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Ejected-electron spectrum in low-energy proton-hydrogen collisions
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The behavior of the ejected electron spectra resulting from low-energy ion-atom collisions relevant to
momentum imaging experiments is explored and the origin of the oscillatory structures these spectra display as
a function of collision energy is discussed. This is aided by consideration of the time-dependent, electronic
Schalinger equation that is solved at a fixed impact parameter for 1-25 keV proton impact of atomic hydrogen
utilizing the lattice, Fourier collocation technique and split-operator time propagation. At a large internuclear
separation after the collision the bound states of the target and projectile are projected roaédf@nd the
resulting continuum wave function is examined. Techniques, such as multigridding, are investigated to extend
the propagation of the wave function to significantly larger final distances.
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[. INTRODUCTION and ionized target fields balance to create a saddle in the
potential experienced by the ejected electrons. Interest has
After decades of study, the ionization of atoms by heavy-especially stemmed from Olson’s work that lead to the the-
ion impact remains of significant interest from both a funda-oretical observatiof9] about 20 years ago that a preponder-
mental and an applied point of view. In the latter case, ion-ance of the electrons emitted in relatively slow collisions
ization is central to understanding radiation damage of solid¢e.g., for velocities less than 1 a.are more closely associ-
and biological materials, and in astrophysical and laboratorygted with the saddle region than with either the target or
plasma environments, for example, while in the former in-projectile ion. In fact, COLTRIMS measurement6—8|
stance, there remain many outstanding issues concerniritave, in large part, sought to verify and further characterize
transitions into the few-body continuum. Practically as longelectron emission in this region. Shortly after or concurrent
as ionization has been studied, the most detailed investigavith these measurements, a few theoretical models were con-
tions have relied on consideration of the so-called ejectedtructed yielding seemingly contradictory explanations of the
electron spectrum, that is, the singly, doubly, or higher-ordeexperimental findings. These theoretical approaches include
differential cross sections as a function of electron ejectiorthe classical trajectory Monte CarlCTMC) technique
angle and energy. Recent reviews by Raddl. [1] and by  [6,10], the uncoupled molecular Sturmian metHdd], and
Stolterfohtet al. [2] summarize the state of knowledge re- the two-center momentum-space discretizatidfCMSD)
garding the ejected electron spectrum resulting from ionimethod[12,13.
atom collisions(see alsd 3)). The present work seeks to contribute to the resolution of
Prominent among recent discoveries have been target aride seeming theoretical contradictions and has two principal
projectile electron cusps, anomalous behaviors of the binargbjectives. The first is to provide a general discussion of the
ridge of electrons, and saddle-point or top-of-barrier electrorejected electron spectrum that is independent of any particu-
emission. For the most fundamental system#H, andina lar theoretical methodology used to compute it. Despite the
range of intermediate collision energies, relatively completevery simple nature of this discussion and the fact that the
experimental and theoretical description of the ejected eledasic idea is already implicit in Reff11], this general analy-
tron spectrum has recently been giveh5]. For slightly  sis is important because it shows that structures in the ejected
more complex systems, H-He, He" +He, and even for electron spectrum should be expected to occur at low colli-
H*+H at lower collision energies, very new experimentssion energies because a small number of magnetic substates
utilizing the technique of cold target recoil ion momentum in the continuum are usually populated. The second objective
spectroscopy(COLTRIMS) have presented stringent new is to provide new results of exhaustive numerical simulations
tests of theories and of the understanding of ionization.  of the ejected electron spectra for" HH collisions. These
These recent COLTRIMS experime&s-8] exploit tech-  were obtained utilizing techniques for direct solution of the
niques to produce a narrow momentum spread in the targéime-dependent Schdinger equation on a numerical lattice
atom source, enabling a clear momentum analysis of both the. TDSE) and are extensions of earlier studies that were re-
ejected electrons and ions using two-dimensional array destricted to either collisions in two-dimensiofi$4] or that
tectors to project the extracted particles’ momenta. They repeonsidered only total ionization cross secti¢§]. In par-
resent an advance towards “complete” experiments with theicular, our goal is to bring to bear a new tool to elucidate the
objective of measuring simultaneously as many of the freelynamics leading to the observed low-energy oscillations of
particles momenta vectors as possible in order to determintine spectrum. The present work also seeks to identify limita-
the collision dynamics at a new, very detailed level. In par-tions of the lattice approach to describe this electronic spec-
ticular, they have identified “sharp structures that varytrum and to explore ways in which to go beyond those limi-
strongly with impact parameter and projectile velocify] tations.
that are located near the saddle-point region, where projectile To these ends, in Sec. Il we provide a fundamental view
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describing the ejeCted electron SpeCtrUm, while in Sec. Il WEQzed electrons in momentum SpaME)] is s|mp|y given by

briefly describe the lattice approach adopted and provide dehe momentum distributiofFourier transform of escaping
tails regarding its adaptation to the present study. In Sec. I\éjectrons in the limit— +o. In other words,

we analyze the results of our calculations of the ejected elec-

tron spectrum for collision energies between 1 and 25 keV at p1(K)=%,(K)|2= lim |¥,(k,t)|?, (4)
a fixed impact parameter and of the methods we employed to t— oo

try to extend our numerical propagation to reach an

asymptotic limit of the evolution. Atomic units are employed where the tilde denotes a Fourier transforn, (k)

throughout unless explicitly stated otherwise. =[1/(27)3]f 3 ¥, (r ,t)exp(=ik-r), andk is the momen-
tum of the ejected electron in the laboratory frame. Note that
IIl. THEORETICAL DISCUSSION ¥, (k,t) has a well-defined limit as— +« whereas¥',(r t)

