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Characterization of the channeling process in the scattering of relativistic electrons
with periodic structures

Julio San Roman, Luis Plaja, Luis Roso, and Uwe Schwengelbeck
Departamento de Fı´sica Aplicada, Universidad de Salamanca, E-37008 Salamanca, Spain

~Received 20 December 2001; published 6 May 2002!

Most of the theoretical work about channeling of fast particles in crystal structures takes as a starting point
a particle already in the target’s bulk. In this paper, we address theoretically the channeling process itself, i.e.,
the injection of a relativistic electron from vacuum into the crystalline target. We show that, contrary to that
general assumption, the target surface induceslongitudinalas well as transversal dynamics into the channeled
electron wave function. We present an efficient method for computing the eigenstates of the general relativistic
electron-target scattering problem, and use it to the case of planar (110) channeling in silicon. The angular
distribution of the transmitted electron is analyzed, and shown to depend strongly on the target thickness. In
addition, we derive analytical closed formulas for the probability of the incident electron to be channeled in the
different crystal states, and check their validity by comparison with the results of the exact numerical solutions.
Finally, we identify the electron initial conditions that create a population inversion in the channeled states.
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I. INTRODUCTION

Channeling of relativistic particles along crystal symm
try axes or planes has been a constant subject of study fo
last decades. Although first proposed by Stark in the 19
@1#, the feasibility of this process was confirmed in the ea
1960s by the numerical computation of the transmission
fast ions through different targets@2#. These calculations
gave the basis for interpreting the anomalous increase o
transmission of relativistic ions found in experiments wh
they were injected almost parallel to the direction of a crys
symmetry@3#. Channeled particles have exceptional char
teristics: on one hand, they propagate almost ballistically
side the target, therefore with low dissipation; on the ot
hand, the strength of interaction of the particle with the cr
tal potential is effectively increased by the Lorentz boost.
a consequence, the channeled particles are good candi
for the experimental study of matter under high-static fiel
in which intense field quantum effects, like pair creatio
photon-photon collisions, etc., may be studied@4#.

One of the most particular features of particle channel
is the anomalous increase of coherent brehmsstrahlung e
sion @5#. In comparison with the nonrelativistic case~see, for
instance@6#!, the relevant aspect of the channeling radiat
consist in that the photon emitted are Doppler shifted to h
energies~about 100 keV for an electron accelerated to a f
tens of MeV!, and therefore constitutes a promising source
hard x rays@7#.

The theoretical grounds of the channeling process
nowadays, well established. The energy spectrum of
channeled radiation can be successfully recovered by m
potentials@8,9#. However, to the authors’ knowledge, littl
effort has been directed to the study of the quantitative
scription of the channeling process, since the general sta
point is a particle already propagating in the crystal bu
The spontaneous character of the channeling radiation re
its intensity with the amount of population in the excite
channeled states. Obviously, these are greatly depende
1050-2947/2002/65~5!/052904~8!/$20.00 65 0529
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the particle’s wave function before entering the target, and
the nature of the scattering with the target-vacuum interfa
In this context, the study of the channeling process of,
tially, a free particle is well justified. In addition, the prope
addressing of this problem allows one to delimit under w
circumstances a population inversion in the channel st
can be achieved, which is a relevant aspect for any poss
future scheme of coherent amplification. The aim of this p
per is to address these questions by solving the eigen
problem of the free — propagating in vacuum — partic
injected into the target potential.

The following section contains the statement of the g
eral problem of the scattering of a relativistic particle with
target potential. A slow-envelope assumption is used to
rive the equations for the eigenstates of this problem. Sec
III shows how these eigenstates can be computed efficie
in an exact manner, without the need to diagonalize
three-dimensional Hamiltonian. In particular, the case o
particle injected in almost parallel to the (110) plane of S
addressed. We devote Sec. IV to the computation of the
tribution of probabilities of the incident particle over the di
ferent channeled states. We derive analytical closed-form
pressions for these probabilities assuming an approxim
tight-binding model. The accuracy of these formulas
checked by comparison to the exact numerical solution.
nally, under the light of this model, we discuss the possibi
of obtaining population inversion in the channeled states

II. SCATTERING OF A RELATIVISTIC PARTICLE
INTO THE TARGET

Consider the general problem of a relativistic electro
traveling initially in vacuum with a trajectory almost parall
to thex axis, injected into a space-limited target. Let us a
sume that the target potential is free of singularities a
therefore, it encloses only low —- nonrelativistic — mome
tum components~a valid approximation in the vast majorit
of targets!. In this case, the trajectory of the scattered parti
will be still dominated by the initial momentum, and ther
©2002 The American Physical Society04-1
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fore will remain close to the initial trajectory. The prop
description of this process should take as a starting point
Dirac equation

i\
]C~r ,t !

