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Quantum key distribution for d-level systems with generalized Bell states
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Using the generalized Bell states and controlled-NOT gates, we introduce an entanglement-based quantum
key distribution~QKD! of d-level states~qudits!. In case of eavesdropping, Eve’s information gain is zero and
a quantum error rate of (d21)/d is introduced in Bob’s received qudits, so that for larged, comparison of only
a tiny fraction of received qudits with the sent ones can detect the presence of Eve.
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I. INTRODUCTION

As far as classical computation and classical commun
tion are concerned, binary units of memory and binary lo
gates play an inevitable and natural role due to the inhe
simplicity of Boolean algebra on the one hand and their co
patibility with on and off states of electronic switches on t
other hand. With such classical gates asNOT, AND, andOR,
the simplest logical operations with which we are familiar
everyday life, and also any binary function, can be imp
mented. They are also quite simple to design electronica
However, in quantum computation and communication~see
@1,2# and references therein!, the main resources that hav
the potential of surpassing our conventional classical m
ods, are quantum parallelism~for massive computation!,
nonlocality and entanglement~for communication!, and un-
certainty relations~e.g., for quantum key distribution, amon
other things!. For utilizing these resources, two-level qua
tum states are by no means inevitable. Only considerat
of quantum hardware should decide between using two-le
or multilevel states. At present a major difficulty in quantu
computation is the limit on the number of qubits that can
coupled experimentally@3#. Although it may be easier to
construct universal gates for qubits than for qudits, the us
d-dimensional systems or qudits has the advantage of the
that compared to qubits, fewer systems should be couple
obtain a given dimensionality of the Hilbert space. Ap
from practical considerations, it will enhance and deepen
understanding of the subject if we try to reformulate qua
tum computation and communications in a dimension-f
context. In view of this, various authors have tried to gen
alize some of the algorithms, protocols, or error correct
codes of two-level quantum computation to arbitra
dimensional Hilbert spaces@4–13#. Consequently, one see
in the literature that the same basic tool~i.e., a generalized
gate! has been defined independently in several works.

For example, the generalization of one of the basic ga
of quantum computation, that is, the controlled-NOT gate,
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appears to have been given independently by a numbe
authors under different names@4–6,8,14,15#. The same is
also true for the generalized Hadamard gate. Especiall
Ref. @5# an experimental realization of the generalizedXOR

gate tod-levels has been proposed, where the numbern of
photons in an electromagnetic mode signifies the stateun&,
n50, . . . ,d21 and a Kerr interaction between these ph
tons and their Fourier transform is used to induce the ge
alizedXOR gate on the states.

In this paper we are concerned with a protocol of quant
key distribution ~QKD! and its generalization to states o
arbitrary dimension. Quantum cryptography~QC! that is
based on very simple ideas and yet not far from real ap
cations as the other highlights of quantum computations
~like factoring large integers! is one of the most promising
areas of research in quantum computation and informati

Particularly interesting is that in QC one tries to turn t
apparently negative or counterintuitive rules of quantum m
chanics, which has resulted in epistemological debates in
past decades, into enormously useful devices for enginee
applications. One such concept has been the uncertainty
ciple, or the fact that observation or measurement pertu
the observable. This rule has been utilized in a most beau
application in the form of the Bennet-Brassard 1984~BB84!
protocol for QKD@16#, where bits of a key prepared by tw
legitimate parties, in the form of spin or polarization of pa
ticles in random bases, are inevitably perturbed by a no
gitimate third party.~For a review on QC including many
theoretical and practical issues, see Ref.@17#.!

Another nonclassical and counterintuitive concept, h
been the concept of nonlocality and entanglement that
found even wider applications, to the extent that nowaday
major problem about nonlocality is not how to interpret
but how to measure it like other useful resources as ene
and momentum.

