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Nuclear polarization in hydrogenlike 82
208Pb81¿
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We calculate nuclear-polarization energy shifts for the hydrogenlike82
208Pb811. The retarded transverse part

as well as the longitudinal part is taken into account as the electromagnetic interaction between an electron and
the nucleus. With a finite charge distribution for the nuclear ground state and the random-phase approximation
to describe the nuclear excitations, we obtain nuclear-polarization energy of the 1s1/2 state as238.2
(237.0) meV in the Feynman~Coulomb! gauge. For the 2s1/2, 2p1/2, and 2p3/2 states, they are26.7
(26.4), 20.2 (20.2), and10.0 (10.0) meV, respectively. The transverse contribution is small in compari-
son with the longitudinal nuclear-polarization correction. It is about 12% both for the 1s1/2 and 2s1/2 states.
The seagull term in the two-photon exchange diagrams is also shown to be quite important to obtain the
gauge-invariant nuclear-polarization energies.

DOI: 10.1103/PhysRevA.65.052509 PACS number~s!: 31.30.Gs, 31.30.Jv, 12.20.Ds
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I. INTRODUCTION

High-precision Lamb shift measurement on high-Z hydro-
genlike atoms@1# has evoked a renewed interest in the qu
tum electrodynamic~QED! calculation of electronic atoms
Comparison of theoretical results with corresponding exp
mental data allows sensitive tests of QED in strong elec
magnetic fields@2,3#. Any discrepancy between theory an
experiment may either motivate an improvement of theo
ical calculations and a refinement of experiments, or it m
indicate a possible influence of non-QED effects. In this c
text, the study of nuclear-polarization~NP! contributions to
the total energy shift of atomic levels becomes import
because as a background effect, it represents a natural
tation of any high-precision test of QED. Unfortunate
evaluation of NP is not practicable from first principles. An
calculation of NP is inherently phenomenological and d
pends on the parameters of the nuclear model used to
scribe the intrinsic nuclear dynamics.

During the past years, a lot of information has been ac
mulated regarding the calculation of the NP effect
muonic atoms@4#. There it leads to a large correction at
keV level, mainly because of the huge overlap of the mu
wave function with a nucleus and because the transition
ergies in muonic atoms are of the order of magnitude
typical nuclear excitation energies.

Much less attention has been paid to the NP effect
electronic atoms. They turn out to be reduced by orders
magnitude because of the small overlap of the electron w
function with the nucleus and because the transition ener
in electronic atoms are, in general, orders of magnitu
smaller than typical nuclear excitation energies.

The NP effect for electronic atoms was first calculated
terms of the second-order Schro¨dinger perturbation theory
@5#. A relativistic field-theoretical treatment of the nuclea
polarization calculation was then presented by Plunien
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co-workers@6–8# utilizing the concept of effective photon
propagators with nuclear-polarization insertions. The form
ism allows to take into account the effect of the electr
negative-energy intermediate states besides the usual co
bution of the electron excited into higher unoccupied int
mediate states. They found that in electronic atoms NP e
gies become small due to the cancellation betwe
contributions of positive-energy states and those of negat
energy states.

In the above studies, only the Coulomb interaction w
considered based on the argument that the relative magn
of transverse interaction is of order of (v/c)2 and the veloc-
ity v associated with nuclear dynamics is mainly nonrelat
istic. However, the transverse interaction is not negligible
the NP calculation because of the presence of an interfere
term of order (v/c) between the longitudinal and transver
components of the electromagnetic interaction. In fact
importance of the transverse interaction has been reporte
muonic atoms@9,10#. In Ref. @10#, the transverse nuclea
polarization has been studied in order to explain the discr
ancies between theory and experiment in the 2p and 3p
fine-structure splitting energies of muonic82

208Pb. The contri-
bution for the muonic 1s1/2 state amounts to 20% of that o
the Coulomb interaction.

The transverse interaction could be more important
electronic atoms than for muonic atoms because of its lo
range nature. The transverse nuclear polarization for he
electronic atoms was first studied by Yamanaka and
workers@11–13# using the Feynman gauge and a collecti
model for the nuclear excitations. They found that the tra
verse contribution is several times larger than the Coulo
contribution in heavy electronic atoms before the contrib
tions of the positive- and negative-energy states can
However, due to nearly complete cancellation between th
the transverse contribution becomes small and just can
the Coulomb contribution. As a result, the total NP ener
almost vanishes.

The purpose of the present paper is twofold: One is to
how much NP energy is expected for the best model of
©2002 The American Physical Society09-1
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82
208Pb nucleus available practically. For this purpose
Dirac-electron wave functions are solved in the Coulo
potential with a finite nuclear charge distribution and t
random-phase approximation~RPA! is used to describe th
nuclear excitations. The other is to see whether NP ener
are sensitive to the choice of the gauge. For this purpose
energies are calculated in both the Feynman and Coul
gauges. We will see that the NP calculation with only t
ladder and cross diagrams shows large gauge depend
and the inclusion of the seagull diagram removes most o
gauge dependence@14,15#.

Calculations are carried out in momentum space. T
involve only double integrals, which are easily carried o
with high precision.

