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Computing the exchange interaction in electron scattering from polyatomic molecules
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The treatment of the exchange potential between the bound electrons of a polyatomic target and the con-
tinuum electron from the impinging beam employed in single-collision scattering experiments is considered by
using different computational approaches. In the relevant experimental setup the impinging electron undergoes
single scattering with the gaseous target molecule and only the elastic channel is being considered by the
present calculations. The chosen example of the benzene molecule shows that the various modeling of the
all-important exchange interaction yield good agreement with the existing experiments and suggest that they
could be profitably employed to analyze elastic angular distributions from polyatomic targets of fairly high
complexity and fairly large number of bound electrons.
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[. INTRODUCTION Any quantum treatment of the elementary electron-
molecule collision requires beforehand an accurate and real-
Recent years have seen a rapid expansion of the technistic description of the forces at play, especially when the
logical applications of plasmas, particularly in the develop-gaseous molecules become increasingly larger in terms of
ment of plasma reactors for semiconductor manufacturingdumber of electrons and nuclei bound within them. One of
Furthermore, molecular plasmas also play a role, amon§e more difficult terms of that interaction comes from the
other technologies, in the preparation of pollution controleXistence of strong exchange forces between the bound mo-
equipments and flat panel displays, just to cite a few exlecular electrons and the impinging continuum elec{i®h
amples[1]. The aim of the present study is therefore to use two dif-
The task of modeling the role of the various gases conferent ways of handling such interaction effects for a specific
tained in the plasmas, and of the reaction products, is obviPolyatomic molecule that also has relevance for plasma mod-
ously essential for control, optimization, and developmen€ling studies/4]: the gaseous benzene molecule. Since the
purposes. The assemb|y of such models, therefore, requir@?,ain focus of this work is on assessing the rellablllty of the
knowledge of the basic collision processes that occur in théh€thods with respect to the existing experiments, we will
plasma and at the plasma-wafer interface: the majority ofest our results by comparing computed and measured angu-
these processes are initiated by electron Scattéﬁhg’here lar distributions over a range of collision energies. We will
is therefore a real need for information on elastic and inelasalso compare our results with other, earlier calculations on
tic cross sections involving the relevant plasma reagent anthe same systeifv]. The paper is organized as follows: the
product molecules, fragmentation dynamics, dissociative atfollowing Sec. II briefly describes the general scattering
tachment, and ionization for both the primary Componentg;‘quations, while Sec. Il reports more in detail our different
and its fragments or reaction produd¢@. The knowledge treatments of the exchange interactions. The results obtained
required includes not only data characterizing individual col-for CsHg, their comparison with experiments and with pre-
lisions but also the assembly of corresponding theoreticafious calculations are reported in Sec. IV, while Sec. V sum-
and computational models that are not excessively demandrarizes our conclusions.
ing on computer time and are numerically robust for repeat-
edly handling a broad variety of systems. Il. THE SCATTERING EQUATIONS
Cross sections are essentially a measure of the probability
for a given dynamical process to occur and therefore our
understanding of the macroscopic behavior inevitably de- Resonant and nonresonant low-energy scattering of elec-
pends upon our understanding of the microscopic details dffons from polyatomic targets can be studied theoretically
the collisional events. On the other hand, either the measurd@nd computationallyat various levels of descriptiori) of
or the computed data are fairly few and far apart on thethe electronuclear structure of the target moleciig of the
energy scale and on the range of properties examined, henggeraction forces between the bound particles and the im-
the demand on more extended and detailed inform&fi¢).  pinging electron, andiii) of the dynamical formulation of
the quantum-scattering equatidré.
Within an ab initio, parameter-free approach one could
*Corresponding author. FAX:#+39-6-49913305. Email address: start with the target nuclei being kept fixed at their equilib-
FAGIANT@CASPUR.IT rium geometry and their motion during the scattering process