The first entanglement-based protocol of QKD has be
the work of Ekert@18#, which later was shown to be equiva
lent to the original BB84 protocol@19#, ~see Ref.@17# for
finer details!. Two other QKD protocols that have used e
tanglement in an essential way has been reported in R
@20# and@21#. The first of these uses entanglement swapp
via Bell measurements to safely transfer a key and has b
generalized tod-level systems in Ref.@15#. The second is
©2002 The American Physical Society31-1
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based on local gate operations on a reusable EPR pair, w
Alice tries to hide the secure data by entangling each bit w
the EPR pair, sending the bit to Bob who can disentangle
bit and read the data. The strategy of Eve is to someh
entangle herself with the whole state of the EPR and the
by suitable operations and find access to the data, with
being revealed by Alice and Bob.

The aim of this paper is to generalize this second proto
to higher-dimensional states and at the same time give a c
exposition of its basics.

For the sake of brevity, we will not go into the details
the two-level protocol. For this, the reader can either con
Ref. @21#, or else go through the following sections and
each step setd52.

The basic advantage of this protocol is that as we w
show, not only Eve’s presence will be detected by Alice a
Bob, but also her information gain is zero, compared to
50% information gain in the BB84 protocol. This is true
every dimension, but as we will show, Eve’s presence in
duces a higher quantum bit error rate, in higher-dimensio
states, so that her presence can be detected more easil

The structure of this paper is as follows. In Sec. II we fi
review some known and new facts about the generalized
states, and the generalizations of controlled-NOT ~c-NOT!, and
the Hadamard gates to qudits. In Sec. III which has b
divided into several subsections, we generalize the Q
scheme of Ref.@21# to d-level systems, and discuss the s
curity of the protocol against some individual attacks. W
show that the information gain of Eve is actually zero a
show how the intervention of Eve introduces an error rate
(d21)/d into the data received by Bob, and greatly e
hances the chance of her detection by the legitimate par
In all this we are concerned only with theoretical consid
ations and do not consider practical issues, or any rigo
proving security. All these are important but should be co
sidered in separate works. Finally in Sec. IV, which co
cludes the paper, we discuss a possible route for genera
tion of our results to the continuous variables. Some of
calculations that are not detailed in the main text, are c
lected in the Appendices.

II. STATES AND GATES FOR d-LEVEL SYSTEMS

For qudits, a generalization of the familiar Bell states, h
been introduced in Refs.@5,22–24#. These are a set ofd2

maximally entangled states that form an orthonormal ba
for the space of two qudits. Their explicit forms are

uCm,n&ª
1

Ad
(
j 50

d21

zn ju j , j 1m&, ~1!

where z5e2p i /d and m and n run from 0 to d21. These
states have the properties^Cm,nuCm8,n8&5dn,n8dm,m8 ~or-
thonormality! and tr2(uCm,n&^Cm,nu)5(1/d)1 ~maximal en-
tanglement!. The following operators@4,22–24# are also use-
ful, since they play the analogous role of Pauli operators
qudits:
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Um,n5 (
j 50

d21

zn ju j 1m&^ j u. ~2!

For example, given the entangled stateuC0,0&, only one of
the parties, say Alice, can generate any Bell stateuCm,n& by
acting onuC0,0& with Um,n , i.e.,

~1^ Um,n!uC0,0&5uCm,n&. ~3!

One should, however, note that contrary to the Pauli ope
tors, the operatorsUm,n are not necessarily Hermitian.

One can also generalize the Hadamard gate that turns
to be quite useful in manipulating qudits for various applic
tions @4,5,14#,

Hª

1

Ad
(

i , j 50

d21

z i j u i &^ j u, ~4!

where z5e2p i /d. This operator is really not new and it i
known as the quantum Fourier transform whend52n. In that
case it acts onn qubits. Here we are assuming it to be a ba
gate on one single qudit, in the same way as the ordin
Hadamard gate is a basic gate on one qubit. This operat
symmetric and unitary (HH* 51), but not Hermitian.

To generalize theNOT and the controlled-NOT gates, we
note that in the context of qudits, theNOT gate is, basically, a
mod-2 adder. For qudits this operator gives way to a mod
adder, or a right-shift gate@4,5,8,14,15#,

Ru j &5u j 11&modd, ~5!

