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Grassmann products, cumulants, and two-electron reduced density matrices
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Some properties of Grassmann products of one-electron operators and of cumulants and related quantities
for two-electron reduced density matric€&sRDMs) are reported. The results suggest that any physical sig-
nificance of the Grassmann product plus cumulant decomposition must be based on the physics of the system
described, not just on the mathematical structure. The Grassmann product plus cumulant decomposition of the
2-RDM is resolved into components based on unitary invariants. Simple examples using mathematically
acceptable but physically unlikely wave functions show that a Grassmann product differing from the usual one
may better approximate the 2-RDM, and that the usual Grassmann product, cumulant, and 2-RDM can be
mutually proportional.
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[. INTRODUCTION Among the ideas used here is that of RDMs and other
operators as elements in vector spddés-12. In the model
Considerable attention has been given recently to the uggroblem defined by a finite spin-orbital basis, mathematical
of reduced density matrixRDM) cumulants, which in the subtleties do not arise and simple geometric ideas can be
case of the two-electron RDM give the part off notex- Used. In the following section some of the common defini-
pressible in terms of the one-electron RDM 1—8]. Alter- tions are reviewed in order to establish a consistent terminol-

ve d . 4F based he introducti ¢ ogy and notation. Some properties of Grassmann products
hative decompositions di based on the introduction of tran- 4 o, mylants are described in Secs. Ill and IV. Reduction

sition RDMs have also been suggest@i Each of these has o avior is discussed in Sec. V and the significance of new

been characterized as the true two-electron paft.ofhese results is discussed in the concluding section.
papers deal with RDMs for various numbers of electrons,

with particular attention to those appearing in contracted Il. BACKGROUND
Schralinger equations. Attention here will be concentrated . - . .
on the one-and two-electron RDMs. It will be shown that AN underlying finite, orthonormal set of spin orbitals

y[O¥ is not always the best Grassmann product approxima{¢i 3 :1"':b} will be_ assgmed. 'I_'hese f_unctions might be
orthogonalized atomic-orbital basis functions, Fock operator

tion to I, but that it is a better approximation than Valde- gjgenfunctions, natural spin-orbitals, or some other conve-
moro's[9] in the sense of distance between matrices. It Willyjant set. Usual fermion creation and annihilation operators
also be shown that there are cases in which the Grassmagiy; pe used with d’j(_’“):éﬂ ), etc. Operators on Fock

product ofy with itself, I', and the cumulant, are mutually space are denoted here by symbols kkewhile operators

proportional. o _on a Hilbert space are denoted by symbols ffkeA corre-
Questions addressed in this paper are the following: Whal,onding basis for two-electron functions will be taken

are the functionals oy that can be considered as partlds?  to be the b(b—1)/2 normalized determinantal functions

Which functional is the “closest” td"? How can the set of |jK)<—{®(1,2)=2"Y(1-P1 ) ¢;(1)¢(2),j<k}, and
Grassmann products be characterized, and what are the cdar any p<b there areb!/[p!(b—p)!] orthonormal anti-
sequences for the set of cumulants? What are the conseymmetrized products that span thelectron Hilbert space
quences of integrating over spin variables or the coordinatefor the model defined by the spin-orbital basis.

of the second electron? Reduced density matriceReduced density operators for

It should be noted thatexcept for a few exampleshis 5 system ofn electrons will be denoted here P, with
paper is not concerned with the properties of a particulanzlq(l) and T=1® They are normalized to Ti®)

system or state, with energy minimization, or with other” . .

pﬁysical properties. Instead,gi%/explores general mathematica?n!/[p!(n._P)!].’ so in particular Try=n and TIT'=n(n
relationships. To the extent that a property or relationship_.l)/z''A‘d'st'n(.:tlon between tensor components and the ma-
observed for a particular system or state follows from gen-mx elements Wlll be made. They are essentially the same for
eral considerations independent of that system and state, thebut differ for I'. General one- and two-electron operators
property or relationship does not really tell us anything aboutnot necessarily RDMscan be expressed as

that system or state. One should first identify such general

features and then suppress them in concentrating on specific ?=J_§|; fi k1)K,

system or state features.

G= G smlik)(Zm), 1
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where f;  and Gy ., are elements of matricelsand G. o1 , , / /
Alternatively, tensor$ andG with components} andGl,  (fH9)(1,2,1'2")= 7 [f(1;1')9(2;2") —~ (1;2")g(2;1")
can be defined. The RDM tensor components are conve-

niently expressed in terms of creation and annihilation op- —f(2;1)g(1;2")+f(2;2")g(1;1")].
erators, as
(6)
y=(V|afalv), It is obvious thaf{g is antisymmetric in upper and in lower

indices and thaf g is antisymmetric in unprimed and in
primed variables. It can also be readily verified that they
define Hermitian operators ffandg are Hermitian and that
fOg=g0f.