A. Single-center expansions
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could then be decoupled from the other variables. The simA more convenient formulation of the above quantity can be
plifying scheme goes under the familiar name of the fixedhad by writing[6]

nuclei approximatiorf6] and it greatly reduces the dimen-

sionality of the coupled scattering equations for the dynam- do .

ics. In our implementation of the scattering equations any d—Q(k-f)zz A P (cos?), 4
arbitrary three-dimensional function describing a given elec- L

tron is obtained around a single center of expans®GE

usually taken to be the center of mass of the glob&k(l) W'th_ ﬁ_be'”g now the cjenter-of-maiis_.m.) angle from the
electron molecular structure impinging direction ofk. The coefficientsA_ have been

given explicitly before[9] and will not repeated here. The
interested readers can refer to the above work for the details.
FPA(r,FIR) =, 1 HPA(r|R)XPA(F). (1)
Lh B. Interaction forces

In the above SCE representati&it® refers to theuth For a target that has a closed-shell electronic structure, as
element of thepth irreducible representatiofiR) of the N the present example, with,.c doubly occupied orbitalg,
point group of the molecule at the nuclear geom@&ryThe and when only a single state is included in the expansion of

angular functionsXP“(f) are symmetry adapted angular Eq. (2), the potential is the static-exchange potential that has

functions given by proper combination of spherical harmon.the form

ics Ym(F) [9].
The corresponding quantum-scattering equations will give M y A A

us a way of evaluating the unknown radial coefficients of Eq. Vese(r) = 2’1 TR + Zl (2J;—Ky), (5)

(1) for the (N+1)th continuum electron by using the SCE " A

radial quantities for the occupied target molecular orbital

Mocc

SwhereJ; andK; are the usual local static potential and the

(MO's) nonlocal exchange potential operators, respectively. The in-
dexy labels one of thé/l nuclei located at the coordinag,
d> 1(1+1) o in the center of mass.
[W‘ r—2+2(E_ €.) T (r|R) In the present work we intend to mainly discuss the case

where the static interaction is combined with the exchange
, @ , B, interaction only, thereby looking into the specific effects of
=2 l%ﬁ dr' VR (o IR RAR), () different exchange terms on the final behavior of the differ-
ential cross section®C9) that shall thus be obtained within
whereE is the collision energifE=k?/2 ande, is the elec- the exact-static-exchand&SE) approximation. In order to
tronic eigenvalue for theth asymptotic state. Thpu indi- ~ S€€ the effect of .the missing interaction on the comparison
ces employed on the rhs of E(R) label the specificuth ~ Petween calculations and experiments, in a few cases, we
component of thepth IR that belongs to theth electronic will further mcluqle correlation-polarization effects following
target state(initial state coupled to the of excited-state in- @ global modeling employed already successfully by our
dexed by . The coupled partial integro-differential equa- 9roup for the benzene target molecl] and which has
tions (IDE’s) (2), contain the kernel of the integral operator been described in detail in our previous work on polyatomic
V, which is a sum of diagonal and nondiagonal terms that, ifnolecular gasegs,9,10.
principle, can fully describe the electron-molecule interac-
tion during the collision. The near-HfHartree-Fock wave [1l. BOUND-CONTINUUM EXCHANGE INTERACTIONS
function from a single-determinant—self-consistent-field
(SD-SCH calculation can be used to represent the bound
target electrons, thus reducing the sum of the rhs of Bdo The variational treatments of electron-molecule collisions
a single statex only. This simplification obtains the static- (see for example Refs[8] or [11]) usually employs
exchanggSE) representation of the electron-molecule inter- Gaussian-type functions as the variational basis set. Al-
action for the chosen electronic target statesually the though the use of Gaussians in bound-state calculations has
ground stateat the nuclear geometig. become a routine task, their utilization in scattering problems
The numerical solutions of the coupled E®) produce is not so simple. One needs a large set of diffuse functions to
the relevant K-matrix elements that in turn yield the represent properly all the operators appearing in the varia-
differential cross sections for scattering by randomly ori-tional functional. Moreover, th&matrix Kohn method re-
ented molecules after averaging the scattering amplitudguires —additional ~continuum functions  with  correct
f(k-?|a,B,7) over all the angular valugs] asymptotic behavior. The choice of the resulting set is con-
nected with some uncertainty and may lead to linear depen-
dence. For these reasons, it is desirable to separate basis
functions used for the construction of the Hartree-Fock po-
tential and those appearing in the solution of the scattering
3 equations. The basic construction principle of using a best fit