R21u j &[Lu j &5u j 21&modd, ~6!

whereL has been used to denote a left shift. Note thatRd

51, compared to~NOT! 251.
For every unitary operatorU, the controlled gateUc that

acts on the second qudit conditioned on the first qudit
naturally defined as follows:

Uc~ u i & ^ u j &)5u i & ^ Ui u j &. ~7!

Note the difference with the qubit case. In the qubit cas
controlled operator acts only if the value of the first bit is
here it actsi times if the value of the first qudit isi. ~Some-
times it is said that a controlled operator is like anif state-
ment in classical computation@1#. If we take this statemen
literally, then a controlled operation ford-level states acts
like a loop.! In particular, the controlled shift gates that pla
the role of controlled-NOT gate, act as follows:

Rcu i , j &5u i , j 1 i &, Lcu i , j &5u i , j 2 i &. ~8!

Every functionf from $0,1, . . . ,d21%n→$0,1, . . . ,d21%m

is made reversible by the definitionf r(x,y)5„x, f (x)1y…,
where all additions are performed modd. In quantum circuits
such a function is implemented by a unitary opera
U f ux,y&ªux, f (x)1y&, where xP$0,1, . . . ,d21%n and y
P$0,1, . . . ,d21%m. Note that here and in all that follows
addition of multidits is performed ditwise and modd.
1-2
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QUANTUM KEY DISTRIBUTION FOR d-LEVEL . . . PHYSICAL REVIEW A 65 052331
Quite analogously to theq bits, the Hadamard and th
controlled shift gates can generate all the Bell sta
$uCm,n&% from the computational basis states$um,n&% @5#,

Rc~H ^ 1!un,m&5uCm,n&. ~9!

Many other properties of these gates are simply car
over from the case ofq bits to the general case with appr
priate modifications. For example, one can check the vali
of the circuit identity in Fig. 1.

III. AN ENTANGLEMENT-BASED PROTOCOL
OF QKD FOR d-LEVEL STATES

In this section we generalize an entanglement-based
tocol of quantum key distribution first put forward in Re
@21# to d-level states and perform further analysis of t
method.

A. QKD in the absence of Eve

The starting point of this protocol is the sharing of a B
stateuC00&5(1/Ad)( j 50

d21u j , j &a,b by Alice and Bob. The qu-
dit to be sent is denoted byq, which is encoded as a bas
state uq&k . Throughout the paper we use the subscri
a,b,k, ande for Alice, Bob, key, and Eve, respectively. Th
basic idea, neglecting considerations of Eve’s attack for n
is that Alice performs a controlled-right shift onuq&k and
thus entangles this qudit to the previously shared Bell st
producing the state

uF&5
1

Ad
(
j 50

d21

u j , j ,q1 j &a,b,k . ~10!

She then sends the qudit to Bob. By this operation sh
hiding the quditq in a completely mixed state, sincerk
ªtra,buF&u^Fu5(1/d)1k . At the destination, Bob performs
controlled-left shift on the qudit and disentangles it from t
Bell state, hence revealing the value ofq with certainty.

Note that in contrast with the BB84 protocol, here the k
is not determineda posterioriand randomly, hence a large
transfer rate is possible.

B. An individual attack by Eve

A possible conceivable attack by Eve (e) is that she en-
tangles her state to those of Alice, Bob, and the intercep
key so that after Bob’s measurement of the qudit, she
obtain partial information about the qudit. The best way
describe and visualize the protocol is to refer to Fig. 2, wh
the qudits are drawn as lines and states at each stag
shown explicitly.

