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Exact gate sequences for universal quantum computation using th&Y interaction alone
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In a previous publicatioh). Kempeet al, Quantum Computation and InformatigRinton Press, Princeton,
NJ, 2002, Vol. 1, special issue, p. 33ve showed that it is possible to implement universal quantum compu-
tation with the anisotropiX'Y-Heisenberg exchange acting as a single interaction. To achieve this we used
encodings of the states of the computation into a larger Hilbert space. This proof is nonconstructive, however,
and did not explicitly give the trade-offs in time that are required to implement encoded single-qubit operations
and encoded two-qubit gates. Here we explicitly give the gate sequences needed to simulate these operations
on encoded qubits and qutritthree-level systemsand analyze the trade-offs involved. We also propose a
possible layout for the qubits in a triangular arrangement.
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[. INTRODUCTION tions of quantum computers. Here quantum bits are imple-
mented with two optical modes containing one phdi®hIn

Any quantum computation can be built out of simple op-this setting, single-qubit operations can be achieved with lin-
erations involving only one or two qubits. These elementaryear optics: beam splitters and phase shifters are sufficient to
guantum gates can generate any unitary operation over thgenerate every rotation in $2). Proposals for two-qubit
qubits. One particularly simple set of universal gates consistgates, however, either suffer from the requirement for non-
of single-qubit unitarie$SU(2)] together with an entangling linear couplings between the optical mod&$, or have to
two-qubit operatiorf2]. exploit feedback from photodetectors. Such feedback results

The physical implementation of these sets of gates in vari€ither in making the scheme nondeterministite coupling
ous proposed physical systems is often daunting, involvingate is merely probabilisticor in requiring nondeterministic
precise manipulations well beyond the current state of techgeneration of entangled photon staf€§. Another recent
nology. Most physical systems, however, possess some iff0Posal[10] uses coherent states to encode (approxi-
trinsic interactions that are easy to tune and to control. Thes&?a!® qubit, which allows for implementation of dapproxi-

interactiongper seusually do not constitute a universal set of mate controlled p.hgse with just one beam sphtter but now
« legates all the difficulty back again into the implementation

gates, in the sense that they cannot generate any arbitra single-qubit interactions
unitary transformation on the set of qubiter qudits— Recent studieg1,11—14 show how to overcome this

d-Ie\{{eI(jsy_?Lemfd_Ihus,l they ger}erallyl/ _havt(; to tl?]e s_ui)ple- problem in several cases of interest. By suitably encoding the
mented with additional means of applying the other in er‘f:lc'qu«':mtum states into a higher-dimensional quantum system
tions that are required in order to complete a universal gat

. 3 . i aGarious interactions can be made universal. We have termed
set. It is the need to add this capacity that dramatically inysis methodencoded universalitj15]. The Heisenberg inter-
creases the device complexity and that may significantly diaction, for example, allows for encoded universalig] and
minish the decoherence times of the resulting quantum d&ye have identified the possible encodings to realize this. Our
vice, posing the largest challenge on the route to scalablgroof relies on Lie-algebraic methods and does not answer
universal quantum computation. the very practical question: What price must be paid in ad-
It seems to be nearly a rule of thumb that one of these tW@|t|ona| gates tdmp|ementencoded Sing]e_qubit and two-
kinds of interactiongsingle qubit or two qubjtis generally  qubit operations? Ifil1] we have assessed the trade-off for
easy to achieve, whereas the other one is extremely hard {§e Heisenberg interaction. For the encoding of “logical”
implement. Examples of this easy-hard duality are the progupits into blocks of three “physical” qubits each, we found
posals based on solid-state physics using quantumd@s  that four exchange gates in sequence allow to simulate every
donor-atom nuclear spir{§], or electron sping7]. In these  single-qubit operation on the encoded qubit, whereas a se-
approaches, the basic two-qubit quantum gate is generateflience of 19 exchange gates gives the encoded controlled-
by a tunable Heisenberg interactifthe Hamiltonian isHi;  noT (up to single qubit operatiohsThis was in serial mode:
=J(1)S - S; between spinsandj ], while the one-qubit gates a parallel mode solution was also found that required only
require the control of a local Zeeman field. Compared to thehree exchange gates for single-qubit operations and seven
Heisenberg operation, the one-qubit operations are signifiexchange gates for the encoded controlled- These se-
cantly slower and require substantially greater materials andquences were obtained via numerical minimization of func-
device complexity, which may then also contribute to in-tions based on local invariants due to MakHlitv].
creasing the decoherence rate. Examples where single-qubit Since then new results on encoded universality have been
gates are relatively easy to achieve whereas two-qubit gateterived. In[1,12] we showed that the anisotropic exchange
are now hard, are the proposed quantum-optics implementaateraction lends itself to encoded universality and identified
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the required encoding to implement this. Results were ob- Il. THE ENCODINGS
tained for general numbers of qubits with the smallest
encoding required to achieve universality without additional