The p-electron RDM tensor component is denoted by |f operators are expanded as in Ef), then

pFLll"'.'.‘kF; and has a factor fp/ multiplying the expectation

va!ue of the normal ordered product of creation and annihi- ng:' > (f09)j ks mliK)(/m]| . (7)
lation operators. j<k/<m

The operatord andG can also be expressed as integral
operators with kernels

I =5 (P|ajala,a, V). 2

N| -

Cumulants.Reduced density matrix tensor components
can be expressed in terms of a generating “function” involv-
ing creation and annihilation operators. If this generating
f(1:1)=>, fi ki(1) b (1) function is considered to be the exponential of another such

ik function, that function is a generating function for the cumu-
lants [3,5]. The cumulant part of g-electron operator is

=> f{(¢j(1)¢*k‘(1’), commonly denoted byA, and forp=1 and 2,
j,k
A=y, 2A=T—y0y. ®)
G(1,2;1’,2')=j<|;<m Gik,/mPix(1,2P7,(1",2") Since these are the only cumulants of interest in this paper,

LA will be replaced byy and 2A will be denoted simply by
" . e A. Use of cumulants avoids “unlinked” terms and leads to
= > G (D2 dh(1) 52", size-consistent results.
. Correlation terms.Valdemoro and co-workerg9,18,19
(3 decompose the two-electron RDM in a different way. For an

. _ n-electron state |[¥), define projection operatorsP
where, as usual, 1 represents the position and spin coordi-

i- RS 0 o
nates of electron 1, etc. In the case@fsummation indices ¥ andQ—If )~ P wherel 3 is the identity operator
are required to be ordered and the two-electron basis fun@" then-electron Hilbert space an@ can be expressed as a
tions are antisymmetric. In the case®f all orderings of the ~ SUM of projectors onto the states other thﬁiﬂlr} a complete
summation indices are included, the basis functions ar&et. The operator whose expectation valu€'js' [Eq. (2)]

simple products, an@ will be antisymmetric in upper and in  ¢an be rearranged using the anticommutation properties of
lower indices. It follows that the creation and annihilation operators and the insertion of
the identity operator:

: : : o1
k k k k ; g xtxtx x xtxtx x
Gfin=—Gm = ~G/=Gn,=5Gjk,/m. J<k /<m. afalana, =—-alalaa,
@ =—a/[o,—a,a(]an
Grassmann productsThe Grassmann product of opera- = _éj’fam(sk/Jr é}ré/[ﬁ)+ Qlalan,. 9

tors was introduced into the RDM community by Absar and

Coleman[13-15 and used in connection with contracted Taking the expectation value with respect|to) of the left
Schralinger equations by Mazzioti16]. Expressions in and right sides gives

terms of determinants that are equivalent to Grassmann prod-

ucts were used in the single determinant case bwdin 2T = = Y+ Yormt Vi (10
[17]. The case of interest here is the Grassmann product of
two one-electron operators where
L1 S A vik — —(p|ala Oala | v
(D9, =7 (Lo fgh—that+5l) (8 A=~ (VI33,QAGEIY)
= 2 (W)L W) (11)
or Y (#7)
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TABLE |. Components of one- and two-electron matrices. Ill. SOME PROPERTIES OF GRASSMANN PRODUCTS
Matrix =0 =1 7=2 Sincefllg is Hermitian iff andg are, and it is antisym-
metric, the Grassmann product defines a map fgmé&, to
ftm (Tr HX f—f(10 &,. Some properties of this map and of elementg.pthat
4b are Grassmann products are developed in this section.
(2,m) @) ) _Ego_g@2y . . - .
F (TrA)X _b_zf(ll)ux F-F F A necessary property of density matrices, including

RDMs, is that they be positive. In the Hartree-Fock cefée,

, =%0%, and this will be generalized to non-Hartree-Fock
is @ sum of products of elements of one-electron reduced,s \when is the result a positive matrix? Consider first a

transition operators. Valdemost al. call these “correlation  (5iner special case in which a and bdp can be simulta-

terms,” but to avoid possible confusion with other correla-neqysly diagonalized so that the corresponding operators can

tion functions they will here be referred to as Valdemoropg \yritten

matrices. This analysis has the advantage that, formally, only

one-electron operators are involved, albeit they include tran- . . R .