]t
5@ca•p1bmc21V~r !#C~r ,t !, ~1!

where we suppose an infinite target in they,z plane, while of
limited size in thex direction

V~r !5H 0, x,0,

V~x,y,z!, x>0.
~2!

As standard in wave problems, the surface of the target
tential ~at x50) divides the space into two complementa
regions, see Fig. 1. In thex,0 half space, the electro
propagates in vacuum and the wave function may be
pressed in terms of the free Dirac electron eigenstates

C I~r ,t !5e2 i«r (p0
m
•xm)/\ur~p!, ~3!

FIG. 1. Scheme of the potential geometry considered. T
target-vacuum interface extends over thex50 plane. The potentia
is already shown in the continuum approximation.
tia
ea
s
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where p0
m5(E0 ,p0) the initial four-momentum, with (E0

5Ac2up0u21m2c4), ur(p) with r 51,2,3,4 the four possible
Dirac free spinors and« r511 for r 51,2 and« r521 for
r 53,4. Since the scattering with the target involves mai
nonrelativistic momenta exchange, the reflection at the in
face can be neglected. In this case, the particle in the
zone can be described directly as the plane wave~3!. The
condition of the electron’s trajectory nearly parallel to thex
axis implies nonrelativistic transversal momentum comp
nents, (px)0@(py)0 ,(pz)0.

In the second zone, the eigenstate of the electron
fracted by the target’s potential can be factorized as

C II ~r ,t !5e2 i«rE0t/\ei«r [( px)0x]/\c r~x,y,z!, ~4!

c r(x,y,z) being a slowly varying spinor

u¹c r u!
~px!0

\
uc r u. ~5!

Let us now make explicit the spinor character of the slow
varying envelope. For this we use the free electron base

c r~x,y,z!5E dpxdpydpzj~px ,py ,pz!e
i«r (pxx1pyy1pzz)/\

3ur
„~px!01px ,py ,pz…

5ur~ p̂!j r~x,y,z!, ~6!

where we have definedur(p̂) as a spinor operator, diagona
in the free particle base.

For simplicity let us assume in the following a particle
positive energy,r 51. Therefore, we shall drop the labelr
writing c1 as

e

c~x,y,z!5u~ p̂!j~x,y,z!5E dpxdpydpzj~px ,py ,pz!S 1

0

cpz

E1mc2

c@px1~px!01 ipy#

E1mc2

D ei (pxx1pyy1pzz)/\. ~7!
-
Substituting in the Dirac equation for the second spa
zone, we have three scalar equations corresponding to
nonzero component of the spinor. The first equation read

H E02
c2up̂u2

Ê1mc2
2V~x,y,z!2mc2J j~x,y,z!

5$E02Ê2V~x,y,z!%j~x,y,z!50, ~8!
l
ch
where Ê25c2up̂u21m2c4. The slow-varying envelope ap
proximation applied to the energy operator gives

Ê'~Ex!0F11
c2

2 S 2~px!0p̂x1 p̂y
21 p̂z

2

~Ex!0
2 D 1OS c2p̂x

2

~Ex!0
2D G ,

~9!

where (Ex)0
25c2(px)0

21m2c4 is the initial energy of the
electron’s longitudinal displacement. Introducing Eq.~9! into
Eq. ~8! one finally obtains
4-2
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H E02~Ex!02
c2
„2~px!0p̂x1 p̂y

21~pz!0
2
…

2~Ex!0
2V~y!J j~x,y!50. ~10!
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It is possible to findidenticalapproximated equations for a
of the spinor components of the wave function, by using

~Ê1mc2!V~y!
1

~Ê1mc2!
'V~y! ~11!

and

~Ê1mc2!

c@~px!01 p̂x1 i p̂y#
V~y!

c@~px!01 p̂x1 i p̂y#

~Ê1mc2!
'V~y!,

~12!

and taking into account that the crystal potential energy
nonrelativistic, i.e., a quantity of the orderV(x,y,z)
;O„c2( p̂x)

2/(mc2)…. Naturally, the reduction of the Dira
equation to a simple scalar form is a consequence of the
of relativistic momentum components in the target’s pot
tial.

