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Grassmann products, cumulants, and two-electron reduced density matrices
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Some properties of Grassmann products of one-electron operators and of cumulants and related quantities
for two-electron reduced density matrices~2-RDMs! are reported. The results suggest that any physical sig-
nificance of the Grassmann product plus cumulant decomposition must be based on the physics of the system
described, not just on the mathematical structure. The Grassmann product plus cumulant decomposition of the
2-RDM is resolved into components based on unitary invariants. Simple examples using mathematically
acceptable but physically unlikely wave functions show that a Grassmann product differing from the usual one
may better approximate the 2-RDM, and that the usual Grassmann product, cumulant, and 2-RDM can be
mutually proportional.
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I. INTRODUCTION

Considerable attention has been given recently to the
of reduced density matrix~RDM! cumulants, which in the

case of the two-electron RDMĜ give the part ofĜ not ex-
pressible in terms of the one-electron RDMĝ @1–8#. Alter-

native decompositions ofĜ based on the introduction of tran
sition RDMs have also been suggested@9#. Each of these has

been characterized as the true two-electron part ofĜ. These
papers deal with RDMs for various numbers of electro
with particular attention to those appearing in contrac
Schrödinger equations. Attention here will be concentrat
on the one-and two-electron RDMs. It will be shown th
ĝ∧ĝ is not always the best Grassmann product approxi

tion to Ĝ, but that it is a better approximation than Vald
moro’s @9# in the sense of distance between matrices. It w
also be shown that there are cases in which the Grassm

product ofĝ with itself, Ĝ, and the cumulant, are mutuall
proportional.

Questions addressed in this paper are the following: W

are the functionals ofĝ that can be considered as part ofĜ?

Which functional is the ‘‘closest’’ toĜ? How can the set o
Grassmann products be characterized, and what are the
sequences for the set of cumulants? What are the co
quences of integrating over spin variables or the coordin
of the second electron?

It should be noted that~except for a few examples! this
paper is not concerned with the properties of a particu
system or state, with energy minimization, or with oth
physical properties. Instead, it explores general mathema
relationships. To the extent that a property or relations
observed for a particular system or state follows from g
eral considerations independent of that system and state
property or relationship does not really tell us anything ab
that system or state. One should first identify such gen
features and then suppress them in concentrating on spe
system or state features.

*Electronic address: harriman@chem.wisc.edu
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Among the ideas used here is that of RDMs and ot
operators as elements in vector spaces@10–12#. In the model
problem defined by a finite spin-orbital basis, mathemati
subtleties do not arise and simple geometric ideas can
used. In the following section some of the common defi
tions are reviewed in order to establish a consistent termi
ogy and notation. Some properties of Grassmann prod
and cumulants are described in Secs. III and IV. Reduc
behavior is discussed in Sec. V and the significance of n
results is discussed in the concluding section.

II. BACKGROUND

An underlying finite, orthonormal set of spin orbita
$f j , j 51,...,b% will be assumed. These functions might b
orthogonalized atomic-orbital basis functions, Fock opera
eigenfunctions, natural spin-orbitals, or some other con
nient set. Usual fermion creation and annihilation operat
will be used withf j↔u j &5ǎ j

†u &, etc. Operators on Fock
space are denoted here by symbols likeǎ, while operators
on a Hilbert space are denoted by symbols likef̂ . A corre-
sponding basis for two-electron functions will be tak
to be the b(b21)/2 normalized determinantal function
u jk&↔$F jk(1,2)5221/2(12 P̂1,2)f j (1)fk(2),j ,k%, and
for any p<b there areb!/ @p!(b2p)! # orthonormal anti-
symmetrized products that span thep-electron Hilbert space
for the model defined by the spin-orbital basis.

Reduced density matrices.Reduced density operators fo

a system ofn electrons will be denoted here byĜ (p), with

ĝ5Ĝ (1) and Ĝ5Ĝ (2). They are normalized to TrĜ (p)

5n!/ @p!(n2p)! #, so in particular Trg5n and TrG5n(n
21)/2. A distinction between tensor components and the m
trix elements will be made. They are essentially the same

ĝ but differ for Ĝ. General one- and two-electron operato
~not necessarily RDMs! can be expressed as

f̂ 5(
j ,k

f j ,ku j &^ku,

Ĝ5 (
j ,k,l ,m

Gjk,l mu jk&^l m&, ~1!
©2002 The American Physical Society07-1
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JOHN E. HARRIMAN PHYSICAL REVIEW A 65 052507
where f j ,k and Gjk,l m are elements of matricesf and G.
Alternatively, tensorsf andG with componentsf k

j andGl m
jk

can be defined. The RDM tensor components are con
niently expressed in terms of creation and annihilation
erators, as

gk
j 5^Cuǎ j

†ǎkuC&,

G l m
jk 5

1

2
^Cuǎ j

†ǎk
†ǎmǎl uC&. ~2!

The p-electron RDM tensor component is denoted
pGk1 ...kp

j 1 ...j p and has a factor 1/p! multiplying the expectation

value of the normal ordered product of creation and ann
lation operators.

