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We calculate nuclear-polarization energy shifts for the hydrogerfjet?'*. The retarded transverse part
as well as the longitudinal part is taken into account as the electromagnetic interaction between an electron and
the nucleus. With a finite charge distribution for the nuclear ground state and the random-phase approximation
to describe the nuclear excitations, we obtain nuclear-polarization energy of sthe slate as—38.2
(—=37.0) meV in the FeynmafCoulomb gauge. For the &, 2py», and Zs, States, they are-6.7
(—6.4),—0.2 (—0.2), and+0.0 (+0.0) meV, respectively. The transverse contribution is small in compari-
son with the longitudinal nuclear-polarization correction. It is about 12% both for $hg dnd X, states.
The seagull term in the two-photon exchange diagrams is also shown to be quite important to obtain the
gauge-invariant nuclear-polarization energies.
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[. INTRODUCTION co-workers[6—8] utilizing the concept of effective photon
propagators with nuclear-polarization insertions. The formal-

High-precision Lamb shift measurement on higltydro-  ism allows to take into account the effect of the electron
genlike atomg1] has evoked a renewed interest in the quannegative-energy intermediate states besides the usual contri-
tum electrodynami¢QED) calculation of electronic atoms. bution of the electron excited into higher unoccupied inter-
Comparison of theoretical results with corresponding experimediate states. They found that in electronic atoms NP ener-
mental data allows sensitive tests of QED in strong electrogies become small due to the cancellation between
magnetic field§2,3]. Any discrepancy between theory and contributions of positive-energy states and those of negative-
experiment may either motivate an improvement of theoretanergy states.
ical calculations and a refinement of experiments, or it may | the above studies, only the Coulomb interaction was
indicate a possible influence of non-QED effects. In this conqnsidered based on the argument that the relative magnitude
text, the study of nuclear-polarizatighP) contributions to of transverse interaction is of order af/¢)? and the veloc-

the total energy shift of atomic levels becomes 'mp"”afnﬁty v associated with nuclear dynamics is mainly nonrelativ-
because as a background effect, it represents a natural limi=

) ; o Istic. However, the transverse interaction is not negligible in
tation of any high-precision test of QED. Unfortunately, the NP calculation because of the presence of an interference
evaluation of NP is not practicable from first principles. Anyt f ord /¢) betw the | b itudinal and t
calculation of NP is inherently phenomenological and de-€'m ot or er ¢/c) between the longitudinal and transverse

pends on the parameters of the nuclear model used to ggomponents of the electromagnetic interaction. In fact the
scribe the intrinsic nuclear dynamics. importance of the transverse interaction has been reported for

During the past years, a lot of information has been accufuonic atoms[9,10]. In Ref. [10], the transverse nuclear
mulated regarding the calculation of the NP effect forpolarization has been studied in order to explain the discrep-
muonic atomg4]. There it leads to a large correction at a ancies between theory and experiment in the @&d 3
keV level, mainly because of the huge overlap of the muorfine-structure splitting energies of muorgg®Pb. The contri-
wave function with a nucleus and because the transition erbution for the muonic §,,, state amounts to 20% of that of
ergies in muonic atoms are of the order of magnitude othe Coulomb interaction.
typical nuclear excitation energies. The transverse interaction could be more important for

Much less attention has been paid to the NP effect foelectronic atoms than for muonic atoms because of its long-
electronic atoms. They turn out to be reduced by orders ofange nature. The transverse nuclear polarization for heavy
magnitude because of the small overlap of the electron wavelectronic atoms was first studied by Yamanaka and co-
function with the nucleus and because the transition energiesorkers[11-13 using the Feynman gauge and a collective
in electronic atoms are, in general, orders of magnitudenodel for the nuclear excitations. They found that the trans-
smaller than typical nuclear excitation energies. verse contribution is several times larger than the Coulomb

The NP effect for electronic atoms was first calculated incontribution in heavy electronic atoms before the contribu-
terms of the second-order ScHinger perturbation theory tions of the positive- and negative-energy states cancel.
[5]. A relativistic field-theoretical treatment of the nuclear- However, due to nearly complete cancellation between them,
polarization calculation was then presented by Plunien anthe transverse contribution becomes small and just cancels

the Coulomb contribution. As a result, the total NP energy
almost vanishes.
*Electronic address: haga@npl.kyy.nitech.ac.jp The purpose of the present paper is twofold: One is to see
"Electronic address: horikawa@sakura.juntendo.ac.jp how much NP energy is expected for the best model of the
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wherew.=E;,—E; and wy=E,,— E, are the excitation en-

ergies of the electron and the nucleus, respectively. The suf-

fixesi(l) andi’(l") stand for the initial and intermediate
FIG. 1. Diagrams contributing to nuclear polarization in lowest States of the electromucleus, respectively.

