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Robustness of multiparty entanglement
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We study the robustness of multiparty entanglement under local decoherence, modeled by partially depo-
larizing channels acting independently on each subsystem. Surprisingly, we find that the robustness of~GHZ!
entanglement increases with the number of qubits. Ann-qubit Greenberger-Horne-Zeilinger~GHZ! state can
stand more than 55% local depolarization in the limitn→`. GHZ states are more robust than other generic
states of three and four qubits. We also study spin-squeezed states in the limitn→` and find that they too can
stand considerable local depolarization.
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Entanglement is certainly one of the most dramatica
nonclassical features of quantum physics. There are stat
composite quantum systems that cannot be decomposed
probabilistic combinations of product states: there is no w
of writing the density matrix of such a stater in the form
r5( i pis1

i
^ s2

i
^ •••^ sn

i , where sk
i is a state of thekth

subsystem and thepi.0 are probabilities. Such statesr are
called inseparable or entangled. One could say that for
tangled systems the whole is indeed more than the sum o
parts. Only entangled states can exhibit quantum nonloca
@1#. In this case, there is no way of reproducing the pred
tions of quantum physics with classical systems, unless th
is instantaneous communication over arbitrary distances

Entanglement has recently been studied extensively in
context of quantum computation and quantum commun
tion @2#. Quantum computation would require the creati
and maintenance of highly complex entangled states of m
subsystems. This is a difficult task because of decohere
@3#. A system interacts with its surroundings, which crea
entanglement between system and environment, at the s
time reducing the entanglement within the system itself.

Such considerations lead to a natural physical quest
how common is complex entanglement—entanglement
tween many subsystems—in nature? Are there natural
tems that contain substantial large-scale entanglement
tween their constituents? There seem to be two conflic
intuitions in response to this question. On the one hand,
tanglement seems to be very fragile under decohere
which is emphasized by the difficulty of building a quantu
computer. On the other hand, measure-theoretic cons
ations suggest that the set of inseparable states is much l
than the set of separable ones@4#, which seems to imply tha
entanglement should be relatively common.

One might hope to gain some insight into the above qu
tion by analyzing the behavior of complex entangled sta
under decoherence, in particular, by studying how fast
entanglement disappears. This is not an easy task, beca
requires practical criteria for inseparability. However, f
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some special sets of states such criteria have been fo
@5,6#, which we will use in the following.

We will consider the evolution of certain multiqubit state
under the action of partially depolarizing channels, to be
fined below, acting independently on every qubit. The m
tiqubit states are our models for complex entanglement,
the depolarizing channel is our toy model for decoheren
corresponding tolocal andhomogeneousnoise. We ask how
much local depolarization is possible such that the states
still entangled, in this way quantifying their robustness und
decoherence.

We are particularly interested in how the robustness of
entanglement changes with the size of the system. One m
expect that forn, the number of subsystems, going to infinit
the entanglement should become more and more fragile.
will show that for Greenberger-Horne-Zeilinger~GHZ!-type
entanglement the exact opposite is the case. The state
comemorerobust under local depolarization when the nu
ber of qubits is increased.

Our notion of robustness is different from the one of@7#,
who considered global mixing of entangled states with
cally prepared noise. Admixing locally prepared noise is d
ferent from local decoherence; it corresponds to a scen
where the local ‘‘decohering agents’’ communicate when
add noise, and when to leave the system undisturbed.

It also differs from the notion of entanglement persisten
proposed in@8#, which is defined as the minimum number
local measurements needed in order to definitely disenta
a given state. This definition involves an optimization ov
all possible local measurements. It thus corresponds to in
ligent and informed adversaries who optimize coordina
decohering measurements in order to most efficiently des
the entanglement of a state. The depolarizing channels w
we consider here, applied to each subsystem, correspon
independent measurements in random bases on each
component of the entangled state.

We will consider qubits with basis statesu0& andu1&. The
completelydepolarizing channel is defined by the transfo

mation u i &^ j u→d i j
1
2 1, where 15u0&^0u1u1&^1u. When ap-

plied to a subsystemA of a composite systemAB this cor-
responds to the transformationrAB→ 1

2 1^ TrArAB . All
correlations between the system and its environment are
stroyed, and the system itself is put into the complet
mixed state.
©2002 The American Physical Society27-1
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The partially depolarizing channelCd is defined by ap-
plying the completely depolarizing channel with a probab
ity d, and applying the identity transformation with a pro
ability 12d. This corresponds to the transformation

u i &^ j u→~12d!u i &^ j u1dd i j

1

2
1. ~1!