interactions being an encoded qutttiree-level systepcon- action preserves the number of 0's and 1's of a computa-

structed frorm= 3 physical qubits. 118,19, Wu and Lidar . : L )
have analyzed the universality properties of exchangelike in}:gggl ntijﬁlt)sef?%’s\/\g;hc;nlz ts&aﬁnstgﬁggﬁi ?sy jé?égrssy'th a
teractions in the presence of additional single-quhitop- '

erations or statiar, terms in the Hamiltonian. They found We can chose a subspace spanned by statesi i and

that with the help of these additionat, interactions it was . ' 0's [such thati<(n—1i)] to encode [) =d basis states,

possible to encode into pairs of qubits yielding an encoded qudit. The smallest encoded qudit is a
Anisotropic Heisenberg spin couplings arise whenevefAUlmt encoded int=3 qubits, according to

there is some preferred direction in space along which the B _ B

coupling is stronger or weaker. This could be due to, e.g., 00)=[100 [1,)=[010 [2,)=]003). (2)

asymmetries induced by donor atoms in solid-state arrays of . o

atoms coupled via their nuclear spif&20]. The XY inter-  For largen, the encoding efficiencynumber of encoded qu-

action arises when there is no coupling in thdirection of ~ bits over number of physical qubitdog,d/n) approaches

the spins, while the coupling ik andy direction is equally ~ Unity- o _
strong, Quantum circuits built from encoded states have to re-

spect the tensor product structure of the quantum circuit
model. To map the encoded Hilbert space to the quantum
circuit model, a cutoff has to be chosen physical qubits
encodingd state$. Blocks of n qubits will represent the en-
coded qudits. Since the tensor product of two of these blocks
és still spanned by basis states with a constant ratio of 0’'s and
4's (in a space of @ qubits now, the product state is im-
mersed in a subspace over which ¥ interaction is uni-
versal. In particular, any two-qudit gate can be implemented
with XY interactions. Ifd is not a power of 2 for a given
encoding ofd states inton qubits, we can always choose to
not use some of thd states, so that the remainin§ gtates

We will encode a qubit or qudit into parts of the Hilbert
space of a system af qubits. As shown iff1] the XY inter-

o
(Hxv)ij =5 (a0t oy =3y Ay @

This situation is relevant to several proposals for solid-stat
guantum computation, e.g., using quantum dot spins an
cavity QED[21] and using nuclear spins coupled by a two-
dimensional electron gd22].

In the following we give an explicit assessment of the
trade-offs involved in implementing universal computation
with the XY interaction alone. We give an explicit applica- i X
tion to then=3 qutrit encoding established by Lie group M thek logical qubits. o . .
methods in Ref[1] that possesses the smallest spatial over- The basic units of quantum circuits in the implementation

head for logical encoding. Consideration of possible gate se2f most algorithms are qu.bits rather.than q_udits. This is
quences for this encoding shows that we may achieve aﬁrgely a matter of convenience, but is considerably more
ommon in experimental schemes. We will, therefore, first

additional economy by using only two of the qutrit states to® ! , .
define a truncated qubit, i.e., two encoded logical states fromi"oW how to implement universal computation on an en-
three physical qubits. In this case teéfectiveencoding of ~coded qubit that is obtained by discarding the Ieg)) in

the truncated qubit requires only two physical qubits andEd- (2). Since this encoded qubit is obtained by discarding a
single-qubit operations will require an additional ancillary St&t€ from the original qubit, we shall refer to it as a trun-
qubit, which can be reused after the gate application for subcated qubit. We shall then show how K& implementation

sequent gates. We find that universal computation is possibi0rks on the full qutrit. In both cases we are constructing
on this truncated qubit using at most sevéN-exchange encoded single-qudit operations and encoded two-qudit op-

gates for encoded single-qubit operations, and at most fiyerations that have the capability of entangling the encoded
XY-exchange gates for an encoded two-qubit dtte con- logical states, where the qudits are qubits in one instance and
trolled phase fligC,). For the full qutrit, i.e., using all three qutrits in the other. Thus we are implicitly working within

encoded states derived from the=3 physical qubits, we the model of encoded universality that provides a map onto

find that single-qubit operations may be constructed b)}he standard model of one- and two-qubit operations.

slightly modifying the encoded single-qubit operations used

for the truncated qubit, which results in 12 operations as a lll. THE GATE SEQUENCES
basis for single-qutrit operation while encoded two-qubit
gates now require eighXY-exchange gates.