We shall be concerned with the scattering of a structuredoes not since the position of a continuum electron is always
less projectile with charg€;, by a one-electron target with a changing with time; classically =r(k,t). Alternatively, if
nucleus of chargeZ;. Before the collision, the target is as- the time integration is not carried out to infinitely long times,
sumed to be at rest at the origin of the laboratory referencéhe spectr'ur.n Of_ ejected elfactr'ons can be evalua'ted after a
frame and the projectile is moving in the direction of thelong but finite time by projecting the wave function onto
positive z axis with a velocityv,=v,z. We assume that the dynamic two-center continuum states as
collision energy is large enough in comparison to the char- S _ )
acteristic transition energies, such that we can employ a p1(K)=[(dg (D)%, ()
straight-line trajectory in which the time evolution of the _ . ] ]
projectile coordinate is given big=b+uv ,t, whereb=bx is where ¢ (t) denotes an incoming continuum state of the
the impact parameter. The impact parameter and the collisioffoVing quasimolecule formed by the target and projectile
velocity determine the collision plane, which coincides with Ceulomb W?'_IS* Whlt_:h_represents an escaping electron with
the (x,z) plane. The Hamiltonian governing the electronic momentumk in the limit t— +co.

dynamics is therefore Recent momentum imaging experiments have focused on
the symmetry properties of the ejected electron spectrum in
v?2 z Z the collision plane, or equivalently, the symmetry properties
r T P
H=— S T oAl (1) of
r |r=R|
Pl(kx1kz):pl(kX1ky:01kz)- (6)

wherer is the position coordinate of the electron in the labo-
ratory frame. It has been found that, in general, the spectrum is not sym-

Suppose now thaP(F,t) is the electronic wave function Metric after a reflection in a plane normal to thexis[i.e.,
as a function of time for a given impact parameter and col1(K«.K2) # pi(— Ky kz)] and, moreover, that the degree of

lision velocity, which is obtained by solving the Sétinger asymmetry of the spectrum oscillates as a function of the
equation impact parameter or the collision velocity. A reflectikp

— — Kk, with respect to thé, axis corresponds to a rotation
around thek, axis of the polar vectol?l by Agp= . There-
fore, some insight can be gained by analyzing the spectrum
in cylindrical coordinates k,, go=tan’1(ky/kx), k.

with proper initial and boundary conditions. Thus, initially, = \/kX2+ kyz. In general, the continuum wave function in the
att— —oo, the electron is in a bound state of the targgt,  limit t— + can be expanded in terms of its magnetic com-
such that¥ (r, — ) = ¢! . After the collision, at— +, the ~ ponents as
wave function becomes a coherent superposition of all the

d R
|ﬁllf(r,t)—H\P(r,t) (2)

—+ oo

bound and continuum states of the system. Provided that the AP ~ :
time propagation is carried out to large times, the fraction of qf'(k)_m; Pk, k)expime), @)
the wave function associated with ionization can be evalu-
ated by subtracting the projection of the wave function onto ~ 1 (27 _ _
all bound states, q)m(ki’kZ):ﬂfo do ¥ (K)exp —ime). (8)
Vy(r,)="(r,0)- > ¢ (N{$]|¥(1)—> ¢ (r—R) Thus, using Eq(4), the ejected electron spectrum can be
j ] written as
Xy ¥ (1), tc) e 3
(k)= Pk, k)[*+ Dk ky)
where ¢; and ¢} represent atomiclike bound states of the P m;x [®ak. ko) m%« me
target and the projectile, and limit> + o is assumed. The ~ . i )
spectrum of ejected electrofsr probability density of ion- X @,k k)exdi(m—m’)e]. ©)

052722-2



EJECTED-ELECTRON SPECTRUM IN LOW-ENERGY . .. PHYSICAL REVIEW®S 052722

0.008 — g Appendix. This concept can obviously apply to both classical
and quantum simulations of the ejected electron spectrum.
o (3s +3p,) Clearly, no change in the symmetry of classical calculations
can occur without changes in the relative populations of the
different z components of the angular momentuin,of the

. continuum electrons. However, classical simulations should
not necessarily be expected to provide accurate results be-
cause the spectrum at low energies is dominated by low
guantum number§.e., smallm values for which the results
are farthest from satisfying the correspondence principle.
j Seemingly contradictory conclusions of the different theoret-
ical simulations may not reflect discrepancies from this
simple picture. Rather, they reflect the fact that the calcula-
tions are very difficult to perform and different approxima-

tions yield different amplitudesd,(k, ,k,) of the m sub-
states. Even though the simulations in Re¢fl] are

0.004

Excitation probability

©
o
S
R

0.000

! Energy (keV) 10 approximate, the basic idea about the relative role of the

different m substates was implicitly put forth. Subsequently,
FIG. 1. Probability for populatingr (m=0) and = (m=1) more elaborate calculations were performed in Réf3,13.
states within then=3 manifold of the target in H+ H(1s) colli- In the following, we describe our LTDSE simulations, which
sions as a function of collision energy for0.77 a.u. provide a new complementary numerical description of the
ejected electron spectrum.

