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Characterization of the channeling process in the scattering of relativistic electrons
with periodic structures
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Most of the theoretical work about channeling of fast particles in crystal structures takes as a starting point
a particle already in the target’s bulk. In this paper, we address theoretically the channeling process itself, i.e.,
the injection of a relativistic electron from vacuum into the crystalline target. We show that, contrary to that
general assumption, the target surface indleegitudinal as well as transversal dynamics into the channeled
electron wave function. We present an efficient method for computing the eigenstates of the general relativistic
electron-target scattering problem, and use it to the case of planar (110) channeling in silicon. The angular
distribution of the transmitted electron is analyzed, and shown to depend strongly on the target thickness. In
addition, we derive analytical closed formulas for the probability of the incident electron to be channeled in the
different crystal states, and check their validity by comparison with the results of the exact numerical solutions.
Finally, we identify the electron initial conditions that create a population inversion in the channeled states.
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[. INTRODUCTION the particle’s wave function before entering the target, and on
the nature of the scattering with the target-vacuum interface.
Channeling of relativistic particles along crystal symme-In this context, the study of the channeling process of, ini-
try axes or planes has been a constant subject of study for ttiiglly, a free particle is well justified. In addition, the proper
last decades. Although first proposed by Stark in the 19208ddressing of this problem allows one to delimit under what
[1], the feasibility of this process was confirmed in the earlycircumstances a population inversion in the channel states
1960s by the numerical computation of the transmission of@n be achieved, which is a relevant aspect for any possible
fast ions through different targef®]. These calculations futur_e scheme of coherent ampllflcatlon. The aim of Fh|s pa-
gave the basis for interpreting the anomalous increase of tH€" 1S to address these questions by solving the eigenstate
transmission of relativistic ions found in experiments whenpr_Oblem_Of the free — propqgatmg in vacuum — particle
they were injected almost parallel to the direction of a crystalmeCted Into t.he target potenthl.
symmetry[3]. Channeled particles have exceptional charac- The following section contains the statement 9f the_gen-
teristics: on one hand, they propagate almost ballistically in_eraI problem of the scattering of a relativistic particle with a

. . RN target potential. A slow-envelope assumption is used to de-
side the target, therefore with low dissipation; on the other get b P P

. . ) . rive the equations for the eigenstates of this problem. Section
hand, the strength of interaction of the particle with the crysy,; shows how these eigenstates can be computed efficiently
tal potential is effectively increased by the Lorentz boost. AS, an exact manner. without the need to diagonalize the

a consequence, the channeled particles are good candidaiggee-dimensional Hamiltonian. In particular, the case of a
for the experimental study of matter under high-static f'e|d3partic|e injected in almost parallel to the (110) plane of Si is
in which intense field quantum effects, like pair creation,addressed. We devote Sec. IV to the computation of the dis-
photon-photon collisions, etc., may be studjddl tribution of probabilities of the incident particle over the dif-

One of the most particular features of particle channelingerent channeled states. We derive analytical closed-form ex-
is the anomalous increase of coherent brehmsstrahlung emigressions for these probabilities assuming an approximated
sion[5]. In comparison with the nonrelativistic ca@ee, for  tight-binding model. The accuracy of these formulas is
instance[6]), the relevant aspect of the channeling radiationchecked by comparison to the exact numerical solution. Fi-
consist in that the photon emitted are Doppler shifted to higmally, under the light of this model, we discuss the possibility
energiegabout 100 keV for an electron accelerated to a fewof obtaining population inversion in the channeled states.
tens of MeV}, and therefore constitutes a promising source of
hard x rayq7].

The theoretical grounds of the channeling process are,
nowadays, well established. The energy spectrum of the
channeled radiation can be successfully recovered by model Consider the general problem of a relativistic electron,
potentials[8,9]. However, to the authors’ knowledge, little traveling initially in vacuum with a trajectory almost parallel
effort has been directed to the study of the quantitative deto thex axis, injected into a space-limited target. Let us as-
scription of the channeling process, since the general startingume that the target potential is free of singularities and,
point is a particle already propagating in the crystal bulk.therefore, it encloses only low —- nonrelativistic — momen-
The spontaneous character of the channeling radiation relatésm componentsga valid approximation in the vast majority
its intensity with the amount of population in the excited of targets. In this case, the trajectory of the scattered particle
channeled states. Obviously, these are greatly dependent @rill be still dominated by the initial momentum, and there-