sitions matrices from the state of interest to all other states. a:Z ajl i )(il, b=2 Bili )il (16)
Matrix spaces and reduction componenits.the model . J

defined by a set ob spin-orbitals ap-electron operator is in the basis that simultaneously diagonalizes them. Then
equivalent to aﬁ) by (;) Hermitian matrix. Let&, be the

linear space of such matricgél] and introduce the trace Af Bt oy .
scalar product an_JZk 2 [ik) ikl 17
(AP BP)=TrAPBP, AP BPes. (12 One result follows immediately whei—a.
A partial trace defines a map frof to &, with g<<p [20]. A Theorem 1If a is positive thenA=alla is positive.
reduction superoperator can be defined to also adjust the nor- ) ) .
malization of RDMs[12], Without loss of generality we can choose the basis to consist
of the eigenfunctions of the operatar and for a positive
IA=Trq, 1, pPA, operatora;=0 for eachj. It follows that
api1-da = i1-iqrdge1-dp ana=>, a;ajk)(jk (18)
Ay ks ngjp Ay kg = ik ik
p!(n—p)! is positive. The matribA of a0Ja will thus be positive. W

F(q):glr(p):—-ﬁ

Qi n—q)! g1 pl P (13 One might ask whethdr, or any other operator or matrix

in the same space, can always be expressed as a Grassmann
product. The answer is no. The Grassmann product fap

These maps define a decomposition&finto orthogonal ®E,->£, is into, not onto,

subspace§12] &,, (with 7=0,...p) such that forA®™
€ &pm Theorem 2.Unless there are fewer than four basis spin
orbitals, there are matricdsin &, that cannot be expressed

A@™ if gz (14 @sfOgforanyf, geéy.

qlA(DﬂT):
P 0 if g<mr. S . . .
For simplicity, only real symmetric matrices will be treated
The decomposition can also be defined in terms of comin detail. The dimensions @, and¢; restricted to real sym-
ponents of particular matrices. It is convenient to introduce dNetric matrices are
multiple of the identity in each space scaled to trace 1, b(b+1) 1/b
X(P):(B)*ll(p). ForFe&, and TphF=fe &; [13,15, dimgl:T’ dimgzzz(z)

3]

Consider general elements 8f corresponding to operators
These components are given in Table I. There and in what
follows X is used forX() and we note that 3X?=X and fo
XOX=[(b—1)/2b]X®. As in general for elements in these T
>0 subspaces, THY=TrF?Y=TrF?2=0, and
Tr,F(??=0. These decompositions are related to the behawvith f, ;=f; , andg, =g, n. Using the definition of the
ior of the components or subspaces when the spin orbitdbrassmann product we find that this general, real Grassmann
basis is subjected to a unitary transformation. E&glis a  product in&, can be written as
carrier space for a representation of the graifp) of such
transformations, and thé,, are the invariant subspaces fD@ZZ 2 CparslPAN(rS], (21)
[15,21-24. p<q r<s

f=fLOL 1D F=FROLFRDLF22 (15

b
fiiXkl, 8= 2 g, ml/)ml, (20
1 /,m=1

™M=
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with : ) )
gl—m=%=gi, m#n. (26)
2 A k k k
Cpq,rs: rs,pq:<pq|ﬂjg|rs> " "

C
1 A necessary condition foB to be expressible aaJa is that
Z(f —f —f +f (22 its eigenvalues be related in this way.

2 Tor%as™TarGps~ fp.sBartfao.Opr). (22 If the eigenvalues are related in this way, then the inde-
) ’ ] . pendent ratios can be used to express all ofdh@s mul-
Now think of theC'’s as being given for a general element of tiples of onea, say a;, with coefficients given in terms of

&; and try to solve for thé's andg's that will reproduce itas  the g's. The full trace ofG can be expressed as
an element of the set of Grassmann products. The number of

equations will be equal to the number of unknowns if Tr G=Tr ala=>, a,—ak—z ajZ_ (27)
2dim&;=dimé&,, or 1.k i

,b(b+1) _1b(b—1)

Substitution of othera’s in terms of @; gives an equation
that can be solved fomf. The sign ofaq, which determines
the signs of all other’s, is necessarily indeterminate, since
which has as its only real solution=3.92.... For larger (—a)0(—a)=ala. If ais to be a density matrixg; should
values ofb, there will be more equations than unknowns andbe chosen to be positive. The remainiat are then ob-
for general values of th€'s there will be no solution. tained from the ratios and is determined. AG=axa will

For complex Hermitian matrices diffj=b? and dimé, be a Grassmann product of one-electron RDMs if and only if
=(2)2. The equation for the criticab is then 2%?=Db?(b  the eigenvalues o4 satisfy the Coleman conditiori®5] 0
—1)?%/4 leading tob= \/8+1=3.828. B <a;<1 for eachj.