The strategy that Eve follows should be described se
rately for the first qudit and the rest of the qudits. For the fi

FIG. 1. Circuit identity ford-level gates.
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qudit, she performs no measurement and proceeds so tha
qudit gets entangled with the Bell state of Alice and Bob
the end of the process. For this she uses a controlled-r
shift on her qudit conditioned on the value of the first qu
being sent~see Fig. 2!. The states at various stages are
follows, where in each ket the qudits refer, respectively, fro
left to right to Alice (a), Bob (b), the key (k), and Eve (e):

uF0&5
1

Ad
(
j 50

d21

u j , j ,q1,0&a,b,k,e , ~11!

uF1&5
1

Ad
(
j 50

d21

u j , j ,q11 j ,0&a,b,k,e , ~12!

uF2&5
1

Ad
(
j 50

d21

u j , j ,q11 j ,q11 j &a,b,k,e . ~13!

Note that choice ofu0& for Eve’s original state is quite arbi
trary. Her strategy works with any other choice. In the la
stage when Bob performs his left-shift gate, he produces
state

uF3&5
1

Ad
(
j 50

d21

u j , j ,q1 ,q11 j &a,b,k,e, ~14!

and thus disentangles the key and correctly measures
value of its first ditq1. However, his shared Bell state wit
Alice has now been left entangled with the state of E
which is used again by Alice and Bob~unaware of the en-
tanglement with Eve! for the next round~i.e., for sending the
dit q2 of the key!. Thus for the next round the state that Alic
and Bob will start with is

uC0&5
1

Ad
(
j 50

d21

u j , j ,q2 ,q11 j &a,b,k,e . ~15!

Note that we are assuming that Alice and Bob do not h
access to a reservoir of Bell states, the later being suppos
expensive. Thus they are using one Bell state for sending
whole key or at least a considerable fraction of it.

It is important to note that Eve modifies her strategy
the next dits, by first performing a left shift, measuring h
qudit, and then performing a right shift on her qudit. The r
of the process is like that for the first qudit~see Fig. 3!. The
various states in different stages shown in the figure are
follows:

FIG. 2. Eve attacks for the first qudit.
1-3
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uC0&5
1

Ad
(
j 50

d21

u j , j ,q2 , j 1q1&a,b,k,e , ~16!

uC1&5
1

Ad
(
j 50

d21

u j , j ,q21 j , j 1q1&a,b,k,e , ~17!

uC2&5
1

Ad
(
j 50

d21

u j , j ,q21 j ,q12q2&a,b,k,e . ~18!

At this stage Eve who has disentangled her qudit from
rest of the state measures her own qudit to beq12q2. She
then performs the controlled-right shift on her qudit to r
store the original stateuC1&. At the destination Bob again
proceeds as before, performs his left shift and measures
value of q2, leaving the state of Alice, Eve, and his ow
state, in an entangled state ready for use in the next rou

In this way Eve intercepts the qudits

q12q2 ,q12q3 ,q12q4 , . . .

from which she can infer all the sequence by checkingd
possible values forq1.

Note that for each qudit, Eve is effectively doing a
intercept-recent strategy, however, she does not intercep
value of the qudit~sayq2) sent by Alice, but she measures
valueq22q1, whereq1 is the value of the first sent qudit tha
has been intercepted in an earlier stage.

C. Protection against Eve’s intervention

To protect this protocol against this kind of attack, Alic
and Bob proceed as follows. Before sendingeach of the
qudits, Alice and Bob act on their shared Bell state by
Hadamard gatesH and H* , respectively. The key point is
that a Bell stateuc0,0& disentangled from the outside world
unchanged under this operation, while a state entangled
outside is not:

~H ^ H* !uC0,0&5uC0,0&. ~19!

In the absence of the intervention of Eve, this extra opera
has no effect on the protocol.

In fact the shared Bell state is unchanged under m
general operators of the formU ^ U* , whereU is any unitary
operator. We will investigate this possibility in Appendix B

It is clear from Fig. 2, that for the first qudit nothin
changes. However, for the second qudit and other qud
essential changes occur in the intermediate states in the
cess. As we will see, in this way Alice and Bob can prev

FIG. 3. Eve attacks for next qudits.
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Eve from getting any useful information. The entangled st
of Alice, Bob, and Eve which remained from the first roun
is

ux&5
1

Ad
(
j 50

d21

u j , j , j 1q1&a,b,e . ~20!