To compute the form of the eigenstate in the second s
tial zone, we just rewrite Eq.~10! in a more familiar form

i\
]j~x,y!

]@x/~vx!0#

5S ~Ex!02E01
p̂y

21 p̂z
2

2~gx!0m
1V~x,y,z! D j~x,y,z!,

~13!

being (gx)05(Ex)0 /(mc2) and (vx)05(px)0 /@(gx)0m#.
Note that this has the formal appearance of a tw
dimensional~2D! time-dependent Schro¨dinger equation, in
which the time variable is replaced byx/(vx)0. We should
point out that this isnot the eigenstate equation genera
used for the problem of channeling, which neglects the l
gitudinal dynamics and shows up simply as a 2D tim
independentSchrödinger equation@4,10#. This difference
shows that the edge of the target potential has dynam
consequences and introduces a spatial dependence alon
longitudinal coordinate.

III. EIGENSTATES OF PLANAR CHANNELING OF
ELECTRON IN SILICON „110…

Equation~13! was derived independently of the form o
the target potential, as long as it is smooth enough to av
the exchange of relativistic momenta during the scatter
process. The problem of fast particle channeling into cry
structures is particularly well suited for this approach. W
will focus the rest of this paper on studying the particu
case of the channeling of a relativistic electron, injected
most parallel to the (110) plane.

In fact, the channeling problem allows a further appro
mation — the so-called continuum approximation@8# — in
which the crystal potential is averaged over the channel
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rection. In case of axial channeling, for instance, the appro
mation averages the target potential along the crystal a
For the case of planar channeling, the average should
carried over a crystal symmetry plane. As a result of
averaging, the continuum potential in the crystal bulk b
comes independent of the longitudinal coordinate, and
dimensionality is reduced, accordingly, to 2D in the ax
case and 1D in the planar case. In our particular case, th
fore, the continuum approximation allows us to write t
scattering potential in the following form:

V~r !5H 0, x,0,

V~y!, x>0,
~14!

wherey refers to the transversal coordinate perpendicula
the crystal planes.

The continuum potentials are generally computed by
eraging Thomas-Fermi@8# or Hartree@11# single-ion poten-
tials, or by means of multiwave calculations in Fourier spa
All these forms lead accurately to a transversal energy sp
tra consistent with the experimentally observed transitio
In any case, we must underline that the continuum appro
mation isnot necessary to solve Eq.~13! numerically, since
the computational effort required is well below the limit o
today’s computers. However, since their validity has be
examined experimentally@9#, there is no reason to think tha
using directly the single-ion potentials will have importa
consequences. It seems, therefore, reasonable to use i
present paper the continuum approximation, to take adv
tage of the reduction of dimensionality, which speeds d
matically the calculation of Eq.~13!.

In the present paper, we will use the continuum poten
proposed by Avetissianet al. @12#, in which the interplanar
potential is described in terms of the transversal coordin
as

V~y!52V0 (
n52`

`

cosh22S y2ndp

b D , ~15!

wheredp is the distance between symmetry planes@.2 Å
for Si (110) planes# andb andV0 are parameters used to fi
the energy spectra to the known experimental data. This
tential is known to be less accurate than the model used
Bermanet al. @9#, but presents the considerable theoreti
advantage that it admits an analytical diagonalization, wh
will be used in Sec. V. To minimize errors, we have chos
b50.265 Å andV0519.86 eV to reproduce accurately th
transition energy between the fundamental and the first
cited channel states, for an electron energy of 17.48 MeV
Berman’s paper. For these parameters, the energy of the
ond and third excited states is reproduced with an erro
.0.5 and.0.9 eV, respectively.