II. NUCLEAR-POLARIZATION CALCULATION

The second-order contributions to the nuclear polariza
are given by three Feynman diagrams in Fig. 1.~Here we
regard the seagull graph as one of the nuclear-polariza
diagrams.! Two photons are exchanged between a bou
electron and a nucleus and the nuclear vertices are un
stood to have no diagonal matrix elements for the ladder
cross diagrams, and no nuclear intermediate states for
seagull diagram.

The nuclear-polarization energy shift due to the lad
and cross diagrams is given by@6#

DENP5 i ~4pa!2E d4x1•••d4x4c̄~x1!gmSF
e~x1 ,x2!gn

3c~x2!Dmj~x1 ,x3!PN
jz~x3 ,x4!Dzn~x4 ,x2!. ~1!

Herec is the electron wave function,SF
e is the external-field

electron propagator,Dmj is the photon propagator, andPN
jz

is the nuclear-polarization tensor that contains all inform
tion about nuclear dynamics. We use units with\5c51 and
e254pa.

In terms of transition charge-current densities, the el
tron and nuclear parts of Eq.~1! are written as

c̄~x1!gmSF
e~x1 ,x2!gnc~x2!

5E dE

2p
e2 iE(t12t2)(

i 8

j e
m~x1! i i 8 j e

n~x2! i 8 i

E2ve1 iEi 8e
~2!

and

FIG. 1. Diagrams contributing to nuclear polarization in lowe
order: ~a! ladder,~b! cross, and~c! seagull diagrams.
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jz~x3 ,x4!5E dv

2p
e2 iv(t32t4)(

I 8
S JN

j ~x3! II 8JN
z ~x4! I 8I

v2vN1 i e

2
JN

z ~x4! II 8JN
j ~x3! I 8I

v1vN2 i e D , ~3!

whereve5Ei 82Ei andvN5EI 82EI are the excitation en-
ergies of the electron and the nucleus, respectively. The
fixes i (I ) and i 8(I 8) stand for the initial and intermediat
states of the electron~nucleus!, respectively.

In the momentum representation, NP energy shifts du
the ladder and cross diagrams are written as

DENP
L 52 i ~4pa!2E dv

2pE dq

~2p!3E dq8

~2p!3
Dmj~v,q!

3Dzn~v,q8!(
i 8

j e
m~2q! i i 8 j e

n~q8! i 8 i

v1ve2 iEi 8e

3(
I 8

JN
j ~q! II 8JN

z ~2q8! I 8I

v2vN1 i e
~4!

and

DENP
X 5 i ~4pa!2E dv

2pE dq

~2p!3E dq8

~2p!3
Dmj~v,q!

3Dzn~v,q8!(
i 8

j e
m~2q! i i 8 j e

n~q8! i 8 i

v1ve2 iEi 8e

3(
I 8

JN
z ~2q8! II 8JN

j ~q! I 8I

v1vN2 i e
, ~5!

respectively. The substitution

Pjz~x3 ,x4!→ rN~x3! II

mp
djzd4~x32x4! ~6!

in Eq. ~1! gives the energy correction due to the seag
diagram@14,15#,

DENP
SG52 i ~4pa!2E dv

2pE dq

~2p!3E dq8

~2p!3
Dmj~v,q!

3Dzn~v,q8!(
i 8

j e
m~2q! i i 8 j e

n~q8! i 8 i

v1ve2 iEi 8e

3
rN~q2q8! II

mp
djz. ~7!

Here mp is the proton mass,djz is the Kronecker delta ex
tended to four dimensions withd0050, andrN(x) II is the
ground-state charge distribution of the nucleus. The total
energy shift is given by the sumDENP

L 1DENP
X 1DENP

SG .
Substituting the corresponding multipole expansions

the Fourier transform of the currents, these NP energy sh
are written in terms of the multipole form factors defined

t

9-2
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NUCLEAR POLARIZATION IN HYDROGENLIKE 82
208Pb811 PHYSICAL REVIEW A 65 052509
^ i 8iml~q!i i &5E dx j l~qx!^ i 8iYl~Vx!re~x!i i &, ~8!

^ i 8i tlL~q!i i &5E dx j L~qx!^ i 8iYlL~Vx!• je~x!i i & ~9!

for the electron, and

^I 8iMl~q!i I &5E dx j l~qx!^I 8iYl~Vx!rN~x!i I &,

~10!

^I 8iTlL~q!i I &5E dx j L~qx!^I 8iYlL~Vx!•JN~x!i I &

~11!

for the nucleus. In the above equations,j l(qx) is a spherical
Bessel function,YlL is a vector spherical harmonics, andl is
the multipolarity of transition. With these substitutions, a
gular parts ofq andq8 as well asv integrations in Eqs.~4!,
~5!, and~7! can be carried out analytically. Integrations wi
respect toq and q8 are carried out numerically. Nuclea
polarization energy shifts are thus given by the sum of th
double integrals over the nuclear and electron intermed
states. For the seagull contribution, the summation is o
over the electron intermediate states.

In the following, we shall give the formula for the N
energy in both the Feynman and Coulomb gauges. We
strict ourselves toI p501 for the spin parity of the nuclea
ground state. The spin parity of the nuclear intermediate s
I 8p is in this case equal to the spin parity of transitionlp.