order: (a) Iadder,(b) Cross, anc(c) seagull diagrams_ In the momentum representation, NP energy shifts due to

the ladder and cross diagrams are written as

2%Pb nucleus available practically. For this purpose the
Dirac-electron wave functions are solved in the Coulomb AEL __|(47Ta)zf J'
potential with a finite nuclear charge distribution and the
random-phase approximatidRPA) is used to describe the
nuclear excitations. The other is to see whether NP energies JEC=Qiirja(@)in
are sensitive to the choice of the gauge. For this purpose NP X ng(“"q’)z iE
energies are calculated in both the Feynman and Coulomb i1 otwTiEie
gauges. We will see that the NP calculation with only the q)”,JN( a)
ladder and cross diagrams shows large gauge dependence XZ S (4)
and the inclusion of the seagull diagram removes most of its w-oytie
gauge dependendé4,15|.

Calculations are carried out in momentum space. They
involve only double integrals, which are easily carried out
with high precision. —|(477a f f

Electron Nucleus Electron Nucleus Electron Nucleus
(a) (b) (c)

@m?) (2n >3D“§(“”Q)

(2m?) (2 F Puelend

II. NUCLEAR-POLARIZATION CALCULATION n R
Je(=Diirje(@)ir

The second-order contributions to the nuclear polarization XDl@.q )_Z o+ w.—iEe
are given by three Feynman diagrams in Fig.(Here we ' € :
regard the seagull graph as one of the nuclear-polarization — ")y I
diagrams. Two photons are exchanged between a bound XE — , )
. wtoy—ie
electron and a nucleus and the nuclear vertices are under-
stood to have no diagonal matrix elements for the ladder a”ﬂespectwely The substitution
cross diagrams, and no nuclear intermediate states for the
seagull diagram. . (X3 4,
The nuclear-polarization energy shift due to the ladder I1%5(X3,X4) — 554 (X3—Xy) (6)
and cross diagrams is given b] P
in Eq. (1) gives the energy correction due to the seagull
AEnp=i(47a)? f A% - A gih(X1) PP SE (X1 X2) V" diagram[14,13),
X h(X2)D (X1, X) II§ (X3,X4) D 1 (Xg.X2) . (1) = —i(4ma) f J' ——D,®,q)
(2m?®) (2w )3 .
Here ¢ is the electron wave functio®g is the external-field
electron propagatof) . is the photon propagator, arddg’ 5 > Je(=iije(d)ir
is the nuclear-polarization tensor that contains all informa- XDglw,9') ot wa—iEoe
tion about nuclear dynamics. We use units with c=1 and ' € '
=4ma. pn(d—=a' )y
In terms of transition charge-current densities, the elec- L —— 8. @

tron and nuclear parts of E¢l) are written as P

Herem, is the proton masss¢ is the Kronecker delta ex-

P(X1) Y*SE(X1,%2) ¥ h(X2) tended to four dimensions with°®®=0, andpy(x),, is the
» . ground-state charge distribution o[the nut):(leus ng total NP
_ J d_Ee—iE(tl—tz)z Je(X)iirje(Xa)iri (2  eneray shift is given by the SUBENp+AEp+AERE.
2 7 E—wet+iEj € Substituting the corresponding multipole expansions for
the Fourier transform of the currents, these NP energy shifts
and are written in terms of the multipole form factors defined by
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@ Im @)= [ axiy@o I @p.00l), ®
@1 = [ i@ ¥ (00100l @
for the electron, and

M@l [ axiy @ IV, 0puo0l),
(10

TN = [ dxiu@o( (.- 300l
(1D

for the nucleus. In the above equationd,qx) is a spherical

Bessel functiony, is a vector spherical harmonics, akds
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The g andq’ integrals may be improper in case of the NP
calculation for the electron excited states. In such cases, we
should evaluate them by

f dq _Pl__ 5
qi|€_ a+I7T (Q)i

(16)

where P denotes the Cauchy principal value. The second
term on the right-hand side of E(L6) means that the energy
shift is, in general, complex valued. While the real part de-
scribes the physical energy shift of the bound state, the
imaginary part gives the decay rate of the bound state due to
possible transitions of the electron into lower-lying unoccu-
pied bound states.

the multipolarity of transition. With these substitutions, an-
gular parts ofg andq’ as well asw integrations in Eqs(4),

(5), and(7) can be carried out analytically. Integrations with
respect toq and g’ are carried out numerically. Nuclear-
polarization energy shifts are thus given by the sum of these
double integrals over the nuclear and electron intermediate
states. For the seagull contribution, the summation is only
over the electron intermediate states.

In the following, we shall give the formula for the NP
energy in both the Feynman and Coulomb gauges. We re-
strict ourselves td™=0" for the spin parity of the nuclear
ground state. The spin parity of the nuclear intermediate state
|'™ is in this case equal to the spin parity of transitiof.

