of cluster size. The energies of the clusters h
been computed using the B3LYP, MP4, and HF methods de
scribed in Sec. II. For clusters withN<8, computations of
the energies have been performed by the three method
the sake of comparison. We wanted to compare the meth
for their accuracy and computation efficiency. The results
our calculations have also been compared with those der
by the configuration interaction~CI! method in@15–17#. Fig-
ures 7 and 8 demonstrate that the results of the MP4 and
B3LYP methods are in reasonable agreement with each o
and with the CI results. The HF points significantly diff
from the MP4, B3LYP, and CI ones, which demonstrates t
importance of many-electron correlations, taken into acco
in the MP4, B3LYP and CI methods and omitted in the H
approximation. Note that the energy of Na2, if computed in
the pure HF approximation, is close to zero, which me
that bonding in this molecule takes place mainly due
many-electron correlations.

The energies of clusters larger than Na8 and Na8
1 have

been computed by the B3LYP method only, because
method is more efficient than MP4 and the accuracy of both
methods is comparable.

Figures 7 and 8 demonstrate the even-odd oscillation
havior in the dependence of binding energy on cluster s
Indeed, for singly charged clusters, odd numbers corresp
ing to the singlet multiplicity have higher energies as co
pared to their even neighbors. An analogous situation ta

FIG. 7. Binding energy per atom for neutral sodium clusters
a function of cluster size. Circles represent the binding energies
atom calculated by the B3LYP method; lower and upper triang
correspond to the energies obtained by the MP4 method and in the
HF approximation respectively. Squares show the results of
configuration-interaction approach from the work by Bonacˇić-
Kotecký et al. ~for details see@16,18#!. Some points in the figure
have labels indicating the point symmetry group of the isom
represented. Geometries of the corresponding clusters can be
in Fig. 1.
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place for neutral clusters. In this case, even cluster num
have higher binding energies as compared to their odd ne
bors. Note that for neutral clusters this phenomenon occ
simultaneously with a slight systematic growth of the bin
ing energies per atom with increasing cluster size.

Figures 7 and 8 also show that the binding energy
atom in the magic neutral clusters Na8 and Na20 is a little
higher as compared to other clusters of similar size. A sim
situation occurs for the Na9

1 cluster in the ionic case. This
feature can be qualitatively understood on the basis of
jellium model: the increase in the magic cluster binding e
ergy takes place due to the delocalized electron shell clos
Note that the binding energy per atom for the magic Na21

1

turns out to be smaller than that for the neighboring clus
ions. This happens because this particular cluster ion iso
is characterized by theOh point symmetry group. Cluste
isomers based on this point symmetry group usually h
lower binding energy per atom as compared to isomers ba
on icosahedral point symmetry group like those withN
>13 shown in Figs. 1 and 2.

Tables I and II given in the Appendix provide accura
values of the cluster total energies calculated by M4,
B3LYP, and HF methods. For neutral clusters withN<8, we
also present the cluster energies calculated in@16# by the CI
method. The values given in these tables have been use
plot Figs. 7 and 8. For some clusters, the energies of diffe
symmetry isomers are also given in the tables.

C. Ionization potentials

Let us now consider how the ionization potentials of s
dium clusters evolve with increasing cluster size. Expe

s
er
s

e

s
nd

FIG. 8. Binding energy per atom for singly charged sodiu
clusters as a function of cluster size. Circles represent the bin
energies per atom calculated by the B3LYP method; lower and
per triangles correspond to the energies obtained by the M4

method and in the HF approximation, respectively. Squares s
the results of the configuration-interaction approach from the w
by Bonačić-Kotecký et al. ~for details see@16,18#!. Some points in
the figure have labels indicating the point symmetry group of
isomers represented. Geometries of the corresponding cluster
be found in Fig. 2.
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STRUCTURE AND PROPERTIES OF SMALL SODIUM CLUSTERS PHYSICAL REVIEW A65 053203
mentally, this dependence was measured for sodium clus
in @8,20#.

The ionization potentialVi of a cluster consisting ofN
atoms is defined as the difference between the energies o
singly charged and neutral clusters:

Vi5EN
12EN . ~20!