Il. SCATTERING OF A RELATIVISTIC PARTICLE
INTO THE TARGET
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ZONE1 where py=(Eg,po) the initial four-momentum, with B,
«’_ . .
A =/c?|po|2+m?c?), u'(p) with r=1,2,3,4 the four possible

_— ¢ Dirac free spinors and'=+1 for r=1,2 ande"=—1 for

r=3,4. Since the scattering with the target involves mainly
nonrelativistic momenta exchange, the reflection at the inter-
face can be neglected. In this case, the particle in the first
zone can be described directly as the plane w@yeThe
condition of the electron’s trajectory nearly parallel to the
axis implies nonrelativistic transversal momentum compo-
>
FIG. 1. Scheme of the potential geometry considered. TheneTrgS}h%()gZC(opﬁéo'Z(é)éé?' the eigenstate of the electron dif-

target-vacuum interface extends over g0 plane. The potential fracted by the target's potential can be factorized as
is already shown in the continuum approximation.

\I,”(r,t):efie,EOt/heisr[(px)ox]/ﬁwr(x,y,z), (4)
fore will remain close to the initial trajectory. The proper
description of this process should take as a starting point th¢'(x,y,z) being a slowly varying spinor
Dirac equation
(px)O

AL Vo'l< ==yl (5)

gt

[ca-p+BME+V(r)|¥(r,t), (1)
Let us now make explicit the spinor character of the slowly

where we suppose an infinite target in the plane, while of ~ varying envelope. For this we use the free electron base
limited size in thex direction

0, x<0, ( ) W(X,y,z):f dpxdpydng(pxapyapz)eisr(pxx+pyy+pzz)/ﬁ
V(r)= 2
vy, x=o0. XU'((Pot Px.Py .P)
As standard in wave problems, the surface of the target po- =u"(p)&(x,y,2), (6)

tential (at x=0) divides the space into two complementary

regions, see Fig. 1. In th&<0 half space, the electron where we have defined'(p) as a spinor operator, diagonal
propagates in vacuum and the wave function may be exin the free particle base.

pressed in terms of the free Dirac electron eigenstates For simplicity let us assume in the following a particle of
o positive energyr =1. Therefore, we shall drop the label
W, (r,t)=e terPoX)/hyr(p), (3)  writing y* as
|
1
0
=u(p = | do.do.d cP. i(pX-+Pyy+ py2) /i
w(xvyaz)_u(p)g(xlyvz)_ pX py ng(prpy:pz) E+mC2 € ¥ . (7)
C[px+(px)0+ipy]
E+mc?

Substituting in the Dirac equation for the second spatialyhere E2=c?|p|2+m?c*. The slow-varying envelope ap-

zone, we have three scalar equations corresponding to eagfoximation applied to the energy operator gives
nonzero component of the spinor. The first equation reads

i 22 5 424 p2 c2p2
E”(Ex)o 1+?( (px)opx 2py Pz 10 px2 ,
(Exo (Exo
CZ|IS|2 v 2 (9)
O Eime (y,2)=me £(x,y,2) where €,)3=c?(py)2+m?c* is the initial energy of the
R electron’s longitudinal displacement. Introducing E9).into
={Ey—E—-V(X,y,2)}£(x,y,2)=0, (8) Eq. (8) one finally obtains
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C2(2(px)oPxt Po+(P)3)
2(EX)0

Eo—(Exo— —V(y) [ &(xy)=0. (10

It is possible to finddentical approximated equations for all rection. In case of axial channeling, for instance, the approxi-
of the spinor components of the wave function, by using mation averages the target potential along the crystal axis.
For the case of planar channeling, the average should be

(E+ ch)V(y)A;~V(y) (11)  carried over a crystal symmetry plane. As a result of the

(E+mc?) averaging, the continuum potential in the crystal bulk be-

comes independent of the longitudinal coordinate, and its

and dimensionality is reduced, accordingly, to 2D in the axial
(E+mc?) cl(py)o+ I5x+iF3y] case and 1D in the planar case. In our particular case, there-

~ =~ y = ~V(y), fore, the continuum approximation allows us to write the

cl(Pdot Pxtipy] (E+mc) (12) scattering potential in the following form:
0, x<0,
and taking into account that the crystal potential energy is V(r)= V(y), x=0 (14)

nonrelativistic, i.e., a quantity of the ordeVY(x,y,z)