In the above expressionk, ,| _, andlgg are functions
written as
, qq’
|r(q’q )=—= ~ , )
2(wet ) (wetq ) (wytd)(wy+g')
:uea)N ~
X Sgr‘(E,;) +(we+wN+q+q’)
q+aq’
! 2 !
+ a9 +0(*£E;) qq~ ] a7
q+q’ oNT we

1 99’ (we+q+9q’)

2Mp (q+9")(q+ we) (A’ + )
(18)

Isc(a,9")=sgnE;/)

where w.=sgnE;)ws, while Wf(q), W%(q), and
Wge(q) are written in terms of the electron and nuclear
The photon propagator in the Feynman gauge is given bjorm factors as

A. The Feynman gauge

Oue
g°+ie

D} i(w,q)=— (12)

Here the metric tensog,,; is defined byge=1 andg;=
—1. With this propagator, the NP energies due to the ladder,
cross, and seagull terms are given by
(Ama)? 2)2 ° o
AEfp=—>, —————— | — jdfd’
NP .2.: @itn+n 7 Jo %) 0

X1(q,9")WH@Wi(a'), (13
e L I
NPT T ity +1) ) Lo 99
X1_(0,9")YWia)Wi(a"), (14
sG_ 2 (477'a)2 2\2 [ e ,
AENp=— < (2i+1) P fo dQJO dq'lse(a,9')
XWEG(quI)- (15)
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Wia)=2 {(i’”mx(Q)HiX"||M>\(Q)|||>_L2

-1

X(=DE NI ,||T)\L(q)|||>:|'

(19

Wi(q)=§ [<i'||mx<q)||i><l'IIMA<q>||I>

A+1

+ 3 <i’||tu<q>||i><|'||m<q>|||>}, (20)

A+1
Wsdaa)=2 2 (i luu(@liXima.a)in
X(i' [t (an i) (21

The seagull term contains the Fourier transform of the
nuclear ground state,
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<|||ML(qvq,)|||>:frzdrpN(r)lle(qr)jL(q,r)- (22

B. The Coulomb gauge
The photon propagator in the Coulomb gauge is given by

D§y(®,0)=———, Df(w.q)=

g°+ie

and (6 — q;q; /|gl?) in D ; projects out both transverse parts
of electronic and nuclear currents.
Making use of the relation

Wge(qaq/):; [
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In the Coulomb gauge)'£(q), WE(q), andWE(q) are

given by

WE@=2 (" [my @i IMy(@D, (29

AL

Wia@=-3 {%w&q)ﬂgl (@i

><<I’IITXL(q)III>1, (30)

[ Tuxc (@) [{HM L (a,a)]T)

L=N*+1
X un (@) iy]+ G It (ali)
><<|||Mx<q,q'>|><i'|tn<q'>||i>} 31

(i luxy = (@liy =" [ty (@i}

. . WeWN
JZ(—q>-JL<q>=Je<—q>~JN<q>+%pe<—q>pN<q>,
(24)
we obtain NP energies for the ladder, cross, and seagull
terms as with
(Ama)?
AERp= f f
NP .z| @itn +nlo 0 “

6(

We

Ei’)

wN

WE@WEQ') +14(9,9")

|

><W$(q>W$<q'>+IT(q')va(q)W?(q')],

[N

(a2 (@Y= (i [ty 2 (@)
. A+l w
\/;q (i"Imy(@lli). 33

C. Electron-wave functions

The radial Dirac equations for the electron are written as

d
ar T GEK [Me+E—V(r)]Fg (1), (34)
d
(dr r)FEK [Me—E+V(r)]Gg(r), (39

where the potentiaV/(r) is obtained from the the ground-

state charge distribution d®®b, which is assumed to be a

two-parameter Fermi distribution

(25)
X _ (4ma)
ABNP=" S 2i+1) 21 +1)f qf da’
0
><| B e w1 (a.a)
we (,L)N
XW%‘(q)W?(q'HlET<q’>WE<q>W$(q'>],
(26)
sG_ 2 (477'a)2 2\2 [ = ,
AERp=— < (2i+1) P fo dQJO dq'lse(a,q’)
XWSd(a,a'). 27

In the above expressionis;’(q’) andI~"(q") come from

Po
1+exd (r—Rp)/a]

pn(r)y= (36)

with Ry=6.6477 fm anda=0.5234 fm[10]. These equa-
tions are solved numerically by using the fourth-order

the interference between the longitudinal and transversRunge-Kutta method. Both for the positive- and negative-

terms and are given by
as
sgr(E )9’ (0t wn) = B(+Ej1)2q'?