Figure 9 shows the dependence of the cluster ionization
tential on N. Figure 9 demonstrates the comparison of
results derived by the different methods B3LYP, MP4, and
HF ~see Sec. II! with the experimental data from@8# and
@20#. The results of the B3LYP and MP4 methods are in
reasonable agreement with the experimental data, while
ionization potentials calculated on the basis of the HF
proximation differ substantially from the experimental obs
vations. This comparison shows the role of many-elect
correlations in the formation of the cluster ionization pote
tials. The correlation effects are taken into account by
B3LYP and MP4 methods and omitted in the HF approxim
tion.

Figure 9 demonstrates that the ionization potentials d
with increasing cluster size, which is consistent with pred
tions of the classical spherical droplet model. However, t
process has many irregularities, which have a quantum
gin. Indeed, the dependences derived by the MP4 and B3LYP
methods as well as the experimental one have a promi
odd-even oscillatory tendency. The maxima in these dep
dencies correspond to the even-N clusters, which means the
higher stability as compared to the neighboring odd-N clus-
ters. This happens because the multiplicities of the even-

FIG. 9. Ionization potentials of neutral sodium clusters as
function of cluster size. Circles show the results derived by
B3LYP method. Triangles and rhomboids represent the ioniza
potentials calculated by the HF and MP4 methods, respectively
Filled and open squares are the experimental values taken from@20#
and @8#, respectively. For some clusters, more than one neu
and/or singly charged cluster isomer has been considered. In t
cases, labels indicate the point symmetry group of the initial ne
and the final charged cluster isomers used for the calculation o
ionization potential.
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odd-N clusters are different, being equal to 1 and 2, resp
tively. Interestingly enough, the B3LYP method reproduc
correctly even the experimentally observed irregularity in
odd-even oscillatory behavior, that happens atN516 and
N517, and some other minor details of the experimen
data.

A significant steplike decrease in the ionization poten
value happens at the transition from the dimer to the trim
cluster and also in the transition from Na8 to Na9. Such
irregular behavior can be explained by the closure of
electronic 1s and 1p shells of the delocalized electrons
the clusters Na2 and Na8, respectively. The next significan
drop in the ionization potential value takes place in the tr
sition from the magic Na20 to the Na21 cluster.

D. Multipole moments

We have calculated multipole moments~dipole, quadru-
pole, octapole, and hexadecapole! for the sodium clusters
whose geometry is shown in Figs. 1 and 2. In Figs. 10 a
11, we plot the absolute values of the dipole moments
neutral and singly charged sodium clusters as a function
cluster size.

The dipole moments of some sodium clusters~see Fig.
10!, that we predict here arise due to the fact that the elec
charge distribution does not always match the ionic cha
distribution and can be shifted with respect to the clus
center of mass. Our calculations show that only clusters w
C point symmetry groups, like the isosceles triangle isom
of Na3, the pentagonal Na6 pyramid isomer, Na12, Na18, and
others, possess dipole moments. These clusters have e
an axis of a certain order or a plane of symmetry, but
perpendicular symmetry elements~planes or axes!. This rule
remains correct even for the Na20 cluster isomer with the
symmetry C2v , which has the closed shell configuratio

a
e
n
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FIG. 10. Dipole moments of the optimized neutral sodium clu
ters as a function of cluster size calculated by the B3LYP meth
For some clusters, more than one isomer has been considere
these cases, labels indicate the point symmetry group of co
sponding isomers. Geometries of the optimized clusters can
found in Fig. 1. 1 D50.3935 a.u.
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1s21p61d102s2 of delocalized electrons according to the je
lium model. The geometries of the cluster ions differ sign
cantly from the geometries of the corresponding neutral c
ters, but the rule formulated above for the appearance of
cluster dipole moments remains valid in this case also, a
clear from Fig. 11.

The principal values of the quadrupole moments, ten
for optimized neutral and singly charged clusters are p
sented in Figs. 12 and 13, respectively. For clusters with

FIG. 11. Dipole moments for the optimized singly charged
dium clusters as a function of cluster size calculated by the B3L
method. For some clusters, more than one isomer has been co
ered. In these cases, labels indicate the point symmetry grou
corresponding isomers. Geometries of the optimized clusters ca
found in Fig. 2.