It is possible to define an algorithm for determining An important property of the set of all density matrices
whether a given matrix itf, can be expressed as a Grass-for a given number of electrons is that it is convex. The set of
mann product of a matrix i€, with itself. Consider a gen- n-representable reduced density matrices is also convex. This
eral matrix in&; corresponding to an operatar and choose is not the case for Grassmann products.
as basis the eigenfunctionséf as in Eq.(16). Construct the
Grassmann product of this operator with itself and take a0
partial trace,

2 2 2 @3

2

b(b—l)ﬂ}

Theorem 3The set of Grassmann produgt&lf,fe £} is
t convex.

1 1 1 This negative result can be established by a simple example.
Tr,a0a= E(Tr a)a— zéz=§2 [(Tr a)aj—ajz)]|j>(j|. A set C of matrices is convex if, for ang, be C, (1—w)a

J +ubeC for any u, Osu<1. If aandb are in&; thena

(24) XaandbXb are in the set of Grassmann products. Consider

a convex combination of themG=(1— w)ala+ wbOb.
Suppose thaa andb are diagonal in the same basj§)},
but have different eigenvaludsy, } and{B}, respectively.
Then G will have eigenvaluesyj, = (1—u)aja+ upB;By-
ghe criterion in Eq.(26) becomes, for example,

It is apparent from either of these forms that(Bila) is

diagonal in the basis that diagonalizadWe see from Eq.

(18) that the eigenvectors @ la are antisymmetrized prod-

ucts of the eigenvectors & and that the eigenvalues of the

former are products of those of the latter. This suggests th

following procedure. 1— ) et 1— )+
Given anyGe&,, construct TsG and diagonalize it. (1_'“; ! 3+MB1'83=(1_'LL; : 4+M'Blﬂ4.

TransformG to the basis of antisymmetrized products of the (I=paopstppofs (1= p)azast npaps

eigenvectors of TIG. (Any vectors associated with eigen- This condition reduces to an identity when=0 or u=1,

value 0 can be omittedA necessary condition fo& to be it for intermediate values of it requires

expressible aalJa is that it be diagonal in this badisf. Egs.

(12; and (24)]. ? sief. Eq a1azPofst azasBifz= arazfifat arayPBrpPs, 29
If this condition is satisfied, consider next the diagonal

elements. They can be labeled@g= Gji jx and, from Eq.  which will not be satisfied for general values of this and

(28)

(18) B's. It follows that G#fOf for any f, so the set is not
9j, ¢ or 9j, ¢ 25 CONvex. [}
O ay 9k o Some formal results that are required for the geometric

interpretation will next be established. Consider an element
etc., depending on the ordering of the indices; the ratio oPf &1,
any twog's sharing a common index will be the ratio of the g=9g(A\)=(1—-N)atAb, (30

a’s with the remaining indices. Of course these ratios are not . .
all independent, so, for example where a and b are two fixed elements of;, possibly

n-representable RDMs, andvaries between 0 and 1. Then

& % _Gim Gkn _ @ _ Gip. G(\)=g0g=(1—\)2ala+2(1—\)alb+A2b0b
ag &y Gkm9m @, Gy (31
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is a combination of three vectors if},. Except in special m "
cases these vectors span a three-dimensional subspége of (alb,cld) = l; . (alb)j,"(cOd))
containing any linear combination of them, but considered as S
points in&, they define a plane. Note that 1
=;[(ac)(b,d)—(acbd)
Theorem 4 For any linearly independerd, V, and W

defjning a three-dimensional subspacg of.the vector gpace of +(a,d)(b,c)— (ad,bo)]. (37)
which they are elements, the combinati@=(1—\)“U

— 2 is i i . .
+2,)‘(1 MVY+A"W is in the plane determined by the note that some of the scalar products involve matrices that
pointsU, V, andW. are matrix products. [ ]

Introduce any orthonormal set of three vectors in the sub- 1€ vast majority of operators of interest, including

space and take them to define a Cartesian coordinate systé?ﬁarly all molec_ular electronic_ Hamilton_ians, are spin free. It
_ . - - Is thus appropriate to work with the spinless or charge den-
in terms of whichU —a=(ay,ay,a,), V«<b=(by,b,,b,),

