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Computing the exchange interaction in electron scattering from polyatomic molecules
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The treatment of the exchange potential between the bound electrons of a polyatomic target and the con-
tinuum electron from the impinging beam employed in single-collision scattering experiments is considered by
using different computational approaches. In the relevant experimental setup the impinging electron undergoes
single scattering with the gaseous target molecule and only the elastic channel is being considered by the
present calculations. The chosen example of the benzene molecule shows that the various modeling of the
all-important exchange interaction yield good agreement with the existing experiments and suggest that they
could be profitably employed to analyze elastic angular distributions from polyatomic targets of fairly high
complexity and fairly large number of bound electrons.
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I. INTRODUCTION

Recent years have seen a rapid expansion of the tec
logical applications of plasmas, particularly in the develo
ment of plasma reactors for semiconductor manufactur
Furthermore, molecular plasmas also play a role, am
other technologies, in the preparation of pollution cont
equipments and flat panel displays, just to cite a few
amples@1#.

The task of modeling the role of the various gases c
tained in the plasmas, and of the reaction products, is o
ously essential for control, optimization, and developm
purposes. The assembly of such models, therefore, req
knowledge of the basic collision processes that occur in
plasma and at the plasma-wafer interface: the majority
these processes are initiated by electron scattering@2#. There
is therefore a real need for information on elastic and ine
tic cross sections involving the relevant plasma reagent
product molecules, fragmentation dynamics, dissociative
tachment, and ionization for both the primary compone
and its fragments or reaction products@3#. The knowledge
required includes not only data characterizing individual c
lisions but also the assembly of corresponding theoret
and computational models that are not excessively dem
ing on computer time and are numerically robust for repe
edly handling a broad variety of systems.

Cross sections are essentially a measure of the probab
for a given dynamical process to occur and therefore
understanding of the macroscopic behavior inevitably
pends upon our understanding of the microscopic detail
the collisional events. On the other hand, either the meas
or the computed data are fairly few and far apart on
energy scale and on the range of properties examined, h
the demand on more extended and detailed information@4,5#.
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Any quantum treatment of the elementary electro
molecule collision requires beforehand an accurate and r
istic description of the forces at play, especially when t
gaseous molecules become increasingly larger in term
number of electrons and nuclei bound within them. One
the more difficult terms of that interaction comes from t
existence of strong exchange forces between the bound
lecular electrons and the impinging continuum electron@6#.

The aim of the present study is therefore to use two d
ferent ways of handling such interaction effects for a spec
polyatomic molecule that also has relevance for plasma m
eling studies@4#: the gaseous benzene molecule. Since
main focus of this work is on assessing the reliability of t
methods with respect to the existing experiments, we w
test our results by comparing computed and measured a
lar distributions over a range of collision energies. We w
also compare our results with other, earlier calculations
the same system@7#. The paper is organized as follows: th
following Sec. II briefly describes the general scatteri
equations, while Sec. III reports more in detail our differe
treatments of the exchange interactions. The results obta
for C6H6 , their comparison with experiments and with pr
vious calculations are reported in Sec. IV, while Sec. V su
marizes our conclusions.

II. THE SCATTERING EQUATIONS

A. Single-center expansions

Resonant and nonresonant low-energy scattering of e
trons from polyatomic targets can be studied theoretica
~and computationally! at various levels of description:~i! of
the electronuclear structure of the target molecule,~ii ! of the
interaction forces between the bound particles and the
pinging electron, and~iii ! of the dynamical formulation of
the quantum-scattering equations@8#.

Within an ab initio, parameter-free approach one cou
start with the target nuclei being kept fixed at their equil
rium geometry and their motion during the scattering proc
©2002 The American Physical Society13-1
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could then be decoupled from the other variables. The s
plifying scheme goes under the familiar name of the fix
nuclei approximation@6# and it greatly reduces the dimen
sionality of the coupled scattering equations for the dyna
ics. In our implementation of the scattering equations a
arbitrary three-dimensional function describing a given el
tron is obtained around a single center of expansion~SCE!
usually taken to be the center of mass of the global (N11)
electron molecular structure

Fpm~r , r̂ uR!5(
l ,h

r 21f lh
pm~r uR!Xlh

pm~ r̂ !. ~1!