When Alice and Bob perform their Hadamard gates on th
qudits, this state changes to

ux̃&5
1

Ad
(

i , j ,k50

d21

Hi , jHk, j* u i ,k, j 1q1&a,b,e . ~21!

Thus the second round of the protocol after Alice inserts
second dit of the key, starts with the state

uC 0̂&5
1

Ad
(

i , j ,k50

d21

Hi , jHk, j* u i ,k,q2 , j 1q1&a,b,k,e . ~22!

The stateuC 1̂& that results after Alice’s controlledR opera-
tion will be

uC 1̂&5
1

Ad
(

i , j ,k50

d21

Hi , jHk, j* u i ,k,i 1q2 , j 1q1&a,b,k,e .

~23!

The qudit is now sent to Bob. We will show in Appendix A
that this new state has no information for Eve. In fact we w
show that, the density matrix of her system and the qudit w
be

rk,e5
1

d2
1k^ 1e . ~24!

Therefore, under any unitary operation on her qudit and
sent qudit whether it be the controlledL gate used for the
first round or a more complex cleverly chosen operator,
will not be able to get useful information from the inte
cepted data. More generally, it is hardly possible for Eve t
by a quantum operation derived from suitable interactio
with her ancillas, can derive any useful information from th
density matrix.

D. The information gain of Eve

The above situation is analogous to the case of BB
protocol, where with respect to any basis chosen by Eve,
density matrix of the qubits intercepted by Eve are iden
matrices. However, there is one major difference in that
the BB84 protocol and its variations and generalizations
higher-dimensional states, the protocol ends up with a pu
announcement of the bases of Alice and Bob, from wh
Eve finds that she has intercepted a fraction of the qubit
qudits correctly. Therefore, Eve finds partial informatio
about the key and only her revealing by Alice and Bob sa
those protocols. Here we will show that the information ga
of Eve is actually zero and she obtains no information at
about the key. The mean information gain per bit of EveI, is
the difference between two relative entropies and is in
1-4



E
ed

ve

of
t

v
y,

g
o
na
I

to

o
a

d

an
ta
e
us
nt
y
E
s

t
c
e
B
e

rix
rns

udit
ect
by

on
eus-
the
by

84

in
the
s of

ual
of

tion
ral

the
l

the
ard
ith

tion
g-
it

h as
as a
oto-

per
ous

apt
we

QUANTUM KEY DISTRIBUTION FOR d-LEVEL . . . PHYSICAL REVIEW A 65 052331
preted as the percentage of bits that are saved when
wants to write the data of Alice from her own intercept
data@17#. We have

I 5Ha priori2Ha posterieri. ~25!

Assuming that Alice sends the qudits uniformly, we ha
Ha priori5 log2d. We also have

Ha posterieri52(
r

p~r !p~ i ur !log2p~ i ur !, ~26!

wherep(r ) is the probability that Eve receives a dit value
r andp( i ur ) is thea posterieriprobability that Alice has sen
a dit value ofi given that Eve has received a dit value ofr.
The later can be easily calculated from Bayes’s formula

p~ i ur !5
p~ i !p~r u i !

( p~ i !p~r u i !
. ~27!

Since Alice is assumed to send the dits uniformly, we ha
p( i )51/d and since the density matrix of Eve is unit
p(r u i )51/d, thus we find:p( i ur )51/d. Inserting all this in
Eq. ~26! we find thatHa posterieri5 log2d5Ha priori and hence
zero information gain for Eve. This is a very interestin
property of this protocol compared with the BB84 protoc
and its variations or generalizations to higher-dimensio
systems where the information gain of Eve is nonzero.
fact in the BB84 protocol the 50% information gain is due
those occasions where the basis of Eve happens to be
same as the publicly announced baseis of Alice and B
Here there is no public announcement of any kind and so
the dits that Eve measures are really worthless at the en
the protocol.