~0(c?(py)?/(mc?)). Naturally, the reduction of the Dirac wherey refers to the transversal coordinate perpendicular to
equation to a simple scalar form is a consequence of the ladke crystal planes.
of relativistic momentum components in the target’s poten- The continuum potentials are generally computed by av-
tial. eraging Thomas-FerniB] or Hartree[11] single-ion poten-

To compute the form of the eigenstate in the second spatals, or by means of multiwave calculations in Fourier space.
tial zone, we just rewrite Eq10) in a more familiar form All these forms lead accurately to a transversal energy spec-

IE(X,Y) tra consistent with the experimentally observed transitions.
ihm In any case, we must underline that the continuum approxi-
UxJo mation isnot necessary to solve E¢l3) numerically, since
521 52 the computational effort required is well below the limit of
Pyt P; . ) . .
=| (Ep)o—Eo+ 32— +V(X,Y,2) | &(X,Y,2), today’s computers. However, since their validity has been
2(yx)om examined experimentalfy@], there is no reason to think that

(13) using directly the single-ion potentials will have important
consequences. It seems, therefore, reasonable to use in the

being (v,)0=(Eo/(Mc) and ©,)o=(Px)o/[(¥)oM].  present paper the continuum approximation, to take advan-
Note that this has the formal appearance of a twotage of the reduction of dimensionality, which speeds dra-
dimensional(2D) time-dependent Schdinger equation, in  matically the calculation of E¢(13).
which the time variable is replaced f(v,)o. We should In the present paper, we will use the continuum potential
point out that this isnot the eigenstate equation generally proposed by Avetissiagt al. [12], in which the interplanar
used for the problem of channeling, which neglects the lonpotential is described in terms of the transversal coordinate
gitudinal dynamics and shows up simply as a 2D time-as

independentSchralinger equation[4,10]. This difference % nd
shows that the edge of the target potential has dynamical V(y)=—V, 2 cosh‘z(y p), (15)
consequences and introduces a spatial dependence along the n=—o b

longitudinal coordinate. ] ]
whered, is the distance between symmetry plafes2 A

Il EIGENSTATES OF PLANAR CHANNELING OF for Si (110) planekandb andV, are parameters used tq fit
the energy spectra to the known experimental data. This po-
ELECTRON IN SILICON (110 o
tential is known to be less accurate than the model used by
Equation(13) was derived independently of the form of Bermanet al. [9], but presents the considerable theoretical
the target potential, as long as it is smooth enough to avoiddvantage that it admits an analytical diagonalization, which
the exchange of relativistic momenta during the scatteringvill be used in Sec. V. To minimize errors, we have chosen
process. The problem of fast particle channeling into crystab=0.265 A andV,=19.86 eV to reproduce accurately the
structures is particularly well suited for this approach. Wetransition energy between the fundamental and the first ex-
will focus the rest of this paper on studying the particularcited channel states, for an electron energy of 17.48 MeV of
case of the channeling of a relativistic electron, injected alBerman’s paper. For these parameters, the energy of the sec-

most parallel to the (110) plane. ond and third excited states is reproduced with an error of
In fact, the channeling problem allows a further approxi-=0.5 and=0.9 eV, respectively.
mation — the so-called continuum approximati@j — in The propagation of the electron in free space, before en-

which the crystal potential is averaged over the channel ditering the target, supplies boundary conditions to the wave
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function in the second zone of the scattering problem. There-
fore, knowing the plane-wave structure of the electron wave
in the first zone, Eq(13) can be integrated only in the target
space x>0 imposing the continuity condition¥(0,y)

=V ,(0y). To solve Eq.(13) from this boundary condition
we use a split operator method, which is a fundamental al-
gorithm frequently used for the time integration of the Sehro
dinger equation. Basically, this algorithm computes the wave
function at any pointX,y),&(x,y), from its known value at
(x—Ax,y"), for all y’, by using the “time-evolution” opera-
tor

E(x,y)=exd —iHAX/fi(vy)olé(X—AX,y), (16

where
62
H=(Eo— Eot+ 5—— +V(y). 1
( X)O 0 Z(YX)Om (y) ( 7)
The “evolution” operator is then(second-order approxi-
mated by its splitted form

exd —iH ox/(vy)o]
~exf —iH 18xX/%i(vy)olexd —iH 8%/ % (vy)o],
(18

where H; gathers the spatial terms &f and, therefore, is
diagonal in the real space, whit¢, encloses the momentum
terms ofH, being diagonal in the momentum space. The split
operator algorithm applies the following sequence of opera-
tors:

Exy)=expl —iH 1 Ax/Ti(v,)o]M
Xexd —iHAx/fi(vy)o]ME(X—AX,Y), (19

whereM is a spatial Fourier transform operator.

