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Exact gate sequences for universal quantum computation using theXY interaction alone
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In a previous publication@J. Kempeet al., Quantum Computation and Information~Rinton Press, Princeton,
NJ, 2001!, Vol. 1, special issue, p. 33# we showed that it is possible to implement universal quantum compu-
tation with the anisotropicXY-Heisenberg exchange acting as a single interaction. To achieve this we used
encodings of the states of the computation into a larger Hilbert space. This proof is nonconstructive, however,
and did not explicitly give the trade-offs in time that are required to implement encoded single-qubit operations
and encoded two-qubit gates. Here we explicitly give the gate sequences needed to simulate these operations
on encoded qubits and qutrits~three-level systems! and analyze the trade-offs involved. We also propose a
possible layout for the qubits in a triangular arrangement.
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I. INTRODUCTION

Any quantum computation can be built out of simple o
erations involving only one or two qubits. These element
quantum gates can generate any unitary operation ove
qubits. One particularly simple set of universal gates cons
of single-qubit unitaries@SU~2!# together with an entangling
two-qubit operation@2#.

The physical implementation of these sets of gates in v
ous proposed physical systems is often daunting, involv
precise manipulations well beyond the current state of te
nology. Most physical systems, however, possess some
trinsic interactions that are easy to tune and to control. Th
interactionsper seusually do not constitute a universal set
gates, in the sense that they cannot generate any arbi
unitary transformation on the set of qubits~or qudits—
d-level systems!. Thus, they generally have to be supp
mented with additional means of applying the other inter
tions that are required in order to complete a universal g
set. It is the need to add this capacity that dramatically
creases the device complexity and that may significantly
minish the decoherence times of the resulting quantum
vice, posing the largest challenge on the route to scala
universal quantum computation.

It seems to be nearly a rule of thumb that one of these
kinds of interactions~single qubit or two qubit! is generally
easy to achieve, whereas the other one is extremely ha
implement. Examples of this easy-hard duality are the p
posals based on solid-state physics using quantum dots@4,5#,
donor-atom nuclear spins@6#, or electron spins@7#. In these
approaches, the basic two-qubit quantum gate is gener
by a tunable Heisenberg interaction@the Hamiltonian isHi j

5J(t)SW i•SW j between spinsi and j #, while the one-qubit gates
require the control of a local Zeeman field. Compared to
Heisenberg operation, the one-qubit operations are sig
cantly slower and require substantially greater materials
device complexity, which may then also contribute to
creasing the decoherence rate. Examples where single-
gates are relatively easy to achieve whereas two-qubit g
are now hard, are the proposed quantum-optics impleme
1050-2947/2002/65~5!/052330~6!/$20.00 65 0523
-
y
he
ts

i-
g
h-
in-
se

ary

-
te
-
i-
e-
le

o

to
-

ted

e
fi-
d

-
bit
es
ta-

tions of quantum computers. Here quantum bits are imp
mented with two optical modes containing one photon@8#. In
this setting, single-qubit operations can be achieved with
ear optics: beam splitters and phase shifters are sufficien
generate every rotation in SU~2!. Proposals for two-qubit
gates, however, either suffer from the requirement for n
linear couplings between the optical modes@8#, or have to
exploit feedback from photodetectors. Such feedback res
either in making the scheme nondeterministic~the coupling
gate is merely probabilistic! or in requiring nondeterministic
generation of entangled photon states@9#. Another recent
proposal@10# uses coherent states to encode an~approxi-
mate! qubit, which allows for implementation of an~approxi-
mate! controlled phase with just one beam splitter but no
relegates all the difficulty back again into the implementat
of single-qubit interactions.