E. Detection of Eve

At this stage we want to show how Alice and Bob c
infer the presence of Eve from comparison of their da
Although by no unitary operation on her system and the k
she can gain information from the key, she may want to
a clever operation to reduce as much as possible the qua
bit error rate~QBER! introduced into the data received b
Bob, and hence her chance of being detected. The QB
depends on her choice of the operation. Suppose that
performs the same sequence of~controlledR 1 measuremen
1 controlledL) operations that she was doing in her su
cessful attacks. It is straightforward to see that with the pr
ervation of Hadamard gates, the new state that reaches
provided that the quditsq1 and q2 have been sent and Ev
has measured a qudit value ofq in the second round, is

uF3&5 (
i ,k50

d21

Hi ,i 1q22q11qHk,i 1q22q11q*

3u i ,k,i 1q2 ,q&a,b,k,e . ~28!

After Bob performs his controlled-L operation, the final state
ready for measurement will be
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uF4&5 (
i ,k50

d21

Hi ,i 1q22q11qHk,i 1q22q11q*

3u i ,k,i 1q22k,i 1q1q2&. ~29!

It is again a simple computation to find the density mat
corresponding to the key space from this state, which tu
out to be

rkªtra,b,euF4&^F4u5
1

d
1k . ~30!

This means that Bob measures all the values of the key q
with equal probability and his chance of getting the corr
qudit is 1/d. Hence the QBER introduced into the data
Eve’s intervention is (d21)/d.

IV. DISCUSSIONS

We have studied a protocol of quantum key distributi
for d-level systems based on shared entanglement of a r
able Bell state and have shown that in this protocol,
information gain of Eve is zero and the QBER introduced
her interception into the data received by Bob is (d21)/d.
The situation is similar to the generalizations of the BB
protocol to higher-dimensional states@11–13#, in which the
larger the number of states, the larger is the QBER, which
turn may be larger than any noise already present in
channel. This later fact seems to be an advantage in term
the security of the key distribution scheme@25#. These re-
sults are based only on the analysis of a direct individ
attack by Eve. It may be interesting to study further types
attacks and to establish theoretical bounds to the informa
gain and the QBER in this protocol or go through a gene
analysis along the lines that have been followed for
BB84 protocol in Refs.@25–27# and to see if this protoco
has an unconditional security or not.

Another route for extending our results is to consider
continuous variables. There has been a lot of interest tow
quantum computation and quantum communication w
continuous variables in the past couple of years~see@28,29#
and references therein!, where instead of bits, information
may be stored in infinite-dimensional states such as posi
or momentum of a particle or amplitude of an electroma
netic field. Part of this interest derives from the fact that
has been shown that a combination of optical devices suc
phase shifters and beam splitters may be sufficient to act
set of universal gates. Therefore many algorithms and pr
cols have been restudied for continuous variables@29#. Now
that we have a QKD protocol ford-level states for anyd, a
natural question arises whether it is possible to go to a pro
continuous limit and define the above process for continu
variables. We can simply replace the discrete statesu j & with
continuous variablesux&,2`,x,` and z5e2p i /d with z
5e2p i in all the formulas for states and operators to ad
the protocol to the continuous variables. In all stages
need to also change summations to integrations,
1-5
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1

Ad
(

0

d21

→ 1

A2p
E

2`

1`

dx. ~31!

Following these we will find the generalized Bell states
the continuous case

uCa,b&5
1

A2p
E eibxux,x1a&dx, ~32!

wherea and b are continuous labels ranging from2` to
1` andux& is a continuous state such as position and all
integrals now and hereafter are over the real line. Th
states are normalized in the sense that

^Ca,buCa8,b8&5d~a2a8!d~b2b8! ~33!

and are maximally entangled in the sense that

tr2~ uCa,b&^Ca,bu!5
1

2pE2`

1`

ux&^xudx.

The generalization of the Hadamard operator is nothing
the Fourier transform operator that has already been use
Ref. @29# to generalize the Grover algorithm@30# to continu-
ous domain,

Hux&5
1

A2p
E eixyuy&dy. ~34!

The controlled-right shift operator now takes the form

Rcux,y&5ux,x1y&, ~35!

which as an operator takes the particularly simple form

Rc5e2 iX ^ P. ~36!