A. The discrete momentum representation
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of plane wavege.g., see Ref$12,13) allows to express the tial cross sections for any other scattering angle is obtained
Green'’s function in a separate form and to obtéimatrix by interpolation. The interpolation formula has also been
elements by simple inversion of the Lippmann-Schwingerused for molecular geometry averagifidp.
equation. Unfortunately, this method suffers from two main In the results discussed in the following section, the out-
disadvantages: without semiempirical adjustment it yields incomes of the present calculations will be labeled as the
finite diagonal elements of the Green’s function, and its in-DMR-SE treatment of the collisional event.
teraction potential matrix becomes nearly singular at lower
energies. B. The iterative exchange approach

To overcome these problems, a numerical quadratuke in
space has been recently propogéd] to solve the corre-
sponding Lippmann-Schwinger equation. To stress the fo
mal analogy with the discrete variable representation, the
method was called the discrete momentum representation _
(DMR) method. It leads to a matrix equation for scattering f(r,0,¢)_;n fim(1)Yim(6,6). (11
amplitudes similar to that in th&matrix expansiofll] and
the discrete of quadrature vectors in tkespace may be The product of such two functions could be given by first
considered as a basis set that represent$-thgerator matrix ~ transforming the angular-momentum representatiofiinfo
once the molecular potential is available in any standard baa coordinate representation using
sis set.

The essence of the method, already described in[Ré4Y,
is to perform a numerical quadrature of the UGT term in the fo (=2 fim(NUimap, (12
Lippmann-Schwinger equation m

In the SCE expansion described in Sec. Il all functions are
pritten as

where U . 5= Yim(0,,¢p) and f, s(r)=1f(r,0,,¢p). In
T=0+06T, (6) this representation a product of two functions is just a point-
by-point product of the fornj16]
which, in momentum representation, has the form

o (-9)ap(1) = g1 Gapl(1)- (13
<k1|'?|k2>:<kl|0|k2>+j dk<k1|L2J|k>§k|T|k2>_ (7) The angular-momentum representation can then be recov-
ko—k“+ie ered by transforming back from the coordinate representation

The numerical quadrature of the integral on the rhs of the
equation(7) converts the operator equati¢d) into the ma- ()= 2 fo 51V (14)
trix equation " 7 R

where
Tij:Uij+2k UiGiiTyj t)
Vaﬁ,lm: Ylm( 0a¢B)WaW,B . (15)
and, after the matrix inversion, to the working equation The evaluation of the transformation given by E@2)
depends only on the second power of the number of partial
T=(1-UG) 'U. (99 waves and therefore can significantly reduce the effort

needed to evaluate the nonlocal part of the bound-continuum
U is twice the static-exchange potential, angd andk are  interaction. One has to evaluate the exchange integrals be-
indices for the roots of the numerical quadrature. The intetween bound and continuum electrons
gration range from zero to infinity for the integration in the
momentum space was first cutoff to finite maximum mo-
menta and then transformed to the integration inte¢vel, > f G (r)r =1 |TIFPH(r)dr ¢, (r),  (16)
1) using the transformation formula “«

where a sums over the occupied target MO’s given by the
a(k—ko) ¢, functions and thé&(P») are the continuum electron func-
= T 10 indi : !
b(k+ ko) tions for any IR labeled by thipu) indices mentioned ear
lier. The procedure involves generating iteratively the orbit-
wherek, corresponds to the energy of the incident electronals F(P#) until convergence is achieved for the structure of
and a and are adjustable parameters that define the integrathe elements of the scattering matrix, within a given
tion interval in the momentum space. threshold of invariance for all of thetfusually about 0.1%
A special feature of the DMR method is that it yields One can further improve on the convergence of the iterative
differential cross sections for scattering angles givenkby method by taking advantage of the Schwinger variational
vectors contained in the numerical quadrature set. Differentreatmen{17]. The equation are then rewritten in terms of a