FIG. 12. Principal values of the quadrupole moment tensor
the optimized neutral sodium clusters as a function of cluster
calculated by the B3LYP method. Squares, circles and trian
represent theQxx , Qyy , and Qzz tensor principal values, respec
tively. For some clusters, more than one isomer has been co
ered. In these cases, labels indicate the point symmetry grou
corresponding isomers. Geometries of the optimized clusters ca
found in Fig. 1.
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axis of symmetry, this axis has been chosen as thez axis of
the coordinate system, in which the calculation of the qu
rupole moments was performed. The quadrupole mom
tensor is defined as the average value of the following
erator:

Qi j 5( q~3xixj2d i j r
2!. ~21!

Here, the summation is performed over all electronic a
ionic charges in the cluster. Note that the trace of the ten
Qi j is equal to zero.

The ionic part ofQi j can be expressed via the compone
of the tensorRi j discussed in Sec. III A. Note that knowledg
of Qi j and Ri j allows one to construct easily the tens
analogous toRi j , but for electrons. This might be useful fo
the analysis of deformations of electron density distribut
in a cluster.

The quadrupole moment tensor can be expressed via
tensorQ̃i j 5^(qxixj& characterizing the average dimensio
of the total charge distribution. Here, the angular brack
mean averaging over the electronic charge distribution. T
principal values of the tensorQ̃i j should be negative at leas
for neutral clusters, because electron density is spilled ou
the cluster, which makes its distribution a little broader th
the distribution of ions. A similar situation occurs for clust
ions, but in this case there is a noncompensated pos
charge in the system, which brings a certain positive con
bution toQ̃i j and makes the principal values ofQ̃i j positive
in some cases.

The numerical analysis performed in this work shows t
for neutral sodium clusters the principal values ofQ̃i j are
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FIG. 13. Principal values of the quadrupole moment tensor
the optimized singly charged sodium clusters as a function of c
ter size calculated by the B3LYP method. Squares, circles, and
angles represent theQxx , Qyy , and Qzz tensor principal values,
respectively. For some clusters, more than one isomer has
considered. In these cases, labels indicate the point symmetry g
of corresponding isomers. Geometries of the optimized clusters
be found in Fig. 2.
3-12
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STRUCTURE AND PROPERTIES OF SMALL SODIUM CLUSTERS PHYSICAL REVIEW A65 053203
always negative, while for the small cluster ions Na2
1,

Na3
1, and Na4

1 (C2v) some of the principal values ar
positive.

The principle values of the quadrupole moment ten
characterize the distortion of the total cluster charge distri
tion. Indeed, Fig. 12 shows that the Na8 and Na20 tetrahedral
group isomers have zero quadrupole moments, which re
the closeness to sphericity of the magic clusters. Our ca
lations demonstrate that for some open shell clusters
Na11 and Na12 the quadrupole moments turn out to be rath
small, although the ionic charge distribution in these clust
has a prominent deformation as is clear from Figs. 1 an
The small quadrupole moments in these clusters are the
sult of compensation of the electron and ion component
Qi j .

The quadrupole moment diagram allows one to ma
some conclusions about the type of shape of the total ch
distribution in a cluster. The average dimensions of the c
ter total charge distribution in thex, y, andz directions can be
characterized by the quantitiesQz

i5Q̃zz5^(ez2&, Qx
'

5Q̃xx5^(ex2&, andQy
'5Q̃yy5^(ey2&. Here, the summa

tion is performed over all electrons and ions in the clus
and the angular brackets mean averaging. These quan
are connected with the quadrupole moments tensor defi
in Eq. ~21!. Indeed, in both the prolate and oblate cas
whenQx

'5Qy
'5Q' andQz

i5Qi, the principal values of the
tensorQi j read

Qzz52~Qi2Q'!,

Qxx5~Q'2Qi!52
Qzz

2
,

Qyy5Qxx52
Qzz

2
. ~22!

These equations define the important relationships betw
the principal values of the quadrupole moment tensor in
oblate and prolate cases and help understand the quadr
moments diagrams shown in Figs. 12 and 13.