Recent studies@1,11–14# show how to overcome this
problem in several cases of interest. By suitably encoding
quantum states into a higher-dimensional quantum sys
various interactions can be made universal. We have ter
this methodencoded universality@15#. The Heisenberg inter-
action, for example, allows for encoded universality@16# and
we have identified the possible encodings to realize this.
proof relies on Lie-algebraic methods and does not ans
the very practical question: What price must be paid in
ditional gates toimplementencoded single-qubit and two
qubit operations? In@11# we have assessed the trade-off f
the Heisenberg interaction. For the encoding of ‘‘logica
qubits into blocks of three ‘‘physical’’ qubits each, we foun
that four exchange gates in sequence allow to simulate e
single-qubit operation on the encoded qubit, whereas a
quence of 19 exchange gates gives the encoded contro
NOT ~up to single qubit operations!. This was in serial mode
a parallel mode solution was also found that required o
three exchange gates for single-qubit operations and se
exchange gates for the encoded controlled-NOT. These se-
quences were obtained via numerical minimization of fun
tions based on local invariants due to Makhlin@17#.

Since then new results on encoded universality have b
derived. In@1,12# we showed that the anisotropic exchan
interaction lends itself to encoded universality and identifi
©2002 The American Physical Society30-1
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the required encoding to implement this. Results were
tained for general numbers of qubitsn, with the smallest
encoding required to achieve universality without additio
interactions being an encoded qutrit~three-level system! con-
structed fromn53 physical qubits. In@18,19#, Wu and Lidar
have analyzed the universality properties of exchangelike
teractions in the presence of additional single-qubitsz op-
erations or staticsz terms in the Hamiltonian. They foun
that with the help of these additionalsz interactions it was
possible to encode into pairs of qubits.

Anisotropic Heisenberg spin couplings arise whene
there is some preferred direction in space along which
coupling is stronger or weaker. This could be due to, e
asymmetries induced by donor atoms in solid-state array
atoms coupled via their nuclear spins@6,20#. The XY inter-
action arises when there is no coupling in thez direction of
the spins, while the coupling inx andy direction is equally
strong,

~HXY! i j 5
Ji j

2
~sx

i sx
j 1sy

i sy
j ![Ji j Ai j . ~1!

This situation is relevant to several proposals for solid-s
quantum computation, e.g., using quantum dot spins
cavity QED @21# and using nuclear spins coupled by a tw
dimensional electron gas@22#.

In the following we give an explicit assessment of t
trade-offs involved in implementing universal computati
with the XY interaction alone. We give an explicit applica
tion to the n53 qutrit encoding established by Lie grou
methods in Ref.@1# that possesses the smallest spatial ov
head for logical encoding. Consideration of possible gate
quences for this encoding shows that we may achieve
additional economy by using only two of the qutrit states
define a truncated qubit, i.e., two encoded logical states f
three physical qubits. In this case theeffectiveencoding of
the truncated qubit requires only two physical qubits a
single-qubit operations will require an additional ancilla
qubit, which can be reused after the gate application for s
sequent gates. We find that universal computation is poss
on this truncated qubit using at most sevenXY-exchange
gates for encoded single-qubit operations, and at most
XY-exchange gates for an encoded two-qubit gate~the con-
trolled phase flipCz). For the full qutrit, i.e., using all three
encoded states derived from then53 physical qubits, we
find that single-qubit operations may be constructed
slightly modifying the encoded single-qubit operations us
for the truncated qubit, which results in 12 operations a
basis for single-qutrit operation while encoded two-qu
gates now require eightXY-exchange gates.

Thus theXY-anisotropic exchange interaction can be us
to implement universal quantum computation in an econo
cal fashion without requiring supplemental interaction
whether static or dynamic. This result is extremely attract
for experimental investigations, allowing application to e
coding over arrays of degenerate quantum bits, such
would arise from nanoscale fabrication methods, i.e., with
requirement of a distinct energy spectrum.
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II. THE ENCODINGS

We will encode a qubit or qudit into parts of the Hilbe
space of a system ofn qubits. As shown in@1# theXY inter-
action preserves the number of 0’s and 1’s of a compu
tional basis state. Within a space spanned by states wi
fixed number of 0’s and 1’s theXY interaction is universal.
We can chose a subspace spanned by states withi 1’s and
n2 i 0’s @such thati<(n2 i )# to encode (i

n)5d basis states,
yielding an encoded qudit. The smallest encoded qudit
qutrit encoded inton53 qubits, according to

u0L&5u100& u1L&5u010& u2L&5u001&. ~2!