(0 +we) (A" + op) (0t wy)

(28)
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energy continuum states, the radial functions are normalized

1/2

|E+mel| 7
sin(pr+9),

P

(37
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25 — T T 7T T T T TABLE I. The energy-weighted sums &(E\) over the RPA
states. The classical EWSR valués] are also shown for compari-
A 20 T son. The values are given in units efb* MeV.
4 15} -
= EN Present calculation Classical EWSR
= 10F 4
E EQ° 1.97 1.64
g 09T ) y E1° 8.15 7.38
LI\'-/T 0.0 hecs E2 22.2 20.5
E3 24.4 234
0.5 — L E4 14.2 23.6
0 2 4 6 8 10 12 14 16 18 20
g(MeV) E5 11.3 23.1
M1¢ 294
FIG. 2. Electronic Coulomb form factors

(Eir,pumi(a)[1syy) for the Ej;=2-, 6-, and 10-MeV states The radial momentér*), in the classical EWSR are calculated by
(solid ling). The dotted line is the nuclear Coulomb form factor for the Fermi charge distributiof86).

the 14.6-MeV 1 state. ®The EO operator is defined &8(E0)=X ,r?/ /4.
‘The E1 operator is defined &8(E1)=3;— 1/275rY,, .
|[E—mg| |2 The value given in units ofy MeV.
E x 5 cogpr+ ) (39
r—oo

. . to describe nuclear two-body interaction. Nuclear transition
_ E2_ 2 _ -
W'th P= wE 5 me.ZBounij state wave functions are normal form factors, Eqs(10) and(11), are calculated by assuming
ized as/o(Gp,+Fp,)dr=1. the impulse charge-current operators.
Transition form factors for the electron, Ed8) and (9), The calculated charge and magnetic-current densities are

are calculated by using the formula given in Réf0]. They o, o mined by comparing with experiment&(E\) and
are stored in the computer with six different step sized gf B(M\) using the relations

depending on the electron eneffgy . In Fig. 2, we shovwE1l
charge form factorgE;,,p1Jlmi(q)|1sy,) of the electron 1
with three different energie€;, =2, 6, and 10 MeV. One BEN:I=1")=5—7
finds that they have sharp peaksjat E;, and decrease rap-
idly asq increases. Numerical integrations in E¢E3)—(15)
and (25)—(27) are performed by Simpson’s one-third rule.
Most of the NP correction come from the continuum
states with energies greater tham and less than—m,. _ N ' N2
Summation over the electron staiésin Egs.(13)—(15) and BIMN: =1 =507 371 eJ I (r)rtedr
Egs. (25—(27) implies integration with respect td;. . (40)
Integration with respect toE;, is carried out by
using the Gauss-Legendre quadrature over the intervals In Table |, we compared the energy-weighted sum of
—250 MeV<Ej;<—m, and me<E;;<250 MeV. ACCU- g(E)\) over the RPA states with the classical energy-
racy of numerical results is checked by comparing them W'”‘Neighted sum-rule valuéEWSR of Ref. [18]. The results
those of Simpson’s rule. We also included the electron bounrfiOr the EO andE1 transitions exceed the EWSR by 20% and
states fom’<7 in the calculation. 10%, respectively, while the results for tB2 andE3 tran-
sitions agree well with the EWSR. For tie} andE5 tran-
D. RPA calculation of nuclear charge and current densities sitions, our results exhaust only 50% of the EWSR. This

The random-phase approximation is used to describe tH&ay be due to t'he insufficient configuration space forEHe
nuclear excitations. The RPA theory is the most successfidNdES calculations. _ _ _
microscopic theory to calculate the excitation spectrum of On the other hand, there is no experimental constraint
20%p  Our RPA spectrum of%Pb agrees very well with a imposed on the nuclear electrlc_ current. Hov_veyer, the e!ec—
number of experimental measurements as well as with thEomagnetic current should satisfy the continuity equation
most dependable sum rules, which is crucial to estimate thEéquired by charge conservation,
correct magnitude of the NP correction. The model was also
applied with success to the NP calculation of muoffitPb d
[10,16. We thus have confidence that our results are consid- EPNJr V-J=0. (41)
erably more reliable than the earlier calculations.