Equations~22! show that the sign of the principal value
Qxx , Qyy , andQzz depends on the relative values ofQi and
Q'. With the use of Eqs.~22! and the cluster quadrupol
moment diagrams shown in Figs. 12 and 13, one can ea
analyze the total charge distribution of the clusters shown
Figs. 1 and 2. Note that conclusions made about the shap
the total charge distribution and the shape of the ionic co
ponent~see Figs. 5 and 6! sometimes differ significantly one
from another for some clusters. For example, the io
charge distribution in the Na12 cluster has a prolate shap
while the total charge distribution is oblate.

The quadrupole moments of singly charged sodium c
ters differ substantially from those for the correspond
neutral ones. The excess positive charge leads to the
rangement of the cluster structure and to the appearance
quadrupole moment in cluster ions like Na8

1 and Na20
1.

Although the electron exchange-correlation force in a clus
turns out to be insufficient to change the cluster geome
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significantly enough to make a magic cluster ion Na9
1, hav-

ing a closed shell electronic structure of delocalized el
trons, spherical-like without a quadrupole moment. Inste
Na9

1 retains a noticeable deformation.
Let us now discuss an idea for which the cluster multip

moments play a crucial role and consider the possibility
cluster isomer separation by placing the mass selected clu
beam in an inhomogeneous external field. As we have s
from the calculations presented above, different cluster
mers of the same mass often possess different structure
as a result of that different multipole moments~dipole or
quadrupole!. However, such cluster isomers are indisti
guishable in experiments nowadays with mass selected c
ter beams. They can nevertheless be separated if one pu
mass selected cluster beam in an inhomogeneous ext
field. Let us estimate this effect for the characteristic valu
of the dipole and quadrupole moments calculated above

From the dipole moment diagrams shown in Figs. 10 a
11 one can conclude that the difference in dipole mome
for some cluster isomers can be as large as 1 D and for the
quadrupole often it is about 40 D Å or even larger. The for
acting on a cluster with the dipole momentD in an external
inhomogeneous electric fieldE(r ) is equal to@65#

FD~r !5“$D•E~r !%. ~23!

The component of the force acting on the cluster with qu
rupole momentQi j is as follows@65#:

Fi
Q~r !5“ i H Qjk

6
“ jEk~r !J . ~24!

Here, summation is assumed over the repeated indicesj and
k of the vector and tensor components in the right hand s
of Eq. ~24!.

Let us introduce the time periodt during which the clus-
ter beam passes through the inhomogeneous electric fi
One can estimate the distanceD by which isomers will be
separated during this period of time asD;Ft2/2M , where
M is the mass of the isomer considered andF is the force
acting on either the dipole@see Eq.~23!# or quadrupole@see
Eq. ~24!# moment of the cluster. Substituting in these equ
tions the characteristic values for the dipole and quadrup
moments, assuming that the inhomogeneity of the elec
field is about“E;53103 V/cm2, one derives from Eqs
~23! and ~24! that during the periodt;1023 s the isomers
with N53 anddD;1 D become separated byD;0.7 mm
and thatD;2.8 mm fordQ;40 D Å, t;10 s,N55, and no
dipole moment.

These estimates demonstrate that one can create sig
cant separation distances for reasonably short periods of
with the electric field strengths and their gradients achieva
in laboratory conditions. Experiments with mass selected
isomer separated cluster beams might provide the most
curate information on the structure and properties of ato
clusters.
3-13
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E. Polarizabilities

We have calculated the polarizabilities for the optimiz
neutral sodium clusters~see Fig. 1! as a function of cluster
size. Results of this calculation are shown in Fig. 14. In t
figure, we also plot experimental points from@21#. Calcula-
tion of the polarizabilities was performed by the B3LY
method. Figure 14 demonstrates quite reasonable agree
of the B3LYP results with the experimental data.

FIG. 14. Static mean polarizability per atom for neutral sodiu
clusters normalized to the polarizability of a single sodium ato
Circles show the results derived in this work by the B3LYP meth
For some clusters, more than one isomer has been considere
these cases, labels indicate the point symmetry group of co
sponding isomers. Stars and triangles represent the polarizabi
calculated in@19# and@32#, respectively. Squares are the experime
tal values taken from@21#.