In the above SCE representationFpm refers to themth
element of thepth irreducible representation~IR! of the
point group of the molecule at the nuclear geometryR. The
angular functionsXlh

pm( r̂ ) are symmetry adapted angul
functions given by proper combination of spherical harmo
ics Ylm( r̂ ) @9#.

The corresponding quantum-scattering equations will g
us a way of evaluating the unknown radial coefficients of E
~1! for the (N11)th continuum electron by using the SC
radial quantities for the occupied target molecular orbit
~MO’s!

F d2

dr22
l ~ l 11!

r 2 12~E2ea!G f lh
pma~r uR!

52 (
l 8h8b

E dr8 Vlh,l 8,h8
pm,ab

~r ,r 8uR! f l 8h8
pm,b

~r 8uR!, ~2!

whereE is the collision energyE5k2/2 andea is the elec-
tronic eigenvalue for theath asymptotic state. Thepm indi-
ces employed on the rhs of Eq.~2! label the specificmth
component of thepth IR that belongs to theath electronic
target state~initial state! coupled to the of excited-state in
dexed byb. The coupled partial integro-differential equ
tions ~IDE’s! ~2!, contain the kernel of the integral operat
V, which is a sum of diagonal and nondiagonal terms that
principle, can fully describe the electron-molecule intera
tion during the collision. The near-HF~Hartree-Fock! wave
function from a single-determinant–self-consistent-fie
~SD-SCF! calculation can be used to represent the bou
target electrons, thus reducing the sum of the rhs of Eq.~2! to
a single statea only. This simplification obtains the static
exchange~SE! representation of the electron-molecule inte
action for the chosen electronic target state~usually the
ground state! at the nuclear geometryR.

The numerical solutions of the coupled Eq.~2! produce
the relevant K-matrix elements that in turn yield th
differential cross sections for scattering by randomly o
ented molecules after averaging the scattering amplit
f ( k̂• r̂ ua,b,g) over all the angular values@8#

ds

dV
~ k̂• r̂ !5

1

8p2 E u f ~ k̂• r̂ ua,b,g!u2da sin~b!db dg.

~3!
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A more convenient formulation of the above quantity can
had by writing@6#

ds

dV
~ k̂• r̂ !5(

L
ALPL~cosq! , ~4!

with q being now the center-of-mass~c.m.! angle from the
impinging direction of k̂. The coefficientsAL have been
given explicitly before@9# and will not repeated here. Th
interested readers can refer to the above work for the det

B. Interaction forces

For a target that has a closed-shell electronic structure
in the present example, withnocc doubly occupied orbitalsw i
and when only a single state is included in the expansion
Eq. ~2!, the potential is the static-exchange potential that
the form

VESE~r !5 (
g51

M
Zg

ur2Rgu
1(

i 51

hocc

~2Ĵi2K̂ i !, ~5!

where Ĵi and K̂ i are the usual local static potential and t
nonlocal exchange potential operators, respectively. The
dexg labels one of theM nuclei located at the coordinateRg
in the center of mass.

In the present work we intend to mainly discuss the c
where the static interaction is combined with the exchan
interaction only, thereby looking into the specific effects
different exchange terms on the final behavior of the diff
ential cross sections~DCS! that shall thus be obtained withi
the exact-static-exchange~ESE! approximation. In order to
see the effect of the missing interaction on the compari
between calculations and experiments, in a few cases,
will further include correlation-polarization effects followin
a global modeling employed already successfully by o
group for the benzene target molecule@10# and which has
been described in detail in our previous work on polyatom
molecular gases@6,9,10#.