A. The Feynman gauge

The photon propagator in the Feynman gauge is given

Dmj
F ~v,q!52

gmj

q21 i e
. ~12!

Here the metric tensorgmj is defined byg0051 andgii 5
21. With this propagator, the NP energies due to the lad
cross, and seagull terms are given by

DENP
L 52(

i 8I 8

~4pa!2

~2i 11!~2I 811!
S 2

p D 2E
0

`

dqE
0

`

dq8

3I 1~q,q8!W L
F~q!W L

F~q8!, ~13!

DENP
X 52(

i 8I 8

~4pa!2

~2i 11!~2I 811!
S 2

p D 2E
0

`

dqE
0

`

dq8

3I 2~q,q8!W X
F~q!W X

F~q8!, ~14!

DENP
SG52(

i 8

~4pa!2

~2i 11! S 2

p D 2E
0

`

dqE
0

`

dq8I SG~q,q8!

3W SG
F ~q,q8!. ~15!
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The q and q8 integrals may be improper in case of the N
calculation for the electron excited states. In such cases
should evaluate them by

E dq

q6 i e
5P

1

q
7 ipd~q!, ~16!

where P denotes the Cauchy principal value. The sec
term on the right-hand side of Eq.~16! means that the energ
shift is, in general, complex valued. While the real part d
scribes the physical energy shift of the bound state,
imaginary part gives the decay rate of the bound state du
possible transitions of the electron into lower-lying unocc
pied bound states.

In the above expressions,I 1 ,I 2 , and I SG are functions
written as

I 6~q,q8!5
qq8

2~ṽe1q!~ṽe1q8!~vN1q!~vN1q8!

3H sgn~Ei 8!F ṽevN

q1q8
1~ṽe1vN1q1q8!G

6
qq8

q1q8
6u~6Ei 8!

2qq8

vN1ṽe
J , ~17!

I SG~q,q8!5sgn~Ei 8!
1

2mp

qq8~ṽe1q1q8!

~q1q8!~q1ṽe!~q81ṽe!
,

~18!

where ṽe5sgn(Ei 8)ve , while W L
F(q), W X

F(q), and
W SG

F (q) are written in terms of the electron and nucle
form factors as

W L
F~q!5(

l
F ^ i 8iml~q!i i &^I 8iMl~q!i I &2 (

L5l21

l11

3~21!L112l^ i 8i tlL~q!i i &^I 8iTlL~q!i I &G ,

~19!

W X
F~q!5(

l
F ^ i 8iml~q!i i &^I 8iMl~q!i I &

1 (
L5l21

l11

^ i 8i tlL~q!i i &^I 8iTlL~q!i I &G , ~20!

W SG
F ~q,q8!5(

l
(

L5l21

l11

^ i 8i tlL~q!i i &^I iML~q,q8!i I &

3^ i 8i tlL~q8!i i &. ~21!

The seagull term contains the Fourier transform of
nuclear ground state,
9-3
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^I iML~q,q8!i I &5E r 2drrN~r ! II j L~qr ! j L~q8r !. ~22!

B. The Coulomb gauge

The photon propagator in the Coulomb gauge is given

D00
C ~v,q!5

1

q21 i e
, Di j

C~v,q!5
1

q21 i e
S d i j 2

qiqj

uqu2
D ,

~23!

and (d i j 2qiqj /uqu2) in Di j
C projects out both transverse par

of electronic and nuclear currents.
Making use of the relation

je
T~2q!•JN

T~q!5 je~2q!•JN~q!1
vevN

q2
re~2q!rN~q!,

~24!

we obtain NP energies for the ladder, cross, and sea
terms as

DENP
L 52(

i 8I 8

~4pa!2

~2i 11!~2I 811!
E

0

`

dqE
0

`

dq8

3H u~Ei 8!

ṽe1vN

W L
C~q!W L

C~q8!1I 1~q,q8!

3W T
C~q!W T

C~q8!1I 1
LT~q8!W L

C~q!W T
C~q8!J ,

~25!

DENP
X 52(

i 8I 8

~4pa!2

~2i 11!~2I 811!
E

0

`

dqE
0

`

dq8

3H 2u~2Ei 8!

ṽe1vN

W L
C~q!W L

C~q8!1I 2~q,q8!

3W T
C~q!W T

C~q8!1I 2
LT~q8!W L

C~q!W T
C~q8!J ,

~26!

DENP
SG52(

i 8

~4pa!2

~2i 11! S 2

p D 2E
0

`

dqE
0

`

dq8I SG~q,q8!

3W SG
C ~q,q8!. ~27!

In the above expressions,I 1
LT(q8) andI 2

LT(q8) come from
the interference between the longitudinal and transve
terms and are given by

I 6
LT~q8!56

sgn~Ei 8!q8~ṽe1vN!6u~6Ei 8!2q82

~q81ṽe!~q81vN!~ṽe1vN!
.

~28!
05250
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In the Coulomb gauge,W L
C(q), W L

C(q), andW L
C(q) are

given by

W L
C~q!5(

l
^ i 8iml~q!i i &^I 8iMl~q!i I &, ~29!