Note that the dependence pf(IZ) on the polar anglep is
contained in the second sum in E§). The crossed terms in
this sum are usually referred to as coherences.

As is obvious from Eq(9), an asymmetric spectrum di-
rectly implies that the continuum wave function has at least Recent advances in computers, numerical methods, and
two comparable magnetic componemsandm’ that differ  computational technique have opened the possibility of a
by an odd number[m’'=m+(2j+1) with j=0,£1, new, wide range of scientific investigations, including highly
+2,...]. It is noteworthy that this property of the ejected accurate simulations of ion-atom collisions. One such ap-
electron spectrum is independent of any approximatiorproach has been to apply multidimensional lattice solution of
method used to evaluate the spectrum. Therefore, one carartial differential equations to the few-body atomic collision
conclude with certainty that any observable oscillations inproblem. Motivation for pursuing a lattice, time-dependent
the asymmetry of the spectrum is directly related to a coherSchralinger equation approach stems from the goals of
ence phenomenon between states with magnetic quantureaching the unbiased, numerically converged quantum me-
numbers differing by an odd number. Furthermore, mostlychanical result while overcoming many of the difficulties and
low-m quantum numbers are usually populated in low-limitations associated with other methods. For example, for
energy collisions so that the most likely origin of oscillating low-to-intermediate energy collisions such as those consid-
asymmetries involver (m=0) and = (m=1) states. To ered here, well-known difficulties exist for molecular orbital
illustrate qualitatively this propensity, Fig. 1 displays the ex-close-coupling approaches involving electron translation fac-
citation probability into then=0 andm= 1 substates within tors and for the representation of the two-center continuum.
the n=3 manifold resulting from H+H(1s) collisions Of course, limitations of lattice methods exist as well. How-
computed in Ref[19] for b=0.77 a.u. Clearly, the relative ever, one important advantage of LTDSE simulations is that
magnitude of then=0 andm=1 populations oscillate as a transparent criteria can be established to analyze its conver-
function of collision energy and leads to an oscillatory be-gence. Such criteria have been satisfied in the past for tran-
havior of the asymmetry of the=3 wave function. sitions into bound stateldl9]. In this work we present and

We note that the analysis in this section is entirely appli-analyze new calculations of the ejected electron spectrum by
cable to the coordinate wave function of the ejected electromising this approach and discuss possible convergence criteria
as well as to the momentum wave function. Although theand extensions to be implemented in future simulations.
coordinate wavefunction can be useful in theoretical studies, Typically, the TDSE is solved on a numerical lattice of
it is the momentum spectrum that provides direct comparisofinite spatial extent that necessarily has a finite number of
with the COLTRIMS experiments. grid points or basis elements. Therefore, when choosing a

Thus, the oscillatory behavior of the asymmetry of theparticular representation a balance must be struck between
ejected electron spectrum provides clear evidence of cohethe coverage of the spatial extent of wave functions and the
ences among magnetic substates of the continuum and tisgatial resolution with which they are to be described. Con-
changing relative transition amplitudes into these substatezomitantly, choices of spatial extent and resolution have con-
[i.e., the contributions with a givem value in Eq.(7)]. A sequences for the dynamics in that the momentum resolution
possible experimental, quantitative determination of the relaand range are conjugate to their spatial counterparts. These
tive importance of the magnetic substates is discussed in th@ghase-space extents and resolutions impose limitations on