III. BOUND-CONTINUUM EXCHANGE INTERACTIONS

A. The discrete momentum representation

The variational treatments of electron-molecule collisio
~see for example Refs.@8# or @11#! usually employs
Gaussian-type functions as the variational basis set.
though the use of Gaussians in bound-state calculations
become a routine task, their utilization in scattering proble
is not so simple. One needs a large set of diffuse function
represent properly all the operators appearing in the va
tional functional. Moreover, theS-matrix Kohn method re-
quires additional continuum functions with corre
asymptotic behavior. The choice of the resulting set is c
nected with some uncertainty and may lead to linear dep
dence. For these reasons, it is desirable to separate
functions used for the construction of the Hartree-Fock
tential and those appearing in the solution of the scatte
equations. The basic construction principle of using a bes
3-2
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COMPUTING THE EXCHANGE INTERACTION IN . . . PHYSICAL REVIEW A65 052713
of plane waves~e.g., see Refs.@12,13#! allows to express the
Green’s function in a separate form and to obtainT-matrix
elements by simple inversion of the Lippmann-Schwing
equation. Unfortunately, this method suffers from two ma
disadvantages: without semiempirical adjustment it yields
finite diagonal elements of the Green’s function, and its
teraction potential matrix becomes nearly singular at low
energies.

To overcome these problems, a numerical quadraturek
space has been recently proposed@14# to solve the corre-
sponding Lippmann-Schwinger equation. To stress the
mal analogy with the discrete variable representation,
method was called the discrete momentum representa
~DMR! method. It leads to a matrix equation for scatteri
amplitudes similar to that in theT-matrix expansion@11# and
the discrete of quadrature vectors in thek space may be
considered as a basis set that represents theT-operator matrix
once the molecular potential is available in any standard
sis set.

The essence of the method, already described in Ref.@14#,
is to perform a numerical quadrature of the UGT term in
Lippmann-Schwinger equation

T̂5Û1ÛĜT̂, ~6!

which, in momentum representation, has the form

^k1uT̂uk2&5^k1uÛuk2&1E dk
^k1uÛuk&^kuT̂uk2&

k0
22k21 i e

. ~7!

The numerical quadrature of the integral on the rhs of
equation~7! converts the operator equation~6! into the ma-
trix equation

Ti j 5Ui j 1(
k

UikGkkTk j ~8!

and, after the matrix inversion, to the working equation

T5~12UG!21U. ~9!

U is twice the static-exchange potential, andi, j, andk are
indices for the roots of the numerical quadrature. The in
gration range from zero to infinity for the integration in th
momentum space was first cutoff to finite maximum m
menta and then transformed to the integration interval^21,
1& using the transformation formula

x5
a~k2k0!

b~k1k0!
, ~10!

wherek0 corresponds to the energy of the incident electr
and a andb are adjustable parameters that define the inte
tion interval in the momentum space.

A special feature of the DMR method is that it yield
differential cross sections for scattering angles given bk
vectors contained in the numerical quadrature set. Differ
05271
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tial cross sections for any other scattering angle is obtai
by interpolation. The interpolation formula has also be
used for molecular geometry averaging@15#.

In the results discussed in the following section, the o
comes of the present calculations will be labeled as
DMR-SE treatment of the collisional event.

B. The iterative exchange approach

In the SCE expansion described in Sec. II all functions
written as

f ~r ,u,f!5(
l ,m

f lm~r !Y lm~u,f!. ~11!

The product of such two functions could be given by fi
transforming the angular-momentum representation off into
a coordinate representation using

f a,b~r !5(
l ,m

f lm~r !Ulm,a,b , ~12!

where Ulm,a,b5Ylm(ua ,fb) and f a,b(r )5 f (r ,ua ,fb). In
this representation a product of two functions is just a po
by-point product of the form@16#

~ f •g!ab~r !5 f ab~r !gab~r !. ~13!

The angular-momentum representation can then be re
ered by transforming back from the coordinate representa

f lm~r !5(
ab

f a,b~r !Vab , ~14!

where

Vab,lm5Y lm~uafb!WaW8b . ~15!