FIG. 15. Normal vibration frequencies calculated by the B3L
method for the neutral sodium clusters withN<20. For each cluster
we mark the breathing mode in the spectrum by dotted line and
surface quadrupole vibration modes by dashed lines. The num
near some of the lines indicate the degeneracy of the correspon
quadrupole surface vibration mode.
05320
s

ent

In Fig. 14 we also compare the polarizabilities calculat
in our work with those derived by other theoretical metho
@19,32#. This figure demonstrates a satisfactory agreemen
the results of different approaches with each other and w
the experimental data. This comparison is quite importa
because in our work as well as in@19# the polarizabilities
have been calculated using an all-electronab initio approach,
while in @32# they were obtained with the use of pseudop
tentials. Note that our points are closer to the experime
values than those from@19#, in spite of the fact that both
calculations have been performed on the basis of den
functional theory. The differences between the two schem
of calculation arise in the form of the density functional a
the set of basis functions employed. In@19#, the so-called
Perdew-Wang 91 density functional~see, e.g.,@62# and ref-
erences therein! was used, while we applied its B3LYP form

Let us also compare the polarizabilities for the Na8 and
Na20 clusters calculated in the random phase approxima
with exchange in the spherical jellium model (aNa8

5755 a.u. andaNa20
51808 a.u. @66#! with our results

(aNa8
5797 a.u. andaNa20

51964 a.u.). The closeness o
the values shows that the detailed ionic core structure d
not much influence the values of the cluster polarizabiliti

.

.
. In
e-
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-

e
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ing

FIG. 16. Surface and volume vibration modes for the selec
neutral sodium clusters. Number near each cluster image indic
the frequency of the corresponding normal vibration mode. T
values are given in cm21.
3-14
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This comparison shows that the jellium model turns out to
quite a reasonable approximation.

Figure 14 shows that the disagreement between theo
cal and experimental points is not always less than the
perimental error bars. This disagreement might indicate
for certainN cluster isomers have been experimentally d
tected other than those calculated in our work. For exam
the calculated valueaNa6

C5v5659 a.u. lies beyond the exper

mental error bars, whileaNa6

D3h5706.876 a.u. is within the

range of the experimental error.
Note that the polarizabilities of the clusters Na8 , Na10,

and Na20, possessing theTd point symmetry group, surpas
the corresponding experimental values a little, although
ing quite close to them. For the Na8 and Na10 clusters, the
disagreement of the theoretical and experimental value
within the range of the experimental error.

A similar situation occurs for the Na14 cluster, character-
ized by theC2v point symmetry group. This cluster likel
belongs to the cluster chain leading to the formation of
tetrahedral Na20 cluster from the tetrahedral Na8 ~see our
discussion in Sec. III A!. This situation allows us to assum
that the polarizabilities of other clusters of this chain, whi
we have not analyzed in this paper because they are ene
cally not favorable, will also be quite close to the experime
tal values.

F. Normal vibration modes

Using the B3LYP method, we have calculated the norm
vibration frequencies for the optimized neutral sodium cl
ters. The results of this calculation are shown in Fig. 15.
this figure, we indicate the point symmetry group for tho
clusters for which more than one cluster isomer has b
considered~see Fig. 1!. Numerous frequencies shown in Fi
15 are degenerate or nearly degenerate. This explains
the total number of frequencies for most clusters is less t
the number of vibrational degrees of freedom available in
system. In the more symmetric clusters, like Na7 , Na8 ,
Na10, or Na20, the rate of degeneracy of the normal vibr
tion modes is higher.

Knowledge of the normal vibration modes and their fr
quencies is important for a physical understanding and qu
titative description of the relaxation of electron plasmon e
citations in metal clusters@42#. One can visualize norma
vibration modes, showing the directions and amplitudes
the atom displacements by corresponding vectors. Since
difficult to show all such pictures in this paper due to th
large number, we focus instead only on the two types
breathing modes and quadrupole surface vibration mo
These modes were considered in@42# within the dynamical
jellium model@41# for the treatment of electron-phonon co
pling in the spherical metal clusters Na20, Na40, and Na92.

In this paper, we discuss the appearance of these spe
vibration modes in a cluster system and compare their
quencies with the predictions made in@42# on the basis of the
jellium model. For this purpose, we have analyzed all cal
lated vibration modes and identified the breathing and qu
rupole vibrations for each cluster. In Fig. 16, we pres
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images of the breathing and quadrupole vibration modes
some clusters to illustrate how the identification of the mod
has been performed.