X
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Lippmann-Schwinger equation and the details of the method 100 -+ v
have been reported befof7,18 O Experiment of Gulley et al.
The corresponding-matrix elements can then be used to - SCESE

evaluate total integral cross sectiofistationally summeq toF~=~._ W SCESECP i
and further employed to generate differential cross sections TN~
(DCY for the elastic process, as we shall show with the P ".,‘.-""6'5-06
results given below. It will be called the SCE-SE treatment &y %buf‘;o %o‘..‘_:::—:
of the scattering process. E '

p 11eV

1 Y R S S

TR I NI
IV. COMPUTED DIFFERENTIAL CROSS SECTIONS S o TIET TR T

To evaluate both the static potential and the exchange
interaction in the SCE expansion discussed before, we ex-
panded first around the molecular center of mass the Gauss-
ian functions employed to represent the target electrons.
They were given by the following(i) Triple-zeta-valence
basis set plus two polarization functions on each atomic cen- 003
ter. The molecular geometry us&®t c=1.397 A andRc 1k Qbocfldp Coq,
=1.084 A. This basis set was obtained through ¢heprac
set of code$20]. (ii) Double-zeta-valence basis set of Dun-
ning and Hay{21] with 66 basis functions at the optimized ol L1
geometry ofRc.c=1.397 A andR¢.,=1.073 A, yielding a 0 30 chgeringggnglelggg) 150 180
total Hartree-Fock energy 6f230.641 65 hartrees. Both ba- ‘
sis sets for the description of the molecular bound states o
appeared to give exactly the same differential cross sectioqfc,o:ﬁétltériompmed and measured angular distributions for elec-

- . g from gaseous benzene for the collision energy of 1.1
and therefo're only one set pf results will be glvgn. eV. The open circles show the experiments from R28]. Upper

The partlal-wa\_/e expansion for bth the continuum 6|eC'pane|; the dashed line is the static-exchange calculation with the
tron and the SE interaction was carried out ufd tg,=40.

- Bt iterative method SCE while the dotted line was obtained from the
When we further added correlation-polarizati@®) effects,  caicylation that included correlation-polarization effects within the

Vcp the asymptotic dipole polarizability value that we em- sce method. Lower panel: an average from discrete momentum
ployed was of 69.643, evenly divided between the six car- representation calculations performed with radial numerical quadra-
bon centers as we had done beffit6]. The matching radius tures with 29, 31, 33, and 37 points. The error bars were estimated
with the inner correlation term given via density-functional as described in the text.
theory was 7.712, [10]. The radial integration for the
coupled IDE of Eq(2) was extended to 1336 points and the for the static interaction and 13 h for the exchange interac-
(6,¢) integration involved (84 81) points, reduced within tion. The inversion of the Lippman-Schwinger equation took
each IR by the symmetry requirements. The computationad h, for a total of 28 h for one energy and 181 points for each
time was of 0.3 h for the orbital expansion, 16.6 h for all DCS. The work was carried out on a PC-Pentium llII.
symmetry contributions to scattering at one energy, and 8.7 h The results of calculations are presented in Figs. 1-6,
for DCS evaluation. The work was carried out on a SGlshowing the angular dependence of observed and calculated
R10 000, 200-MHz workstation. DCS at 1.1, 4.9, 10, 15, 20, and 30 eV. In the upper panels,
In the DMR calculations the target wave function waswe present reference calculations and in lower panels, we
described by the valence double-zeta basis set of Dunningresent DMR DCS’s with the estimated error bars. For the
and Hay[21]. The density matrix of the electronic distribu- low-energy regime at 1.1 and 4.9 eV we show two sets of
tion obtained for the optimized geometry was stored to proteference calculationgi) the SE calculations that employ
vide the input for the DMR calculations that generated firstthe iterative exchange schenm@®CE-SH, and (ii) the SCE
the Coulomb and exchange integrals of the SE treatmerndalculations that further include the global correlation polar-
discussed earlier. The constaatandb in Eq. (10) were set ization, Vp potential employed in our earlier wof9] and
to a=10.333 andb=9.667, which corresponds to the mo- in our recent calculations on the benzene moled22|
mentum range from 0.083 to 30k,. A Gauss-Legendre (SCE-SECP. At the lower energy 1.1 eV, one clearly sees
guadrature was employed for the radial integration and #hat the inclusion of correlation-polarization effects has a
Lebedev quadrature handled the angular integration. Thmarked effect on the computed angular distributions and is
number of points used in the angular quadrature was 974 arithportant to improve their agreement with the measured data
the number of points in the radial quadrature was increasef®2].
stepwise to check the convergence. The DCS'’s obtained for When one moves to the higher collision energy, on the
four highest and computationally feasible radial quadraturesther hand(see Fig. 2, the Vp contributions to the full
were averaged and the range scanned by the respective foelectron-molecule interaction become less significant, show-
DCS’s for a given energy and scattering angle was taken asg there that both SE and SECP calculations for the DCS at
an estimated error. Each calculation at one energy took 11 #.9 eV are very similar to each other and in good accord with