The evaluation of the transformation given by Eq.~12!
depends only on the second power of the number of pa
waves and therefore can significantly reduce the ef
needed to evaluate the nonlocal part of the bound-continu
interaction. One has to evaluate the exchange integrals
tween bound and continuum electrons

(
a

E fa~r 8!ur2r 8u21F~pm!~r 8!dr 8fa~r !, ~16!

wherea sums over the occupied target MO’s given by t
fa functions and theF(pm) are the continuum electron func
tions for any IR labeled by theupm& indices mentioned ear
lier. The procedure involves generating iteratively the orb
als F (pm) until convergence is achieved for the structure
the elements of the scatteringK matrix, within a given
threshold of invariance for all of them~usually about 0.1%!.
One can further improve on the convergence of the itera
method by taking advantage of the Schwinger variatio
treatment@17#. The equation are then rewritten in terms of
3-3
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C̆ARSKY, C̆URIK, GIANTURCO, LUCCHESE, AND POLASEK PHYSICAL REVIEW A65 052713
Lippmann-Schwinger equation and the details of the met
have been reported before@17,18#

The correspondingK-matrix elements can then be used
evaluate total integral cross sections~rotationally summed!
and further employed to generate differential cross sect
~DCS! for the elastic process, as we shall show with t
results given below. It will be called the SCE-SE treatme
of the scattering process.

IV. COMPUTED DIFFERENTIAL CROSS SECTIONS

To evaluate both the static potential and the excha
interaction in the SCE expansion discussed before, we
panded first around the molecular center of mass the Ga
ian functions employed to represent the target electro
They were given by the following.~i! Triple-zeta-valence
basis set plus two polarization functions on each atomic c
ter. The molecular geometry usedRC-C51.397 Å andRC-H
51.084 Å. This basis set was obtained through theCADPAC

set of codes@20#. ~ii ! Double-zeta-valence basis set of Du
ning and Hay@21# with 66 basis functions at the optimize
geometry ofRC-C51.397 Å andRC-H51.073 Å, yielding a
total Hartree-Fock energy of2230.641 65 hartrees. Both ba
sis sets for the description of the molecular bound sta
appeared to give exactly the same differential cross sect
and therefore only one set of results will be given.

The partial-wave expansion for both the continuum el
tron and the SE interaction was carried out up tol max540.
When we further added correlation-polarization~CP! effects,
VCP the asymptotic dipole polarizability value that we em
ployed was of 69.64a0

3, evenly divided between the six ca
bon centers as we had done before@10#. The matching radius
with the inner correlation term given via density-function
theory was 7.712a0 @10#. The radial integration for the
coupled IDE of Eq.~2! was extended to 1336 points and t
~u,w! integration involved (84381) points, reduced within
each IR by the symmetry requirements. The computatio
time was of 0.3 h for the orbital expansion, 16.6 h for
symmetry contributions to scattering at one energy, and 8
for DCS evaluation. The work was carried out on a S
R10 000, 200-MHz workstation.

In the DMR calculations the target wave function w
described by the valence double-zeta basis set of Dun
and Hay@21#. The density matrix of the electronic distribu
tion obtained for the optimized geometry was stored to p
vide the input for the DMR calculations that generated fi
the Coulomb and exchange integrals of the SE treatm
discussed earlier. The constantsa andb in Eq. ~10! were set
to a510.333 andb59.667, which corresponds to the m
mentum range from 0.033k0 to 30k0 . A Gauss-Legendre
quadrature was employed for the radial integration an
Lebedev quadrature handled the angular integration.
number of points used in the angular quadrature was 974
the number of points in the radial quadrature was increa
stepwise to check the convergence. The DCS’s obtained
four highest and computationally feasible radial quadratu
were averaged and the range scanned by the respective
DCS’s for a given energy and scattering angle was take
an estimated error. Each calculation at one energy took 1
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for the static interaction and 13 h for the exchange inter
tion. The inversion of the Lippman-Schwinger equation to
4 h, for a total of 28 h for one energy and 181 points for ea
DCS. The work was carried out on a PC-Pentium III.