N . . sity components of the one- and two-electron reduced den-
andWHC_: (Cx :Cy ,C;). The general equation for a p'ar?e n sity matrices, obtained by integrating over the spin variables.
a three-dimensional space Ax+By+Cz+D=0. In this 5 complete one-matrix can be expressed in terms of
case Fhe plane doe_s_not contain the_ originbs® 0 and the spin-up and spin-down components or in terms of charge-
equation can%be divided by-D to give A’x+B’y+C’z density and spin-density components
=1. DefiningT=(A’,B',C') we have

f.a=1 T.B=1 T.e=1 32 X)) =yOUFF ) [a(§)a (&) + B(E)BT(E) 2+ /7
X(F)[alé)a'(E)-BOBNEN]. (39

as the equations determinifg, B’, andC’. Apointpisin

the plane if and only iff - p=1, and we see that It is well known thatT'(®), the two-electron charge-density
V-G=(1-\)2V-d+2\(1—\)V-b+\2V.¢ matrix or spinless component bf can be divided into per-
) ) mutationally symmetric and antisymmetric paf#6], and
=(1=N)"+2N(1-N)+A this property is not limited td"(®). Suppose tha6 is any
“[(1-N\)+A]2=1, (33) element off,. The kernel of the corresponding integral op-

erator can be expanded as in E8). in terms of antisymme-

trized products of the basis spin-orbitals, but these spin
eminals can be replaced by a unitarily equivalent set con-
isting of singlet and triplet spin geminals. Integration over

the spin variables will eliminate any singlet-triplet cross

s0G is in the plane. [ |
We can introduce two independent vectors in the plan
defined byU«alla, V< allb, andW«<b[lb as

- _ 1 products, and the remaining spatial functions are permuta-
U=U-W, o=V-Z(U+W). (34 tionally symmetricfor singled or antisymmetricfor triplet).
For the RDM,
They are not in general orthogonal or normalized, but any
point in the plane can be expressed as TO(Fy, ;7 7)) =T3P, Fpify F1) +TS(Fy Ty 7).
p=w+ &+ no, (35 (39

and there will be similar decompositions fefly and A.
Expressions originally obtained for single determinant
nsity matrice$27] are valid for more general Grassmann

where w= (a+ 5)/2 is a fixed point corresponding to the
origin of a two-dimensional coordinate system in the planede

It follows thatd=W+ /2, b=W+7, andé=w— (/2 so products of one-electron RDMs as well. It is convenient to
_ 1 define a symmetrized product analogous to the antisymme-
G=w+ E—)\)G-G- 2N(1—-\N)o. (36 trized, Grassmann product,
; ) 1 . ) ) )
As g(\) moves linearly froma to b, G(\) moves along a (an)]/kmz_(aj/blr;_‘_a]mb5+ak/b£n+akmbj/),

parabolic path fromalJa to bb. This path is in the plane 4
determined by these end points aaidb.
When geometric aspects are considered scalar products 1

are sometimes involved. A useful result is the following.  (alb)(1,2;1',2") =, a(1;1")b(2;2) +a(1;2")b(2,1')

Theorem 5Scalar products of Grassmann product£jn +a(2:1)b(1:2")+a(2:2")b(1:1")].

can be expressed in terms of scalar products; in 40

This is readily verified from the definitions of scalar and
Grassmann products. Suppose thab, c, andd are ele- By inserting the spin components gfinto yy, expanding
ments of€;. Then and integrating over spin variables we obtain the spinless
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component ¢0y)(?). Application of the projection operators electron part. It is not clear that this is always meaningful.

(1= P, »)/2 extracts the symmetric or antisymmetric compo-Another simple example establishes the following.

nent. The results are Theorem 7.There are functional, not single determi-

nants, leading to RDM§" and y and cumulantA for which

3 1
a_> (0,0 1 Z (D)2
(YY) =gy Uy7+ g vo0y'™, AccyOye. (43)

1 1 Consider a model with basis spin orbitals for a system of
(‘yl]y)s=§ YOOy — gy(Z)Dy“). (41)  electrons and some numberbetweenn and b. Let J,
={j1,.--,jr} be some set af distinct indices each between 1

For a singlet(or other spin eigenstate havids=0) y? andb and define

=0.
V()=

r -1
n) > K, (44)

KnaCJ
IV. CUMULANTS AND VALDEMORO MATRICES e

Note thatA andV can be expressed as linear combina-Where|K“> is the normalized, antisymmetrized product of
the n spin orbitals indexed bk, <---<k,, and the sum is

tions of ' and Grassmann products of Hermitian matrices qyer all subsets af indices chosen from among thosedin
They are thus antisymmetric and Hermitian. When the waveyithough unlikely to correspond to a physically interesting
function is a single determinardt=%0% the cumulant is state, this is a legitimata-electron wave function. It treats
zero. A Hartree-Fock single determinant is often a good ini-all spin orbitals with indices i, equivalently, and without
tial approximation, so one might expect thgfly provides a  actually doing the reductions we can conclude that the one

good approximation t& in general. It is not always the best matrix and two matrix also treat these spin orbitals equiva-