The operatorsf̂ and Ĝ can also be expressed as integ
operators with kernels

f ~1;18!5(
j ,k

f j ,kf j~1!fk* ~18!

5(
j ,k

fk
j f j~1!fk* ~18!,

G~1,2;18,28!5 (
j ,k,l ,m

Gjk,l mF jk~1,2!F l m* ~18,28!

5 (
j ,k,l ,m

Gl m
jk f j~1!fk~2!fm* ~18!f l* ~28!,

~3!

where, as usual, 1 represents the position and spin co
nates of electron 1, etc. In the case ofG, summation indices
are required to be ordered and the two-electron basis fu
tions are antisymmetric. In the case ofG, all orderings of the
summation indices are included, the basis functions
simple products, andG will be antisymmetric in upper and in
lower indices. It follows that

Gl m
jk 52Gml

jk 52Gl m
k j 5Gml

k j 5
1

2
Gjk,l m , j ,k, l ,m.

~4!

Grassmann products.The Grassmann product of oper
tors was introduced into the RDM community by Absar a
Coleman@13–15# and used in connection with contracte
Schrödinger equations by Mazziotti@16#. Expressions in
terms of determinants that are equivalent to Grassmann p
ucts were used in the single determinant case by Lo¨wdin
@17#. The case of interest here is the Grassmann produc
two one-electron operators

~ f∧g! l m
jk 5

1

4
~ f l

j gm
k 2 f l

k gm
j 2 f m

j gl
k 1 f m

k gl
j ! ~5!

or
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~ f ∧g!~1,2;1828!5
1

4
@ f ~1;18!g~2;28!2 f ~1;28!g~2;18!

2 f ~2;18!g~1;28!1 f ~2;28!g~1;18!#.

~6!

It is obvious thatf∧g is antisymmetric in upper and in lowe
indices and thatf ∧g is antisymmetric in unprimed and in
primed variables. It can also be readily verified that th
define Hermitian operators iff̂ andĝ are Hermitian and tha
f̂ ∧ĝ5ĝ∧ f̂ .

If operators are expanded as in Eq.~1!, then

f̂ ∧ĝ5 (
j ,k,l ,m

~ f ∧g! j ,k;l ,mu jk&^l mu . ~7!

Cumulants.Reduced density matrix tensor componen
can be expressed in terms of a generating ‘‘function’’ invo
ing creation and annihilation operators. If this generat
function is considered to be the exponential of another s
function, that function is a generating function for the cum
lants @3,5#. The cumulant part of ap-electron operator is
commonly denoted bypD, and forp51 and 2,

1D5g, 2D5G2g∧g. ~8!

Since these are the only cumulants of interest in this pa
1D will be replaced byg and 2D will be denoted simply by
D. Use of cumulants avoids ‘‘unlinked’’ terms and leads
size-consistent results.

Correlation terms.Valdemoro and co-workers@9,18,19#
decompose the two-electron RDM in a different way. For
n-electron state uC&, define projection operatorsP̂

5uC&^Cu andQ̂5 Î (n)2 P̂ whereÎ (n) is the identity operator
on then-electron Hilbert space andQ̂ can be expressed as
sum of projectors onto the states other thanuC& in a complete
set. The operator whose expectation value isG jk

l m @Eq. ~2!#
can be rearranged using the anticommutation propertie
the creation and annihilation operators and the insertion
the identity operator:

ǎ j
†ǎk

†ǎmǎl 52ǎ j
†ǎk

†ǎl ǎm

52ǎ j
†@dkl 2ǎl ǎk

†#ǎm

52ǎ j
†ǎmdkl 1ǎ j

†ǎl @ P̂1Q̂#ǎk
†ǎm . ~9!

Taking the expectation value with respect touC& of the left
and right sides gives

2G l m
jk 52gm

j dkl 1g l
j gm

k 1Vl m
jk , ~10!

where

Vl m
jk 52^Cuǎ j

†ǎl Q̂ǎk
†ǎmuC&

5 (
c8~ÞC!

g~C,C8! l
j g~C8,C!m

k ~11!
7-2
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is a sum of products of elements of one-electron redu
transition operators. Valdemoroet al. call these ‘‘correlation
terms,’’ but to avoid possible confusion with other corre
tion functions they will here be referred to as Valdemo
matrices. This analysis has the advantage that, formally, o
one-electron operators are involved, albeit they include tr
sitions matrices from the state of interest to all other stat

Matrix spaces and reduction components.In the model
defined by a set ofb spin-orbitals ap-electron operator is
equivalent to a (p

b) by (p
b) Hermitian matrix. LetEp be the

linear space of such matrices@11# and introduce the trace
scalar product

~A~p!,B~p!!5TrA~p!B~p!, A~p!,B~p!PEp . ~12!

A partial trace defines a map fromEp to Eq with q,p @20#. A
reduction superoperator can be defined to also adjust the
malization of RDMs@12#,

qA5Trq11,...,p
pA,

qAk1 ...kq

j 1 ...j q 5 (
j q11 ...j p

Ak1 ...kq , j q11 ...j p

j 1 ...j q , j q11 ...j p ,

G~q!5p
q↓G~p!5

p! ~n2p!!

q! ~n2q!!
Trq11,...,pG~p!. ~13!