If the density matrix of the system is written in the basis
Pauli matrices, one can easily convince oneself that Eq.~1!
corresponds to multiplying alls i by the scaling factor s
512d, while the unit matrix1 remains unaffected.

An interesting physical realization of a partially depola
izing channel is by random measurements. One can s
that if a qubit is subjected to a Von Neumann measuremen
a basis chosen uniformly at random, the effect on the den
matrix corresponds to a partially depolarizing channel w
d52/3.

We will refer to d as the amount of local depolarizatio
Denote the product of partially depolarizing channels w
depolarizationd on each qubit byCd

^ n . For a givenn-party
entangled stater, we will be interested in the critical amoun
of depolarizationdcrit where Cd

^ n(r) becomes separable
or—in the absence of a necessary and sufficient conditio
ceases to fulfill certain sufficient conditions for entanglem
@6,9#. In both cases,dcrit(r) will be a quantitative signature
of the robustness of the entanglement in that state.

Our main interest is the behavior of the critical depol
ization for large systems. There are two families of sta
where we have been able to obtain explicit results in the li
of n, the number of subsystems, going to infinity, name
GHZ states and spin-squeezed states@10# of n qubits. Our
main result is that, surprisingly, in both cases a very subs
tial amount of local depolarization does not destroy the m
tiparty entanglement. For GHZ states, the critical depolar
tion even increases withn. We have also compared GH
states to other generic entangled states forn53 andn54
qubits, with~to us! counter-intuitive results.

For the following discussion, we find it convenient to d
fine P05u0&^0u, P15u1&^1u, s15u0&^1u, ands25u1&^0u.
In this basis the partially depolarizing channel~1! corre-
sponds to the following transformations:

P0,1→
11s

2
P0,11

12s

2
P1,0

s1,2→ss1,2 . ~2!

Recall thats512d.
Let us first discuss the case of GHZ states. Ann-qubit

GHZ state 1/A2(u00•••0&1u11•••1&) has the density ma
trix

r5
1

2
~P0

^ n1P1
^ n1s1

^ n1s2
^ n!. ~3!

Application of the channel~2! to every qubit multiplies the
off-diagonal termss1

^ n ands2
^ n by sn. The diagonal terms

P0
^ n and P1

^ n give rise to new diagonal terms of the for
05232
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P0
^ k

^ P1
^ (n2k) and all permutations thereof, fork ranging

from 0 to n. The coefficientslk of these terms are given b

lk5
1

2 F S 11s

2 D kS 12s

2 D n2k

1S 11s

2 D n2kS 12s

2 D kG . ~4!

In order to analyze the entanglement of states of the ab
form it is sufficient to study the entanglement for bipart
cuts@5#, where some qubits constitute one subsystem and
the other qubits the other subsystem. For each such cut
considers the partial transposition@9#. As long as the partial
transpose of a state has negative eigenvalues, the sta
definitely entangled.

Take partial transposition of the firstk qubits as an ex-
ample. The diagonal terms do not change, whiles1

^ n

5(u0&^1u) ^ n goes into an off-diagonal term between th
statesu1& ^ ku0& ^ (n2k) and u0& ^ ku1& ^ (n2k). It is then easy to
see that the state will have nonpositive partial transpose
some bipartite cut, and thus will definitely be entangled,
long as

sn

2
.lk ~5!

for somek. In @5# it was moreover shown that if the state h
positive partial transpose with respect to all bipartite cu
then it is separable, so that the above condition for insep
bility is both sufficient and necessary.

The smallest eigenvaluelk is the one fork5n/2, if n is
even, ork5m, for n52m11. Therefore, we can immedi
ately make a statement about entanglement after local d
larization for generaln ~consider evenn for simplicity!. The
state is definitely entangled as long as

sn

2
.S 11s

2 D n/2S 12s

2 D n/2

. ~6!