Ill. LTDSE APPROACH AND COMPUTATIONAL
CONSIDERATIONS
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the physical problems that can be treated using a given laand accurate scheme for computing such an overlap of the
tice representation. Perhaps the greatest challenge for theave function and the two-center continuum is still an open
LTDSE approach is to overcome what may be succinctlyproblem. Therefore, a compromise had to be reached in Refs.
termed the multiscale problem in which the length or mo-[12,13, which was based on one-center continuum states of
mentum scale of the wave function changes a great deal asthe target and the projectile. In order to avoid uncertainties
function of time. Examples of such a problem include exci-associated with the description of the two-center continuum,
tation to Rydberg states of an atom or electron ejection. An this work we evaluate transition probabilities to con-
given lattice can provide a high-fidelity representation of thetinuum states using Ed4).
initial, relatively small, atomic wave function as well as a  To this end, we have propagated the wave function to
number of excited states of the collision system, however, itnternuclear distances larger than those in Rgf8,13 and
cannot directly or completely represent arbitrary highly ex-we focus on the portion of the electronic continuum for
cited or continuum states whose spatial extents go beyondhich it is most feasible to obtain a meaningful result: elec-
the boundaries of the numerical grid. trons emitted in the saddle region of the potential between
Nevertheless, the LTDSE approach can describe the timthe target and the projectile. From a classical point of view,
evolution of the coherent wave packet produced by the colusing Eq.(4) to calculate the spectrum implicitly assumes
lision during which the wave function expands graduallythat the momentum of the ejected electrons at the stopping
within the boundaries of the lattice. Regarding ionization, atime, IZ(t), has converged to its asymptotic valﬁ(a+ ).
key ingredient to properly describe the dynamics and transiStrictly speaking, sufficient conditions for this to happen are
tions into continuum states is an appropriate momentunthat the residual potential energy to be overcome is small
space spanned by the lattice representation, which can k@mpared to the kinetic energy, i.e.,
obtained through choice of lattice parameters and of the un-
derlying basis representation. Here, this is accomplished us- K2(t) 2 [K(t)—0,]2
ing the Fourier collocation approa¢h8]. Advantages of this T P
approach, and of other methods in its class, as compared to
traditional grid-based methods such as finite difference
schemes have come from exploiting and further developinghese conditions are, however, more severe than what is
high-order finite element and discrete variable representasbtained practically in that near the saddle-point region the
tions (DVRs) because they can maximize the momenta repeffects of the target and the projectile interactions counteract
resented and the fidelity of spatial derivatid$,17| for a  each other. In fact, the kinetic energy of an electron moving
given spatial grid choice. Earlier work using the present apexactly with the saddle point has exactly reached its
proach[19] studied the excitation of low-lying states1 ( asymptotic value. Much in line with this simplified picture,
<4) of atomic hydrogen by proton impact for energies be-our analysis of the time evolution of the momentum distri-
tween 1 and 1000 keV, bridging the most accurate theoreticdlution of continuum electrons has shown that the asymmetry
or experimental data at low, intermediate, and high energyof the spectrum converges relatively fast in the spectral re-
Accurate results were also found for excitatip®0,2l,  gion |k—v~<v4/2 wherev is the velocity of the saddle
charge transfef15,20,21, and ionizatior{15] by using Fou-  point. The present approach is not appropriate to describe
rier collocation, a finite difference methodology, and a pseuother portions of the spectrum like target and projectile cusp
dospectral basis function approach. electrons since the kinetic energies of these electrons require
The present work is distinguished from our earlier StUdieS/ery |arge propagation distances to converge to their
in that here we seek to describe transitions into continuunasymptotic energid®2]. In these regions of the ejected elec-
states. During a collision, the portion of the electronic wavetron spectrum, the method adopted in Réfs2,13 could
function excited to states of large target or projectile princi-yield more accurate results. Also, difficult to treat using the
pal quantum number or emitted to the high-energy conpresent scheme would be the component of wave function
tinuum leaves the Hilbert space spanned by the latticglescribing the high-momenta electrons, which reach the edge
(nearly free of reflectionsvia an optical potential imposed of the numerical grid too quickly, where they are absorbed.
near the edge of the spatial boundary of the grid. Since after The present scheme and the bounds of conveniently avail-
transmission through the boundary all information regardingable computing resources combine to dictate the collision
these portions of the electronic wave function is lost, in ordeisystem parameters that we can currently explore. We con-
to calculate the spectrum associated with a particular ranggider H* +H collisions with energies of 1 to 25 keVi.e.,
of the ejected electron spectrum, the time propagation mug.2<y <1 a.u.), which are within the range explored in
be stopped at time before the corresponding portion of the momentum imaging experiments. In the spirit of performing
wave function leaves the grid. calculations with as few approximations as possible, we
Such a limitation poses a difficult praCtlcal prObIem choose, as have the other recent theoretical me_
namely, how can transition probabilities into continuum 33 10, to consider collisions of protons with atomic hydro-
states be obtained from the wave functrdrr(r t) at the fi-  gen(i.e., Zp=Zr=1, vs=v,/2). No essential differences in
nite stopping timet? The best solution to this difficulty the underlying physics is expected for this choice in com-
would be to project onto dynamic two-center continuumparison with experiment. For H+H, three-dimensional lat-
states as described in E&). A simplified adaptation of this tices supporting high-order basis functions suclBagplines,
method was used in Refgl2,13. Unfortunately, a practical Chebyshev polynomials, or complex Fourier exponentials on

>—, > 0. (10
2 r 2 |r_R|
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the order 108 are routinely feasible on intermediate-level  »
computers, making it easy to run a large number of trials. P ‘ O
Since the ionization probability falls rapidly with increasing o J
impact parameter, we have chosen a relatively small value o
this quantity to avoid numerical uncertainties in the calcula- s -
tion of the continuum wave function. Similarly, the overall § »
spatial extent covered by the lattice discretization is choser-§ o
so that a sufficient separation of the projectile- and target-§ o
bound states after the collision can be reached to allow pro-§
jecting out the dominant excited electronic stafes., Eq.
(4)] but not so large that most of the ionized electrons are not
still contained within the numerical box. 0

Thus, we utilize a Cartesian numerical grid of X3535 0
X 270 lattice points X,y,z) corresponding to spatial dimen- 10
sions of —26<<x,y<<26 a.u. and-26<z<<78 a.u. With the 2
target located at0,0,0 a.u. and an impact parameter lof 20 T e e R T T TR T

. . Longitudinal coordinate (a.u.)