The RPA calculation we employed is the same as those | o o
performed earlier in Ref10], i.e., the same single-particle USing the nuclear HamiltoniaHy, we rewrite it as
basis, the same particle-hole configuration of approximately
a full 32w space, and the same Migdal folfd&’] parameters i[Hy,pn]+V-Jy=0. (42

2

eJ Pl (Hri+2dr (39

and

2
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Taking the matrix element of E¢42) between the initial and  previous calculations. They are33.2 meV(fifth column),
the final nuclear states, we obtain the charge conservation 355 meV (seventh colump and —29.3 meV (eighth

condition column. The present calculation employs RPA charge den-
sities, while the previous ones are based on the collective-
iw '/'(r)=— / A /i_ 7‘_1)J|'| (r model charge densities. They agree fairly well. The 10%
NPNX 2 +1\dr r TN variation between the fifth and eighth columns may be attrib-
uted to the energy-weighted sum B{EMN) over the RPA
LM 1 /i+ At+2 I states, which exceeds the classical EWSR value by 20% for
2 +1\dr - TN the EO transition and 10% for thE1 transition. On the other

(43) hgnd, there exists 20% variation between the seventh a_nd
eighth columns, though they are based on the same collective
Here,wn=E,, —E, is the energy of nuclear excitation. model. The difference is conspicuous only for the monopole
For any kind of model calculation involving the nuclear NP energy, ie. —7.2 meV (seventh columh and

current, it is necessary for the model to satisfy the charge-3.3 meV (eighth columi. The difference may be attrib-
conservation condition in order to observe the gauge invariuted to the Dirac-electron wave functions used; those for the
ance[14]. Unfortunately, the charge-current densities con-finite charge distribution are used in the eighth column, while
structed from the present RPA calculation do not satisfy théhose for the point charge are used in the seventh column.
charge conservation of E¢3). The violation of charge con- The electron wave functions generated from the point charge
servation comes from the inconsistency of using empiricaBnd the finite charge distribution differ appreciably only in-
single-particle energies together with the impulse chargeside the nucleus and that is exactly the region where the
current operators, as is discussed in REf6,19. It is desir-  monopole nuclear potential exists.
able if one could construct a microscopic self-consistent In Table Il, we see that the nuclear dipole states give
model together with the nuclear current satisfying the charg@redominant NP contribution. The table also reveals that sur-
conservation, which is realistic enough to reproduce the obprisingly large cancellations occur in the resulting NP en-
served spectra anB(E\) values. However, the refinement ergy. The ladder, cross, and seagull diagrams in Fig. 1 all
of the calculation will be left for the future and at present wegive large contributions to the NP energy if their contribu-
are satisfied with the fact that the calculated NP energietions from the positive- and negative-energy electron states
show only a small gauge violation even though empiricalare separately considered. The positive- and negative-energy

single-particle energies are used in the RPA calculation. ~ €electron states contribute to the NP energy with opposite
signs in each of the diagrams, the fact that is also observed in

IIl. RESULTS AND DISCUSSION Refs. [8,13]. Besides, the pos?tive- and negative—energy
states in the seagull term contribute to the NP energy with
Nuclear-polarization energy shifts are obtained by comsigns opposite to those of the ladder and cross terms. Ne-
puting an energy shift for each of the RPA excitations andglecting any one of these can introduce a nonnegligible
summing the results. Our calculation gives 38, 129, 160¢change in the NP energy, while inclusion of all these pro-
222,202, 218, and 70 nuclear states for the 0~, 2%, 37, duces a very small result, because of the cancellation. The
4", 57, and 1" excitations, respectively. Figure 3 shows thetotal E1 NP energy differs from the CNP energy by 30%.
NP energy spectra of thesj,, state for the respective nuclear  The dominance of th&1 contribution to the NP energy
spins and parities. These spectra are calculated in the Couan be seen clearly in the spectral NP density of a nuclear
lomb gauge with the Coulomb and transverse parts of thexcitation as a function of electron energy. In Fig. 4, spectral
electromagnetic interaction. They are very similar to the RPAdensities in the Coulomb gauge are shown for three different
spectra ofB(EN) andB(M1). nuclear statesta) 0% (13.3 MeV), (b) 1~ (14.6 Me\), and
Table Il summarizes the NP energies of tts/dstate for  (c) 2* (10.2 Me\). In each panel, the solid line shows the
2% 1P, The first column denotes nuclear spins and pari-spectral density including the transverse contribution, while
ties. The entries in the second column indicate the contributhe dotted line shows the result without the transverse effect.
tions to the NP energy from the ladder, cross, and seagulDne can see that the low-energy region of thestate[Fig.
terms as well as those of the positive- and negative-energ§(b)] is different from the other two. The 1spectrum shows
intermediate states of the electron. The third column showghe peak at thresholds{, = m,). The peak is produced by the
the NP energies in the Feynman gauge, while the fourth colronvanishing matrix elements of1’|T.(q)[l) and
umn shows the NP energies in the Coulomb gauge. Théi’|t,o(q)i) atq=0.
transverse contributions are included in both columns. The An important feature of the present calculation, which is
fifth column shows the Coulomb NP energies without thein fact crucial for the numerical estimate of NP energies, is
transverse contributiohereafter referred to as CNPThe  that there exists a large violation of gauge invariance in the
sixth column shows the results of the previous NP calculaNP energy shifts as far as only the ladder and cross diagrams
tion in the Feynman gauge assuming a collective model foof Figs. 1a) and Xb) are taken into account. By using the
the nuclear excitationisl3]. The seventh column is the CNP minimal prescription, the nonrelativistic electromagnetic in-
from the same model. Finally, the last column shows theteraction involves the square of vector potential called a
CNP calculated in Ref8]. seagull term coming from the kinetic energy, and this term is
First of all, the present CNP energies is compared with theecessary for the gauge invariance in a nonrelativistic system
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FIG. 3. Nuclear-polarization spectra as a function of nuclear excitation energy. The Coulomb gauge is assumed.