W T
C~q!52(

l
FvevN

q2
W L

C~q!1 (
L5l21

l11

^ i 8i tlL~q!i i &

3^I 8iTlL~q!i I &G , ~30!

W SG
C ~q,q8!5(

l
F (

L5l61
@^ i 8iulL~q!i i &^I iML~q,q8!i I &

3^ i 8iulL~q8!i i &#1^ i 8i tll~q!i i &

3^I iMl~q,q8!i I &^ i 8i tll~q8!i i &G ~31!

with

^ i 8iull21~q!i i &5^ i 8i tl21~q!i i &

2 iA l

2l11

ve

q
^ i 8iml~q!i i &, ~32!

^ i 8iull11~q!i i &5^ i 8i tl11~q!i i &

2 iA l11

2l11

ve

q
^ i 8iml~q!i i &. ~33!

C. Electron-wave functions

The radial Dirac equations for the electron are written

S d

dr
1

k

r DGE,k5@me1E2V~r !#FE,k~r !, ~34!

S d

dr
2

k

r DFE,k5@me2E1V~r !#GE,k~r !, ~35!

where the potentialV(r ) is obtained from the the ground
state charge distribution of208Pb, which is assumed to be
two-parameter Fermi distribution

rN~r ! II 5
r0

11exp@~r 2R0!/a#
~36!

with R056.6477 fm anda50.5234 fm @10#. These equa-
tions are solved numerically by using the fourth-ord
Runge-Kutta method. Both for the positive- and negativ
energy continuum states, the radial functions are normali
as

GE,k →
r→`

S uE1meu
pp D 1/2

sin~pr1d!, ~37!
9-4
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FE,k →
r→`

S uE2meu
pp D 1/2

cos~pr1d! ~38!

with p5AE22me
2. Bound-state wave functions are norma

ized as*0
`(Gnk

2 1Fnk
2 )dr51.

Transition form factors for the electron, Eqs.~8! and ~9!,
are calculated by using the formula given in Ref.@10#. They
are stored in the computer with six different step sizes ofDq
depending on the electron energyEi 8 . In Fig. 2, we showE1
charge form factorŝEi 8 ,p1/2im1(q)i1s1/2& of the electron
with three different energies,Ei 852, 6, and 10 MeV. One
finds that they have sharp peaks atq5Ei 8 and decrease rap
idly asq increases. Numerical integrations in Eqs.~13!–~15!
and ~25!–~27! are performed by Simpson’s one-third rule.

Most of the NP correction come from the continuu
states with energies greater thanme and less than2me .
Summation over the electron statesi 8 in Eqs.~13!–~15! and
Eqs. ~25!–~27! implies integration with respect toEi 8 .
Integration with respect toEi 8 is carried out by
using the Gauss-Legendre quadrature over the inter
2250 MeV,Ei 8,2me and me,Ei 8,250 MeV. Accu-
racy of numerical results is checked by comparing them w
those of Simpson’s rule. We also included the electron bo
states forn8<7 in the calculation.

D. RPA calculation of nuclear charge and current densities

The random-phase approximation is used to describe
nuclear excitations. The RPA theory is the most succes
microscopic theory to calculate the excitation spectrum
208Pb. Our RPA spectrum of208Pb agrees very well with a
number of experimental measurements as well as with
most dependable sum rules, which is crucial to estimate
correct magnitude of the NP correction. The model was a
applied with success to the NP calculation of muonic208Pb
@10,16#. We thus have confidence that our results are con
erably more reliable than the earlier calculations.

The RPA calculation we employed is the same as th
performed earlier in Ref.@10#, i.e., the same single-particl
basis, the same particle-hole configuration of approxima
a full 3\v space, and the same Migdal force@17# parameters

FIG. 2. Electronic Coulomb form factor
^Ei 8 ,p1/2im1(q)i1s1/2& for the Ei 852-, 6-, and 10-MeV states
~solid line!. The dotted line is the nuclear Coulomb form factor f
the 14.6-MeV 12 state.
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to describe nuclear two-body interaction. Nuclear transit
form factors, Eqs.~10! and~11!, are calculated by assumin
the impulse charge-current operators.

The calculated charge and magnetic-current densities
examined by comparing with experimentalB(El) and
B(Ml) using the relations

B~El:I→I 8!5
1

2I 11
UeE rNl

I 8I ~r !r l12drU2

~39!

and

B~Ml:I→I 8!5
1

2I 11

l

l11
UeE JNll

I 8I ~r !r l12drU2

.

~40!

In Table I, we compared the energy-weighted sum
B(El) over the RPA states with the classical energ
weighted sum-rule value~EWSR! of Ref. @18#. The results
for theE0 andE1 transitions exceed the EWSR by 20% a
10%, respectively, while the results for theE2 andE3 tran-
sitions agree well with the EWSR. For theE4 andE5 tran-
sitions, our results exhaust only 50% of the EWSR. T
may be due to the insufficient configuration space for theE4
andE5 calculations.

On the other hand, there is no experimental constra
imposed on the nuclear electric current. However, the e
tromagnetic current should satisfy the continuity equat
required by charge conservation,

]

]t
rN1“•JN50. ~41!

Using the nuclear HamiltonianHN , we rewrite it as

i @HN ,rN#1“•JN50. ~42!