These maps define a decomposition ofEp into orthogonal
subspaces@12# Epp ~with p50,...,p! such that forA(p,p)

PEpp,

p
q↓A~p,p!5H A~q,p! if q>p

0 if q,p.
~14!

The decomposition can also be defined in terms of co
ponents of particular matrices. It is convenient to introduc
multiple of the identity in each space scaled to trace
X(p)5(p

b)21I (p). For FPE2 and Tr2F5fPE1 @13,15#,

f5f~1,0!1f~1,1!, F5F~2,0!1F~2,1!1F~2,2!. ~15!

These components are given in Table I. There and in w
follows X is used forX(1) and we note that Tr2X(2)5X and
X∧X5@(b21)/2b#X(2). As in general for elements in thes
p.0 subspaces, Trf(1,1)5TrF(2,1)5TrF(2,2)50, and
Tr2F(2,2)50. These decompositions are related to the beh
ior of the components or subspaces when the spin orb
basis is subjected to a unitary transformation. EachEp is a
carrier space for a representation of the groupU(b) of such
transformations, and theEpp are the invariant subspace
@15,21–24#.

TABLE I. Components of one- and two-electron matrices.

Matrix p50 p51 p52

f(1,p) ~Tr f!X f2f(1,0)

F(2,p) (TrF)X(2) 4b

b22
f~1,1!∧X F2F(2,0)2F(2,1)
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III. SOME PROPERTIES OF GRASSMANN PRODUCTS

Since f∧g is Hermitian if f and g are, and it is antisym-
metric, the Grassmann product defines a map fromE1^ E1 to
E2 . Some properties of this map and of elements ofE2 that
are Grassmann products are developed in this section.

A necessary property of density matrices, includi

RDMs, is that they be positive. In the Hartree-Fock caseĜ
5ĝ∧ĝ, and this will be generalized to non-Hartree-Fo
ĝ ’s. When is the result a positive matrix? Consider first
rather special case in which a and b inE1 can be simulta-
neously diagonalized so that the corresponding operators
be written

â5(
j

a j u j &^ j u, b̂5(
j

b j u j &^ j u ~16!

in the basis that simultaneously diagonalizes them. Then

â∧b̂5(
j ,k

a jbk1akb j

2
u jk&^ jku. ~17!

One result follows immediately whenb5a.

Theorem 1.If a is positive thenA5a∧a is positive.

Without loss of generality we can choose the basis to con
of the eigenfunctions of the operatorâ, and for a positive
operatora j>0 for eachj. It follows that

â∧â5(
j ,k

a jaku jk&^ jku ~18!

is positive. The matrixA of â∧â will thus be positive. j
One might ask whetherG, or any other operator or matrix

in the same space, can always be expressed as a Grass
product. The answer is no. The Grassmann product mapE1
^ E1°E2 is into, not onto.

Theorem 2.Unless there are fewer than four basis sp
orbitals, there are matricesF in E2 that cannot be expresse
as f∧g for any f, gPE1 .

For simplicity, only real symmetric matrices will be treate
in detail. The dimensions ofE1 andE2 restricted to real sym-
metric matrices are

dimE15
b~b11!

2
, dimE25

1

2 S b
2D F S b

2D11G . ~19!

Consider general elements ofE1 corresponding to operators

f̂ 5 (
j ,k51

b

f j ,ku j &^ku, ĝ5 (
l ,m51

b

gl ,mul &^mu, ~20!

with f k, j5 f j ,k and gm,l 5gl ,m . Using the definition of the
Grassmann product we find that this general, real Grassm
product inE2 can be written as

f̂ ∧ĝ5 (
p,q

(
r ,s

Cpq,rsupq&^rsu, ~21!
7-3
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JOHN E. HARRIMAN PHYSICAL REVIEW A 65 052507
with

Cpq,rs5Crs,pq5^pqu f̂ ∧ĝurs&

5
1

2
~ f p,rgq,s2 f q,rgp,s2 f p,sgq,r1 f q,sgp,r !. ~22!

Now think of theC’s as being given for a general element
E2 and try to solve for thef’s andg’s that will reproduce it as
an element of the set of Grassmann products. The numb
equations will be equal to the number of unknowns
2dimE15dimE2 , or

2
b~b11!

2
5

1

2

b~b21!

2 Fb~b21!

2
11G , ~23!

which has as its only real solutionb53.92... . For larger
values ofb, there will be more equations than unknowns a
for general values of theC’s there will be no solution.

For complex Hermitian matrices dimE15b2 and dimE2

5(2
b)2. The equation for the criticalb is then 2b25b2(b

21)2/4 leading tob5A811.3.828. j
It is possible to define an algorithm for determinin

whether a given matrix inE2 can be expressed as a Gras
mann product of a matrix inE1 with itself. Consider a gen-
eral matrix inE1 corresponding to an operatorâ, and choose
as basis the eigenfunctions ofâ, as in Eq.~16!. Construct the
Grassmann product of this operator with itself and tak
partial trace,

Tr2â∧â5
1

2
~Tr a!â2

1

2
â25

1

2 (
j

@~Tr a!a j2a j
2!] u j &^ j u.