For largen, the encoding efficiency~number of encoded qu
bits over number of physical qubits5 log2d/n) approaches
unity.

Quantum circuits built from encoded states have to
spect the tensor product structure of the quantum cir
model. To map the encoded Hilbert space to the quan
circuit model, a cutoff has to be chosen (n physical qubits
encodingd states!. Blocks of n qubits will represent the en
coded qudits. Since the tensor product of two of these blo
is still spanned by basis states with a constant ratio of 0’s
1’s ~in a space of 2n qubits now!, the product state is im-
mersed in a subspace over which theXY interaction is uni-
versal. In particular, any two-qudit gate can be implemen
with XY interactions. Ifd is not a power of 2 for a given
encoding ofd states inton qubits, we can always choose t
not use some of thed states, so that the remaining 2k states
form thek logical qubits.

The basic units of quantum circuits in the implementati
of most algorithms are qubits rather than qudits. This
largely a matter of convenience, but is considerably m
common in experimental schemes. We will, therefore, fi
show how to implement universal computation on an e
coded qubit that is obtained by discarding the levelu2L& in
Eq. ~2!. Since this encoded qubit is obtained by discardin
state from the original qubit, we shall refer to it as a tru
cated qubit. We shall then show how theXY implementation
works on the full qutrit. In both cases we are constructi
encoded single-qudit operations and encoded two-qudit
erations that have the capability of entangling the enco
logical states, where the qudits are qubits in one instance
qutrits in the other. Thus we are implicitly working withi
the model of encoded universality that provides a map o
the standard model of one- and two-qubit operations.

III. THE GATE SEQUENCES

A. Truncated qubit encoding

We now show how to emulate both single-qubit ope
tions and the encoded controlled phase flip. The contro
phase flipCz , defined byua&ub&→(21)abua&ub&, is equiva-
lent to the controlled-NOT ~c-NOT!, up to local unitary opera-
tions on the encoded qubits. Note that in the particular
coding we have chosen by discardingu2L& ~i.e., u0L&
5u100& and u1L&5u010&), the third physical qubit is always
in the stateu0&. Consequently the third qubit is alwaysu0&
0-2
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EXACT GATE SEQUENCES FOR UNIVERSAL QUANTUM . . . PHYSICAL REVIEW A65 052330
for any stateuCL&5au0L&1bu1L& of the encoded qubit. It
is, therefore, redundant for this truncated encoding. Ho
ever, as we show below, it is needed during the applicatio
the gate sequence. We can say that theeffectiveencoded
qubit is placed into a space of only two physical qub
(u0L&5u10& andu1L&5u01&), with the third qubit playing the
role of an ancillary state~we will need it during the applica
tion of the gate sequence!, which can be reused for sever
computations. We will denote the Pauli matricessx,y,z by
X,Y,Z, respectively. For notational simplicity, we shall su
sume the amplitude factors ofJi j into the gate phasesf.
Note that the amplitudesJi j are, in general, allowed to b
different for different qubit pairsi , j .

(a) Single-qubit operations. We will use the Euler-angle
decomposition of matricesUP SU~2! as

U5eif1X
•eif2Z

•eif3X ~3!

to show how to implement each of these factors in turn
the encoded qubit. This is very easy for the encoded op
tions generated byX,

~eifX!L5eifA12, ~4!

whereAi j is defined in Eq.~1!, i.e.,

Ai j 5
1
2 ~XiXj1YiYj !. ~5!