The results of calculations are presented in Figs. 1
showing the angular dependence of observed and calcu
DCS at 1.1, 4.9, 10, 15, 20, and 30 eV. In the upper pan
we present reference calculations and in lower panels,
present DMR DCS’s with the estimated error bars. For
low-energy regime at 1.1 and 4.9 eV we show two sets
reference calculations:~i! the SE calculations that emplo
the iterative exchange scheme~SCE-SE!, and ~ii ! the SCE
calculations that further include the global correlation pol
ization,VCP potential employed in our earlier work@19# and
in our recent calculations on the benzene molecule@22#
~SCE-SECP!. At the lower energy 1.1 eV, one clearly se
that the inclusion of correlation-polarization effects has
marked effect on the computed angular distributions and
important to improve their agreement with the measured d
@22#.

When one moves to the higher collision energy, on
other hand~see Fig. 2!, the VCP contributions to the full
electron-molecule interaction become less significant, sh
ing there that both SE and SECP calculations for the DCS
4.9 eV are very similar to each other and in good accord w

FIG. 1. Computed and measured angular distributions for e
tron scattering from gaseous benzene for the collision energy of
eV. The open circles show the experiments from Ref.@23#. Upper
panel: the dashed line is the static-exchange calculation with
iterative method~SCE! while the dotted line was obtained from th
calculation that included correlation-polarization effects within t
SCE method. Lower panel: an average from discrete momen
representation calculations performed with radial numerical qua
tures with 29, 31, 33, and 37 points. The error bars were estim
as described in the text.
3-4
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COMPUTING THE EXCHANGE INTERACTION IN . . . PHYSICAL REVIEW A65 052713
experiments. It is also significant to note that, at both
energies of 1.1 and 4.9 eV, the SCE and DMR calculation
the static and exchange level are essentially coincident.

The comparison between measured and computed di
ential cross sections is extended to higher collision ener
by the results reported in Figs. 3–6. In Figs. 3 and 4,
present the measured angular distributions at 10 and 15
also from Ref.@23# and both sets of our calculations at th
SE level, using the SCE and DMR methods discussed in
previous sections. The corresponding SCE calculations a
SECP level were not reported because they essentially c
cide with the points from the SCE-SE calculations. We f
ther report in the two figures the results from another se
independent calculations recently carried out on the sa
system@7#. Those calculations employed the Schwinger m
tichannel method~SMC! described in detail in their earlie
work @24,25#. The general physical modeling of the dynam
ics was the same of ours~fixed nuclei, SE, and SECP inte
actions! and both the occupied and scattering orbitals w
described through a 6-31111G (2d,p) basis set internal to
the electronic structure programGAMESS @26#.

It is clear from the shown comparison between theoret
results and the experimental findings that all the calcula
values follow the experiments remarkably closely in t
small-angle region (qc.m.<60°) while departing from mea
surements at the larger angles. We also see that the SCE
DMR results differ from each other in the large-angle sc
tering, with the DMR results following better the experime
tal oscillations.

As one moves to even higher collision energies, howe
all theoretical results at the SE level turn out to be coincid

FIG. 2. Same quantities as in Fig. 1 but for the collision ene
of 4.9 eV. The DMR line in the lower panel is an average fro
values obtained with radial quadratures containing 29, 31, 33,
35 points.
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FIG. 3. Same as in Figs. 1 and 2 but for the collision energy
10 eV. The dashed line in the upper panel is the SCE calculat
The upper panel also shows the computed SE values~dot-dashed
line! using the SMC approach from Ref.@7#. See Fig. 1 for the
meaning of other symbols. The DMR line in the lower panel is
average from values obtained with radial quadratures containing
25, 27, and 29 points.