=0.77 a.u., this allows an accurate representation of bouna
states up to approximately=4 and a reasonable separation  FIG. 2. Time evolution of the electronic probability density in
of target and projectilen=3 states for a final internuclear the collision planep(x,z,t)=|¥(x,0zt)|?, defined by the direc-
separation of 52 a.u. The choice of a final projectile positionjon of the projectile motion/,=v,z (longitudinal coordinateand
of x=b=0.77 a.u.,z=52 a.u. facilitates translation of lat- he impact parametdi=bx (transverse coordinatefor a collision
tice eigenstates determined for the target to the projectilgs 5 5 kev proton with atomic hydrogen. The impact parameter is

position for projection operations and is symmet@part 1=0.77 a.u. and the frames correspond to projectile longitudinal
from the shift in x owing to the finiteb) to the target's coordinates,= — 15, —2, 6, 18, 30, and 52 a.u.

position on the grid. In particular, partial eigensolution via
the Lanczos method is used to find the lowest 14 boundtretching between the target and projectile afterwards. One
eigenstates of the target and are used in the calculation i@ay readily note the roughly equal amounts of density cen-
project out target and projectile bound states at the end of gred on both the target and projectile, and the bipolar shape
time propagation. We have adopted the Fourier collocatiomf the density that will end up in the continuum. In particular,
approach( 18] with split-operator time propagation becausefor this b andv,, very little density moves along the line
of the computational speed and available shared memoryonnecting target and projectile, including the saddle point,
parallel implementations of the fast Fourier transform,put rather lies on either side of this line. This simple obser-
coupled with the highly accurate representation of the devation is somewnhat in contradiction with very early ideas of
rivative operations Fourier expansion affords. saddle-point electron emission, which envisioned electrons
Thus, in this work we propagate the electronic wave func+surfing” on the top of the saddle.
tion, initially in the 1s state of the target hydrogen atom, up ~ Another way to view the time evolution of these features
to a projectile final position ofz,=v,t=52 a.u. At that near the saddle with many more time slices but still within a
point, we project out the target- and projectile-bound stateswo-dimensional picture is to plot a sequence of slices trans-
for n<<4 and Fourier transform the resulting continuum por-y,erse to the direction of projectile motighe., alongb, thex

tion of the wave function to produce an ejected electron Mogjirection through the midpoint between the target and pro-
mentum distribution. Depending on the impact energy, th'sjectile

distance is not large enough to reach a point at which the

momentum wave function of continuum electrons near the zp/2+ 62

saddle point region is absolutely converged. Therefore, we P(X,t)=f dzp(x,z,t) (13)

discuss methods to extend the propagation of the continuum Zpl2= 32

wave function to larger distances, in order to obtain full con- 5 125 52

vergence of the resulting momentum distribution. :f ’ dZW(x,y=0z1)?, (12)
zp/27 6z

Transve

IV. RESULTS AND DISCUSSION where 6z<zy/2. Figure 3 depicts the time evolution of

In order to give a general impression of the characteristicg(X,t) for 20 keV H"+H. The top portion of Fig. 3 maps a
of the evolution of the electronic wave function through, for very dense sequence of these time slices of the probability
example a 5 keV H +H collision, we display in Fig. 2 a density in the collision plane for given projectile longitudinal
time sequence of contour plots representing the positio§oordinates. A bipolar distribution is also present in this case,
probability density in the collision plang(x,z,t)=|¥(x,y  but with significant asymmetry towards the rlegative side of
=0,z,1)|2. (We use time or the longitudinal coordinate of the the x axis, which is opposite to the direction bf The bipo-
projectile z, interchangeably since they are proportional tolar feature develops rather suddenly at abwefl0, and then
each otherz,=vt.) The wave function displays a roughly the two peaks of the transverse slice move to larger trans-
spherical shape early in the collision, which then elongatesyerse coordinates very slowly as they also gradually broaden.
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FIG. 4. Analysis of the final electronic state of the collision for
5 keV H'+H at a final longitudinal internuclear separation zyf
FIG. 3. Time evolution of the transverse projection of the elec-=52 a.u. forb=0.77 a.u. The uppermost frame displays the total
tronic probability density at the midpoint between the projectile andelectronic probability density in the collision plang(x,z). The
the targetp(x,t) = p(x,z=2,/2t) = |\I’(x,0,z=zp/2,t)|2, as a func-  middle frame displays the corresponding continuum densgity, z)
tion of the projectile longitudinal position+p=wv,t after the col-  obtained after target and projectile bound statesitgé have been
lision (i.e., z,>5 a.u). The collision energy is 20 keV and projected out. The lower frame displays the continuum probability
=0.77 a.u.The upper portion of the figures displays the asymmetrgensity in momentum spacg,(k, ,k,), obtained from the Fourier
of the distribution as a function of internuclear separation, as detransform of the continuum wave function.
scribed in the text.