The propagation of the electron in free space, before
tering the target, supplies boundary conditions to the w
4-3
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function in the second zone of the scattering problem. The
fore, knowing the plane-wave structure of the electron wa
in the first zone, Eq.~13! can be integrated only in the targ
space x.0 imposing the continuity conditionC I(0,y)
5C II (0,y). To solve Eq.~13! from this boundary condition
we use a split operator method, which is a fundamental
gorithm frequently used for the time integration of the Sch¨-
dinger equation. Basically, this algorithm computes the w
function at any point (x,y),j(x,y), from its known value at
(x2Dx,y8), for all y8, by using the ‘‘time-evolution’’ opera-
tor

j~x,y!5exp@2 iHDx/\~vx!0#j~x2Dx,y!, ~16!

where

H5~Ex!02E01
p̂y

2

2~gx!0m
1V~y!. ~17!

The ‘‘evolution’’ operator is then~second-order! approxi-
mated by its splitted form

exp@2 iH dx/~vx!0#

.exp@2 iH 1dx/\~vx!0#exp@2 iH 2dx/\~vx!0#,

~18!

where H1 gathers the spatial terms ofH and, therefore, is
diagonal in the real space, whileH2 encloses the momentum
terms ofH, being diagonal in the momentum space. The s
operator algorithm applies the following sequence of ope
tors:

j~x,y!5exp@2 iH 1Dx/\~vx!0#M 21

3exp@2 iH 2Dx/\~vx!0#Mj~x2Dx,y!, ~19!

whereM is a spatial Fourier transform operator.
Figure 2 shows the squared modulus of computed eig

states for the case of a 17.48 MeV electron injected in the
crystal almost parallel to the (110) plane, and for three d
ferent values of the initial transversal momentum,py , la-
beled by the tilt angleu.cpy /E0 of the initial trajectory to
the symmetry plane. The probabilities are depicted ove
transversal extension corresponding to three interplanar
tancesdp . Channeling shows up as an increase of the pr
ability density at the location of the crystal planes (y5
2dp , 0 and dp), where the transversal potential is min
mum. After channeling occurs the behavior of the elect
probability with the crystal lengthx is largely nontrivial, and
reflects the important contribution of the longitudinal dyna
ics induced by the crystal edge where the electron enters
target. As the tilt angle increases, the electron probability
the interplanar spaces is larger, reflecting the fact that pa
the wave function is dechanneled. In particular, there
experimental evidences that channeling is negligible for
angles above 2 mrad@9#. This case is shown in Fig. 2~c!,
where practically all the electron probability flows throug
the channels.

The longitudinal dynamics has an important role in mo
fying the angular distribution of the electron transmission
different crystal lengths. Figure 3 shows the angular dis
bution of the transmitted electron probability as it exits t
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FIG. 2. Electron probability distribution in the crystal bulk, afte
crossing the target-vacuum interface~at x50). The electron is in-
jected along the Si (110) plane with an initial electron energy
17.48 MeV, and tilt angles of 0~a!, 1 ~b!, and 2 mrad~c!.
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CHARACTERIZATION OF THE CHANNELING PROCESS . . . PHYSICAL REVIEW A 65 052904
target of different lengths. It is worth noting the approxima
periodic behavior of this quantity with the target length. F
ure 4 shows the transmitted probability at four fixed ang
as a function of crystal length. A dependence with the tar
thickness has been observed already for a long time, for
stance, in Cu crystals@8,13#, and attributed to Bloch-wave
absorption effects. To the authors’ knowledge, however,
analysis of this point has not been addressed intensivel
the experiments.

IV. CHANNELING PROBABILITIES

A more cumbersome method of solution of Eq.~13! con-
sists in finding the complete basis of the transversal dyn

FIG. 3. Angular dependence of the transmission coefficien
an electron injected parallel to the Si (110) plane, perpendicul
to the target surface~tilt angle 0!. Since the electron is initially a
plane wave, the electron transmitted has a discrete angular s
trum, which corresponds to the diffraction pattern after absorbin
different number of crystal momenta 2p/dp . The transmission co-
efficients at a particular angle of detection show modulations w
the crystal thickness as a consequence of the longitudinal dyna
induced by the scattering with the target surface.

FIG. 4. Transmitted probability at tilt angles 0, 0.37, 0.74, a
1.11 mrad as a function of crystal length.
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enfK ,n~x,y,z!

5S ~Ex!02E01
p̂y

21~pz!0
2

2~gx!0m
1V~y,z! DfK ,n~x,y,z!,

~20!

where n labels the corresponding energy band, andK the
transverse pseudomomentum. Once the elements of the
are known, the full solution of Eq.~13! may be found as a
superposition of these states

j~x,y,z!5E dK(
n

an~K !fK ,n~y,z!exp@2 i enx/~vx!0#.