The results of this analysis are shown in Fig. 15, wh
for each cluster we mark the breathing mode in the spect
by dotted lines and the surface quadrupole vibration mo
by dashed lines. The number near some of the lines indi
the degeneracy of the corresponding quadrupole surface
bration mode. The degeneracy rate and the number of q
rupole surface vibration modes can easily be understood
the help of the cluster images shown in Fig. 1. This figu
shows that the prototype of the breathing mode exists alre
in the Na3 and Na4 clusters. For the Na4 cluster, one can
identify the quadrupole surface vibration mode, although i
meaningful to discuss surface vibrations only for the N6
cluster and larger. Figure 15 shows that the frequencie
the breathing and surface vibration modes decrease sys
atically with increasing cluster size, although this decre
has numerous irregularities, particularly for the clusters w
N,8. The frequency of the breathing mode decreases fa
with the growth ofN than the frequency of the quadrupo
surface vibration mode.

Let us compare the calculated frequencies of the breath
and surface vibration modes with the predictions of the
lium model. In @42#, it was shown that the breathing vibra
tion mode frequencies calculated for the spherical Na20,
Na40, and Na92 within the framework of the dynamical jel
lium model are quite close to the values derived from
phonon dispersion law for metals@67#

V25
3vF

2k2

MNa~91k2vF
2r 0

3!
, ~25!

where MNa54.23104 is the mass of the sodium atom,vF

5(9p/4)1/3/r 0 is the velocity of cluster electrons on th
Fermi surface, andr 0 is the Wigner-Seitz radius. In the lon
wave limit, Eq.~25! reduces to the Bohm-Staver formula fo
the velocity of sound,dV/dk5vF /A3MNa'33105 cm/s.
This number is quite close to the real value of the velocity
sound in bulk sodium: 3.23105 cm/s.

Using the dispersion law~25!, we estimate the breathin
mode frequencies for the magic Na8 and Na20 clusters. The
results of this calculation are as follows:VNa8

5104.09 cm21, VNa20
580.49 cm21. In this calculation we

usedr 054.
The frequency values obtained from Eq.~25! are close to

those presented in Fig. 15,VNa8
5127.15 cm21, VNa20

578.11 cm21. The agreement of the frequencies is rath
good for the Na20 cluster. For Na8, the agreement is reason
able, but not as good as for Na20. Some disagreement arise
due to the fact that the Wigner-Seitz radius for the Na8 clus-
ter is about 10% smaller than its bulk value. Indeed, sub
tuting r 053.6 in Eq.~25! one derivesVNa8

5127.10 cm21,
which is in nearly perfect agreement with theab initio result.
The decrease of the Wigner-Seitz radius can be easily un
stood from analysis of the cluster geometry shown in Fig
3-15
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Now let us compare the quadrupole surface vibrat
mode frequencies calculated here~see Fig. 15! with those
following from the dynamical jellium model. According t
@42#, the quadrupole surface vibration frequenciesV2 for the
spherical Na20, Na40, and Na92 clusters are equal to
56.48 cm21, 48.41 cm21, and 32.28 cm21, respectively.
The value of the quadrupole surface vibration frequency
the Na20 cluster calculated in the present work is equal
63.15 cm21, which is rather close to the value predicted
@42#.

The values of the quadrupole surface vibration frequ
cies calculated for Na20, Na40, and Na92 show relatively
slow decrease with growth in cluster size. Extrapolat
these values toward smaller cluster sizes, we derive
quency values that are consistent with those shown in
15. This comparison demonstrates that the jellium model
culation of the surface vibration frequencies is in reasona
agreement with the more accurateab initio many-body
theory.

The comparison of the jellium model results with tho
derived by the more accurateab initio many-body theory is
important, because it forms the theoretical background
the jellium model calculations in larger cluster systems,
which ab initio methods are hardly possible. The comparis
with the jellium model that we performed in this paper c
be extended toward larger cluster sizes and other collec
modes of ion motion.

IV. CONCLUSION

In this paper we have calculated the optimized struct
and various characteristics of sodium clusters consisting
up to 20 atoms. We have used three different metho
B3LYP, MP4 and HF. It was demonstrated that the first tw
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methods, because they account for many-electron corr
tions, provide much better agreement with the available
perimental data and theoretical results based on
configuration-interaction method as compared to that for
Hartree-Fock approximation. This was checked for vario
cluster characteristics: cluster geometries, binding ener
per atom, and ionization potentials.