Thus theX Y-anisotropic exchange interaction can be used We now show how to emulate both single-qubit opera-
to implement universal quantum computation in an economitions and the encoded controlled phase flip. The controlled
cal fashion without requiring supplemental interactions,phase flipC,, defined byla)|b)— (—1)3Pa)|b), is equiva-
whether static or dynamic. This result is extremely attractivdent to the controlledoT (c-NOT), up to local unitary opera-
for experimental investigations, allowing application to en-tions on the encoded qubits. Note that in the particular en-
coding over arrays of degenerate quantum bits, such asding we have chosen by discarding ) (i.e., |0.)
would arise from nanoscale fabrication methods, i.e., with no=|100) and|1,)=|010)), the third physical qubit is always
requirement of a distinct energy spectrum. in the state|0). Consequently the third qubit is alway@)

A. Truncated qubit encoding
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FIG. 1. Three-qubifP; gate. The diagram depicts the layout of 4ubits. (@ gives an implementation of the single-quelt* gate.
the five XY interactions to be applied to three physical qubits-  1he third (ancillary) qubit is set to[0) |n/|;|ally. P3(—¢) imple-
noted 1, 2, and )3 The time lines of the qubits run from left to right. MeNts /zthe transfqrmat|0n|1,0,0)He'_‘¢z)|1,0,0> and [0,1,0
The arrows represent théY interactions with labels showing the —€ '~ ~|0,1,0), which corresponds te'** (up to a global phase
corresponding interaction times. The time of the cerxrlinter-  After the gate operation the third qubit is once again in|jestate
action ¢/2 will be set according to the final use B%, so we refer ~and can be reuseh) shows two possible options of how to imple-
to the gate a®s( ). This network transforms four of the eight total Mment they—ZZ gate on two encoded truncated qubits. HQe

states of the three qubits, according [©,1,0)—&/(#/2]0,1,0), =1,2 andQ,=3,4 represent the two first physical qubits of the
11,0,00—e"1(¢[1,0,0, [0,1,))—e (¥2]0,1,1), |1,0,))—¢€/(#2  three-qubit encoding. The third, ancillary, qubits of each truncated
11,0,1). It leaves the remaining four states unchanged. qubit are not involved in these gate sequences and so are not shown
here. Both circuits transforfi,0,1,0 —e '("¥]1,0,1,0, 1,0,0,3
. i(m/4 i(mwl4
for any statgW )=«|0. )+ B|1.) of the encoded qubit. It —€'™11,0,0,9, 0,1,1,0—€'"/0,1,1,0, 01,0,

is, therefore, redundant for this truncated encoding. How-—¢ ""]0,1,0,3, which is equivalent to the logical—ZZ on the
ever, as we show below, it is needed during the application of9ic@! stated|00)[00),[00)[11),[11)[00),]11)|11)} of the encoded
the gate sequence. We can say that ¢ffectiveencoded Uuncated qubits.
qubit is placed into a space of only two physical qubits
(]0L)=]10) and|1,)=]01)), with the third qubit playing the
role of an ancillary statéwe will need it during the applica-
tion of the gate sequengevhich can be reused for several
computations. We will denote the Pauli matriceg, , by
X,Y,Z, respectively. For notational simplicity, we shall sub-
sume the amplitude factors df; into the gate phases.
Note that the amplituded;; are, in general, allowed to be
different for different qubit pairs,j.