~24!

It is apparent from either of these forms that Tr2(a∧a) is
diagonal in the basis that diagonalizeda. We see from Eq.
~18! that the eigenvectors ofâ∧â are antisymmetrized prod
ucts of the eigenvectors ofâ, and that the eigenvalues of th
former are products of those of the latter. This suggests
following procedure.

Given any GPE2 , construct Tr2G and diagonalize it.
TransformG to the basis of antisymmetrized products of t
eigenvectors of Tr2G. ~Any vectors associated with eigen
value 0 can be omitted.! A necessary condition forG to be
expressible asa∧a is that it be diagonal in this basis@cf. Eqs.
~18! and ~24!#.

If this condition is satisfied, consider next the diagon
elements. They can be labeled asgjk5Gjk, jk and, from Eq.
~18!

gj l

gkl

5
a j

ak
or

gj l

gl k
5

a j

ak
, ~25!

etc., depending on the ordering of the indices; the ratio
any twog’s sharing a common index will be the ratio of th
a’s with the remaining indices. Of course these ratios are
all independent, so, for example,

a j

ak

ak

a l

5
gjm

gkm

gkn

gl n
5

a j

a l

5
gjp

gl p
,

05250
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gjm

gkm
5

a j

ak
5

gjn

gkn
, mÞn. ~26!

A necessary condition forG to be expressible asa∧a is that
its eigenvalues be related in this way.

If the eigenvalues are related in this way, then the in
pendent ratios can be used to express all of thea j as mul-
tiples of onea, saya1 , with coefficients given in terms o
the g’s. The full trace ofG can be expressed as

Tr G5Tr a∧a5(
j ,k

a jak2(
j

a j
2. ~27!

Substitution of othera’s in terms ofa1 gives an equation
that can be solved fora1

2. The sign ofa1 , which determines
the signs of all othera’s, is necessarily indeterminate, sinc
(2a)∧(2a)5a∧a. If a is to be a density matrix,a1 should
be chosen to be positive. The remaininga’s are then ob-
tained from the ratios anda is determined. AG5a3a will
be a Grassmann product of one-electron RDMs if and onl
the eigenvalues ofa satisfy the Coleman conditions@25# 0
<a j<1 for eachj.

An important property of the set of all density matric
for a given number of electrons is that it is convex. The se
n-representable reduced density matrices is also convex.
is not the case for Grassmann products.

Theorem 3.The set of Grassmann products$f∧f,fPE1% is
not convex.

This negative result can be established by a simple exam
A set C of matrices is convex if, for anya, bPC, (12m)a
1mbPC for any m, 0<m<1. If a and b are in E1 then a
3a andb3b are in the set of Grassmann products. Consi
a convex combination of them,G5(12m)a∧a1mb∧b.
Suppose thata andb are diagonal in the same basis,$uk&%,
but have different eigenvalues$ak% and $bk%, respectively.
Then G will have eigenvaluesgjk5(12m)a jak1mb jbk .
The criterion in Eq.~26! becomes, for example,

~12m!a1a31mb1b3

~12m!a2m31mb2b3
5

~12m!a1a41mb1b4

~12m!a2a41mb2b4
. ~28!

This condition reduces to an identity whenm50 or m51,
but for intermediate values ofm it requires

a1a3b2b41a2a4b1b35a2a3b1b41a1a4b2b3 ,
~29!

which will not be satisfied for general values of thea’s and
b’s. It follows that GÞf∧f for any f, so the set is not
convex. j

Some formal results that are required for the geome
interpretation will next be established. Consider an elem
of E1,

g5g~l!5~12l!a1lb, ~30!

where a and b are two fixed elements ofE1 , possibly
n-representable RDMs, andl varies between 0 and 1. The

G~l!5g∧g5~12l!2a∧a12~12l!a∧b1l2b∧b
~31!
7-4
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is a combination of three vectors inE2 . Except in special
cases these vectors span a three-dimensional subspaceE2
containing any linear combination of them, but considered
points inE2 they define a plane. Note that

Theorem 4.For any linearly independentUI , VI , and WI
defining a three-dimensional subspace of the vector spac
which they are elements, the combinationGI 5(12l)2UI
12l(12l)VI 1l2WI is in the plane determined by th
pointsUI , VI , andWI .

Introduce any orthonormal set of three vectors in the s
space and take them to define a Cartesian coordinate sy
in terms of whichUI ↔aW 5(ax ,ay ,az), VI ↔bW 5(bx ,by ,bz),
andWI ↔cW5(cx ,cy ,cz). The general equation for a plane
a three-dimensional space isAx1By1Cz1D50. In this
case the plane does not contain the origin soDÞ0 and the
equation can be divided by2D to give A8x1B8y1C8z

51. DefiningTW 5(A8,B8,C8) we have

TW •aW 51, TW •bW 51, TW •cW51 ~32!

as the equations determiningA8, B8, andC8. A point pW is in
the plane if and only ifTW •pW 51, and we see that

VW •GW 5~12l!2VW •aW 12l~12l!VW •bW 1l2VW •cW

5~12l!212l~12l!1l2

5@~12l!1l#251, ~33!

so GW is in the plane. j
We can introduce two independent vectors in the pla

defined byUI ↔a∧a, VI ↔a∧b, andWI ↔b∧b as

uW 5UI 2WI , vW 5VI 2
1

2
~UI 1WI !. ~34!