Grassmann product approximation, however. A measure gfntly so they must be
how closely one matrix approximates another is the norm of

their difference, which is the distance between them, Y(3,) =
d(A,B)=|A-B||=(A—B,A—B)2

=| >

2, lioil-

Theorem 6There aren-representable two-electron RDMs . n\ /1t
I' and one-electron RDMg' # y=1| T for which ra,)= 2)<2) t > . [l (45)
<u,=
IT= "0yl <IT=yOyl= | Al (42

These operators are proportional to the projection operators

The possibility can be established by a simple examplet.)Ut are not idempoterithey might be called “portiopoteny’

Consider a two-electron system with four basis functidns

[2), |3), |4). Take a wave function? =C,[|1,2+0.13,4) [H(I) )%=
+0.01(1,4—|2,3))] whereC, is chosen so tha¥" is nor-

malized. For this casey has eigenvalues 0.990 123 and

0.009877, each doubly degenerate, afd—yOy|  ysing Eq.(18) with a;j=n/r for eachj we find
=0.141 89. Withy'=1.015 0859 —0.015 085 X, whereX

n “
F’:}’(Jr)a [F(Jr)]zz

n\(r\ 1.
) (2) I'J,).

(46)

is the diagonal matrix with all diagonal elements 1/2, n2 nr—1)
IT'—y'0y'||=0.140 37. Thisy’ has doubly degenerate ei-  ¥(JNU¥(J)= 1z > iduidd = r(n—_l)F(Jr)-
genvalues 0.997 517 and 0.002 483 12, so it satisfies the J=ki=1 4
Coleman criteria for ensemblerepresentability. | (47

Although a single example serves to establish the result.rhe cumulant will thus also iust be a multile Bf
the difference in norms is quite small. Another example, al- umu Wit thu ju uitip

though not corresponding to a physically likely state, pro- R n(r—1) - n—r -

vides a somewhat larger reduction in the norm. Nej AJN)=T,)———TI'J)=——77T(,). (48
' " r(n—1) Y r(n=-1) 7T

=(]1,2+|3,4)/v2. This leads to a diagonal with all four

eigenvalues 1/2. In this cag€ — yOy||=0.935 414, but for The provortionality constant is negative. A6J.) is in fact
a diagonaly’ with doubly degenerate eigenvalues 0.788 675nega$ivepse:nide1l‘izite I gative, £¢J) is | n

and 0.211 325 the norm becomes 0.912 871. It is straightfor- o o .

ward in principle, although challenging computationally, to ~ Whenr=n, a=%, andI'= %0y, the well-known single

find the one matrix that gives a best fit to a given two matrix.déterminant case. If we foregerepresentability and define

It seems likely that still smaller values f§f — fOf| could ~ a=[r(n—1)/n(r —1)]"?%%, thenala=T".

be obtained for matrice&ernels f € &, that are not required Tracing or integrating over spin variables in the cumulant

to ben-representable reduced density matrices. gives its spinless part, which can be separated into symmet-
In the RDM cumulant literature it is suggested tlhabe  ric and antisymmetric components. They are related to the

decompoesed into a part determinedqpgnd a “true” two-  components of" and yOy by [cf. Egs.(41)]
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A3=T3— (4[] )a:ra_E on o_1 (242 Tr Db):}[ Tr a)(Tr b)—Tr(ab)] (54)
yUy g? Wy —gvy vy (al 5 L(Tr a)( (ab)].

1 1 It will be convenient to have a compact notation for the
AS=T°—(yOy)S=I%— 3 YO0y 0+ 3 Y20y 2042, traceless part of a matrix. Define

49 —
49 f=fY=f—(Tr f)X,

Equation(10) can be rewritten with permuted indices and o
the results added, with appropriate signs, to give F=F2V+F22=F—(TrF)X?, (55

I'=yOy+ 901+ V, (500 foranyfe&; andFeé,.

As noted above, the partial trace or reduction maps define
where the matrix elements are labeled by ordered pairs cf decomposition of an operator into orthogonal components,
spin-orbital indices[See Eq/(4).] We see that in the case of or of a matrix space into orthogonal subspaces
a single determinant wave functidéh= — y0l, soV by itself
is not a measure of the difference betwdemnd yy. An E1=8109811, E=609E198,, (56)
analog of Theorem 6 is thus not particularly interesting. For. ) ) _ i
the portiopotent RDMs considered in connection with Theo-1 '€ Mairix space, is a carrier space for a representation of

rem 7,701 is not proportional td” or 4y and thusv will  the unitary groupl(b) of unitary transformations of the
also differ by more than a proportionality factor. spin- orpltal basis, and th§, ;. are the invariant _subspaces.