TABLE I. The energy-weighted sums ofB(El) over the RPA
states. The classical EWSR values@18# are also shown for compari
son. The values are given in units ofe2 bl MeV.

El Present calculation Classical EWSRa

E0b 1.97 1.64
E1c 8.15 7.38
E2 22.2 20.5
E3 24.4 23.4
E4 14.2 23.6
E5 11.3 23.1
M1d 294

aThe radial momentŝr l&p in the classical EWSR are calculated b
the Fermi charge distribution~36!.
bThe E0 operator is defined asO(E0)5(pr 2/A4p.
cThe E1 operator is defined asO(E1)5( i21/2t3rY1m .
dThe value given in units ofmN MeV.
9-5
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Taking the matrix element of Eq.~42! between the initial and
the final nuclear states, we obtain the charge conserva
condition

ivNrNl
I 8I ~r !52A l

2l11S d

dr
2

l21

r D JNll21
I 8I ~r !

1A l11

2l11S d

dr
1

l12

r D JNll11
I 8I ~r !.

~43!

Here,vN5EI 82EI is the energy of nuclear excitation.
For any kind of model calculation involving the nucle

current, it is necessary for the model to satisfy the cha
conservation condition in order to observe the gauge inv
ance @14#. Unfortunately, the charge-current densities co
structed from the present RPA calculation do not satisfy
charge conservation of Eq.~43!. The violation of charge con
servation comes from the inconsistency of using empir
single-particle energies together with the impulse char
current operators, as is discussed in Refs.@10,19#. It is desir-
able if one could construct a microscopic self-consist
model together with the nuclear current satisfying the cha
conservation, which is realistic enough to reproduce the
served spectra andB(El) values. However, the refinemen
of the calculation will be left for the future and at present w
are satisfied with the fact that the calculated NP energ
show only a small gauge violation even though empiri
single-particle energies are used in the RPA calculation.

III. RESULTS AND DISCUSSION

Nuclear-polarization energy shifts are obtained by co
puting an energy shift for each of the RPA excitations a
summing the results. Our calculation gives 38, 129, 1
222, 202, 218, and 70 nuclear states for the 01, 12, 21, 32,
41, 52, and 11 excitations, respectively. Figure 3 shows t
NP energy spectra of the 1s1/2 state for the respective nuclea
spins and parities. These spectra are calculated in the C
lomb gauge with the Coulomb and transverse parts of
electromagnetic interaction. They are very similar to the R
spectra ofB(El) andB(M1).

Table II summarizes the NP energies of the 1s1/2 state for

82
208Pb811. The first column denotes nuclear spins and pa
ties. The entries in the second column indicate the contr
tions to the NP energy from the ladder, cross, and sea
terms as well as those of the positive- and negative-ene
intermediate states of the electron. The third column sho
the NP energies in the Feynman gauge, while the fourth
umn shows the NP energies in the Coulomb gauge.
transverse contributions are included in both columns. T
fifth column shows the Coulomb NP energies without t
transverse contribution~hereafter referred to as CNP!. The
sixth column shows the results of the previous NP calcu
tion in the Feynman gauge assuming a collective model
the nuclear excitations@13#. The seventh column is the CN
from the same model. Finally, the last column shows
CNP calculated in Ref.@8#.

First of all, the present CNP energies is compared with
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previous calculations. They are233.2 meV~fifth column!,
235.5 meV ~seventh column!, and 229.3 meV ~eighth
column!. The present calculation employs RPA charge d
sities, while the previous ones are based on the collect
model charge densities. They agree fairly well. The 10
variation between the fifth and eighth columns may be att
uted to the energy-weighted sum ofB(El) over the RPA
states, which exceeds the classical EWSR value by 20%
theE0 transition and 10% for theE1 transition. On the other
hand, there exists 20% variation between the seventh
eighth columns, though they are based on the same collec
model. The difference is conspicuous only for the monop
NP energy, i.e., 27.2 meV ~seventh column! and
23.3 meV ~eighth column!. The difference may be attrib
uted to the Dirac-electron wave functions used; those for
finite charge distribution are used in the eighth column, wh
those for the point charge are used in the seventh colu
The electron wave functions generated from the point cha
and the finite charge distribution differ appreciably only i
side the nucleus and that is exactly the region where
monopole nuclear potential exists.

In Table II, we see that the nuclear dipole states g
predominant NP contribution. The table also reveals that
prisingly large cancellations occur in the resulting NP e
ergy. The ladder, cross, and seagull diagrams in Fig. 1
give large contributions to the NP energy if their contrib
tions from the positive- and negative-energy electron sta
are separately considered. The positive- and negative-en
electron states contribute to the NP energy with oppo
signs in each of the diagrams, the fact that is also observe
Refs. @8,13#. Besides, the positive- and negative-ener
states in the seagull term contribute to the NP energy w
signs opposite to those of the ladder and cross terms.
glecting any one of these can introduce a nonnegligi
change in the NP energy, while inclusion of all these p
duces a very small result, because of the cancellation.
total E1 NP energy differs from the CNP energy by 30%

The dominance of theE1 contribution to the NP energy
can be seen clearly in the spectral NP density of a nuc
excitation as a function of electron energy. In Fig. 4, spec
densities in the Coulomb gauge are shown for three differ
nuclear states:~a! 01 ~13.3 MeV!, ~b! 12 ~14.6 MeV!, and
~c! 21 ~10.2 MeV!. In each panel, the solid line shows th
spectral density including the transverse contribution, wh
the dotted line shows the result without the transverse eff
One can see that the low-energy region of the 12 state@Fig.
4~b!# is different from the other two. The 12 spectrum shows
the peak at threshold (Ei 85me). The peak is produced by th
nonvanishing matrix elements of̂ I 8iT10(q)i I & and
^ i 8i t10(q)i i & at q50.