10—

O Experiment of Gulley et al.
— DMR SE

Differential cross section ( 10
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FIG. 2. Same quantities as in Fig. 1 but for the collision energy  F|G. 3. Same as in Figs. 1 and 2 but for the collision energy of
of 4.9 eV. The DMR line in the lower panel is an average from 10 ev. The dashed line in the upper panel is the SCE calculation.
values obtained with radial quadratures containing 29, 31, 33, anghe upper panel also shows the computed SE valdesdashed
35 points. line) using the SMC approach from Rdf7]. See Fig. 1 for the

meaning of other symbols. The DMR line in the lower panel is an
experiments. It is also significant to note that, at both theaverage from values obtained with radial quadratures containing 23,
energies of 1.1 and 4.9 eV, the SCE and DMR calculations a5, 27, and 29 points.

the static and exchange level are essentially coincident.
The comparison between measured and computed differ-
ential cross sections is extended to higher collision energies

by the results reported in Figs. 3—6. In Figs. 3 and 4, we W77 71T T
present the measured angular distributions at 10 and 15 eV, \% O Experiment of Gulley et al.
also from Ref[23] and both sets of our calculations at the ] . ggtfezi etal.

SE level, using the SCE and DMR methods discussed in the 10 & .
previous sections. The corresponding SCE calculations at the ] R
SECP level were not reported because they essentially coin- < o ‘,,___-,,_,,/’ '
cide with the points from the SCE-SE calculations. We fur- «2 1= st s ooy B
ther report in the two figures the results from another set of S

-16

15eV

o oy e
00 30 60 90 120 150 180

independent calculations recently carried out on the same
system 7]. Those calculations employed the Schwinger mul-
tichannel methodSMC) described in detail in their earlier
work [24,25. The general physical modeling of the dynam-
ics was the same of ourfixed nuclei, SE, and SECP inter-
actions and both the occupied and scattering orbitals were
described through a 6-311+G (2d,p) basis set internal to
the electronic structure prograGRMESS[26].

It is clear from the shown comparison between theoretical
results and the experimental findings that all the calculated 1=
values follow the experiments remarkably closely in the
small-angle region ¢ ,<60°) while departing from mea-

100 e

O Experiment of Gulley et al.
— DMR SE

10+~

Differential cross section (10

surements at the larger angles. We also see that the SCE and 00 0 " e0 90 20" '1'50' 280

DMR results differ from each other in the large-angle scat- Scattering angle (deg)

tering, with the DMR results following better the experimen-

tal oscillations. FIG. 4. Same as in Fig. 3 but for the collision energy of 15 eV.

