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Robustness of multiparty entanglement
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We study the robustness of multiparty entanglement under local decoherence, modeled by partially depo-
larizing channels acting independently on each subsystem. Surprisingly, we find that the robustGé+2) of
entanglement increases with the number of qubitsnAqubit Greenberger-Horne-ZeilingéGHZ) state can
stand more than 55% local depolarization in the limit-cc. GHZ states are more robust than other generic
states of three and four qubits. We also study spin-squeezed states in thedimitand find that they too can
stand considerable local depolarization.

DOI: 10.1103/PhysRevA.65.052327 PACS nuntber03.65.Yz, 03.65.Ud

Entanglement is certainly one of the most dramaticallysome special sets of states such criteria have been found
nonclassical features of quantum physics. There are states [&,6], which we will use in the following.
composite quantum systems that cannot be decomposed into We will consider the evolution of certain multiqubit states

probabilistic combinations of product states: there is no waynder the action of partially depolarizing channels, to be de-

of writing the density matrix of such a statein the form f!neg_ below, acting indepder;dently on elzvery quitl' The mul-d
= S\pioh@ohe - mol whereol is a state of theth  UGUDIL states are our models for complex entanglement, an

- the depolarizing channel is our toy model for decoherence,
subsystem and the,>0 are probabilities. Such statpsare  ¢orresponding tdocal andhomogeneousoise. We ask how
called inseparable or entangled. One could say that for ennych |ocal depolarization is possible such that the states are
tangled systems the whole is indeed more than the sum of itill entangled, in this way quantifying their robustness under
parts. Only entangled states can exhibit quantum nonlocalitdecoherence.

[1]. In this case, there is no way of reproducing the predic- We are particularly interested in how the robustness of the
tions of quantum physics with classical systems, unless ther@ntanglement changes with the size of the system. One might
is instantaneous communication over arbitrary distances. €xpect that fon, the number of subsystems, going to infinity,

Entanglement has recently been studied extensively in th&1® entanglement should become more and more fragile. We

context of quantum computation and quantum communicalVill show that for Greenberger-Home-ZeilinggeH2)-type

tion [2]. Quantum computation would require the Cre‘,Jltionentanglement the exact opposite is the case. The states be-

d maint  hiahl I tanaled stat p comemorerobust under local depolarization when the num-
and maintenance of highly complex entangled states of many, ¢ qubits is increased.

subsystems. This is a difficult task because of decoherence o, notion of robustness is different from the ond[ Bf

[3]. A system interacts with its surroundings, which createsyho considered global mixing of entangled states with lo-
entanglement between system and environment, at the sargglly prepared noise. Admixing locally prepared noise is dif-
time reducing the entanglement within the system itself.  ferent from local decoherence; it corresponds to a scenario
Such considerations lead to a natural physical questionvhere the local “decohering agents” communicate when to
how common is complex entanglement—entanglement beadd noise, and when to leave the system undisturbed.
tween many Subsystems_in nature? Are there natural Sys- It also differs from the notion of entanglement persistency
tems that contain substantial large-scale entanglement broposed i8], which is defined as the minimum number of
tween their constituents? There seem to be two conflictinéocaﬂ measurements needed in order to definitely disentangle
which is emphasized by the difficulty of building a quantum ligent ar_1d informed adver;arles who optlmlz.e.coordmated
computer. On the other hand, measure-theoretic considef€cohering measurements in order to most efficiently destroy
ations suggest that the set of inseparable states is much largg€ entanglement of a state. The depolarizing channels which
than the set of separable or@3, which seems to imply that We consider here, applied to each subsystem, correspond to
entanglement should be relatively common. independent measurements in random bases on each local
One might hope to gain some insight into the above quescomponent of the entangled state.
tion by analyzing the behavior of complex entangled states We will consider qubits with basis statf®) and|1). The
under decoherence, in particular, by studying how fast th&€ompletelydepolarizing channel is defined by the transfor-
entanglement disappears. This is not an easy task, becauseriation |i)(j|— &;31, where 1=]|0)(0|+|1)(1]. When ap-
requires practical criteria for inseparability. However, for plied to a subsystem of a composite systerAB this cor-
responds to the transformatiopag— 31® Trapag. All
correlations between the system and its environment are de-
*Email address: christoph.simon@qubit.org stroyed, and the system itself is put into the completely
TEmail address: kempe@math.berkeley.edu mixed state.
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The partially depolarizing channeCy is defined by ap- p&keP?("~% and all permutations thereof, fdr ranging