[14,19. It is interesting to investigate whether the inclusionterm, it is —38.2 meV in the Feynman gauge and

of the seagull term restores the gauge invariance of the-37.0 meV in the Coulomb gauge. The gauge dependence
present NP calculatior{A proof of the gauge invariance is is reduced to 1.2 meV. This small gauge dependence shows
given in the Appendix. that the seagull term is quite important in restoring the gauge
As seen from Table I, this is nicely confirmed numeri- invariance of the NP calculation. The fact also implies that
cally. With the ladder and cross diagrams, the NP energy fothe use of empirical single-particle energies in the RPA cal-
the 1s;,was+1.5 meV in the Feynman gauge, while being culation does not introduce a serious violation of gauge in-
—32.7 meV in the Coulomb gauge. The gauge dependencgariance into the NP energies.
was 34.2 meV. However, after the inclusion of the seagull For the excited_-shell electrons, we can repeat the dis-
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TABLE II. Nuclear-polarization correctiofmeV) to the 1s,, state of29PHL" . Energy shiftAE", AEX,

andAESC are contributions of the ladder, cross, and seagull terms, respectively, il AE ~) denotes
contribution from the positivetnegative} energy intermediate states of the electron.

Preserft Presert  Preserft Ref.[13]° Ref.[13]F Ref.[8]
AT Contribution Feynman NP Coulomb NP CNP NP CNP CNP
ot AE-Y -57 -6.5 -7.0
AE-™ +0.4 +0.2
AEXT -1.2 -0.2
AEX~ +2.7 +2.7 +3.0
AE-+AEX -3.38 -3.9 -4.0 —6.6 -7.2 -33
AES®* +0.7 0.0
AESCG” -0.9 0.0
AE-+AEX+AES® -39 -39
1 AELY -119.1 -91.1 -37.0
AE-™ +74.0 +37.6
AEXT —49.8 —29.4
AEX~ +110.1 +64.2 +16.7
AE“+AEX +15.2 -18.7 -20.3 +16.3 -19.5 -17.6
AESC* +144.2 +87.8
AES® —186.5 -95.1
AE“+AEX+AES© -27.1 —26.0
2" AE-Y —13.0 —-15.3 —14.4
AE-™ +2.0 +0.4
AEXT -3.2 -0.5
AEX~ +8.1 +9.1 +8.6
AE-+AEX -6.1 -6.3 -5.8 -7.0 -6.3 -58
AES®* +4.4 +2.7
AES® -41 -21
AE-+ AEX+AES® -57 -5.7
3" AE-* -5.0 -6.5 -6.3
AE-" +1.0 +0.1
AEXT -1.6 -0.1
AEX~ +3.2 +4.1 +4.0
AE“+AEX -2.4 -2.4 -2.3 -2.9 -26 -2.6
AES®* +1.0 +0.6
AES® -0.8 -0.4
AE“+AEX+AES© -2.2 -2.2
4+ AELY -1.1 -15 -1.4
AE-™ +0.2 0.0
AEXT -0.4 0.0
AEX~ +0.7 +0.8 +0.8
AE-+AEX -0.7 -0.7 -0.6
AESG* +0.5 +0.4
AES® -0.4 -0.3
AE“+AEX+AES© -0.6 -0.6
5” AE-" -0.4 -0.5 -0.4
AE-™ +0.1 0.0
AEXT -0.1 0.0
AEX~ +0.2 +0.2 +0.2
AE-+AEX -0.2 -0.2 -0.2
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TABLE Il. (Continued.

Preserft Preset  Preserft Ref.[13]° Ref.[13]® Ref.[8]f
AT Contribution Feynman NP Coulomb NP CNP NP CNP CNP
AESG* +0.3 +0.1
AESCG™ -0.2 -0.1
AE-+AEX+AESC -0.2 -0.2
1" AE-Y -0.4 -0.4
AE-™ +0.1 +0.1
AEXF -0.2 -0.2
AEX~ +0.1 +0.1
AE“+AEX -0.4 -0.4
AESC* +3.8 +3.8
AESG™ -17 -17
AE-+AEX+AES® +1.7 +1.7
Total
AE-Y —144.7 -121.8 —66.5
AE-™ +77.8 +38.3
AEXT —56.7 -30.4
AEX~ +125.1 +81.2 +33.3
AE-+AEX +1.5 -32.7 —33.2 -0.2 -355 —29.3
AESC* +154.9 +95.4
AESG™ —194.6 -99.7
AE-+AEX+AES® —38.2 -37.0

#The NP energies in the Feynman gauge.