For the encodedZ we will adapt a sequence from Lidar an
Wu @19#, which acts on three qubits. This sequence, wh
we will call P3, will be used also to implement the controlle
phase flip Cz between two encoded qubits. Its layout
shown in Fig. 1,

P3~f!

5ei (p/4)A12
•ei (p/2)A23

•ei (f/2)A13
•e2 i (p/2)A23

•e2 i (p/4)A12.

~6!

FIG. 1. Three-qubitP3 gate. The diagram depicts the layout
the fiveXY interactions to be applied to three physical qubits~de-
noted 1, 2, and 3!. The time lines of the qubits run from left to righ
The arrows represent theXY interactions with labels showing th
corresponding interaction times. The time of the centralXY inter-
actionf/2 will be set according to the final use ofP3, so we refer
to the gate asP3(f). This network transforms four of the eight tota
states of the three qubits, according tou0,1,0&→ei (f/2)u0,1,0&,
u1,0,0&→e2 i (f/2)u1,0,0&, u0,1,1&→e2 i (f/2)u0,1,1&, u1,0,1&→ei (f/2)

u1,0,1&. It leaves the remaining four states unchanged.
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Figure 2~a! shows how to use this five-gate sequence
implement an encoded (eifZ)L on our qubit. Adding a third
ancillary physical qubit in the stateu0& thus allows us to
enact P3 on the truncated qubitu0L&,u1L&. In particular,
P3(2f) transforms u100&→ei (f/2)u100& and u010&
→e2 i (f/2)u010&. This implements the encodedeifZ, up to a
global phase (ei (f/2)), and leaves the third qubit unchange

Using these two operations,eifA12 andP3, Eq. ~3! shows
that we can implement any single-qubit gate on the enco
qubit using at most seven gates generated by theXY inter-
action.

(b) Two-qubit gate. To obtain an encodedCz between the
encoded qubitsu0L& and u1L& we do not have to work much
harder. We will demonstrate that the previous five-gate
quenceP3 can be used to obtainA2ZZ5exp@2i(p/4)ZZ#.
This gate is equivalent to the controlled phase-fl
Cz up to single qubit unitaries†Cz5„exp@i(p/4)Z1#
^ exp@i(p/4)Z2#…A2ZZ‡. Figure 2~b! shows two possible
layouts ofP3 that can achieve this, i.e.,

~A2ZZ!L5P3S 2
p

2 D
123

5P3S p

2 D
124

. ~7!

The subscripts refer to the physical qubits to whichP3 is
applied. This means that in order to implement the control
phase flipCz exactly~up to single qubit operations!, we need
only five gates.

B. Universal computation on qutrits

Let us now analyze the case of the encoded qutrit, i.e.,
three-state system of Eq.~2!. To universally compute on a

FIG. 2. Quantum logic with theP3 gate on encoded truncate
qubits. ~a! gives an implementation of the single-qubiteifZ gate.
The third ~ancillary! qubit is set tou0& initially. P3(2f) imple-
ments the transformationu1,0,0&→ei (f/2)u1,0,0& and u0,1,0&
→e2 i (f/2)u0,1,0&, which corresponds toeifZ ~up to a global phase!.
After the gate operation the third qubit is once again in theu0& state
and can be reused.~b! shows two possible options of how to imple
ment theA2ZZ gate on two encoded truncated qubits. HereQ1

[1,2 andQ2[3,4 represent the two first physical qubits of th
three-qubit encoding. The third, ancillary, qubits of each trunca
qubit are not involved in these gate sequences and so are not s
here. Both circuits transformu1,0,1,0&→e2 i (p/4)u1,0,1,0&, u1,0,0,1&
→ei (p/4)u1,0,0,1&, u0,1,1,0&→ei (p/4)u0,1,1,0&, u0,1,0,1&
→e2 i (p/4)u0,1,0,1&, which is equivalent to the logicalA2ZZ on the
logical states$u0L&u0L&,u0L&u1L&,u1L&u0L&,u1L&u1L&% of the encoded
truncated qubits.
0-3
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J. KEMPE AND K. B. WHALEY PHYSICAL REVIEW A65 052330
qutrit, we have to show how to implement SU~3! operations
on the qutrit and also how to make an entangling gate
tween two encoded qutrits. As noted above, this allows u
use the encoded qutrits to implement quantum circuits c
structed to implement computation on qutrits.