It is straightforward to show that wheyill is traced over ~EXPressions for the components of a matrix in these sub-
spin variables the result is spaces were given in Table |I. Note thatg&Tr,G then

Tr g=Tr G andg= TrZC_B. The components d& can then be
3 1 expressed as
(yDI)(O)=—y(O)DI(O)+ _),(0)|:||(0), (51)
2 2 G20 = (Tr G)(Z)X,

where 1 is the identity operator or matrix on the orbital

space. There is no contribution frop#?. Assuming that the G<2’1):ﬂ§DX,
spin-orbital basis consists bf2 orbitalsy;, each multiplied b-2

by a for one spin orbital and by3 for another, then the

0) j — 4b __
kernel forl** is G22-G_ goX. (57)
b—2
b2
1O F')=j21 xi(Nx; (7). (52) Specialize now to the case of reduced density matrices.

The components of various Grassmann products are summa-
rized in Table Il. The(2,2) components indicated in the table
é)_y * are given by the third of Eqs(57) but there is no
cancellation to give short expressions. The notatign
=Tr(y¥) has been introduced, withy =n. Note thatyX is
entirely in & ; and that the(2,1) components ofyOy and

The two terms on the right-hand side in E§1) are obvi-
ously the antisymmetric and symmetric components, respe
tively. Combining these with previous results, the compo-
nents ofV can be constructed,

Va=T2= (yy)2— (yOX)2 vOX are th_e same as those pfly andy[X, respectivelzy.
The norm is that defined by the trace scalar prod|@i
3 1 3 =(G,G). Since||X@||=2/b(b—1)||G?ZY), it is readily de-

—T2— 2 (040 _ Z (D[] 2— 2 10 (0 ; : ;
== gy Uy - gy Oy 5y O, termined from the entry in the second column in each case.

We can, without loss of generality, choose the spin orbital
VS=T5— (yly)S— (yOX)® basis to be the natural spin orbitalsiSOs so that’y is
diagonal. Denote the diagonal elements ky} and note that
the diagonal elements of are all 1b so those ofy are\;
—n/b. Recall that Ty=n and TrI'=n(n—1)/2 for a sys-
tem of n electrons, andy= ﬂ I'=[2/(n—1)]Tr,I'. In the
NSO basis, all off-diagonal elements Bfare associated ex-

_ _ _ ~ clusively with A or V and contribute td"(2. The Grass-
Except in the single determinant case, the reduction ofnann product§J% and X are diagonal, and the diagonal
YOy is noty and its trace is not that df. For the Grassmann elements ofA andV are determined by these and the diag-

=Ts— %7(0)5,),(0)_1_ %'Y(Z)DV(Z)_ % ‘y(O)Dl (0), (53

V. REDUCTION BEHAVIOR AND GEOMETRY

product of anya andb in &; it is readily verified that onal elements of . The square of the norm of any matrix is
L the sum of the squared magnitudes of all its matrix elements,
and the scalar product of two matrices is the sum of products
Try(alb)=—[(Tr +(Tr —ab— . .
2(alb) = 7 L(Tr bja+(Tr a)b—ab-bal, of corresponding matrix elements.®) > and GN$° denote
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TABLE Il. Components of some Grassmann products.

G G20 G(2Y ”G(Z'l)HZ G(22
-y 2b — 4b
O (2) T v a2 2 *a
Yoy 5 X b72(n)/ vy?)OX b= 1)2( n*+n%bv,— 2nbv2+2nvzv4 1/4)
— n’—1b 2b —
| 2 = (ny—1+? same *
yly b X b_2(n)/ vy”)OX
n(b—1 — 1
ybX (2—b)x<2> ybXx F,[2n2—b(b—2)yz] 0
yOX 0 yOX same 0
aSee text.

the diagonal and off-diagonal parts Gf in the NSO basis, Note thatEkF}kz[(n—l)IZ])\j in the NSO basis and simi-
then GY3C,.GN%9=0 and|G|*=|G\%9?+|GN$9Y? In larly whenj andk are interchanged, so

addition, (G(z”),G(“ =0 if #'# . The diagonal ele-
ments of the Grassmann products are given in Table Ill.