~21!

In general, the computation of the transversal eigenstate
quires more computer power than using the method outli
above. Moreover, the expansion~21! is valid only if the tar-
get potentialV(x,y,z) becomesx independent in the bulk
while the procedure discussed in Sec. III has not this rest
tion and can be applied, for example, to study the effect
dislocations or to bent crystals@10#. In any case, Eq.~21! is
still interesting since the standard definition of a chan
state corresponds to any bound eigenstate of the transv
potential V(y,z). The probability of channeling in a given
bound-statefK ,m(y,z) corresponds, therefore, touam(K )u2.
The particular value of this channeling probability is dete
mined by the shape of the electron wave function at
target boundary. For a free electron entering the crystal w
a transversal momentumky , am(K ) is just theky Fourier
transform offky ,m(y,z).

In the case of the model potential~15!, it is possible to
obtain an analytical approximation to the channeling pro
abilities in a closed form. For this, we first have to note th
the crystal potential is constructed as a superposition
single-cell potentials of the formV0 cosh22(y/b), which al-
lows for an analytical diagonalization. For instance, the
lution of Eq.~20! for a single-cell potential gives eigenstat
of the form @14#

fn~y!5coshn2s~y/b!2

3F1„2n,2s2n11,s2n11,@12tanh~y/b!#/2,…,

~22!

where s5@211A118(gx)0mb2U0 /\2#/2 and n
50,1, . . . ,@s# being the largest integer value not greater th
s. Since the first argument of the hypergeometric function
an integer, they can be expanded in a finite sum@15#

2F1~2n,b,g,z!

5
z12g~12z!g1n2b

g~g11!~g1n21!

dn

dzn
@zg1n21~12z!b2g#.

~23!

For the case considered in this paper, the number of poss
bound states is@s#1154, and their respective expression
are

f
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ec-
a

h
ics
4-5



ca

t

o
a

p-
of
his
ion
is
is
nel
el,
is

ates
om-
As
cu-

be
on-

ng
one

the

he
is
ting

SAN ROMAN, PLAJA, ROSO, AND SCHWENGELBECK PHYSICAL REVIEW A65 052904
fn50~y!5C0 cosh2s~y/b!, ~24!

fn51~y!5C1 cosh12s~y/b!tanh~y/b!, ~25!

fn52~y!5C2S cosh22s~y/b!tanh2~y/b!

2
1

2~s21!
cosh2s~y/b! D , ~26!

fn53~y!5C3S cosh32s~y/b!tanh3~y/b!

2
3

2~s22!
cosh12s~y/b!tanh~y/b! D , ~27!

with Ci the correspondent normalization constants that
be found in the Appendix.

Since the channeled states have the lower energy of
transversal spectrum, it is reasonable to approximate them
the first-order tight-binding form

FK,n~y!5
1

N (
l 50

N

eilKd pf~y2 ldp!. ~28!

Therefore, for an electron initially free with transversal m
mentum (ky)0, one finds the probability amplitude for
given channel state as

aK,n@~ky!0#5E
2`

`

FK,n* ~y!ei (ky)0ydy5d$(ky)0 ,K1 j 2p/d%

3E
2`

`

fK,n* ~y!ei (ky)0ydy,

aK,n@~ky!0#5d$(ky)0 ,K1 j 2p/d%an~k!. ~29!

Being an(k)5*2`
` fK,n* (y)ei (ky)0ydy the remaining Fourier

integral, which can be solved analytically

an50~k!52sbC0
S 2F1S z

2
,s,

z12

2
,21D

z
1c.c.D , ~30!

where we have defined the complex parameterz as z5s
1 ibk.

an51~k!5b2s21C1
F S 2F1S z11

2
,s,

z13

2
,21D

~z11!
1c.c.D

2S 2F1S z21

2
,s,

z11

2
,21D

~z21!
1c.c.D G , ~31!

an52~k!5b2s11C2
S 2F1S z22

2
,s,

z14

2
,21D

~z22!z~z22!
1c.c.D

2
C2an50~k!

2C0~s21!
, ~32!
05290
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an53~k!53b2s11iC3

S 2F1S z23

2
,s,

z15

2
,21D

~z23!~z21!~z11!~z13!
2c.c.D

2
3C3an51~k!