Figure 2 shows the squared modulus of computed eigen-
states for the case of a 17.48 MeV electron injected in the Si
crystal almost parallel to the (110) plane, and for three dif-
ferent values of the initial transversal momentupy, la-
beled by the tilt angleé®=cp, /E, of the initial trajectory to
the symmetry plane. The probabilities are depicted over a
transversal extension corresponding to three interplanar dis-
tancesd, . Channeling shows up as an increase of the prob-
ability density at the location of the crystal planeg=(
—d,, 0 andd,), where the transversal potential is mini-
mum. After channeling occurs the behavior of the electron
probability with the crystal length is largely nontrivial, and
reflects the important contribution of the longitudinal dynam-
ics induced by the crystal edge where the electron enters the
target. As the tilt angle increases, the electron probability in
the interplanar spaces is larger, reflecting the fact that part of
the wave function is dechanneled. In particular, there are
experimental evidences that channeling is negligible for tilt
angles above 2 mraf®]. This case is shown in Fig.(®,
where practically all the electron probability flows through
the channels.

The longitudinal dynamics has an important role in modi-

PHYSICAL REVIEW &5 052904
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FIG. 2. Electron probability distribution in the crystal bulk, after

fylng the angular d|Str|bUt|0n of the electron transmiSSiqn a.tcrossing the target-vacuum interfa@ X= 0) The electron is in-
different crystal lengths. Figure 3 shows the angular distrijected along the Si (110) plane with an initial electron energy of
bution of the transmitted electron probability as it exits the17.48 MeV, and tilt angles of @a), 1 (b), and 2 mradc).
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ics by solving the eigenstate problem
5n¢K,n(XayyZ)
P+ (PG
- ( (Eo=Eo+ 505+ V(3.2 | dia(%,y.2),
(20)

where n labels the corresponding energy band, #dhe
transverse pseudomomentum. Once the elements of the basis
are known, the full solution of Eq.13) may be found as a
superposition of these states

6x,y.2)= [ dKS a,(K) g oty 21ex1 —1 ¥/ (0,00].

FIG. 3. Angular dependence of the transmission coefficient of (21
an electron injected parallel to the Si (110) plane, perpendicularly
to the target surfacéilt angle 0. Since the electron is initially a In general, the computation of the transversal eigenstates re-
plane wave, the electron transmitted has a discrete angular speguires more computer power than using the method outlined
trum, which corresponds to the diffraction pattern after absorbing @bove. Moreover, the expansi@2l) is valid only if the tar-
different number of crystal momentar2d, . The transmission co- get potentialV(x,y,z) becomesx independent in the bulk,
efficients at a particular angle of detection show modulations withwhile the procedure discussed in Sec. Il has not this restric-
the crystal thickness as a consequence of the longitudinal dynamigin and can be applied, for example, to study the effect of
induced by the scattering with the target surface. dislocations or to bent crystal40]. In any case, Eq21) is

target of different lengths. It is worth noting the approximateSti“ interesting since the standard definition of a channel
n . L . : X rr n n nd eigen f the transversal
periodic behavior of this quantity with the target length. Flg-State corresponds to any bound eigenstate of the transversa

EL{l?otentiaIV(y,z). The probability of channeling in a given

ure 4 shows the transmitted probability at four fixed angle 2

. . ound-statepy (y,z) corresponds, therefore, fa,(K)|*.
?hsiCi;gggt'ﬁgsoggéﬁsgslz?\?ég'Qrggger}gfgcﬁ)xm%hee f(g:gin_he particular value of this channeling probability is deter-
stance, in Cu crystal8, 13, and attri)t/)uted to Bglloch-vx,/ave mined by the shape of the electron wave function at the
absorption effects. To the authors’ knowledge, however, thet}arget boundary. For a free electron entering the crystal with

analysis of this point has not been addressed intensively iﬁatrrg?osrvrﬁrs% mo?;/eg)tum/, an(K) is just theky Fourier
k, ,m\Y»4&)-
v

the experiments. . o ,
In the case of the model potenti€él5), it is possible to
IV. CHANNELING PROBABILITIES obtain an analytical approximation to the channeling prob-
abilities in a closed form. For this, we first have to note that
A more cumbersome method of solution of E§j3) con-  the crystal potential is constructed as a superposition of
sists in finding the complete basis of the transversal dynamsingle-cell potentials of the forv, cosh 2(y/b), which al-
lows for an analytical diagonalization. For instance, the so-
lution of Eq.(20) for a single-cell potential gives eigenstates

of the form[14]
/\ /\/\ \/\ én(y)=cosH ~3(y/b),

XFi(=n,2s—n+1s—n+1[1—tanhy/b)]/2,),

0 n’ilrad'