The critical value ofs where the entanglement disappears
given by

scrit~n!5
1

A2222/n11
~7!

for evenn. It is very remarkable thatscrit decreases withn.
The entanglement in the GHZ state thus becomes more
bust under local depolarization when the number of s
systems is increased. In the limitn→`, scrit

` 51/A5
50.447. This means that a very large GHZ state can st
more than 55% depolarization (dcrit

` 512scrit
` 50.553) of

every qubit before it becomes separable.
A natural question to ask is how the robustness of

GHZ state compares to other multiparty entangled sta
One might expect GHZ states to be particularly fragile, sin
for example the loss of a single qubit from ann-qubit GHZ
state destroys the entanglement completely. It turns out
under local depolarization GHZ entanglement is compa
tively robust.

We do not know of any other family of multiqubit state
for which there is a necessary and sufficient condition
entanglement. As a first step, we have therefore chose
apply the partial transposition criterion@9# to some charac-
teristic states of three and four qubits. In the four-qubit ca
7-2
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ROBUSTNESS OF MULTIPARTY ENTANGLEMENT PHYSICAL REVIEW A65 052327
we have studied both the 1-3 and the 2-2 bipartite cuts. Th
results can be directly compared to the results in the G
case, where the partial transposition criterion happens to
necessary and sufficient. Our results are collected in Tab
The main—again surprising—conclusion is that GHZ sta
are comparatively robust.

The states considered were the following. Forn53, the
state uW3&51/A3(u001&1u010&1u100&). For a symmetric
state of three qubits, there is just one possible bipartite
~1-2!. The stateuW3& becomes PPT~with positive partial
transpose! across this cut for a lower value of depolarizati
than the three-qubit GHZ state, i.e., at least according to
partial transposition criterion, it is less robust under lo
depolarization.

For n54, we have studied three different state
namely, uW4&5 1

2 (u0001&1u0010&1u0100&1u1000&), uX4&
51/A6(u0011&1u0101&1u0110&1u1001&1u1010&1u1100&),
and uB4&5 1

2 (u0000&1u0011&1u1100&2u1111&) @8#, repre-
senting different kinds of four-qubit entanglement. There
only a single instance where one of them is more robust t
the four-qubit GHZ state: the 1-3 cut foruB4& remains NPT
~with negative partial transpose! for higher values of depo
larization. However, if the 2-2 cut is also taken into accou
again the GHZ state remains NPT for higherd values.

It is worth noting that the stateuX4&, which can also be
written as uX4&51/A6(u00&u11&12uc1&uc1&1u11&u00&)
originally has more entanglement across the 2-2 cut than
GHZ state: the Von Neumann entropy of the reduced stat
1.252 compared to 1 for the GHZ state~for pure states, the
Von Neumann entropy is a good measure of entanglem
cf. @2#!. Nevertheless, it reaches the boundary of PPT st
before the GHZ state. A more trivial example for the fact th
the amount of entanglement and its robustness do not ha
simple relation is provided by any number of independ
shared two-qubit singlet states. Then the collective state

TABLE I. Critical values of local depolarizationd for which
several generic entangled states of three and four qubits bec
PPT ~with positive partial transpose!. For the four-qubit states the
values for both the 1-3 and the 2-2 bipartite cuts are given. One
thatG4, the four-qubit GHZ state, stays NPT~with negative partial
transpose, and thus entangled! up to the largest value of depolariza
tion, dcrit50.489. For the GHZ case PPT-ness and separab
are equivalent. The states considered were the following:uG3&
51/A2(u000&1u111&),uG4&51/A2(u0000&1u1111&), uW3&
51/A3(u001&1u010&1u100&), uW4&5

1
2 (u0001&1u0010&1u0100&

1u1000&), uX4&51/A6(u0011&1u0101&1u0110&1u1001&1u1010&
1u1100&), anduB4&5

1
2 (u0000&1u0011&1u1100&2u1111&).

n53 1-2 cut

G3 0.443
W3 0.425

n54 1-3 cut 2-2 cut
G4 0.423 0.489
W4 0.423 0.423
X4 0.416 0.453
B4 0.468 0.450
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exactly as robust~or fragile! as an individual singlet, which
hasdcrit512scrit(2)50.423.

Remarkably, there is also no positive correlation betwe
the Schmidt rank of the states with respect to the 2-2 cut~i.e.
the number of terms in the corresponding Schmidt decom
sition! and their robustness under local depolarization,
@11#. The stateuX4& has Schmidt rank 3, nevertheless it
less robust than the GHZ state, which has Schmidt ran
Again, an even simpler example is provided by a state of t
independent shared singlets,uS4&5 1

2 (u00&u00&1u01&u01&
1u10&u10&1u11&u11&), which has Schmidt rank 4, but is les
robust than the GHZ state of four qubits.