FIG. 4. Same as in Fig. 3 but for the collision energy of 15 e
The DMR line in the lower panel is an average from values o
tained with radial quadratures containing 21, 23, 25, and 27 po
3-5
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with each other, as seen by the results presented in Fig
and 6. We show there the measured results at 20 and 3
@23# and also both the present calculations and those f
Ref. @7#. All the calculations follow very well experiments u
to qc.m.;60° and reproduce reasonably well the flat, slow
oscillating angular distributions betweenqc.m.;60° and
120°, while however giving larger DCS values in that ang
lar region for both collision energies. Furthermore, the S
and SMC computed quantities agree well with each othe
the backscattering region up toqc.m.;180°, while the DMR
results show larger values in the extreme backscattering
gion for the collision energy of 30 eV~see Fig. 6!.

As it can be seen from Figs. 1–6, at least a part of
discrepancy between the iterative SCE and DMR results
particular for large scattering angles, may be assigned to
errors of DMR calculations caused by a slow convergenc
the numerical quadrature. Most probably the error would
reduced by using a larger numerical quadrature. Howe
this would cause a considerable increase of the comp
tional cost and the need of a more powerful workstation
stead of a Pentium PC as done here. It would thus be m
profitable to search for a more effective numerical quad
ture: such work is already in progress and the prelimin
results show that the slow convergence is due to the s
potential term because of the long-range nature of
nuclear terms in momentum space and not due to the
change contribution. As an example of this, Fig. 7 shows
convergence of calculated DCS when the interaction po
tial is limited to the exchange term only. One sees in t
figure how good convergence is obtained already with v
small Legendre quadratures, with the angular quadrature
converging rather fast. The number of points in the Lebe

FIG. 5. Same as in Fig. 3 but for the collision energy of 20 e
The DMR line in the lower panel is an average from values
tained with radial quadratures containing 15, 19, 21, and 23 po
05271
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quadrature, in fact, could be lowered from 974 to 194 an
lar points without any visible change in the solid line
Fig. 7.

On the whole, however, all three types of independent
calculations agree well with each other over the whole se
examined energies and for most of the angular range at e
energy. They are also close to the experimental findi

.
-
s.

FIG. 6. Same as in Fig. 3 but for the collision energy of 30 e
The DMR line in the lower panel is an average from values o
tained with radial quadratures containing 17, 19, 21, and 23 po

FIG. 7. Test of convergence of the radial quadrature for
exchange potential: computed angular dependence for electron
tering from benzene at the collision energy of 15 eV. The DM
calculations were performed with different numbers of rad
points: 7~dotted line!, 9 ~dashed!; lines for 11, 13, 15, 17, 19, 21
23, and 25 points coincide and they are all represented by a si
solid line.
3-6
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COMPUTING THE EXCHANGE INTERACTION IN . . . PHYSICAL REVIEW A65 052713
above about 4 eV and for all the energies computed h
The actual numerical values of the SCE, DMR, and SM
computed DCS are reported in the Appendix.

V. SUMMARY AND CONCLUSIONS

In our present work we have described two different,
dependent ways of evaluatingK-matrix andT-matrix scatter-
ing elements for describing electron collisions of a fai
complex polyatomic target such as benzene and over a b
range of collision energies. In particular, we have verifi
once more that correlation-polarization effects are likely
play a minor role on the behavior of elastic angular distrib
tions for collision energies above about 4–5 eV. Thus
static-exchange description of elastic DCS is sufficient
bring computed values into quantitative agreement w
available experiments, at least for elastic-scattering d
Furthermore, we have compared two different computatio
methods to handle the quantum dynamics, the SCE itera
method, and the DMR method and found them to give
sentially the same results at all energies examined and al
give very good accord with experimental angular distrib
tions. A further comparison with earlier calculations@7# also
showed that their SE results are very close to the pre
ones.