The data in the figure illustrate a typical collision energy for
which convergence of the asymmetry of the spectrum is
reached in the region of the saddle. In other words, the de:
gree of asymmetry of the wave function, 05

+oo 05

dxp(x,t)

P
B

1.1 kevV 5 keVv

A(t)= , (13

0
J dxp(x,t)

converges very rapidly as a function of time. For the distri-

Transverse momentum/v
°
2

101 10 kev 15 keV
bution at 20 keV, even the simple approximatiéd(t)
=(P,.—P_)/(P.+P_), whereP,,_ is the height of the &
peak on the+x or —x side, illustrates the rapid conver- o
gence, as also shown in Fig. 3. ” CEE=> ® ===
In Fig. 4 (top) we display again the final time frame of the D T 25kev
sequence shown in Fig. 2, that is, the electronic probability s s s
density in the collision plane for 5 keV H+H at z,=52a.u. Longitudinal momentum/v,
Also shown s the Zcontinuum probability densify(x,t) FIG. 5. The electronic momentum distribution of ionized elec
—|‘If,(x,0,z—zp/2,t)| , where W, is defined as in Eq(3) trons in the collision planep,(ky.k,), for H* +H collisions and

after 14 lattice-bound eigenstafé$(1s-3d)] have been pro- various collision energies after the time propagation is carried out to

jected out at the target and projectile positions. Some densitg longitudinal internuclear distang=52 a.u. forb=0.77 a.u.
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remains near the target and projectile positions, possiblympact is shown in Fig. 5. A stronglyr-like distribution is
bound states of highar and/or low-lying continuum states seen for the lowest energies whereas for the highest energies
of these center@.e., cusp electronsHowever, the most sig- 5 peak only on the side opposite to the directionbofe-
nificant feature of the continuum density are the prominentnains, This is seen even more clearly in Fig. 6 that displays
structures centered close 2e-z,/2=26 a.u. In Fig. 4bot- 3 gjice of the transverse momentum density in the collision
tom) we display the spectrum of ejected electrons in the colpjane at a longitudinal momentum halfway between that of
lision planefi.e., the probability density in momentum space the target k,/v,=0) and the projectile,/v,=1),

defined in Eq.(6)]. As is customary in momentum imaging P P

experiments, the momentum scales have been normalized to

the projectile velocity. Even though the wave function has vpl2+ ok,
been propagated up to a finite internuclear distance, a signifi- p(ky) = f dk,p (ky,Kk,) (14
cant degree of its most complex evolution has taken place VpleT oKy

signified by the fact that the spatial and momentum distribu-
tions are quite similar in shape. The spectrum of ejected
electrons is nearly symmetric with respect to theaxis, vpl2+ ok
indicating that it is most likely dominated by a single mag- :f
netic quantum number. The bipolar shape of the spectrum
resembles that of m=1 () orbital.

The momentum distribution of continuum electrons cal-where 5k, <v /2. The rapid change with impact energy of
culated in this way for 1, 5, 10, 15, 20, and 25 keV protonthe shape and “up/down” asymmetfg.g., Eq.(13)] of these