For the single-qutrit operations, we note that it is su
cient to show how to implement SU~2! on each pair oftwo of
the three states. This follows from the enlarging lem
proven in Ref.@16#. Note that both theX gate of Eq.~4! and
the Z gate of Eq.~6! leave the stateu2L&5u001& unchanged.
To implement an encodedeifX on the first two states of the
qutrit we therefore can just apply theX gate of Eq.~4! with-
out modification. To obtain theeifZ gate we need to be
slightly more cautious. Direct application of theZ gate in Eq.
~6! transformsu100&→eif/2u100&, u010&→e2 if/2u010&, but
leaves the third state unchanged, i.e.,u001&→u001&. This in-
troduces not only the desired relative phase shift betw
u0L& and u1L&, but also an undesired phase shift betwe
each of these and the third stateu2L&. However, the action of
a Z gate on a qutrit should introduce only one relative pha
e.g., betweenu0L& and u1L&, although it can result in an ad
ditional global phase. To overcome this problem, we c
apply theP3 gate twice, in an arrangement shown in F
3~a!. This now does correctly implement theZ gate on the
first two states of the qutrit, while maintaining a consta
phase between statesu0L& and u2L& and causing an accep
able global phase ofeif/3. We can therefore generate SU~2!
on u0L&,u1L& without changingu2L& with at most 12 gates
~one from eachX gate and ten from the pair ofP3 gates!. By

FIG. 3. Quantum logic with theP3 gate on encoded qutrits.~a!
shows how to use twoP3 gates to implementeifZ on the first two
levels of an encoded qutrit. The net transformation isu1,0,0&
→ei (f/3)u1,0,0&, u0,1,0&→e2 i (2f/3)u0,1,0&, and u0,0,1&
→ei (f/3)u0,0,1&, which corresponds to theZ gate on the first two
states up to a global phase ofei (f/3). ~b! shows two equivalent ways
of how to use twoP3 gates to implementA2ZZ on the states
$u0L&u0L&,u0L&u1L&,u1L&u0L&,u1L&u1L&% of an encoded qutrit, while
leaving all other states unchanged. HereQ1[1,2 andQ2[3,4 rep-
resent the two first physical qubits of the three qubit encoding.
third qubit of each qutrit is not involved in these gate sequences
so is not shown here. The lower gate sequence has two more g
but has the advantage that it can be implemented in the triang
arrangement of Fig. 4~b!.
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switching qubit 1 and 3, these same operations give SU~2! on
u1L&,u2L&. By switching 2 and 3, they give SU~2! on
u0L&,u2L&. Hence, by the enlarging lemma@16#, we can use
these sequences to construct any SU~3! operation on the
qutrit.

To implement an entangling operation between the t
qutrits, we need only to implement an entangling ope
tion ~e.g., Cz) between two of the three levels of eac
qutrit. Using the gates in Eq.~7!, together with the fact
that P3 does not change states of the formu000& and u001&,
we can implement an encodedA2ZZ between
$u0L&u0L&,u0L&u1L&,u1L&u0L&,u1L&u1L&%. We achieve this by
combining the two options in Eq.~7! in serial, to build a
circuit having twoP3 gates in sequence, shown in Fig. 3~b!.
We note that the sequence of the twoP3 gates results in a
total of only eight exchange interactions~rather than ten!,
because the last interaction in the first (P3)123 cancels the
first one in the second (P3)124. We present a second poss
bility for the same circuit in the lower part of Fig. 3~b!.
Instead of applying theP3 gate between qubits 123 and 12
in succession, we limit the application ofP3 here to just the
first three qubits~123! in both instances. Then we insert a
XY gate between qubit 3 and 4, which is then undone a
the secondP3 gate. This arrangement has two more ga
~ten instead of eight!, but makes up for this by presentin
advantages for conception of the layout of the physical
bits. TheP3 gate requires interactions between all three of
qubits, which therefore have to be arranged in a geom
that will allow for this ~e.g., triangular!. It can therefore be
advantageous to limit the number of differentP3 gates. Yet
another alternative to this last circuit is to make theP3 gate
act both times between qubits 1, 2, and 4, and to insert
XY interactions before and after the firstP3 gate.