They are not in general orthogonal or normalized, but a
point in the plane can be expressed as

pW 5wW 1juW 1hvW , ~35!

where wW 5(aW 1bW )/2 is a fixed point corresponding to th
origin of a two-dimensional coordinate system in the pla
It follows that aW 5wW 1uW /2, bW 5wW 1vW , andcW5wW 2uW /2 so

GW 5wW 1S 1

2
2l DuW 12l~12l!vW . ~36!

As g~l! moves linearly froma to b, G~l! moves along a
parabolic path froma∧a to b∧b. This path is in the plane
determined by these end points anda∧b.

When geometric aspects are considered scalar prod
are sometimes involved. A useful result is the following.

Theorem 5.Scalar products of Grassmann products inE2
can be expressed in terms of scalar products inE1 .

This is readily verified from the definitions of scalar an
Grassmann products. Suppose thata, b, c, and d are ele-
ments ofE1 . Then
05250
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~a∧b,c∧d!5 (
j ,k,l ,m

~a∧b! jk
l m~c∧d! l m

jk

5
1

4
@~a,c!~b,d!2~ac,bd!

1~a,d!~b,c!2~ad,bc!#. ~37!

Note that some of the scalar products involve matrices
are matrix products. j

The vast majority of operators of interest, includin
nearly all molecular electronic Hamiltonians, are spin free
is thus appropriate to work with the spinless or charge d
sity components of the one- and two-electron reduced d
sity matrices, obtained by integrating over the spin variab
The complete one-matrix can be expressed in terms
spin-up and spin-down components or in terms of char
density and spin-density components

g~x;x8!5g~0!~rW;rW8!@a~j!a†~j8!1b~j!b†~j8!#/21g~z!

3~rW;rW8!@a~j!a†~j8!2b~j!b†~j8!#. ~38!

It is well known thatG (0), the two-electron charge-densit
matrix or spinless component ofG, can be divided into per-
mutationally symmetric and antisymmetric parts@26#, and
this property is not limited toG (0). Suppose thatG is any
element ofE2 . The kernel of the corresponding integral o
erator can be expanded as in Eq.~3! in terms of antisymme-
trized products of the basis spin-orbitals, but these s
geminals can be replaced by a unitarily equivalent set c
sisting of singlet and triplet spin geminals. Integration ov
the spin variables will eliminate any singlet-triplet cro
products, and the remaining spatial functions are perm
tionally symmetric~for singlet! or antisymmetric~for triplet!.
For the RDM,

G~0!~rW1 ,rW2 ;rW18 ,rW18!5Ga~rW1 ,rW2 ;rW18 ,rW18!1Gs~rW1 ,rW2 ;rW18 ,rW18!.
~39!

and there will be similar decompositions forg∧g andD.
Expressions originally obtained for single determina

density matrices@27# are valid for more general Grassman
products of one-electron RDMs as well. It is convenient
define a symmetrized product analogous to the antisym
trized, Grassmann product,

~a∨b! l m
jk 5

1

4
~al

j bm
k 1am

j bl
k 1al

k bm
j 1am

k bl
j !,

~a∨b!~1,2;18,28!5
1

4
@a~1;18!b~2;28!1a~1;28!b~2,18!

1a~2;18!b~1;28!1a~2;28!b~1;18!#.

~40!

By inserting the spin components ofg into g∧g, expanding
and integrating over spin variables we obtain the spinl
7-5
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component (g∧g)(0). Application of the projection operator
(16 P̂1,2)/2 extracts the symmetric or antisymmetric comp
nent. The results are

~g∧g!a5
3

8
g~0!∧g~0!1

1

8
g~z!∧g~z!,

~g∧g!s5
1

8
g~0!∨g~0!2

1

8
g~z!∨g~z!. ~41!

For a singlet~or other spin eigenstate havingMS50! g (z)

[0.

IV. CUMULANTS AND VALDEMORO MATRICES

Note thatD and V can be expressed as linear combin

tions of Ĝ and Grassmann products of Hermitian matric
They are thus antisymmetric and Hermitian. When the w

function is a single determinantĜ5ĝ∧ĝ the cumulant is
zero. A Hartree-Fock single determinant is often a good
tial approximation, so one might expect thatĝ∧ĝ provides a

good approximation toĜ in general. It is not always the bes
Grassmann product approximation, however. A measure
how closely one matrix approximates another is the norm
their difference, which is the distance between the
d(A,B)5iA2Bi5(A2B,A2B)1/2.

Theorem 6.There aren-representable two-electron RDM
G and one-electron RDMsg8Þg51

2↓G for which

iG2g8∧g8i,iG2g∧gi5iDi . ~42!