plying the completely depolarizing channel with a probabil-from o ton. The coefficients\, of these terms are given by
ity d, and applying the identity transformation with a prob-

ability 1—d. This corresponds to the transformation \ 1[(1+s|"(1-s ”7k+ 1+s\" K 1-s\k @
k21l 2 2 2 2 ||
D= A= d)i)j[+da 1. (o In order to analyze the entanglement of states of the above

form it is sufficient to study the entanglement for bipartite
If the density matrix of the system is written in the basis of CUts[5], where some qubits constitute one subsystem and all
Pauli matrices, one can easily convince oneself that(Ex. the other qubits the other subsystem. For each such cut one

corresponds to multiplying alt; by the scaling factor s considers the partial transpositi@@]. As long as the partial
—1—d. while the unit matrixl remains unaffected. transpose of a state has negative eigenvalues, the state is

. . . o : definitely entangled.
An interesting physical realization of a partially depolar- ; - . .
izing channel is by random measurements. One can shome?:e ?ﬁg'aéigagsgr) s:[ger)nlqsotjE)heng;ktC%L;t;:tseasw?ﬁr;é%x—
that if a qubit is subjected to a Von Neumann measurement ii(|%>(.1|)®” goe% into an off-diagonal termg 6etvveen the
a ba_sis chosen uniformly at random, the e_ff_ect on the den.Sitgtates| 1)2K0)2(K and|0)#K1)°( K It is then easy to
matrix corresponds to a partially depolarizing channel Wlthsee that the state will have nonpositive partial transpose for

d=2/3. ] L some bipartite cut, and thus will definitely be entangled, as
We will refer tod as the amount of local depolarization. long as

Denote the product of partially depolarizing channels with

depolarizationd on each qubit byC{". For a givenn-party s"

entangled statp, we will be interested in the critical amount §>)‘k )
of depolarizationd; where C{"(p) becomes separable,
or—in the absence of a necessary and sufficient condition
ceases to fulfill certain sufficient conditions for entanglemen
[6,9]. In both casesd;;;(p) will be a quantitative signature
of the robustness of the entanglement in that state. The smallest eigenvalue, is the one fork=n/2, if n is

~ Our main interest is the behavior of the critical depolar-even, ork=m, for n:2m+li. Therefore, we can’ immedi-
ization for large systems. There are two families of states;io\ ' make a statement about entanglement after local depo-
where we have been able to obtain explicit results in the limif5ization for generah (consider evem for simplicity). The

of n, the number of subsystems, going to infinity, namely,siate is definitely entangled as long as
GHZ states and spin-squeezed stdte3 of n qubits. Our

main result is that, surprisingly, in both cases a very substan- S_”
tial amount of local depolarization does not destroy the mul- 2
tiparty entanglement. For GHZ states, the critical depolariza- - ) )

states to other generic entangled statesnfer3 andn=4  9iven by

_for somek. In [5] it was moreover shown that if the state has
ositive partial transpose with respect to all bipartite cuts,
hen it is separable, so that the above condition for insepara-

bility is both sufficient and necessary.

n/2 n/2

1+s

2

1-s

> ®)

qubits, with(to ug counter-intuitive results. 1
For the following discussion, we find it convenient to de- Serit(N) = —=——= (7)
fine Po=]0)(0|, P;=|1)(1], o, =|0)(1], ando_=]1)(0|. V2272

In this basis the partially depolarizing chann@) corre-

sponds to the following transformations: for evenn. It is very remarkable thad;,;; decreases with.