(a) Single-qubit operationsNVe will use the Euler-angle
decomposition of matriceld e SU(2) as

Figure Za) shows how to use this five-gate sequence to
implement an encodec(®?), on our qubit. Adding a third
ancillary physical qubit in the statf) thus allows us to
enact P; on the truncated qubitO,),|1,). In particular,
Ps(—¢) transforms |100—e'(?2|1000 and |010)

—e '(¢2)010). This implements the encodet*?, up to a
global phase &'(#/?), and leaves the third qubit unchanged.
Using these two operations\?12 and P;, Eq. (3) shows
that we can implement any single-qubit gate on the encoded

qubit using at most seven gates generated byXtkenter-
action.
U=gl#1X. gib2Z. gih3X 3 (b) Two-qubit gateTo obtain an encode@, between the
encoded qubit$0, ) and|1,) we do not have to work much
to show how to implement each of these factors in turn orharder. We will demonstrate that the previous five-gate se-
the encoded qubit. This is very easy for the encoded operguenceP; can be used to obtaif—ZZ=exf —i(7/4)ZZ].
tions generated b, This gate is equivalent to the controlled phase-flip
- - C, up to single qubit unitaries[C,=(exdi(7/4)Z]
(e =€ “) ®exdi(w/4)Z,])\—2Z]. Figure Zb) shows two possible

layouts of P; that can achieve this, i.e.,
Ajj=3(XIXI+ YY), (5) ( TZZ)L:%( - j)
2

a
=Pa| 5] - (7
For the encoded we will adapt a sequence from Lidar and 124

Wu [19], which acts on three qubits. This sequence, whichrne sypscripts refer to the physical qubits to whigk is

we will call P5, will be used also to implement the controlled 5ppjied. This means that in order to implement the controlled
phase flpoZ between two encoded qubits. Its layout is phase flipC, exactly (up to single qubit operatiopswe need
shown in Fig. 1, only five gates.

Ps( )

— @i (T)AL,, @i (T2)Ag3. @i ($12)A13, o= i(TI2)Ag3. @ =i(T4)AL,

whereA|; is defined in Eq(1), i.e.,

123

B. Universal computation on qutrits

Let us now analyze the case of the encoded quitrit, i.e., the
(6) three-state system of E¢R). To universally compute on a
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(a) switching qubit 1 and 3, these same operations givésth
1 — M\ |1.),|2.). By switching 2 and 3, they give SP) on
2 —P,(-20/3) \ # |0.),|2.). Hence, by the enlarging lemnja6], we can use
3 \ P28 these sequences to construct any(Flbperation on the
qutrit.
(b) To implement an entangling operation between the two
Ql{l — qutrits, we need only to implement an entangling opera-
2 — P14 P, (4) tion (e.g., C,) between two of the three levels of each

Q2{4 T X < qutrit. Using the gates in Eq7), together with the fact
that ; does not change states of the fof@®0) and|001),

B we can implement an encodedy—ZZ between

1 — I . .
Q — D (-4 D (m4) —0 {100)[00),[00)[10),12)[00),[1)[11)}. We achieve this by
{% —_ 2. Lty combining the two options in Eq.7) in serial, to build a
02{4 2 ez circuit having twoP; gates in sequence, shown in Figbg3

We note that the sequence of the t#g gates results in a

FIG. 3. Quantum logic with thé@; gate on encoded qutritéa)  total of only eight exchange interactiorisather than tep
shows how to use tw@®; gates to implemerg'¢Z on the first two  because the last interaction in the firg2;f1,5 cancels the
levels of an encoded qutrit. The net transformation|is0,0)  first one in the secondR;)24. We present a second possi-
—€'(¢9¥)1,0,0, |0,1,0—e '?¥|0,1,0, and [0,0,))  bility for the same circuit in the lower part of Fig.(.
—€'(#9]0,0,1), which corresponds to th& gate on the first two  Instead of applying thé; gate between qubits 123 and 124
states up to a global phaseaf*’?. (b) shows two equivalent ways in succession, we limit the application & here to just the
of how to use twoP; gates to implement/—ZZ on the states first three qubitg123) in both instances. Then we insert an
{100)100),100)[10),[11)]00),[11)]1)} of an encoded qutrit, while Xy gate between qubit 3 and 4, which is then undone after
leaving all other states unchanged. HQ=1,2 andQ;=3,4rep-  the secondP; gate. This arrangement has two more gates
resent the two first physical qubits of the three qubit encoding. Th?ten instead of eight but makes up for this by presenting
thir_d qubit of each qutrit is not involved in these gate sequences angdvantages for conception of the layout of the physical qu-
S0 is not shown here. The lower gate sequence has two more galgys hep. gate requires interactions between all three of its
but has the advar_1tage that it can be implemented in the tnangul:%]rubits, which therefore have to be arranged in a geometry
arrangement of Fig. (). that will allow for this (e.qg., triangulax. It can therefore be