The possibility can be established by a simple exam
Consider a two-electron system with four basis functionsu1&,
u2&, u3&, u4&. Take a wave functionC5Cn@ u1,2&10.1u3,4&
10.01(u1,4&2u2,3&)] where Cn is chosen so thatC is nor-
malized. For this caseg has eigenvalues 0.990 123 an
0.009 877, each doubly degenerate, andiG2g∧gi
50.141 89. Withg851.015 0859g20.015 085 9X, whereX
is the diagonal matrix with all diagonal elements 1
iG2g8∧g8i50.140 37. Thisg8 has doubly degenerate e
genvalues 0.997 517 and 0.002 483 12, so it satisfies
Coleman criteria for ensemblen representability. j

Although a single example serves to establish the res
the difference in norms is quite small. Another example,
though not corresponding to a physically likely state, p
vides a somewhat larger reduction in the norm. LetC2
5(u1,2&1u3,4&)/&. This leads to a diagonalg with all four
eigenvalues 1/2. In this caseiG2g∧gi50.935 414, but for
a diagonalg8 with doubly degenerate eigenvalues 0.788 6
and 0.211 325 the norm becomes 0.912 871. It is straigh
ward in principle, although challenging computationally,
find the one matrix that gives a best fit to a given two matr
It seems likely that still smaller values foriG2 f ∧ f i could
be obtained for matrices~kernels! f PE1 that are not required
to ben-representable reduced density matrices.

In the RDM cumulant literature it is suggested thatG be
decompoesed into a part determined byg and a ‘‘true’’ two-
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electron part. It is not clear that this is always meaningf
Another simple example establishes the following.

Theorem 7.There are functionsC, not single determi-
nants, leading to RDMsG andg and cumulantD for which

D}g∧g}G. ~43!

Consider a model withb basis spin orbitals for a system ofn
electrons and some numberr betweenn and b. Let Jr
5$ j 1 ,...,j r% be some set ofr distinct indices each between
andb and define

C~Jr !5S r
nD 21

(
Kn,Jr

uKn&, ~44!

where uKn& is the normalized, antisymmetrized product
the n spin orbitals indexed byk1,¯,kn, and the sum is
over all subsets ofn indices chosen from among those inJr .
Although unlikely to correspond to a physically interestin
state, this is a legitimaten-electron wave function. It treats
all spin orbitals with indices inJr equivalently, and without
actually doing the reductions we can conclude that the
matrix and two matrix also treat these spin orbitals equi
lently so they must be

ĝ~Jr !5
n

r (
t51

r

u j t&^ j tu.

Ĝ~Jr !5S n
2D S r

2D 21

(
t,u,51

r

u j t j u&^ j t j uu. ~45!

These operators are proportional to the projection opera
but are not idempotent~they might be called ‘‘portiopotent’’!

@ ĝ~Jr !#
25

n

r
ĝ~Jr !, @Ĝ~Jr !#

25S n
2D S r

2D 21

Ĝ~Jr !.

~46!

Using Eq.~18! with a j5n/r for eachj we find

ĝ~Jr !∧ĝ~Jr !5
n2

r 2 (
j ,k j ,51

b

u j t j u&^ j t j uu5
n~r 21!

r ~n21!
Ĝ~Jr !.

~47!

The cumulant will thus also just be a multiple ofĜ,

D~Jr !5Ĝ~Jr !2
n~r 21!

r ~n21!
Ĝ~Jr !5

n2r

r ~n21!
Ĝ~Jr !. ~48!

The proportionality constant is negative, soD(Jr) is in fact
negative semidefinite. j

When r 5n, â5ĝ, and Ĝ5ĝ∧ĝ, the well-known single
determinant case. If we foregon-representability and define

â5@r (n21)/n(r 21)#1/2ĝ, thenâ∧â5Ĝ.
Tracing or integrating over spin variables in the cumula

gives its spinless part, which can be separated into symm
ric and antisymmetric components. They are related to
components ofG andg∧g by @cf. Eqs.~41!#
7-6
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Da5Ga2~g∧g!a5Ga2
3

8
g~0!∧g~0!2

1

8
g~z!∧g~z!,

Ds5Gs2~g∧g!s5Gs2
1

8
g~0!∨g~0!1

1

8
g~z!∧g~z!∨g~z!.

~49!

Equation~10! can be rewritten with permuted indices an
the results added, with appropriate signs, to give

G5g∧g1g∧I1V, ~50!

where the matrix elements are labeled by ordered pair
spin-orbital indices.@See Eq.~4!.# We see that in the case o
a single determinant wave functionV52g∧I , soV by itself
is not a measure of the difference betweenG and g∧g. An
analog of Theorem 6 is thus not particularly interesting. F
the portiopotent RDMs considered in connection with The
rem 7,g∧I is not proportional toG or g∧g and thusV will
also differ by more than a proportionality factor.

It is straightforward to show that wheng∧I is traced over
spin variables the result is

~g∧I !~0!5
3

2
g~0!∧I ~0!1

1

2
g~0!∨I ~0!, ~51!

where I (0) is the identity operator or matrix on the orbit
space. There is no contribution fromg (z). Assuming that the
spin-orbital basis consists ofb/2 orbitalsx j , each multiplied
by a for one spin orbital and byb for another, then the
kernel for I (0) is

I ~0!~rW;rW8!5(
j 51

b/2

x j~rW !x j* ~rW8!. ~52!