As one moves to even higher collision energies, howeverThe DMR line in the lower panel is an average from values ob-
all theoretical results at the SE level turn out to be coincidentained with radial quadratures containing 21, 23, 25, and 27 points.
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with each other, as seen by the results presented in Figs. 5 100 —
and 6. We show there the measured results at 20 and 30 eV Q O Experiment of Gulley et al.
[23] and also both the present calculations and those from R -- SCESE

Ref.[7]. All the calculations follow very well experiments up
to 9., ~60° and reproduce reasonably well the flat, slowly
oscillating angular distributions betweeft, ,,~60° and

-—- Bettega et al.
10+ q

120°, while however giving larger DCS values in that angu- 5 nl canll N
lar region for both collision energies. Furthermore, the SCE “g
and SMC computed quantities agree well with each other in e 90 eV

the backscattering region up th. ,,~180°, while the DMR
results show larger values in the extreme backscattering re-
gion for the collision energy of 30 e\see Fig. 6.

As it can be seen from Figs. 1-6, at least a part of the
discrepancy between the iterative SCE and DMR results, in
particular for large scattering angles, may be assigned to the
errors of DMR calculations caused by a slow convergence of
the numerical quadrature. Most probably the error would be
reduced by using a larger numerical quadrature. However,
this would cause a considerable increase of the computa-
tional cost and the need of a more powerful workstation in-
stead of a Pentium PC as done here. It would thus be more L
profitable to search for a more effective numerical quadra- % 30 60 9 120 150 180
ture: such work is already in progress and the preliminary Scattering angle (deg)
results show that the slow convergence is due to the static
potential term because of the long-range nature of therh
nuclear terms in momentum space and not due to the &%
change contribution. As an example of this, Fig. 7 shows the
convergence of calculated DCS when the interaction poten-
tial is limited to the exchange term only. One sees in thafluadrature, in fact, could be lowered from 974 to 194 angu-
figure how good convergence is obtained already with veryar points without any visible change in the solid line of
small Legendre quadratures, with the angular quadrature aldo9. 7.
converging rather fast. The number of points in the Lebedev On the whole, however, all three types of independent SE

calculations agree well with each other over the whole set of
100 —————— —————— examined energies and for most of the angular range at each
energy. They are also close to the experimental findings

AR R NI RS U S B!
00 30 60 90 120 150 180

100 ———T ——1
fe) I I T T

O Experiment of Gulley et al.
— DMR SE

Differential cross section (10

FIG. 6. Same as in Fig. 3 but for the collision energy of 30 eV.
e DMR line in the lower panel is an average from values ob-
ned with radial quadratures containing 17, 19, 21, and 23 points.

O Experiment of Gulley et el.
o -- SCESE

101 6\ .- Bettegaet al.
Q
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TR
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T
-16 2
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-16
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Differential cross section (10

Differential cross section (10

— DMR SE
10
0 PR RN RN R SRR NN S SR R WY R R T R R R
s 0 30 60 ) 120 150 180
scattering angle (deg)
[ \ | | | FIG. 7. Test of convergence of the radial quadrature for the
030 60 90 120 150 180 exchange potential: computed angular dependence for electron scat-

Scattering angle (deg) ‘ tering from benzene at the collision energy of 15 eV. The DMR
calculations were performed with different numbers of radial
FIG. 5. Same as in Fig. 3 but for the collision energy of 20 eV. points: 7(dotted ling, 9 (dasheg lines for 11, 13, 15, 17, 19, 21,
The DMR line in the lower panel is an average from values ob-23, and 25 points coincide and they are all represented by a single
tained with radial quadratures containing 15, 19, 21, and 23 pointssolid line.
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above about 4 eV and for all the energies computed hereiently and realistically, electron scattering from fairly large

The actual numerical values of the SCE, DMR, and SMCpolyatomic targets and that both methods provide good ac-

computed DCS are reported in the Appendix. cord, on an absolute scale, with experimental data of mea-
sured angular intensities for elastic scattering.