) ) ) advantageous to limit the number of differej gates. Yet

qutrit, we have to show how to implement &) operations  another alternative to this last circuit is to make fggate
on the qutrit and also how to make an entangling gate beact poth times between qubits 1, 2, and 4, and to insert two
tween two encoded qutrits. As noted above, this allows us t& v interactions before and after the fifBy gate.
use the engoded qutrits to implgment quar)tum circuits con- \whichever of these three entangling-ZZ circuits is
structed to implement computation on qutrits. used, symmetric permutations of the qulitgthin one en-

_ For the single—qut'rit operations, we note that it is suffi- .oqeq quitrit will again allow one to then implemert,
cient to show how to |mplement 38 on each pair (.)fWO of " petween any choice of pairs of two levels of the encoded
the three states. This follows from the enlarging Iemmaqutrits.

proven in Ref[16]. Note that both theX gate of Eq.(4) and
the Z gate of Eq.(6) leave the staté2, )=|001) unchanged.
To implement an encodeal?* on the first two states of the
qutrit we therefore can just apply thégate of Eq.(4) with- To implement a full-fledged quantum computation with
out modification. To obtain the'?” gate we need to be the XY interaction alone, we have to show how to prepare
slightly more cautious. Direct application of tAegate in Eq.  fresh input stateéin the encoded0, ) state and how to read

(6) transforms|100)—€'#2100), |010—e '#2/010), but  out the result of the quantum circuit. This task is made easier
leaves the third state unchanged, i1601)—|001). This in- by the fact that the encoded logical qubit states are all tensor
troduces not only the desired relative phase shift betweeproduct states of the physical qubits.

|0.) and |1,.), but also an undesired phase shift between A quantum computation in our scheme would begin by
each of these and the third stdf). However, the action of ~settling all the computational qubits to th@ ) state. In the

aZ gate on a qutrit should introduce only one relative phaseencoding with three physical qubits this state is of the form
e.g., betwee0, ) and|1, ), although it can result in an ad- |100. In the case of a spin architecture, for instance, single
ditional global phase. To overcome this problem, we cargubits in the|1) state can be obtained by placing them in a
apply the’P; gate twice, in an arrangement shown in Fig. moderately strong magnetic field pointing in one direction,
3(a). This now does correctly implement tizegate on the and the|0) spins can be obtained by imposing a magnetic
first two states of the qutrit, while maintaining a constantfield in the opposite direction. If it is hard to apply this mag-
phase between stat¢®, ) and|2,) and causing an accept- netic field locally(such that it affects the first spin onjyone
able global phase of#"°, We can therefore generate @)  may apply the magnetic field to two groups of spatially sepa-
on |0.),|1.) without changing|2,) with at most 12 gates rated spins to produce separate groupflofand|0) spins.
(one from eactX gate and ten from the pair #; gates. By ~ We can then bring these groups of spins close together and

IV. STATE PREPARATION AND MEASUREMENT

052330-4



EXACT GATE SEQUENCES FOR UNIVERSAL QUANTUM.. .. PHYSICAL REVIEW A5 052330

(@

Qubit Qubit

X 4
-
%t

FIG. 4. Possible layouts for encoded qubits or qutritsianwve
give a possibility to arrange the physical qubits in two lines. The FIG. 5. Three-dimensional layout for truncated qubigs. The
arrows represent controllableY interactions. For each truncated oncoded qubit$0,)=|10) and|1,)=|01) are arranged in pairs in
qubit we have an additici)gzal ancillary qubit set &) that isneeded o plane.(b) A third, ancillary, qubit(needed for theZ gate is
to perform the encoded *. In (b) we show how this same array |ocateq in the plane above the qubits. The third qubit may be a
can be used for encoding three qubits into full qutrits in triangularyemper of a stationary array of ancilla qubits, configured such that
arrangement. each pair of qubits has access to one ancilla. Mobile ancilla qubits

offer an economy arrangement, in which a single ancilla is trans-

useXY interactions between members of the two groups tgorted to the location wherezgate is to be performed at each time
“shift” the |1) spins to the appropriate positions within the step.