An important feature of the present calculation, which
in fact crucial for the numerical estimate of NP energies
that there exists a large violation of gauge invariance in
NP energy shifts as far as only the ladder and cross diagr
of Figs. 1~a! and 1~b! are taken into account. By using th
minimal prescription, the nonrelativistic electromagnetic
teraction involves the square of vector potential called
seagull term coming from the kinetic energy, and this term
necessary for the gauge invariance in a nonrelativistic sys
9-6



NUCLEAR POLARIZATION IN HYDROGENLIKE 82
208Pb811 PHYSICAL REVIEW A 65 052509
FIG. 3. Nuclear-polarization spectra as a function of nuclear excitation energy. The Coulomb gauge is assumed.
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@14,15#. It is interesting to investigate whether the inclusi
of the seagull term restores the gauge invariance of
present NP calculation.~A proof of the gauge invariance i
given in the Appendix.!

As seen from Table II, this is nicely confirmed nume
cally. With the ladder and cross diagrams, the NP energy
the 1s1/2 was11.5 meV in the Feynman gauge, while bein
232.7 meV in the Coulomb gauge. The gauge depende
was 34.2 meV. However, after the inclusion of the seag
05250
e

r

ce
ll

term, it is 238.2 meV in the Feynman gauge an
237.0 meV in the Coulomb gauge. The gauge depende
is reduced to 1.2 meV. This small gauge dependence sh
that the seagull term is quite important in restoring the ga
invariance of the NP calculation. The fact also implies th
the use of empirical single-particle energies in the RPA c
culation does not introduce a serious violation of gauge
variance into the NP energies.

For the excitedL-shell electrons, we can repeat the d
9-7
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TABLE II. Nuclear-polarization correction~meV! to the 1s1/2 state of82
208Pb811. Energy shiftsDEL, DEX,

andDESG are contributions of the ladder, cross, and seagull terms, respectively, whileDE1 (DE2) denotes
contribution from the positive-~negative-! energy intermediate states of the electron.

Presenta Presentb Presentc Ref. @13#d Ref. @13#e Ref. @8#f

lp Contribution Feynman NP Coulomb NP CNP NP CNP CNP

01 DEL1 25.7 26.5 27.0
DEL2 10.4 10.2
DEX1 21.2 20.2
DEX2 12.7 12.7 13.0

DEL1DEX 23.8 23.9 24.0 26.6 27.2 23.3
DESG1 10.7 0.0
DESG2 20.9 0.0

DEL1DEX1DESG 23.9 23.9

12 DEL1 2119.1 291.1 237.0
DEL2 174.0 137.6
DEX1 249.8 229.4
DEX2 1110.1 164.2 116.7

DEL1DEX 115.2 218.7 220.3 116.3 219.5 217.6
DESG1 1144.2 187.8
DESG2 2186.5 295.1

DEL1DEX1DESG 227.1 226.0

21 DEL1 213.0 215.3 214.4
DEL2 12.0 10.4
DEX1 23.2 20.5
DEX2 18.1 19.1 18.6

DEL1DEX 26.1 26.3 25.8 27.0 26.3 25.8
DESG1 14.4 12.7
DESG2 24.1 22.1

DEL1DEX1DESG 25.7 25.7

32 DEL1 25.0 26.5 26.3
DEL2 11.0 10.1
DEX1 21.6 20.1
DEX2 13.2 14.1 14.0

DEL1DEX 22.4 22.4 22.3 22.9 22.6 22.6
DESG1 11.0 10.6
DESG2 20.8 20.4

DEL1DEX1DESG 22.2 22.2

41 DEL1 21.1 21.5 21.4
DEL2 10.2 0.0
DEX1 20.4 0.0
DEX2 10.7 10.8 10.8

DEL1DEX 20.7 20.7 20.6
DESG1 10.5 10.4
DESG2 20.4 20.3

DEL1DEX1DESG 20.6 20.6

52 DEL1 20.4 20.5 20.4
DEL2 10.1 0.0
DEX1 20.1 0.0
DEX2 10.2 10.2 10.2

DEL1DEX 20.2 20.2 20.2
052509-8
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TABLE II. ~Continued!.