The entanglement in the GHZ state thus becomes more ro-
1+5 1—s bust under local depolarization when the number of sub-
P0,1—>TP0,1+ TPLO systems is increased. In the limit—-c, seiv=11/5
=0.447. This means that a very large GHZ state can stand
more than 55% depolarizationd{,;;=1— s¢,;;=0.553) of
T4, -S04 —. 2 every qubit before it becomes separable.
A natural question to ask is how the robustness of the
Recall that_s=1—_d. . GHZ state compares to other multiparty entangled states.
Let us first discuss the case of GHZ states. mqubit  ope might expect GHZ states to be particularly fragile, since
GHZ state 1(2(]00- --0)+[11 --1)) has the density ma- for example the loss of a single qubit from amubit GHZ
trix state destroys the entanglement completely. It turns out that
under local depolarization GHZ entanglement is compara-
®n_, p®n, _®n_ _en tively robust.
(Po Py +o "+ o). @ We do not know of any other family of multiqubit states
for which there is a necessary and sufficient condition for
Application of the channe(2) to every qubit multiplies the entanglement. As a first step, we have therefore chosen to
off-diagonal termso" and o®" by s". The diagonal terms apply the partial transposition criterid@] to some charac-
Ps™ and P7" give rise to new diagonal terms of the form teristic states of three and four qubits. In the four-qubit case

N| -

p=
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TABLE |I. Critical values of local depolarizatiod for which exactly as robustor fragile) as an individual singlet, which

several generic entangled states of three and four qubits becomasd,,;,=1—s.;;(2)=0.423.
PPT (with positive partial transpogeFor the four-qubit states the Remarkably, there is also no positive correlation between
values for both the 1-3 and the 2-2 bipartite cuts are given. One segfe Schmidt rank of the states with respect to the 2-Jiceit
that G,, the four-qubit GHZ state, stays NRWith negative parti_al the number of terms in the corresponding Schmidt decompo-
transpose, and thus entangleg to the largest value of depolariza- gition) and their robustness under local depolarization, cf.
tion, dcri_t=0.489. For the GHZ case PPT-ness and separablllt)fll]_ The state]X,) has Schmidt rank 3, nevertheless it is
are equivalent. The states considered were the followl®)  |oqq ropyst than the GHZ state, which has Schmidt rank 2.
- i;ﬁﬂgggi Iéigl'fi‘é}o; 1"{3\5'?00%2&131??6010+ |0|l/gg Again, an even simpler example is provided by a state of two
= ' 4)=2 i i -1
+11000), [X,)=1/\B(|001D-+|0101 + 0110+ 100D +]1010 independent shared smglet$34> 2(|_OO>|OO)+|01)|Ql>

’ 1 +]10)|10)+|11)|11)), which has Schmidt rank 4, but is less
+]1100), and|B,)= 5(]0000 +|0011)+|1100 — |1111). robust than the GHZ state of four qubits.

Let us note that the robustness of a state under local de-

n=3 1-2 cut o . ) .
polarizationcanbe increased by local operations. To see this,

G; 0.443 let us consider the stat¢g,) and|B,), where we will focus

Wy 0.425 on the bipartite entanglement between qubits one and two on

n=4 1-3 cut 2-2 cut the one hand and qubits three and four on the other hand.

G, 0.423 0.489 The state |[B,) can be written as3[|00)(|00)+|11))

W, 0.423 0.423 +]11)(]00y—|11))]. It can thus clearly be transformed into

X4 0.416 0.453 a GHZ state by acting only on qubits three and four. Table |

B, 0.468 0.450 shows that the critical depolarization with respect to the 2-2
bipartite cut is larger for the GHZ state than for the state
B.).

| be directl d h its in the GH %study the entanglement robustness for a general number of
results can be directly compared to the results in the ubits n, in particular n tending towards infinity, namely,

case, where the partial transposition criterion happens to ates exhibiting spin squeezifi0]. An n-qubit statel ) is
necessary and sufficient. Our results are collected in Table | jeq spin squeezed, if it satisfies