other group of0) spins. Note that in order to “shift” 41)
from, say, position 1 to position @ip to a global phageve  qubits of one triangle and one qubit of the next. This way we
need only to apply the exchange operatgs for a timew/4  can always apply &5 gate between two qubits of one en-
[see Eq(4)]. coded qutrit and one qubit of the other, which is sufficient to
To measurethe outcome of a computation we only need implement the entangling gates also using only nearest-
to distinguish0, ) from |1, ) (or from|2, ) if we use all three  neighbor interactions. Note that in the case of Fi@) 3ve
qutrit states for encodingThis means a measurement has tomight need to applXY interactions between the two physi-
determine whether the first physical qubit is in the stale  cal qubits that encode a truncated qubit and the ttareil-
or |0). This can again be done by preparin¢spatially sepa- lary) qubit, set to|0), before applying theP; gates for the
rated group of spins in thé0) state and using th¥Y inter-  two-qubit operations.
action to “shift” the qubit state in question to this group. A Within this architecture, the fundamental interaction is in-
(destructive measurement of the total magnetic moment cardeed simply a nearest-neighbor interaction. In fact, it is not
then determine whether the spin in question was in the statieard to see that in a linear array, nearest- and next-nearest-
|0) or |1). neighborXY interactions will suffice for universal computa-
These elements of state preparation and measuremetion. Any layout that allows for these two types of interac-
complete the set of primitives needed for fault-tolerant quantions will therefore allow for universal computation. The
tum computation. two-dimensional triangular layout proposed here has the ad-
vantage of requiring just nearest-neighbor interactions. This
V. LAYOUT can be either symmetrig.e., J;;=J for all i,j), or inequiva-
lent, without modification of the present gate sequences.
The gate operations needed for univeral computation witiNote that in the case of the truncated qubit we only need a
the XY interaction only will not necessarily involve just third ancillary qubit(set to|0)) whenever & gate[Eq. (6)]
nearest-neighbor interactions. In fact, it can be shown that ifts to be performed. The effective encoding is th@s)
a linear array, nearest-neighb¥¥ interactions alone are not =|10) and|1, )=|01). One can imagine alternative arrange-
universal with any encodingsee[1] and references thergin  ments that supply the ancillary qubit in the st&, either
A layout of the physical qubits has to respect this fact, intro-permanently or in a temporary fashion whenever gate
ducing issues of architecture into consideration. In Fig. 4 waneeds to be performed. A three-dimensional architecture,
present two possible two-dimensional layouts, one for ensuch as that presented in Fig. 5, can achieve this with an
coded truncated qubits) and the other for the full qutrits economy of qubits resulting from a mobile ancilla scheme.
(b). The triangular arrangement allows for all possible inter-Here each truncated qubit is encoded by two physical qubits
actions between the three qubits that make up an encod€dll in one plang and the single ancillary qubit is moved
truncated qubit or an encoded qutrit, using only nearestaround in a second plane, to be used whenever needed for
neighbor interactions. This allows application of tRggate  implementation of & gate. If such ancilla qubit mobility is
on the three qubits of the triangle using only nearestnot practical, one simply uses a static row of ancillary qubits
neighbor interactions. The arrangement of the triangles ifn the second plane.
such that there is always a triangular shape between two The XY-exchange interaction underlies several experi-

052330-5



J. KEMPE AND K. B. WHALEY PHYSICAL REVIEW A65 052330

mental proposals for solid-state qubits, including quantunmallows definition of qubits as truncated qutrits, and results in
dot spins coupled by cavity QEP21] and nuclear spins quantum logic elements containing at most seven
coupled by a two-dimensional electron d&2]. These dif- XY-exchange operations for encoded single-qubit operations,
ferent proposals involve diverse requirements on realizingand a maximum of five XY operations for encoded two-qubit
physical coupling of the qubits. For the quantum dot-cavitygates. These explicit gate sequences offer an attractive route
QED proposal, a two-dimensional triangular layout, such aso the implementation of quantum-information processing
that in Fig. 4, is attractive, while the three-dimensional lay-using transverse spin-spin interactions. A prototype two-
out of Fig. 5(with a static array of ancilla qubits in the dimensional layout was suggested here that lends itself well
second planeappears well suited to the long-range couplingto the architecture of quantum dots coupled by cavity QED
of nuclear spins proposed in R¢22]. Clearly, the ultimate proposed in Reff21].

layout in physical implementations will be subject also to

experimental restrictions on the particular physical system at
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