The two terms on the right-hand side in Eq.~51! are obvi-
ously the antisymmetric and symmetric components, resp
tively. Combining these with previous results, the comp
nents ofV can be constructed,

Va5Ga2~g∧g!a2~g∧X!a

5Ga2
3

8
g~0!∧g~0!2

1

8
g~z!∧gz2

3

2
g~0!∧I ~0!,

Vs5Gs2~g∧g!s2~g∧X!s

5Gs2
1

8
g~0!∨g~0!1

1

8
g~z!∨g~z!2

1

2
g~0!∨I ~0!. ~53!

V. REDUCTION BEHAVIOR AND GEOMETRY

Except in the single determinant case, the reduction
g∧g is notg and its trace is not that ofG. For the Grassmann
product of anya andb in E1 it is readily verified that

Tr2~a∧b!5
1

4
@~Tr b!a1~Tr a!b2ab2ba#,
05250
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Tr~a∧b!5
1

2
@~Tr a!~Tr b!2Tr~ab!#. ~54!

It will be convenient to have a compact notation for t
traceless part of a matrix. Define

f̄5f~1,1!5f2~Tr f!X,

F̄5F~2,1!1F~2,2!5F2~TrF!X~2!, ~55!

for any fPE1 andFPE2 .
As noted above, the partial trace or reduction maps de

a decomposition of an operator into orthogonal compone
or of a matrix space into orthogonal subspaces

E15E1.0% E1,1, E25E2,0% E2,1% E2,2. ~56!

The matrix spaceE2 is a carrier space for a representation
the unitary groupU(b) of unitary transformations of the
spin- orbital basis, and theE2,p are the invariant subspaces
Expressions for the components of a matrix in these s
spaces were given in Table I. Note that ifg5Tr2G then
Tr g5Tr G andḡ5Tr2Ḡ. The components ofG can then be
expressed as

G~2,0!5~Tr G!~2!X,

G~2,1!5
4b

b22
ḡ∧X,

G~2,2!5Ḡ2
4b

b22
ḡ∧X. ~57!

Specialize now to the case of reduced density matric
The components of various Grassmann products are sum
rized in Table II. The~2,2! components indicated in the tab
by * are given by the third of Eqs.~57! but there is no
cancellation to give short expressions. The notationnk
5Tr(gk) has been introduced, withn15n. Note thatḡ∧X is
entirely in E2,1 and that the~2,1! components ofg∧g and
g∧X are the same as those ofḡ∧ḡ and ḡ∧X, respectively.
The norm is that defined by the trace scalar productiGi2

5(G,G). SinceiX(2)i52/b(b21)iG(2,0)i , it is readily de-
termined from the entry in the second column in each ca

We can, without loss of generality, choose the spin orb
basis to be the natural spin orbitals~NSOs! so that ĝ is
diagonal. Denote the diagonal elements by$l j% and note that
the diagonal elements ofX are all 1/b so those ofḡ arel j
2n/b. Recall that Trg5n and TrG5n(n21)/2 for a sys-
tem of n electrons, andg51

2↓ G5@2/(n21)#Tr2G. In the
NSO basis, all off-diagonal elements ofG are associated ex

clusively with D or V and contribute toĜ (2,2). The Grass-
mann productsĝ∧ĝ andĝ∧X are diagonal, and the diagona
elements ofD andV are determined by these and the dia
onal elements ofG. The square of the norm of any matrix
the sum of the squared magnitudes of all its matrix eleme
and the scalar product of two matrices is the sum of produ
of corresponding matrix elements. IfGd

NSO andGod
NSO denote
7-7
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TABLE II. Components of some Grassmann products.

G G(2,0) G(2,1) iG(2,1)i2 G(2,2)

g∧g
n22n

2
X~2!

2b

b22
~nḡ2ng2!∧X

4b

~b21!2 ~2n41n2bn222nbn212nn2
2n42n4

2! *a

ḡ∧ḡ
n22nb

2b
X~2!

2b

b22
~nḡ2ng2!∧X same *

g∧X
n~b21!

2b
X~2! ḡ∧X

1

b3 @2n22b~b22!n2# 0

ḡ∧X 0 ḡ∧X same 0

aSee text.
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the diagonal and off-diagonal parts ofG in the NSO basis,
then (God

NSO,Gd
NSO)50 and iGi25iGd

NSOi21iGod
NSOi2. In

addition, (G(2,p),G(2,p8))50 if p8Þp. The diagonal ele-
ments of the Grassmann products are given in Table III.

If G andg∧g are divided into components, thenD andV
will be similarly divided. The relevant relationships are o
viously

D~2,p!5G~2,p!2~g∧g!~2,p!,

V~2,p!5G~2,p!2~g∧g!~2,p!2
b~b21!

2
~g∧X!~2,p! ~58!

for p50,1,2. While readily evaluated, they do not appear
be expressible in a more condensed form,

From the definitions ofD and V, V5D2bg∧X and it
follows that iVi25iDi21b2ig∧Xi222b(D,g∧X). The
norms are necessarily positive but the scalar product co
have either sign. It will be shown, however, that (D,g∧X) is
negative and thus thatiVi.iDi . This means that adding
g∧I term does not improve the approximation toG.