2C1~s22!
. ~33!

In order to test the accuracy of the tight-binding assum
tion, we have performed numerically the diagonalization
Eq. ~20!. Figure 5 shows the energy bands calculated in t
case. Since the lowest-order tight-binding approximat
used in Eq.~28! leads to flat bands, the inspection of th
figure permits us to estimate qualitatively the validity of th
assumption. According to this, the three lowest-chan
states are well approximated by the tight-binding mod
while being less accurate for the fourth. In support of th
assertion, Fig. 6 depicts the spectral form of the eigenst
of the first three bands of the transverse spectrum, and c
pares with the results using the tight-binding assumption.
expected, the tight-binding states reproduce with good ac
racy these states.

As discussed in Eq.~29!, the spectra shown in Fig. 6
correspond also to the probability of the free electron to
scattered by the target potential into a channeled band. C
sistent with the known facts, the probabilities for channeli
in any state are reduced to tilt angles below 2 mrad. As
may expect, the total probability of channeling~i.e., the ad-
dition of the probabilities over all channel states! is maxi-
mum when the electron is injected perpendicularly to
target surface.

Channel population inversion

An alternative possibility for the channeling process is t
coherent amplification of high-frequency radiation. In th
use, the electron is injected together with a copropaga

FIG. 5. Energy-band structure of the continuum potential~15!.
4-6
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CHARACTERIZATION OF THE CHANNELING PROCESS . . . PHYSICAL REVIEW A 65 052904
electromagnetic wave, whose frequency is nearly resona
the Doppler-shifted channel transition. In fact, this cons
tutes a twofold problem: First a mechanism for generat
population inversion among the channel states should be
posed and, second, the conditions for maximum gain mus
found. This second aspect has already been addresse
Avetissianet al. @12#, assuming a complete inverted trans
tion. Unfortunately, it is shown that an enormous curre
density, large enough to produce damage into the crysta
required to obtain visible amplification gain.

The results plotted in Fig. 6 demonstrate the possibility
controlling channel population by modifying the tilt angle
the initial electron’s trajectory. This feature can be direc
applied to delimit situations in which a population inversi

FIG. 6. Spectral distributions of the first three channeled sta
in Si (100), using the potential~15!. Results from the exact numer
cal diagonalization are shown by solid lines, while analytical res
coming from the lowest-order tight-binding approximation are
perimposed using a dot-circle line.
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can be achieved. Figure 7 shows the population inversion
the transitions between channeled states 021 and 122 as
generated by the scattering of the electron with the tar
surface with different tilt angles. As can be clearly seen,
population inversion of the transition between the fundam
tal and first excited channel states (021) can be achieved
for electron trajectories tilted about 0.5 mrad, while the o
timal situation to obtain inverted population in the 122 tran-
sition is when the electron is injected perpendicularly to
surface.

V. CONCLUSIONS

We have presented a theoretical analysis of the channe
process, taking as a starting point a free electron propaga
in vacuum, and including the dynamical effects of the sc
tering of the particle with the target-vacuum interface. As
main result, we demonstrate that the surface scattering
duces a rich longitudinal dynamics, in addition to the alrea
well-known transversal motion in the channel. To solve t
full — longitudinal and transversal — channeling problem
we have presented a method which does not require the
agonalization of the full Hamiltonian, and that can be a
used in the most general case of a channeling potential
longitudinal dependence, as in the case of bent crystals
particular, we have used this method to analyze the pla
channeling of relativistic electrons in the (110) plane of t

s

s
-

FIG. 7. Population inversion for the two possible dipolar tran
tion between Si~110! channeled states of a 17.48 MeV electron.
4-7
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Si crystal. We demonstrate that the longitudinal dynam
induced by the surface scattering has a relevant role in
dependence of the transmitted electron’s angular distribu
with the crystal thickness. According to this, the variati
recorded in experiments should be attributed to the sur
scattering problem instead to absorption effects. We h
also addressed the problem of computing the channe
probabilities of the scattered electron, and given appro
mated closed analytical expressions of those. As a resu
this analysis, we spot the possibility of generating populat
inversion of a given channel transition for particular t
angles. However, in this case, the existence of popula
inversion does not imply lasing@12#.
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APPENDIX

The normalization coefficients of the three bound state
lower energy, Eqs.~24!–~26!,
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