In conclusion, therefore, we have found that at least t
different computational paths can be followed to treat, e
05271
e.
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ad

-
a
o
h
a.
al
ve
-
to

-

nt

o
-

ciently and realistically, electron scattering from fairly larg
polyatomic targets and that both methods provide good
cord, on an absolute scale, with experimental data of m
sured angular intensities for elastic scattering.
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APPENDIX

In this appendix, we present numerical data from Fi
1–6 for selected scattering angles given in Table I. The S
differential cross sections are taken from Ref.@7#.
nzene
TABLE I. Angular dependence of the differential cross section for the elastic scattering by the be
molecule for examined collision energiesE.

Method

Differential cross section~Å2!

Scattering angle

0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

E51.1 eV
DMR 11.4 9.9 7.9 5.5 3.6 2.5 2.1 1.8 1.7 1.7
SCE 10.9 10.6 8.3 5.4 3.3 2.0 1.4 1.3 1.2 1.2

E54.9 eV
DMR 21.3 15.8 7.3 2.4 1.5 1.5 1.5 1.9 2.8 2.3
SCE 22.9 22.3 7.9 2.5 1.7 1.4 1.1 1.6 2.7 3.4

E510 eV
DMR 33.7 19.5 5.0 1.8 1.8 1.7 1.3 1.3 2.2 3.0
SCE 36.8 21.0 4.3 1.7 2.2 1.7 2.0 2.0 2.6 3.3
SMC 48.3 24.7 4.9 2.3 2.5 2.3 2.2 1.5 2.4 3.7

E515 eV
DMR 45.2 20.4 2.6 1.3 1.9 1.4 1.0 1.6 1.9 2.6
SCE 58.2 24.3 2.4 1.3 1.7 1.6 1.7 2.9 2.8 3.4
SMC 59.4 24.8 2.4 1.3 1.7 1.6 1.6 2.8 2.7 3.2

E520 eV
DMR 53.9 22.5 1.6 1.3 1.4 1.1 1.1 1.4 2.2 3.9
SCE 63.6 22.7 1.3 1.4 1.4 1.1 1.3 2.1 3.7 5.7
SMC 62.8 22.4 1.3 1.4 1.4 1.1 1.3 1.9 3.3 5.3

E530 eV
DMR 63.7 16.7 1.2 1.5 0.9 1.0 0.9 1.2 2.5 4.5
SCE 63.5 16.6 1.1 1.2 1.0 1.0 1.1 1.7 2.2 2.7
SMC 65.2 17.1 1.1 1.3 1.0 1.0 1.1 1.6 2.2 2.6
3-7



n

,

J.

J.

ys

,

hys.

,

-

.
A.
t-

C̆ARSKY, C̆URIK, GIANTURCO, LUCCHESE, AND POLASEK PHYSICAL REVIEW A65 052713
@1# J. N. Bardsley, inAbstracts of the International Conference o
Atomic and Molecular Data and their Applications, edited by
W. L. Wiese~NIST, Washington, DC, 1997!, p. 3.

@2# M. A. Ali, Y.-K. Kim, W. Hwang, N. M. Weinberger, and M. E.
Rudd, J. Chem. Phys.106, 9602~1997!.

@3# J. E. Sanabia, G. D. Cooper, J. A. Tosell, and J. H. Moore
Chem. Phys.108, 389 ~1998!.

@4# L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao,
Phys. Chem. Ref. Data25, 1341~1996!.

@5# L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao,
Phys. Chem. Ref. Data26, 1 ~1997!.

@6# F. A. Gianturco and A. Jain, Phys. Rep.143, 347 ~1986!.
@7# M. H. F. Bettega, C. Winstead, and V. McKoy, J. Chem. Ph

112, 8806~2000!.
@8# Computational Methods for Electron-Molecule Collisions, ed-

ited by W. H. Huo and F. A. Gianturco~Plenum, New York,
1995!.

@9# F. A. Gianturco and N. Sanna, Comput. Phys. Commun.114,
142 ~1998!.

@10# F. A. Gianturco and R. R. Lucchese, J. Chem. Phys.108, 6144
~1998!.

@11# C. Winstead and V. McKoy, inModern Electronic Structure
Theory, edited by D. R. Yarkony~World Scientific, Singapore
1995!, Pt. II.
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