Let us note that the robustness of a state under local
polarizationcanbe increased by local operations. To see th
let us consider the statesuG4& anduB4&, where we will focus
on the bipartite entanglement between qubits one and two
the one hand and qubits three and four on the other ha
The state uB4& can be written as 1

2 @ u00&(u00&1u11&)
1u11&(u00&2u11&)]. It can thus clearly be transformed int
a GHZ state by acting only on qubits three and four. Tab
shows that the critical depolarization with respect to the
bipartite cut is larger for the GHZ state than for the sta
uB4&.

There is one more class of states for which we were a
to study the entanglement robustness for a general numb
qubits n, in particular n tending towards infinity, namely
states exhibiting spin squeezing@10#. An n-qubit stateuc& is
called spin squeezed, if it satisfies

j25
n^Jx

2&

^Jy&
21^Jz&

2
,1 ~8!

for three appropriately chosen orthogonal directionsx, y, and
z. Here,Jx,y,z5

1
2 ( i 51

n sx,y,z
( i ) are the total angular momentum

operators, and̂Jx
2&5^cuJx

2uc&, etc. It was shown in@6# that
spin squeezing is a sufficient condition for entangleme
Such states can, e.g., be generated from an initial pro
state of then qubits through time evolution with a Hamil
tonian of the general formH5xJx

2 .
For sufficiently largen, there are states for whichj2 is

very small, ^Jz&5zn/2 with z close to 1, and̂ Jx&5^Jy&
50 @10#. The local depolarizing channels~1! can be quite
easily applied in the present situation. If the state is writ
in the basis of Pauli matrices, then simply alls i are multi-
plied by a factors512d. One finds

^Jz&→s^Jz&

^Jx
2&5

n

4
1

1

4 (
iÞ j

^sx
( i )sx

( j )&→
n

4
1

s2

4 (
iÞ j

^sx
( i )sx

( j )&

5~12s2!
n

4
1s2^Jx

2&, ~9!

where agains512d, and thus for the squeezing parame
js

2 after depolarization

me
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js
25

12s2

z2s2
1j0

2 , ~10!

wherej0
2 is the original squeezing parameter.

This means that under local depolarization the states d
nitely remain entangled for all scaling factors larger than

scrit5
1

A11z2~12j0
2!

. ~11!

This is equal to 1/A250.707 in the limit of z51 and j0
2

50, which is approached forn→`. This means that in this
limit the spin-squeezing entanglement can stand more
29% of local depolarization. Note that Eq.~8! is a sufficient,
but not a necessary, condition for entanglement, so the s
may well be entangled for even larger values of depolar
tion.

In the present paper, we have used local partially depo
izing channels as our model for decoherence, correspon
to local and homogeneous noise. Our results emphasize
the robustness of multiparty entangled states will in gen
depend on the nature of the decoherence process. In pa
lar, GHZ states have turned out to be surprisingly rob
under local depolarization. On the other hand, GHZ
tanglement is of course fragile under some other operati
such as the loss of a single qubit, or the measurement
single qubit in the$u0&,u1&% basis. For the latter scenario it
however worth noting that the measurement has to be
formed with certainty in order to destroy the entanglemen
To show this consider the state generated from then-qubit
GHZ stateuGn& by performing local measurements in th
$u0&,u1&% basis on every qubit with a probabilityp. Certain
measurement corresponds top51. This state is given by
ic

-

s

in
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12~12p!n

2
~P0

^ n1P1
^ n!1~12p!nuGn&^Gnu. ~12!

It is entangled for allp,1, as can be seen from its parti
transpose. Of course, the coefficient of the inseparable t
decreases exponentially.

One should certainly be careful in drawing general co
clusions from a single simple model. Nevertheless, our
sults show that multiparty entanglement can be surprisin
robust under decoherence, and that the robustness can
increase with the number of parties. This suggests that la
scale entanglement could be more frequent in natural
tems than one might have expected. Persistent entangle
would definitely require the presence of an entangleme
generating process—interactions between the subsyst
possibly in combination with external excitation—that com
petes with the decoherence. The competition between
tanglement generation and decoherence in multiparty
tems is a promising and fascinating topic for future resear
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