Presenta Presentb Presentc Ref. @13#d Ref. @13#e Ref. @8#f

lp Contribution Feynman NP Coulomb NP CNP NP CNP CNP

DESG1 10.3 10.1
DESG2 20.2 20.1

DEL1DEX1DESG 20.2 20.2

11 DEL1 20.4 20.4
DEL2 10.1 10.1
DEX1 20.2 20.2
DEX2 10.1 10.1

DEL1DEX 20.4 20.4
DESG1 13.8 13.8
DESG2 21.7 21.7

DEL1DEX1DESG 11.7 11.7

Total
DEL1 2144.7 2121.8 266.5
DEL2 177.8 138.3
DEX1 256.7 230.4
DEX2 1125.1 181.2 133.3

DEL1DEX 11.5 232.7 233.2 20.2 235.5 229.3
DESG1 1154.9 195.4
DESG2 2194.6 299.7

DEL1DEX1DESG 238.2 237.0

aThe NP energies in the Feynman gauge.
bThe NP energies in the Coulomb gauge.
cThe unretarded NP energies in the Coulomb gauge.
dThe NP energies evaluated in the Feynman gauge. Electron wave functions were solved by assum
point charge for the nuclear ground state. Nuclear transition charge densities were determined by a co
model. They were normalized to the observedB(El) for the low-lying nuclear states and EWSR values f
the high-lying giant resonances. Nuclear current densitiesJNll21(r ) were obtained by solving the equatio
of charge conservation~43! assumingJNll11(r )50.
eSame as footnote d except for the unretarded NP energies.
fThe unretarded NP energies. Same as footnote e except for the electron wave functions solved by a
a finite charge distribution for the nuclear ground state.
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cussion that theE1 multipole plays a main role in the NP
effects of hydrogenlike atoms and essentially determines
magnitude of the NP energy.

The total NP energies for the 1s1/2, 2s1/2, 2p1/2, and
2p3/2 states are summarized in Table III and are compa
with the CNP energies of the present calculation and thos
Ref. @8#. The transverse contribution is small in comparis
with the CNP contribution. It is about 12% both for the 1s1/2
and 2s1/2 states. In spite of large cancellation involved in t
calculation, the resulting NP energies become very clos
the CNP energies. The present results may indicate tha
gauge-invariant contributions of the order of (v/c) and
(v/c)2 are small in comparison with the contribution of th
order of (v/c)0. The results confirm the estimates for the N
corrections of Ref. @8#. They indicate that within the
collective-model approach, the gauge-invariant contribut
up to order (v/c)0 can be deduced from the longitudinal pa
of the effective photon propagator only when the Coulo
gauge is employed. A relatively large transverse contribut
is seen in the NP energy of the 2p1/2 state, though the NP
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energy of this state is negligibly small. This is due to theE1
transition from the 2p1/2 state to the lower-lying 1s1/2 state.
The transverse component is dominant in the transition
seen from the peak in the 12 spectrum of Fig. 4~b!.

Since the nuclear dipole states have predominant NP c
tributions, we must note here effects of the spurious cen
of-mass motion of the nucleus on the NP energies. T
present Migdal force brings down the lowest 12 state to the
imaginary eigenvalue of 1.32i MeV. Since this 12 state car-
ries most of the spurious center-of-mass motion, we
cluded this nuclear state from the NP calculation. The 0.
of the spurious center-of-mass motion remains in the res
the 12 states, whose effects on the NP energies are ne
gible. Thus our results for NP energy due to the cross
ladder diagrams contain intrinsic excitations only. On t
other hand, the seagull contributions calculated by using
~22! contain effects of both intrinsic excitations and th
center-of-mass motion. The seagull contribution com
from the center-of-mass motion must be eliminated for
dipole mode. This was achieved by using the effective dip
9-9
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charges ep5N/A, en52Z/A instead of using the true
chargesep51, en50.

IV. SUMMARY

We have calculated the NP energy shifts for the hydrog
like 82

208Pb811 taking into account the effects of the electro
in the negative-energy continuum, in addition to the us
contributions of the electron excited into higher unoccup
orbitals. Evaluation of NP energy contains the seagull gr
as well as the ladder and cross diagrams. The Dirac-elec
wave functions were solved in the Coulomb potential with

FIG. 4. Spectral NP densities with no dimensions for~a! 01

13.3-MeV,~b! 12 14.6-MeV, and~c! 21 10.2-MeV states as a func
tion of electron energyEi 8 . Nuclear-polarization energy is given b
the integral of spectral density overEi 8 . The solid line denotes the
calculation with both the Coulomb and transverse parts of the e
tromagnetic interaction, while the dotted line denotes the calc
tion with only the Coulomb part of the interaction. Electron inte
mediate states~a! uEi 8 ,s1/2&, ~b! uEi 8 ,p1/2&, and ~c! uEi 8 ,d3/2& are
assumed in the respective panels.
05250
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l
d
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finite charge distribution for the nuclear ground state and
RPA wave functions were employed for the nuclear exci
states. The impulse charge-current operators were assu
in the calculation of nuclear charge and current densities

The results presented in the preceding section can be s
marized as follows.

~1! In the Feynman~Coulomb! gauge, we obtained the N
energies of238.2 (237.0), 26.7 (26.4), 20.2 (20.2),
and 10.0 (10.0) meV for the 1s1/2, 2s1/2, 2p1/2, and
2p3/2 states, respectively.

~2! The transverse contribution is small in comparis
with the CNP contribution. It is about 12% both for the 1s1/2
and 2s1/2 states. The present results confirm the estimates
the NP corrections presented earlier@8#.