This operator has also appeared in Ref.@5#. To define the
form of the protocol for the continuous variables, it
enough to modify all the states in various stages of the p
tocol as stated above. It may then be practically more f
sible to really implement this protocol by optical means.

APPENDIX A

In this appendix we show that Eve cannot counteract
action of the Hadamard gates by replacing her controll
shift gate by any other unitary operator or even by any qu
tum operation. Therefore, any measurement of her syste
the intercepted qudit will reveal nothing to her.

When Eve intercepts the sent qudit, she will have acc
to the last two parts of the following state:

uC2&5
1

Ad
(

i , j ,k50

d21

Hi , jHk, j* u i ,k,i 1q2 , j 1q1&a,b,k,e .

~A1!
05233
e
e

ut
in

-
a-

e
-
-
or

ss

One can now find the density matrix of Eve and the s
qudit from rk,e5tra,b(uC2&^C2u). Using the primed dummy
indices such asi 8, j 8••• for the bra statêC2u, we have

rk,e5
1

d ( Hi j Hk j* Hi 8 j 8
* Hk8 j 8d i i 8dkk8

3u i 1q2 , j 1q1&^ i 81q2 , j 81q1u. ~A2!

Summing overi 8,k8 we find

rk,e5
1

d ( Hi j Hk j* Hi j 8
* Hk j8

3u i 1q2 , j 1q1&^ i 1q2 , j 81q1u. ~A3!

Summing overk and using the symmetry and unitarity ofH
((Hk j* Hk j85d j j 8) and then summing overj 8, we obtain

rk,e5
1

d ( Hi j Hi j* u i 1q2 , j 1q1&^ i 1q2 , j 1q1u. ~A4!

Now we use the definition ofHi jª(1/Ad)z i j , to setHi j Hi j*
51/d. The last step is done by a relabeling of the indicei
1q2 and j 1q1 to end with

rk,e5
1

d2 (
l ,m

u l ,m&^ l ,mu5
1

d2
1k^ 1e . ~A5!

APPENDIX B

In this appendix we investigate the consequences of
placing the Hadamard gates with an arbitrary unitary gateU.
As stated in the text, the Bell stateuC0,0& is invariant under
the action ofU ^ U* for any unitary operator. Suppose th
Alice or Bob use an operatorU instead ofH, either deliber-
ately or by unwanted errors in their gates. To find the inf
mation gain of Eve, we need to calculate as in Appendix
the density matrixrk,e5tra,b(uJ2&^J2u), whereuJ2& is

uJ2&5
1

Ad
(

i , j ,k50

d21

Ui , jUk, j* u i ,k,i 1q2 , j 1q1&a,b,q,e .

~B1!

The calculations are similar to Appendix A, and the fin
result is

rk,e5
1

d (
i , j 50

d21

uUi , j u2u i 1q2 , j 1q1&k,e^ i 1q2 , j 1q1u.

~B2!

Thus if the operatorU shares only the property with th
Hadamard gate thatuUi , j u251/d, then again we will have
rk,e51/d21k^ 1e and the information gain of Eve reduces
zero. In this sense the protocol is somehow robust again
large number of errors in the Hadamard gates.
1-6
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Second, we can repeat the calculation that leads to
final density matrix of the key dits in the hands of Bob, E
~30!, to determine the new QBER. This time we have

uJ4&5 (
i ,k50

d21

Ui ,i 1q22q11qUk,i 1q22q11q*

3u i ,k,i 1q22k,i 1q1q2&. ~B3!

It is again a simple computation to find the density mat
corresponding to the key space from this state:
K,

t

t

.
rin

int

05233
he
.

rkªtra,b,euJ4&^J4u

5
1

d (
i ,k

uUi ,i 1q22q11qu2uUk,i 1q22q11qu2

3u i 1q22k&k^ i 1q22ku.

Again, if for uUi , j u251/d, we will obtain a completely mixed
matrix (1/d)1k , and the same QBER as with the Hadama
gates.
ys.
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