We have also calculated and analyzed the dependenc
the ionic and total quadrupole moments of sodium cluster
a function of their size. It was demonstrated that the clus
shapes characterized by the quadrupole moments are in
sonable agreement with the predictions of the jellium mo
and the results of experimental observations.

We have determined the normal vibration modes and th
frequencies for a number of clusters and demonstrated t
qualitative agreement with the predictions based on the
lium model.

The results of this work can be extended in various dir
tions. One can use similar methods to study the structure
properties of various types of cluster. It would be interest
to extend the calculations toward larger cluster sizes and
form more comparisons with the results following from th
jellium model and other simplified theories, based either
pseudopotentials or effective interatomic potentials. Ma
interesting problems arise when considering collisions a
electron excitations in clusters with optimized geometri
These and many more other problems in atomic cluster ph
ics can be tackled with the use of the methods considere
our work.
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APPENDIX: TABLES

In this appendix, we present tables of the essential cluster characteristics. The binding energies per atom for ne
singly charged clusters are compiled in Tables I and II. The principal values of the quadrupole moment tensors for ne
singly charged clusters are presented in Tables III and IV.

TABLE I. Total energies of the optimized neutral sodium clusters. Numbers of atoms in clusters are given
in the first column. In the second column, the point symmetry groups of the clusters are shown. In the next
three columns, the cluster total energies derived by the HF, MP4, and B3LYP methods are compiled. For the
sake of comparison, the total energies computed by the CI method in@16# are presented in the sixth column.

EN(a.u.)
N Symmetry HF/6-311G(d) MP4/6-311G(d,p) B3LYP/6-311G(d) Reference@16#

1 2161.8459 2161.8459 2162.2866
2 D`h 2323.6911 2323.7149 2324.5999 2323.3176
3 D`h 2485.5405 2485.5626 2486.8963

a.C2v 2485.5403 2485.5653 2486.8960 2484.9729

b.C2v 2485.5385 2485.5656 2486.8939
D3h 2485.5282 2485.5626 2486.8889

4 D2h 2647.3871 2647.4433 2649.2076 2646.6494
D4h 2647.3897 2649.1965

5 C2v 2809.2518 2809.3008 2811.5164 2808.3174
3-16
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TABLE II. Total energies of the optimized singly charged sodium clusters. Numbers of atoms in clu
are given in the first column. In the second column, the point symmetry groups of the clusters are sho
the next three columns, the cluster total energies derived by the HF, MP4, and B3LYP methods are compiled

EN
1 (a.u.)

N Symmetry HF/6-311G(d) MP4/6-311G(d,p) B3LYP/6-311G(d)

1 2161.6642 2161.6642 2162.0874
2 D`h 2323.5447 2323.5447 2324.4114
3 D3h 2485.4084 2485.4322 2486.7457
4 D2h 2647.2653 2647.2915 2649.0502

C2v 2647.2681 2647.2919 2649.0489
5 D2h 2809.1226 2809.1740 2811.3727

D2d 2811.3629
6 C2v 2970.9749 2971.0364 2973.6742
7 D5h 21132.8278 21132.9261 21135.9994
8 C2v 21294.6866 21294.7863 21298.3082
9 D3h 21456.5346 21460.6326
10 D4d 21622.9335

C4v 21622.9278
Td 21622.9273

11 D3h 21785.2509
Cs 21785.2455

12 C2v 21947.5479
13 C1 22109.8718
14 C2v 22272.1654
15 Cs 22434.4907
16 Cs 22596.8051
17 Cs 22759.1222
18 Cs 22921.4365
19 D5h 23083.7499
20 C2v 23246.0655
21 Oh 23408.3434

TABLE I. ~Continued!.