V. SUMMARY AND CONCLUSIONS

In our present work we have described two different, in-
dependent ways of evaluatif@matrix andT-matrix scatter-
ing elements for describing electron collisions of a fairly

complex polyatomic target such as benzene and over a broad .The flgalgmal supp(L)Jrthgf Thedlta:claﬂ Ménlstry ffor l;nlver-
range of collision energies. In particular, we have verified®'ti€S and ResearodfMURST) and of the Center for Super-

once more that correlation-polarization effects are likely toC0MPUting ApplicationsS CASPUR is gratefully acknowl-
play a minor role on the behavior of elastic angular distribu-£d9€d. FA.G. and R.R.L. thank NATO organization for the
tions for collision energies above about 4-5 eV. Thus, #Wward of a Collaborative Research Graftrant No.
static-exchange description of elastic DCS is sufficient t0?20523. R.R.L. also thanks the Welsh Foundation for finan-
bring computed values into quantitative agreement witHcial supportGrant No. A-1020. The support from the Grant
available experiments, at least for elastic-scattering datd>9€Ncy of the Czech RepubliGrant No. 203/99/0839is
Furthermore, we have compared two different computationa@lso gratefully acknowle_dged. Fmal_ly, we all thank Pr(_)fessor
methods to handle the quantum dynamics, the SCE iterativa- J- Buckman for sending us the files with the experimental
method, and the DMR method and found them to give eslesults and for useful correspondence about them.
sentially the same results at all energies examined and also to

give very good accord with experimental angular distribu-
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tions. A further comparison with earlier calculatioig also APPENDIX
showed that their SE results are very close to the present
ones. In this appendix, we present numerical data from Figs.

In conclusion, therefore, we have found that at least twdl—6 for selected scattering angles given in Table I. The SMC
different computational paths can be followed to treat, effi-differential cross sections are taken from Réf.

TABLE I. Angular dependence of the differential cross section for the elastic scattering by the benzene
molecule for examined collision energiEs

Differential cross sectioltd?)

Scattering angle

Method 0° 20° 40° 60° 80° 100° 120° 140° 160° 180°
E=11eV

DMR 11.4 9.9 7.9 55 3.6 2.5 2.1 1.8 1.7 1.7

SCE 10.9 10.6 8.3 54 3.3 2.0 1.4 1.3 1.2 1.2
E=4.9eV

DMR 21.3 15.8 7.3 2.4 1.5 1.5 1.5 1.9 2.8 2.3

SCE 22.9 22.3 7.9 2.5 1.7 1.4 1.1 1.6 2.7 3.4
E=10eV

DMR 33.7 19.5 5.0 1.8 1.8 1.7 1.3 1.3 2.2 3.0

SCE 36.8 21.0 4.3 1.7 2.2 1.7 2.0 2.0 2.6 3.3

SMC 48.3 24.7 4.9 2.3 2.5 2.3 2.2 1.5 2.4 3.7
E=15eV

DMR 45.2 20.4 2.6 1.3 1.9 1.4 1.0 1.6 1.9 2.6

SCE 58.2 24.3 2.4 1.3 1.7 1.6 1.7 2.9 2.8 3.4

SMC 594 24.8 2.4 1.3 1.7 1.6 1.6 2.8 2.7 3.2
E=20eV

DMR 53.9 22.5 1.6 1.3 1.4 1.1 1.1 1.4 2.2 3.9

SCE 63.6 22.7 1.3 1.4 1.4 1.1 1.3 2.1 3.7 5.7

SMC 62.8 22.4 1.3 14 1.4 11 1.3 1.9 3.3 5.3
E=30eV

DMR 63.7 16.7 1.2 1.5 0.9 1.0 0.9 1.2 2.5 4.5

SCE 63.5 16.6 1.1 1.2 1.0 1.0 1.1 1.7 2.2 2.7

SMC 65.2 17.1 1.1 1.3 1.0 1.0 1.1 1.6 2.2 2.6
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