®The NP energies in the Coulomb gauge.

‘The unretarded NP energies in the Coulomb gauge.

9The NP energies evaluated in the Feynman gauge. Electron wave functions were solved by assuming the
point charge for the nuclear ground state. Nuclear transition charge densities were determined by a collective
model. They were normalized to the obsenB{d&EN\) for the low-lying nuclear states and EWSR values for

the high-lying giant resonances. Nuclear current densitigs_1(r) were obtained by solving the equation

of charge conservatio@3) assumingJy, +1(r)=0.

€Same as footnote d except for the unretarded NP energies.

"The unretarded NP energies. Same as footnote e except for the electron wave functions solved by assuming
a finite charge distribution for the nuclear ground state.

cussion that th&e1l multipole plays a main role in the NP energy of this state is negligibly small. This is due to Eie
effects of hydrogenlike atoms and essentially determines thiansition from the P, state to the lower-lying 4;,, state.
magnitude of the NP energy. The transverse component is dominant in the transition as
The total NP energies for thesi,, 2si, 2py», and  seen from the peak in the 1spectrum of Fig. ).

2p5), States are summarized in Table Ill and are compared Since the nuclear dipole states have predominant NP con-
with the CNP energies of the present calculation and those dfibutions, we must note here effects of the spurious center-
Ref.[8]. The transverse contribution is small in comparisonof-mass motion of the nucleus on the NP energies. The
with the CNP contribution. It is about 12% both for the;  present Migdal force brings down the lowest §tate to the
and ,, states. In spite of large cancellation involved in theimaginary eigenvalue of 1.83MeV. Since this 1 state car-
calculation, the resulting NP energies become very close tdes most of the spurious center-of-mass motion, we ex-
the CNP energies. The present results may indicate that theuded this nuclear state from the NP calculation. The 0.7%
gauge-invariant contributions of the order of/€) and  of the spurious center-of-mass motion remains in the rest of
(v/c)? are small in comparison with the contribution of the the 1~ states, whose effects on the NP energies are negli-
order of (v/c)°. The results confirm the estimates for the NPgible. Thus our results for NP energy due to the cross and
corrections of Ref.[8]. They indicate that within the ladder diagrams contain intrinsic excitations only. On the
collective-model approach, the gauge-invariant contributiorother hand, the seagull contributions calculated by using Eq.
up to order ¢/c)° can be deduced from the longitudinal part (22) contain effects of both intrinsic excitations and the
of the effective photon propagator only when the Coulombcenter-of-mass motion. The seagull contribution coming
gauge is employed. A relatively large transverse contributiorfrom the center-of-mass motion must be eliminated for the
is seen in the NP energy of theg, state, though the NP dipole mode. This was achieved by using the effective dipole
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TABLE Ill. Total nuclear-polarization correctiorisneV) to the
1Sy, 25152, 2Py, and g, states ofzo P in both the Feyn-
man and Coulomb gauges. The abbreviation CNP denotes the un-
retarded results.

Present
Feynman NP

Present Present Ré&f

States Coulomb NP CNP CNP

1syp
2sy,

2pyp

—38.2
—-6.7
-0.2

—-37.0
—6.4
-0.2
+0.0

—33.2
—-5.7
—0.6
-0.0

—29.3
—5.0

2p3p +0.0

finite charge distribution for the nuclear ground state and the
RPA wave functions were employed for the nuclear excited
states. The impulse charge-current operators were assumed
in the calculation of nuclear charge and current densities.

The results presented in the preceding section can be sum-
marized as follows.

(1) In the FeynmariCoulomb gauge, we obtained the NP
energies of—38.2 (—37.0), —6.7 (—6.4), —0.2 (—0.2),
and +0.0 (+0.0) meV for the &y, 251, 2Py, and
2psy, states, respectively.

(2) The transverse contribution is small in comparison
with the CNP contribution. It is about 12% both for the;4s
and 2g, states. The present results confirm the estimates for
the NP corrections presented earligF.

(3) The NP shifts of electronic atoms have serious gauge
dependence if one calculates them with only the ladder and
cross diagrams of the two-photon exchange processes. The
NP energies for the &,,, state due to these diagrams are
+1.5 meV and—-32.7 meV in the Feynman and Coulomb
gauges, respectively. Inclusion of the seagull graph gives the
NP energies of-38.2 meV and—37.0 meV. The seagull
graph is quite important in restoring the gauge invariance of
the NP calculation.