The main—again surprising—conclusion is that GHZ states
are comparatively robust. 5
The states considered were the following. et 3, the £2= n{Jy) <1 G)
state |W;)=1/,/3(]001)+|010) +|100)). For a symmetric (3,02 +(3,)?
state of three qubits, there is just one possible bipartite cut
(1-2). The state|Ws) becomes PPTwith positive partial  fo three appropriately chosen orthogonal directigng and

transposgacross this cut for a lower value of depolarization 2 Here,dy , ,= isn 10-§<I)y , are the total angular momentum

than the three-qubit GHZ state, i.e., at least according to the o s .
partial transposition criterion, it is less robust under IocaIOperatorS’ andJ;) =(y| ), ete. It was shown iif] that

depolarization spin squeezing is a sufficient condition for entanglement.
For n=4, we have studied three different states,SUCh states can, e.g., be generated from an initial product

namely, |W,)=3(|000D +|0010 +]0100 + |1000), |Xa) fta'Fe OfftTr?n qubits Itr;roumgfltlr;wze evolution with a Hamil-
—1/\/6(|0012) +|0102) +|0110 +|100D +|1010 +|1100), Ornan of the general Tormm = x - .
and |B,)=24(/0000 +|001% +|1100 — |1113) [8], repre- For suff|C|entI_y Iargen! there are states for Whlfflz is
senting different kinds of four-qubit entanglement. There is\iery small, (J;) = {n/2 with .g.close to 1, and(Jx)—(Jy}
only a single instance where one of them is more robust thaﬁo.[lo]' The I'ocal depolanzm.g channe(i) can be. qune
the four-qubit GHZ state: the 1-3 cut f6B,) remains NPT gasﬂy appjled in thg presgnt S|tuat|on.. If the state is W_rltten
(with negative partial transposéor higher values of depo- |n.the basis of Pauli matrices, .then simply all are multi-
larization. However, if the 2-2 cut is also taken into account,p“eOl by a factors=1—d. One finds
again the GHZ state remains NPT for higlievalues.

It is worth noting that the statgX,), which can also be (J2)—s(J2)
written as |X,)=1//6(]00)|11)+ 2| )| )+|11)|00))
originally has more entanglement across the 2-2 cut than the n 1 o n g2 o
GHZ state: the Von Neumann entropy of the reduced state is  (J5)= 7+ 7 > oWy it > (aVay
1.252 compared to 1 for the GHZ stdfer pure states, the 17 17
Von Neumann entropy is a good measure of entanglement, n
cf. [2]). Nevertheless, it reaches the boundary of PPT states =(1—8%)~ +5%(J2), 9)
before the GHZ state. A more trivial example for the fact that 4
the amount of entanglement and its robustness do not have a
simple relation is provided by any number of independenwhere agairs=1—d, and thus for the squeezing parameter
shared two-qubit singlet states. Then the collective state is 55 after depolarization

we have studied both the 1-3 and the 2-2 bipartite cuts. Th?g‘ There is one more class of states for which we were able
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1§zssz &, (10 S (RSP (1P IG(GA. (12

£=

wheregé is the original squeezing parameter. ) led § i b ‘ ) "
This means that under local depolarization the states deft IS entang ef ora p<h1’ as ;_ar_m € sfe(ra]n from Its %?rt'a
nitely remain entangled for all scaling factors larger than ~ranspose. Of course, the coefficient of the inseparable term
decreases exponentially.

1 One should certainly be careful in drawing general con-
crit = (11 clusions from a single simple model. Nevertheless, our re-
V1+{5(1- &) sults show that multiparty entanglement can be surprisingly

o ) e 5 robust under decoherence, and that the robustness can even
This is equal to 12=0.707 in the limit of =1 and &, jncrease with the number of parties. This suggests that large-
=0, which is approached far—. This means that in this gcge entanglement could be more frequent in natural sys-
limit the spin-squeezing entanglement can stand more tha@ms than one might have expected. Persistent entanglement
29% of local depolarization. Note that E@) is a sufficient,  \oyld definitely require the presence of an entanglement-
but not a necessary, condition for entanglement, so the statg@nerating process—interactions between the subsystems,
may well be entangled for even larger values of depolarizapossiply in combination with external excitation—that com-
tion. _ petes with the decoherence. The competition between en-
In the present paper, we have used local partially depolaiynglement generation and decoherence in multiparty sys-

izing channels as our model for decoherence, correspondings js a promising and fascinating topic for future research.
to local and homogeneous noise. Our results emphasize that

the robustness of multiparty entangled states will in general
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