)
g (22
g AVaVAVAVAVA \/] where  s=[—1+1+8(y)omb’Uy/A%]/2 and n
2 | 0.74 mrad =0,1, ... [s] being the largest integer value not greater than
T_EG s. Since the first argument of the hypergeometric function is
o an integer, they can be expanded in a finite $afi
I PNAVAVANEN. VAVA VN
oF1(—=n,b,g,2)
1.11 mrad
Zlfg 1—z7 g+n—b dn
_ ( ) _[Zg+n—1(l_z)b—g].
A~ A 9(g+1)(g+n—1) d2
0 0.2 0.4 06 08 1 (23)

Transmision Length (micrometers . . . .
oth ) For the case considered in this paper, the number of possible

FIG. 4. Transmitted probability at tilt angles 0, 0.37, 0.74, andbound states ifs]+1=4, and their respective expressions
1.11 mrad as a function of crystal length. are
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¢n-o(y)=Cqcosh 3(y/b), (24
$n-1(y)=Cy costtS(y/b)tanhy/b), (25)

¢n2(Y):C2( cosif~*(y/b)tank(y/b)
1 . )
- mCOSh (y/b) ) (26)

bn=3(y)= C3< cost ~(y/b)tank(y/b)

costt~S(y/b)tanHy/b) |, (27)

3
2(s—2)

with C; the correspondent normalization constants that can
be found in the Appendix.

Since the channeled states have the lower energy of the
transversal spectrum, it is reasonable to approximate them by
the first-order tight-binding form

A
PrnlY)= 1y 2 €"Pb(y=Idy). (28

Therefore, for an electron initially free with transversal mo-

Energy (eV)

PHYSICAL REVIEW &5 052904

-10

-15

20 ————
-0.5 -0.25 0 0.25 0.5

k (Bloch vector units)

FIG. 5. Energy-band structure of the continuum poter{i&).

. z—3 z+5 1
21 TISIT'I

mentum k)0, one finds the probability amplitude for a a,—3(k)=3b2%"1iCy Z-3)(z-1)(z+ 1)(z+3) ¢

given channel state as

o ' _ 3Czan=1(k) (39
ak nl(Ky)ol= f_ % n(y)eovdy= S1(ky)g K-+j2mldl) 2C,(s—2) °
. k) In order to test the accuracy of the tight-binding assump-
X f_m¢K,n(y)e vo¥dy, tion, we have performed numerically the diagonalization of

Eq. (20). Figure 5 shows the energy bands calculated in this
ak nl (Ky)ol= Sk, K +j2midy@n(K). (290 case. Since the lowest-order tight-binding approximation
Y used in EQq.(28) leads to flat bands, the inspection of this

Being an(k):J-Oiw(ﬁ;’n(y)ei(ky)oydy the remaining Fourier figure permits us to estimate qualitatively the validity of this

integral, which can be solved analytically

z z+2 1
E!SY_I

2F1 2

assumption. According to this, the three lowest-channel
states are well approximated by the tight-binding model,
while being less accurate for the fourth. In support of this
assertion, Fig. 6 depicts the spectral form of the eigenstates
an=0(k)=2bCy - +c.c./, (30 of the first three bands of the transverse spectrum, and com-
pares with the results using the tight-binding assumption. As

where we have defined the complex parametars z=s expected, the tight-binding states reproduce with good accu-