(4) We found that the nuclear dipole states have a pre-
dominant NP contribution. We also found that surprisingly
large cancellations occur in the resulting NP energy. The lad-
- + der, cross, and seagull diagrams all give large contributions
13.3-MeV,(b) 1" 14.6-MeV, and(c) 2" 10.2-MeV states as afunc- . \he NP energy if their contributions from the positive- and
tion of electron energ;, . Nuclear-polarization energy is given by negative-energy electron states are separately considered.
the integral of spectral density ovEf, . The solid line denotes the Neglecting any one of these can introduce a non-negligible

calculation with both the Coulomb and transverse parts of the elecéhange in the NP energy, while inclusion of all these pro-

tromagnetic interaction, while the dotted line denotes the CalCU|a'ciuces results very similar to the CNP calculations
tion with only the Coulomb part of the interaction. Electron inter- '

mediate state€a) |E;s Sy, (b) |Eir,pyn, and(c) |E;, ,dsp) are
assumed in the respective panels.

spectral NP density

spectral NP density

107 L !
4150 -100  -50

0 50 100 150
E: (MeV)

FIG. 4. Spectral NP densities with no dimensions far 0"
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chargese, =1, &=0. APPENDIX: GAUGE INVARIANCE
To prove the gauge invariance of the NP energy, we write

the sum of the ladder and cross contributions as follows:
We have calculated the NP energy shifts for the hydrogen-

IV. SUMMARY

like 20°PHPY" taking into account the effects of the electron . « (4ma)? (dw [ dq dq’

in the negative-energy continuum, in addition to the usual ABRp+AENp= i 2 J’ﬁ (2m3) (2m)3
contributions of the electron excited into higher unoccupied

orbitals. Evaluation of NP energy contains the seagull graph XI1£"(®,0,9")D ¢ ,q) Dy (@,q")

as well as the ladder and cross diagrams. The Dirac-electron

wave functions were solved in the Coulomb potential with a X1 (w,0,9"), (A1)
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wherell4"(w,0,q") andHﬁf(w,q,q’) are the electronic- and pleteness of the intermediate states of the electron. For the
nuclear-polarization tensors defined by electromagnetic charge and current operators

JE(—Diirje(d)iri ~ N 10
Pe( Q)—(O 1

(.U+(l)e_iEirE

4"(0,9,9)=2>

o
1

eiq-r ]‘(q/): 0 o efiq’»r
To0e o 0

(A6)
iy ! TR i /L - i’ . . .
_el@iide(~a) '), (A2)  used with the Dirac-electron wave functions, the commuta-
w—wetiE; € tion relation in Eq.(A5) vanishes. Hence the gauge invari-

anceq,I15"(w,q,q") =0 for the electronic-polarization ten-

P H=S IR IR(— )1 sor follows.
11§ (0,9.9) = - w—wytie For the nuclear-polarization tensor, we can obtain a form
! similar to Eq.(A5) by assuming charge conservation as well
J{,(—q’),,/Jﬁ,(q),/, as the completeness relation. In the present calculation, the
T eten_ic (A3)  impulse charge and current operators

z
Photon propagators in the Feynman and Coulomb gauges are (=)=, el
pn(—a)=2, e,
related to each other by i

Dgg(va):Dig(qiw) , Vv R

i fi ) )
1 qﬂqg—w<q#ggo+q§gﬂo>> In@)=2 €T+ X (VX weldhi (A7)
2 : P
q

q’+ie

(Ad) are employed with the nonrelativistic RI?A calculation. The
spin-current operator in the second termJQfq) commutes

If both q,I14"=0 andq,I1§=0 are satisfied, it is easy 0 it . Hence the spin current introduces no gauge viola-
see that the Feynman and Coulomb gauges give the samygn into the NP calculation of Eg(Al). The convection

res'\ljlltll;prl t_he I\lI)Ptﬁon_glbutl?rtls glvlentby Eq'\l? ation t current, on the other hand, does not commute witHead-
ultiplying both sides of the electronic-polarization ten- ;, 1, 5 violation of gauge invariance,

sor byq,, and using the continuity equation of the charge
conservation, one obtains

- - q
R R (Hlon(=a), iR = m_PN(q_ql)u . (A8)
A,118"(0,0,0)=2 [(ilpe(—ai")i"lTe(anli) P
i Therefore the NP contribution given by Eé&1) is not gauge

— G an i ol — ali invariant with the impulse charge-current operators. When
(@)X lpe(= a1 the seagull tensor of Eq(6) is added to the nuclear-
=(i|[pe(—a),]2(a)]li). (A5)  polarization tensor of Eq(A3), this term is just canceled.

Hence the gauge invariance of NP calculation is restored by
In deriving the second equality, we have assumed the conthe seagull term together with the ladder and cross terms.
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