Theorem 8.The scalar product (D,g∧X) is negative.

Since all off-diagonal matrix elements of the Grassma
product are zero,

~D,g∧X!5(
j ,k

Gjk , jk~g∧X! jk, jk

52(
j ,k

D jk
jk~g∧X! jk

jk

52(
j ,k

FGjk
jk2

1

2
~l j1lk!G 1

2b
~l j1lk!. ~59!

TABLE III. Diagonal matrix elements in NSO basis.

G Gjk, jk

ĝ∧ĝ l jlk

ĝ∧ĝ (l j2n/b)(lk2n/b)
ĝ∧X (l j1lk)/(2b)

ĝ̄∧X (l j1lk)/(2b)2n/b2
05250
o

ld

n

Note that(kG jk
jk5@(n21)/2#l j in the NSO basis and simi

larly when j andk are interchanged, so

(
j ,k

Gjk
jk~l j1lk!5~n21!(

j
l j

2 ~60!

and

~D,g∧X!5
1

2 (
j

g j
22

1

2b S (
j

l j
2(

k
lk1(

j
l j(

k
lk

2D
~61!

5
1

b S (
j

l j
2D ~12n!, ~62!

which is clearly negative. j

VI. DISCUSSION

Cumulants, Valdemoro correlation matrices, and reduct
components provide different ways of dividing the tw
electron reduced density matrix into contributions involvi
Grassmann products of one-electron matrices and a rem
der. In this paper some relevant properties of the Grassm
products have been reported and the information they p
vide aboutD andV has been investigated.

The set ofn-representable two-electron RDMs includ
some that are Grassmann products, corresponding to s
determinant wave functions. Since the Hartree-Fock sin
determinant is often a good initial approximation to the wa
function, it can be expected thatg∧g might be a reasonable
approximation toG and the two-electron cumulantD small.
It has been shown by simple examples thatg∧g with g the
reduction ofG is not necessarily the Grassmann product o
one-electron operatorf with itself giving the largest fraction
of G of this form.

The Valdemoro correlation matrixV involves the Grass-
mann product ofg with the unit matrix as well as with itself
and does not vanish in the single determinant case. It t
cannot be expected to provide a small correction toG in the
same sense thatD does. It has been shown here that the no
of V is always greater than that ofD.

Since most interesting operators are independent of s
7-8
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the spinless components ofg andG are also of interest. It is
not surprising that the permutationally antisymmetric spa
component ofg∧g can be expressed as a linear combinat
of Grassmann products of the one-electron charge- and s
density matrices with themselves. For any spin eigens
with MS50, the spin-density matrix vanishes so that th
spinless component has a simplicity like that of the c
including spin. The permutationally symmetric spatial co
ponent ofg∧g can be expressed as a linear combination
symmetrized products analogous to the antisymmetriz
Grassmann product. SinceG is also the sum of symmetri
and antisymmetric parts,D andV will be similarly divided,
and in the case ofD corresponding components ofg∧g
should normally provide reasonable first approximations.

Any density matrix is positive, in the matrix or operat
sense, and the sets of density matrices and ofn-representable
reduced density matrices are convex. Whileg∧g is positive,
the set of such Grassmann products is not convex. A lin
interpolation between two two-electron RDMs will give, o
reduction, a similar linear interpolation between the cor
sponding one-electron RDMs, butg∧g will follow a para-
bolic path in a two-dimensional subspace of the two-elect
matrix spaceE2 . As a consequence,D must also follow a
nonlinear path.

Both D and V have been suggested to be the ‘‘tw
electron part’’ of G. An alternative characterization of th
zero-, one-, and two-electron parts ofG is based on invarian
subspaces with respect to unitary transformations of the s
orbital basis. The map from a subspaceE2,p of the two-
electron matrix space to the corresponding subspaceE1,p of
d

ity

05250
l
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e
-
f
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ar

-

n

n-

the one-electron matrix space is linear, so convexity is p
served. The components of the Grassmann productsg∧g and
g∧X in these subspaces have been determined. It is fo
that the nonlinear Grassmann product map fromE2 to E1
does not preserve the reduction index~irreducible represen-
tation label! p. In particular, evenḡ∧ḡ, with ḡ purely p
51, has components withp50, 1, and 2.

It has been shown by a simple example that there
pure-staten-representable RDMs for whichg∧g, D, andG
are all proportional. This, as well as the fact thatg∧g is not
in general the best Grassmann product approximation toG,
indicates that any discussion of the physical significance
the decomposition ofG into pieces determined and not d
termined byg must be based on considerations such as
consistency, or a perturbation series or other expansion o
wave function, and not on abstract properties of reduced d
sity matrices and Grassmann products. Similarly, more
ploration of the physical significance ofV would be desir-
able.

The results presented in this paper are limited to the r
tionship between one- and two-electron RDMs. A simi
analysis of Grassmann products, cumulants, and rel
quantities for three and four electrons will clearly be des
able but will require techniques in addition to those us
here. Reduction behavior of the Grassmann products
volved has been investigated@28#.
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