Whichever of these three entanglingA2ZZ circuits is
used, symmetric permutations of the qubits~within one en-
coded qutrit! will again allow one to then implementCz
between any choice of pairs of two levels of the encod
qutrits.

IV. STATE PREPARATION AND MEASUREMENT

To implement a full-fledged quantum computation wi
the XY interaction alone, we have to show how to prepa
fresh input states~in the encodedu0L& state! and how to read
out the result of the quantum circuit. This task is made ea
by the fact that the encoded logical qubit states are all ten
product states of the physical qubits.

A quantum computation in our scheme would begin
settling all the computational qubits to theu0L& state. In the
encoding with three physical qubits this state is of the fo
u100&. In the case of a spin architecture, for instance, sin
qubits in theu1& state can be obtained by placing them in
moderately strong magnetic field pointing in one directio
and theu0& spins can be obtained by imposing a magne
field in the opposite direction. If it is hard to apply this ma
netic field locally~such that it affects the first spin only!, one
may apply the magnetic field to two groups of spatially se
rated spins to produce separate groups ofu1& and u0& spins.
We can then bring these groups of spins close together

e
nd
tes,
lar
0-4
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EXACT GATE SEQUENCES FOR UNIVERSAL QUANTUM . . . PHYSICAL REVIEW A65 052330
useXY interactions between members of the two groups
‘‘shift’’ the u1& spins to the appropriate positions within th
other group ofu0& spins. Note that in order to ‘‘shift’’ au1&
from, say, position 1 to position 2~up to a global phase! we
need only to apply the exchange operatorA12 for a timep/4
@see Eq.~4!#.

To measurethe outcome of a computation we only ne
to distinguishu0L& from u1L& ~or from u2L& if we use all three
qutrit states for encoding!. This means a measurement has
determine whether the first physical qubit is in the stateu1&
or u0&. This can again be done by preparing a~spatially sepa-
rated! group of spins in theu0& state and using theXY inter-
action to ‘‘shift’’ the qubit state in question to this group.
~destructive! measurement of the total magnetic moment c
then determine whether the spin in question was in the s
u0& or u1&.

These elements of state preparation and measure
complete the set of primitives needed for fault-tolerant qu
tum computation.

V. LAYOUT

The gate operations needed for univeral computation w
the XY interaction only will not necessarily involve jus
nearest-neighbor interactions. In fact, it can be shown tha
a linear array, nearest-neighborXY interactions alone are no
universal with any encoding~see@1# and references therein!.
A layout of the physical qubits has to respect this fact, int
ducing issues of architecture into consideration. In Fig. 4
present two possible two-dimensional layouts, one for
coded truncated qubits~a! and the other for the full qutrits
~b!. The triangular arrangement allows for all possible int
actions between the three qubits that make up an enco
truncated qubit or an encoded qutrit, using only neare
neighbor interactions. This allows application of theP3 gate
on the three qubits of the triangle using only neare
neighbor interactions. The arrangement of the triangle
such that there is always a triangular shape between