12— 8k dkz|q’l(kx,kyzo7kz)|27 (15
vpl2— 5k,
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distributions are the most intriguing aspects of the ejectedalculations described above. Subsequently, the output of the
electron spectrum first found in COLTRIMS experimentsfirst region is used as the initial wave function for the second
[6,8]. time interval after projecting out the bound states that are
Previously, the TCMSD methofil2,13 was applied to expected to become decoupled from all other reaction chan-
investigate they, dependence of the oscillations of the mo- nels i.e., low-lying energy levels of the target and the pro-
mentum distribution for 5-100 keV H+H at an impact jectile). The basic idea behind this scheme is that after pro-
parameter ob=1.2 a.u. The time propagation was carriedjecting out many “inner region” states, the smaller, most
out to some finite value of final internuclear separation, as irguantal portions of the resulting wave function are removed.
the present work, determined by computational constraints. Ahe initial wave function for the second time interval should
typical calculation for a given impact paramenter and a giverhave a larger scale and, therefore, could be properly de-
collision velocity is still quite demanding computationally. scribed on a new grid with larger spatial extent and larger
At the lowest collision energy presented in this paper suclspatial step that uses the same computational resources as the
time propagation takes more than 10 h using a Cray J-90 asriginal grid.
Silicon Graphics Power Challenge computer with 4—16 pro- This procedure could be repeated a few times for various
cessors. Since the present calculations were performed foransecutive time intervals and is usually called multigrid-
different impact parameteln=0.77 a.u., a detailed compari- ding. We note, however, that such multigridding procedure
son is not possible. However, a few noticeable differencefias to be carried out with extreme care. That is, given a
are clearly observed concerning(k,). First, the double- particular finite element or DVR choice, there exists a maxi-
peaked structures at low collision energies are found to benum spatial or momentum grid spacing at which resolution
considerable sharper than those reported in [R€l.(i.e., the  (spatial or momentuinexists to support the relevant charac-
minimum atk,= 0 in this work is considerably deepeBec- ter of the wave function and Hamiltonian. Therefore, to in-
ond, our results in Fig. 6 exhibit a rapid change in asymmecrease the spatial extent of the lattice, one cannot simply
try from side to side in the collision energy range between 15ncrease the grid spacing in order to represent dynamics on
keV, and 25 keV, which is not present in R¢L0]. These one scale without losing resolution of the dynamics on other
differences might be easily explained by the changing behaypertinent scales. Most compatible with the numerical and
ior with impact parameter of the relative importancesf computational methods we have employed is to devise a
and o or other magnetic substates in the spectrum of ejectedcheme by which the wave function can be re-discretized on
electrons. a new grid of larger spatial extent that satisfies the require-
Given the ultimate goal of making a quantitative compari-ments of sufficient spatial and momentum resolution. Alter-
son with momentum imaging experiments, let us summariz@ative strategies exist, such as the choice of a nonuniform
the status of the theoretical development so far, and list whagrid space, compatible with other lattice methods.
needs to be carried out to reach this goal. To begin with, all We have explored this approach by using the wave func-
of the experimental and theoretical works described havéion propagated ta@,=52 a.u. and with the<4 bound tar-
confirmed the very basic concept that electron emission agiet and projectile states projected out to seed propagation of
sociated with the saddle region is of great importance in théhe remaining continuum wave function to larggr. In par-
overall view of low-energy ionization. After the experimental ticular, we take the complex value of the wave function at
observation of oscillations of the peaks in the transverse maevery other lattice point on this first grid and use it as the
mentum distribution, a fundamental theoretical picture basedtarting wave function on a grid with the same number and
on changing coherences among the magnetic substates of ttistribution of grid points with twice the spatial extent in
continuum has emergedb initio numerical calculations, each coordinate. We then run the quantal, split operator time
TCMSD, and LTDSE have yielded results in qualitative propagation on this regridded wave function to a distance of
agreement but need to be extended. Specifically, the mogt=104 a.u. at which point the momentum distribution is
significant present constraint is the difficulty these ap-computed as before. The projecting out of the bound states,
proaches have in propagating the electronic wave function tand the absorption of the fast moving electronic density at
large final distances, described above as the multiscale prokhe boundaries, remove the majority of the high momentum
lem. It would be straightforward to compare the various thecontent of the wave function. This makes the propagation on
oretical results as a function of v,,, and finalz,, for con-  the larger grid feasible even though, having eight times the
sistency. Finally, both approaches would have to bespatial volume with the same number of lattice poifitasis
elaborated to treat the more-than-one-electron systems exarfienctions, it has a lower maximum momentum that it can
ined experimentally(e.g., H€ +He) or experimentalists support. Also, once the bound states are removed, the wave
would have to be motivated to repeat their measurements fdunction varies with a longer wavelength scale and it is, thus,
H*+H. spatially represented better on the larger but coarser grid than
In the present work, we have sought pathways to go beit would be with the smaller, more spatially varying bound
yond what we see as the most significant of these challengestates present.
that is, how to properly propagate the wave function to an For the higher impact energies considered for which case
asymptotic form in order to describe the entire ejected electhe ionization probability is relatively large kg,=52 a.u.,
tron spectrum. The methods that we envision are based dhis regridding was successfully implemented. In Fig. 7 we
separation of the time evolution into different time intervals, display the same momentum distribution for 20 keV proton
the first of which is solved fully quantally, as in the LTDSE impact as was shown in Fig. 5, and below it, the momentum
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1.0 time propagatior(after bound-state projectipimto a classi-
> z =52 cal distribution of test particles in phgse.spa(peobability .
£ 05 P packet$. Subsequently, each test particle is propagated, as in
E ’ the CTMC method, to a very large final internuclear distance
GEJ by solving Hamilton’s equation of motiofor equivalently,
o 0.0- 0 the classical Liouville equation for the whole probability
E density in phase spaceBy binning in angle and energy the
§ test particles, weighted by the probability density carried by
o 054 each, the asymptotic momentum distribution can be straight-
® 1 forwardly computed.
c .
® 40 ' : ' : ' : ' Even though such a procedure can be implemented, we
= 05 0.0 0.5 1.0 15 found that,_ in t_he spirit of performing .ca_lcullations.with as
few approximations as possible, clear limitations arise at low
1.0 collision energies due to the impossibility of mapping with
5= | good resolution all the quantum structures into classical
IS phase space. The mapping of a quantum wave function
2 0.5 |W(t)) onto a classical positive definite probability density,
ﬂE’ in phase spacezC(F,IZ,t), is not unique. One of the simplest
o 0.0- mappings that we considered is called the Husimi distribu-
E tion [24] and is given by
@
o -05- .. )
5 pe(r KD =(Gr s ¥ (D)2, (16)
c
) : : : : . : . . . . .
- 05 0.0 05 1.0 15 where |G; ¢ s) is a minimum uncertainty Gaussian wave

packet describing a free electron centered aind moving

with an average momentuik. The squeezing parametsr
FIG. 7. The electronic momentum distribution for=0.77 a.u.  '€Presents the width of the Gaussian in the position coordi-

after bound state projection for 20 keV'H H atz,=52 a.u.(up- ~ Nate (the width in momentum is $ and can be tuned to