EN(a.u.)
N Symmetry HF/6-311G(d) MP4/6-311G(d,p) B3LYP/6-311G(d) Reference@16#

6 C5v 2971.0915 2971.1880 2973.8324 2969.9899
D3h 2971.0998 2971.1872 2973.8344 2989.9884

7 D5h 21132.9462 21133.0634 21136.1430 21131.6610
8 Td 21294.8015 21294.9410 21298.4606 21293.3395
9 C2v 21456.6466 21460.7597

10 C2 21623.0758
D4d 21623.0734
C4v 21623.0554
Td 21623.0530

11 C2v 21785.3737
C1 21785.3726

12 C2v 21947.6917
13 C1 22110.0045
14 C2v 22272.3092
15 Cs 22434.6188
16 Cs 22596.9370
17 Cs 22759.2537
18 C5v 22921.5704
19 D5h 23083.8730
20 Td 23246.2015

C2v 23246.1981
053203-17
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TABLE III. Principal values of the quadrupole moment tens
calculated for neutral sodium clusters. The first column shows n
bers of atoms in clusters. The second column gives their point s
metry groups. In the last three columns, the principal valuesQxx ,
Qyy , andQzz are given. They have been computed by the B3L
method.

N Symmetry Qxx ~D Å! Qyy ~D Å! Qzz ~D Å!

2 D`h 211.5622 211.5622 23.1244
3 a.C2v 29.9300 25.3883 15.3183

b.C2v 27.5625 31.0631 223.5006
D`h 216.3309 216.3309 32.6618

4 D2h 212.9139 26.2865 213.3726
D4h 5.1177 5.1177 210.2354

5 C2v 220.3760 23.0544 22.6784
6 C5v 6.5817 6.5817 213.1634

D3h 14.4807 14.4807 228.9614
7 D5h 13.3285 13.3285 226.6570
8 Td 0.0000 0.0000 0.0000
9 C2v 222.2202 27.8457 30.0659

10 D4d 13.5248 13.5248 227.0496
C2 31.6087 215.5561 216.0526
C4v 214.6949 214.6949 29.3898
Td 0.0000 0.0000 0.0000

11 C2v 20.3816 3.6348 23.2532
C1 218.4455 13.9570 4.48848

12 C2v 0.0392 1.7777 21.8169
13 C1 3.5616 7.3169 210.8785
14 C2v 240.2978 54.2376 213.9398
15 Cs 29.0476 221.7878 30.8354
16 Cs 218.0272 1.6718 16.3554
17 Cs 2.2310 18.9437 221.1747
18 C5v 214.0456 214.0540 28.0996
19 D5h 22.9626 22.9626 5.9252
20 Td 0.0000 0.0000 0.0000

C2v 269.7510 79.8143 210.0633
rs,

em
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.
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TABLE IV. Principal values of the quadrupole moment tens
calculated for singly charged sodium clusters. The first colu
shows numbers of atoms in clusters. The second column gives
point symmetry groups. In the last three columns, the princi
valuesQxx , Qyy , andQzz are given. They have been computed
the B3LYP method.

N Symmetry Qxx ~D Å! Qyy ~D Å! Qzz ~D Å!

2 D`h 227.9109 227.9109 55.8218

3 D3h 21.8547 21.8547 243.7094

4 D2h 267.8170 212.6716 80.4886

C2v 286.4460 227.4786 113.9246

5 D2h 2101.2157 6.2746 94.9411

D2d 246.6091 246.6091 93.2182

6 C2v 234.9108 53.8712 218.9604

7 D5h 24.3267 24.3267 248.6534

8 C2v 4.4346 251.8751 47.4405

9 D3h 23.1994 23.1994 246.3988

10 D4d 234.9547 234.9547 69.9094

C4v 23.5448 23.5448 7.0896

Td 0.0000 0.0000 0.0000

11 D3h 218.5476 218.5476 37.0952

Cs 19.4836 210.0197 29.46382

12 C2v 258.0823 221.8996 79.9819

13 C1 69.5400 25.4745 295.0145

14 C2v 2178.1183 149.0275 29.0908

15 Cs 237.4527 44.8752 27.4225

16 Cs 255.6664 58.5058 22.8394

17 Cs 247.1267 60.3728 213.2461

18 Cs 233.5207 65.9999 232.4792

19 D5h 257.3045 257.3045 114.6090

20 C2v 279.3111 95.8676 216.5565

21 Oh 0.0967 0.0967 20.1934
nd
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@23# C. Bréchignac, Ph. Cahuzac, F. Carlier, M. de Frutos, and

Leygnier, J. Chem. Phys.93, 7449~1990!.
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