If I' and yOy are divided into components, thénandV > MG+ =(n—1) D) A2 (60)
will be similarly divided. The relevant relationships are ob- e T

viously
and

A@T =T (2m) _ ( 'yD'y)(Z’"),

b(b—1 2 2
277) 1"(271' (,y[l,y)(Z,ﬂ')_ ( 5 )(,yljx)(Z,w) (58) (A,YDX) E 7] 2b(§l: )\JEK: )\k+§j: )\JEK: )\k

for m=0,1,2. While readily evaluated, they do not appear to 1
be expressible in a more condensed form, :_( > 7\_2) (1—n), (62)
From the definitions ofA and V, V=A—-b+y[0X and it b\
follows that |[V|?=]A[?+b?| yOX||?—2b(A,y0X). The
norms are necessarily positive but the scalar product coul
have either sign. It will be shown, however, that, (/X) is
negative and thus thgw/||>|/Al|. This means that adding a VI. DISCUSSION
vyl term does not improve the approximationlio

Which is clearly negative. |

Cumulants, Valdemoro correlation matrices, and reduction
components provide different ways of dividing the two-
electron reduced density matrix into contributions involving
Since all off-diagonal matrix elements of the GrassmanrGrassmann products of one-electron matrices and a remain-
product are zero, der. In this paper some relevant properties of the Grassmann

products have been reported and the information they pro-
vide aboutA andV has been investigated.
(AJ’DX):Z«k e ik(Y0X) ji ji The set ofn-representable two-electron RDMs includes
. some that are Grassmann products, corresponding to single

Theorem 8The scalar productq, y[1X) is negative.

ik ik determinant wave functions. Since the Hartree-Fock single
= sz A (YOX) i determinant is often a good initial approximation to the wave
g function, it can be expected thgtly might be a reasonable

approximation tal" and the two-electron cumulat small.

()\ tM). (59 It has been shown by simple examples tiyaty with y the
reduction ofl" is not necessarily the Grassmann product of a
one-electron operatdrwith itself giving the largest fraction
of I' of this form.

=2>\r

I,k

()\ +)\k)

TABLE lll. Diagonal matrix elements in NSO basis.

G Gi ik The Valdemoro correlation matri¥ involves the Grass-
mann product ofy with the unit matrix as well as with itself,
yOy Ay and does not vanish in the single determinant case. It thus
YOy (Nj—n/b)(A—n/b) cannot be expected to provide a small correctioll o the
yOX (\j+X\)/(2b) same sense thatdoes. It has been shown here that the norm
YOX (\j+N)/(2b) —n/b? of V is always greater than that af.

Since most interesting operators are independent of spin,
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the spinless components gfandI” are also of interest. It is the one-electron matrix space is linear, so convexity is pre-
not surprising that the permutationally antisymmetric spatiakerved. The components of the Grassmann prodgdtsand
component ofy{ly can be expressed as a linear combinationydX in these subspaces have been determined. It is found
of Grassmann products of the one-electron charge- and spitthat the nonlinear Grassmann product map frémto &;
density matrices with themselves. For any spin eigenstatdoes not preserve the reduction indéxeducible represen-
with Mg=0, the spin-density matrix vanishes so that thistation label . In particular, evemily, with y purely =
spinless component has a simplicity like that of the case=1, has components with=0, 1, and 2.
including spin. The permutationally symmetric spatial com- It has been shown by a simple example that there are
ponent ofyly can be expressed as a linear combination ofoure-staten-representable RDMs for whick(y, A, andI’
symmetrized products analogous to the antisymmetrizedgre all proportional. This, as well as the fact thaty is not
Grassmann product. Sindeé is also the sum of symmetric in general the best Grassmann product approximatioh, to
and antisymmetric partgy andV will be similarly divided, indicates that any discussion of the physical significance of
and in the case ofA corresponding components oflly  the decomposition of into pieces determined and not de-
should normally provide reasonable first approximations. termined byy must be based on considerations such as size
Any density matrix is positive, in the matrix or operator consistency, or a perturbation series or other expansion of the
sense, and the sets of density matrices andrejpresentable wave function, and not on abstract properties of reduced den-
reduced density matrices are convex. Whiey is positive,  sity matrices and Grassmann products. Similarly, more ex-
the set of such Grassmann products is not convex. A linegploration of the physical significance & would be desir-
interpolation between two two-electron RDMs will give, on able.
reduction, a similar linear interpolation between the corre- The results presented in this paper are limited to the rela-
sponding one-electron RDMs, byt]y will follow a para-  tionship between one- and two-electron RDMs. A similar
bolic path in a two-dimensional subspace of the two-electroranalysis of Grassmann products, cumulants, and related
matrix spacef,. As a consequenceé} must also follow a quantities for three and four electrons will clearly be desir-
nonlinear path. able but will require techniques in addition to those used
Both A and V have been suggested to be the “two- here. Reduction behavior of the Grassmann products in-
electron part” of I'. An alternative characterization of the volved has been investigat¢#8|.
zero-, one-, and two-electron partslofs based on invariant
subspaces with respect to unitary transformations of the spin-
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