FIG. 4. Possible layouts for encoded qubits or qutrits. In~a! we
give a possibility to arrange the physical qubits in two lines. T
arrows represent controllableXY interactions. For each truncate
qubit we have an additional ancillary qubit set tou0& that is needed
to perform the encodedeifZ. In ~b! we show how this same arra
can be used for encoding three qubits into full qutrits in triangu
arrangement.
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qubits of one triangle and one qubit of the next. This way
can always apply aP3 gate between two qubits of one en
coded qutrit and one qubit of the other, which is sufficient
implement the entangling gates also using only near
neighbor interactions. Note that in the case of Fig. 3~a! we
might need to applyXY interactions between the two phys
cal qubits that encode a truncated qubit and the third~ancil-
lary! qubit, set tou0&, before applying theP3 gates for the
two-qubit operations.

Within this architecture, the fundamental interaction is
deed simply a nearest-neighbor interaction. In fact, it is
hard to see that in a linear array, nearest- and next-nea
neighborXY interactions will suffice for universal computa
tion. Any layout that allows for these two types of intera
tions will therefore allow for universal computation. Th
two-dimensional triangular layout proposed here has the
vantage of requiring just nearest-neighbor interactions. T
can be either symmetric~i.e., Ji j [J for all i , j ), or inequiva-
lent, without modification of the present gate sequenc
Note that in the case of the truncated qubit we only nee
third ancillary qubit~set tou0&) whenever aZ gate@Eq. ~6!#
is to be performed. The effective encoding is thusu0L&
5u10& andu1L&5u01&. One can imagine alternative arrang
ments that supply the ancillary qubit in the stateu0&, either
permanently or in a temporary fashion whenever aZ gate
needs to be performed. A three-dimensional architect
such as that presented in Fig. 5, can achieve this with
economy of qubits resulting from a mobile ancilla schem
Here each truncated qubit is encoded by two physical qu
~all in one plane! and the single ancillary qubit is move
around in a second plane, to be used whenever neede
implementation of aZ gate. If such ancilla qubit mobility is
not practical, one simply uses a static row of ancillary qub
in the second plane.

The XY-exchange interaction underlies several expe

r

FIG. 5. Three-dimensional layout for truncated qubits.~a! The
encoded qubitsu0L&5u10& and u1L&5u01& are arranged in pairs in
one plane.~b! A third, ancillary, qubit~needed for theZ gate! is
located in the plane above the qubits. The third qubit may b
member of a stationary array of ancilla qubits, configured such
each pair of qubits has access to one ancilla. Mobile ancilla qu
offer an economy arrangement, in which a single ancilla is tra
ported to the location where aZ gate is to be performed at each tim
step.
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mental proposals for solid-state qubits, including quant
dot spins coupled by cavity QED@21# and nuclear spins
coupled by a two-dimensional electron gas@22#. These dif-
ferent proposals involve diverse requirements on realiz
physical coupling of the qubits. For the quantum dot-cav
QED proposal, a two-dimensional triangular layout, such
that in Fig. 4, is attractive, while the three-dimensional la
out of Fig. 5 ~with a static array of ancilla qubits in th
second plane! appears well suited to the long-range coupli
of nuclear spins proposed in Ref.@22#. Clearly, the ultimate
layout in physical implementations will be subject also
experimental restrictions on the particular physical system
hand.

VI. CONCLUSION

We have constructed efficient gate sequences to im
ment universal quantum computation using the anisotro
exchange (XY) interaction alone. The most compact soluti
,

.g

-
e,

t

r-

05233
g
y
s
-

at

e-
ic

allows definition of qubits as truncated qutrits, and results
quantum logic elements containing at most sev
XY-exchange operations for encoded single-qubit operatio
and a maximum of five XY operations for encoded two-qu
gates. These explicit gate sequences offer an attractive r
to the implementation of quantum-information process
using transverse spin-spin interactions. A prototype tw
dimensional layout was suggested here that lends itself
to the architecture of quantum dots coupled by cavity Q
proposed in Ref.@21#.
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