~3! The NP shifts of electronic atoms have serious gau
dependence if one calculates them with only the ladder
cross diagrams of the two-photon exchange processes.
NP energies for the 1s1/2 state due to these diagrams a
11.5 meV and232.7 meV in the Feynman and Coulom
gauges, respectively. Inclusion of the seagull graph gives
NP energies of238.2 meV and237.0 meV. The seagul
graph is quite important in restoring the gauge invariance
the NP calculation.

~4! We found that the nuclear dipole states have a p
dominant NP contribution. We also found that surprising
large cancellations occur in the resulting NP energy. The l
der, cross, and seagull diagrams all give large contributi
to the NP energy if their contributions from the positive- a
negative-energy electron states are separately consid
Neglecting any one of these can introduce a non-neglig
change in the NP energy, while inclusion of all these p
duces results very similar to the CNP calculations.
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APPENDIX: GAUGE INVARIANCE

To prove the gauge invariance of the NP energy, we w
the sum of the ladder and cross contributions as follows:

DENP
L 1DENP

X 52 i
~4pa!2

2 E dv

2pE dq

~2p!3E dq8

~2p!3

3Pe
mn~v,q,q8!Dmj~v,q!Dzn~v,q8!

3PN
jz~v,q,q8!, ~A1!

c-
-

TABLE III. Total nuclear-polarization corrections~meV! to the
1s1/2, 2s1/2, 2p1/2, and 2p3/2 states of82

208Pb811 in both the Feyn-
man and Coulomb gauges. The abbreviation CNP denotes the
retarded results.

Present Present Present Ref.@8#

States Feynman NP Coulomb NP CNP CNP

1s1/2 238.2 237.0 233.2 229.3
2s1/2 26.7 26.4 25.7 25.0
2p1/2 20.2 20.2 20.6
2p3/2 10.0 10.0 20.0
9-10
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wherePe
mn(v,q,q8) andPN

jz(v,q,q8) are the electronic- and
nuclear-polarization tensors defined by

Pe
mn~v,q,q8!5(

i 8
S j e

m~2q! i i 8 j e
n~q8! i 8 i

v1ve2 iEi 8e

2
j e
n~q8! i i 8 j e

m~2q! i 8 i

v2ve1 iEi 8e
D , ~A2!

PN
jz~v,q,q8!5(

I 8
S JN

j ~q! II 8JN
z ~2q8! I 8I

v2vN1 i e

2
JN

z ~2q8! II 8JN
j ~q! I 8I

v1vN2 i e D . ~A3!

Photon propagators in the Feynman and Coulomb gauge
related to each other by

Dmj
C ~q,v!5Dmj

F ~q,v!

2
1

q21 i e
S qmqj2v~qmgj01qjgm0!

q2 D .

~A4!

If both qmPe
mn50 andqjPN

jz50 are satisfied, it is easy t
see that the Feynman and Coulomb gauges give the s
result for the NP contributions given by Eq.~A1!.

Multiplying both sides of the electronic-polarization te
sor by qm , and using the continuity equation of the char
conservation, one obtains

qmPe
mn~v,q,q8!5(

i 8
@^ i ur̂e~2q!u i 8&^ i 8u ĵ e

n~q8!u i &

2^ i u ĵ e
n~q8!u i 8&^ i 8ur̂e~2q!u i &#

5^ i u@ r̂e~2q!, ĵ e
n~q8!#u i &. ~A5!

In deriving the second equality, we have assumed the c
R
-
Z.

-

A

05250
are

me

-

pleteness of the intermediate states of the electron. For
electromagnetic charge and current operators

r̂e~2q!5S 1 0

0 1D eiq•r, ĵ e~q8!5S 0 s

s 0 D e2 iq8•r

~A6!

used with the Dirac-electron wave functions, the commu
tion relation in Eq.~A5! vanishes. Hence the gauge inva
anceqmPe

mn(v,q,q8)50 for the electronic-polarization ten
sor follows.

For the nuclear-polarization tensor, we can obtain a fo
similar to Eq.~A5! by assuming charge conservation as w
as the completeness relation. In the present calculation,
impulse charge and current operators

r̂N~2q!5(
i

Z

eiq•ri,

ĴN~q!5(
i

Z
\

“ri
2

]

“ri

2mpi
eiq•ri1(

i

A

~“ ri
3m!eiq•ri ~A7!

are employed with the nonrelativistic RPA calculation. T
spin-current operator in the second term ofĴN(q) commutes
with r̂N . Hence the spin current introduces no gauge vio
tion into the NP calculation of Eq.~A1!. The convection
current, on the other hand, does not commute withr̂N lead-
ing to a violation of gauge invariance,

^I u@ r̂N~2q!, ĵ N
n ~q8!#uI &5

q

mp
rN~q2q8! II . ~A8!

Therefore the NP contribution given by Eq.~A1! is not gauge
invariant with the impulse charge-current operators. Wh
the seagull tensor of Eq.~6! is added to the nuclear
polarization tensor of Eq.~A3!, this term is just canceled
Hence the gauge invariance of NP calculation is restored
the seagull term together with the ladder and cross term
f,

r-
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