function on a numerical lattice with dimensions twice as large and1ate of the electron. The Husimi projection in H@6) re-
up toz,=104 a.u.(lower frame. sembles a procedure of attempting to measure the position
and the coordinate of the electron within the limitations of
the uncertainty principle and using a resolutisrfor the
distribution found after regridding and propagation 9  position and a resolution 4for the momentum. The main
=104 a.u. The same general shape of the distribution is prefifficulty associated with low-energy ion-atom collisions is
served in this propagation, but the transverse momenturthat this quantum-classical mapping partially “washes out”
spread narrows and the longitudinal spread elongates, as estructures of the continuum wave function because, at the
pected. One can also note from the larger grid results that thénal internuclear separation considered heges 52 a.u., the
target- and projectile-centered momentum density increasgsroduct of the widths of the structures in the position and
with long propagation, indicating the postcollisional evolu- momentum distributions is very close to the Planck’s con-
tion of these features as well. For the smaller impact energiestant i.e., AxAKy/v,~1h ). This limitation is clearly vis-
considered here, the multigridding procedure has not yeble in the position and momentum distributions depicted in
been successfully implemented because of numerical diffiFig. 4 for a collision energy of 5 keV. Thus, we conclude that
culties associated with the small magnitude of the continuungignificantly larger internuclear separations must be reached
wave function. before the quantum-classical mapping is performed without
We have also considered the possibility of performing themuch loss of information. Moreover, the internuclear dis-
propagation of the wave function after the first time intervaltance at which the mapping should be performed increases as
using classical mechanics. Motivation for this approachl/vp for decreasing collision velocities.
stems from the general success of the CTMC method in de-
scribing the features of differential ionization cross sections V. SUMMARY
for intermediate energy ion-atom collisions, and from the
fact that at a certain internuclear separation, an ejected elec- We have studied the behavior of the ejected electron spec-
tron should simply evolve classically once its de Broglietra resulting from low-energy ion-atom collisions, presenting
wavelength becomes short compared to this separatio@ general analysis, not dependent on the approximations
Chassid and Horbats¢&3] have recently performed a simi- used, of the origin of oscillatory structures in momentum
lar exploration in a one-dimensional model of ion-atom col-imaging spectra in order to clarify that such structures are a
lisions. The basic procedure we considered was to converirect consequence of coherences among the various mag-
the electronic wave function at the conclusion of the LTDSEnetic substates in the continuum. Utilizing the lattice, Fourier

Longitudinal momentum/vp
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collocation method, we have solved the time-dependent e
Schralinger equation for 1-25 keV H+H collisions at a pi( =Ky Ky k)= > [Pk, Lk,
fixed impact parameter to examine the variations of the mo- m==

mentum distribution of the ejected electron spectrum in the

saddle-point region with the projectile energy. Our results + 2 D (K, ,kz)<~1>’r;,(kL Ky)
confirm the general conclusions drawn previously by other m-m’=even
authors. xexg £i(m—m')ey]

Future directions of research need to focus on schemes of
time propagation to reach larger internuclear separations in
order to reach fully converged spectra. Possible pathways to
extend the time propagation to asymptotic form such as lat-
tice regridding and classical postpropagation were investi- xXexgd i(m—m’)ey]. (A1)
gated and their limitations discussed. Accomplishing this re-

I|at()jly .W'.I: be ke?]/ '3 ftgc_ure ;/vork(;o compare rlesul_ti of this 4/ym asymmetry foK,# 0. The momentum imaging experi-
and similar methods directly and quantitatively with experi- ot have been restricted to the collision plane whsre

mental measurements. Some success in regridding was foundy ¢ can be generalized and an interesting application
for cases in which the ejected electronic probability densityemerges from this general formula.

was not too diffuse to allow the regridding to map the wave | gne assumes that only and = magnetic substates are
function over to the new grid with sufficient fidelity. Reliable present in the electron spectrum, then a measurable asymme-

classical postpropagation at the present stopping distance 4§ parameter for a giverk( ,k,) is
not possible owing to the inability to map precisely the quan-

=D Dk k)P (K, k)

m—m’=odd

Clearly, all magnetic components contribute to the spec-

tum wave function onto a phase-space probability density. A Av=pi(ky, Ky k) pi(=ky, Ky Kky)

tour de force calculation in which fully quantal methods used )

within an inner spatial zone, with possible multigridding or _ 1+2R;,+2R,,C08A ¢, @y) A2)
adaptive-gridding, and an outer classical mechanical propa- B 1+2R2_—2R,.coSA b, — oy)

gation, is needed. At that point, not only will ttab initio

quantal approaches be able to explore qualitatively the osciwhere

lations of the low-energy ejected electron spectrum, but also ~ ~

reach quantitative comparison with experiment for the fun- Ror=Ron(Ky k) =P (K k)| P o(k. Ky

damental H + H collision system. and
A¢UWZA¢U7T(kJ_ ’Ky ’kz)
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CONTRIBUTIONS ization spectrum. In the above example involving two mag-
netic substates, momentum imaging in only one additional
The analysis made in Sec. Il fay=0 can be generalized. plane K,#0 is required for determination oR,, and
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