+ibk. racy these states.
741  7+3 As discussed in Eq(29), the spectra shown in Fig. 6
SFq T'S’ T 1) correspond also to the probability of the free electron to be
a,_,(k)=b25"1C t+ec. scattered by the target potential into a channeled band. Con-
-t ' (z+1) sistent with the known facts, the probabilities for channeling
7-1 741 in any state are reduced to tilt angles below 2 mrad. As one
2,:1(_'5,_,_1 may expect, the total probability of channelifig., the ad-
B 2 2 n 31 dition of the probabilities over all channel stateés maxi-
(z—1) el 3D mum when the electron is injected perpendicularly to the
7—2 744 target surface.
2F1(T'S'T’_1
a,_,(k)=b2°*1C, Z=2)22=2) +c.c. Channel population inversion
An alternative possibility for the channeling process is the
_CZan:O(k) (32 coherent amplification of high-frequency radiation. In this
2Cy(s—1)’ use, the electron is injected together with a copropagating
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n=0 Num. ) 0.2
2 0-1 transition
£ =
e} o »
3 Z
= )
a
> g
£ —
o
=Y
1 1 1 1 1 no-'
-3 -2 -1 0 1 2 3 0.4 ) 1 1 1 I
N -3 -2 -1 0 1 2 3
n=1 —— Num. .
_ oaf v Anal Tilt Angle (mrad)
3 b
8 . ) 0.6 _
e “r 1-2 transition
a = L
S
(=)} =
S ol 5
c >
5 3
O oo S‘
1 1 1 1 1 E
3 2 1 0 1 2 3 a
=
(=
- 1 1 1 1 1
= -3 -2 -1 0 1 2 3
§ Tilt Angle (mrad)
(o]
a FIG. 7. Population inversion for the two possible dipolar transi-
2 tion between S{110 channeled states of a 17.48 MeV electron.
c can be achieved. Figure 7 shows the population inversion on
& the transitions between channeled stateslOand 1-2 as
o generated by the scattering of the electron with the target
) . . . . surface with different tilt angles. As can be clearly seen, the
-3 -2 -1 0 1 2 3 population inversion of the transition between the fundamen-
Tilt Angle (mrad) tal and first excited channel states<{Q) can be achieved

o ] for electron trajectories tilted about 0.5 mrad, while the op-
FIG. 6. Spectral distributions of the first three channeled stateg; 5| situation to obtain inverted population in the-2 tran-

in Si .(100)’ l.JSin.g the potentials). Re_su_lts from t_he exact numer- gisinn is when the electron is injected perpendicularly to the
cal diagonalization are shown by solid lines, while analytical results

coming from the lowest-order tight-binding approximation are su-surface'
perimposed using a dot-circle line.
V. CONCLUSIONS

electromagnetic wave, whose frequency is nearly resonant to We have presented a theoretical analysis of the channeling
the Doppler-shifted channel transition. In fact, this consti-process, taking as a starting point a free electron propagating
tutes a twofold problem: First a mechanism for generatingn vacuum, and including the dynamical effects of the scat-
population inversion among the channel states should be preering of the particle with the target-vacuum interface. As a
posed and, second, the conditions for maximum gain must beain result, we demonstrate that the surface scattering in-
found. This second aspect has already been addressed tiyces a rich longitudinal dynamics, in addition to the already
Avetissianet al. [12], assuming a complete inverted transi- well-known transversal motion in the channel. To solve the
tion. Unfortunately, it is shown that an enormous currentfull — longitudinal and transversal — channeling problem,
density, large enough to produce damage into the crystal, iwe have presented a method which does not require the di-
required to obtain visible amplification gain. agonalization of the full Hamiltonian, and that can be also

The results plotted in Fig. 6 demonstrate the possibility ofused in the most general case of a channeling potential with
controlling channel population by modifying the tilt angle of longitudinal dependence, as in the case of bent crystals. In
the initial electron’s trajectory. This feature can be directlyparticular, we have used this method to analyze the planar
applied to delimit situations in which a population inversion channeling of relativistic electrons in the (110) plane of the
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Si crystal. We demonstrate that the longitudinal dynamics; | \/;F(s+ 1) \/;F(s)
induced by the surface scattering has a relevant role in the- = E( > . 2T B
dependence of the transmitted electron’s angular distributiof1 (s=DI'(s+1/2) (s+1/2)

with the crystal thickness. According to this, the variation <
recorded in experiments should be attributed to the surface 2(s+1)+4%(s—1),F,(2s,s+1s+2,—1)

scattering problem instead to absorption effects. We have 2(s?—1) » (A2)
also addressed the problem of computing the channeling
probabilities of the scattered electron, and given approxi-
mated closed analytical expressions of those. As a result of i: B _ 8(s—3)s
this analysis, we spot the possibility of generating population C% 32| (s—2)(s—3)2
inversion of a given channel transition for particular tilt
angles. However, in this case, the existence of population 4553(s*+s—3)I'(s—2)I'(s—1)
inversion does not imply lasind.2]. + (s—1)(s+2)T(2s)
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The normalization coefficients of the three bound states of N 27 sF (2851842~ 1)
lower energy, Eqs(24)—(26), s2—1
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