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Quantum nonlocality in two three-level systems
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Recently a new Bell inequality has been introduced by Collinset al. @Phys. Rev. Lett.88, 040404~2002!#,
which is strongly resistant to noise for maximally entangled states of twod-dimensional quantum systems. We
prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally
entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce
some other possible measures. The nonmaximally entangled state turns out to be more robust also for these
alternative measures. From these results it follows that two von Neumann measurements per party may be not
optimal for detecting nonlocality. Ford53,4, we point out some connections between this inequality and
distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is
distillable.
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I. INTRODUCTION

Since the seminal work of Bell@1#, it is known that no
local variable~LV ! theory@2# can reproduce all the statistica
results predicted by quantum mechanics for states of c
posite systems. In fact, it was proven that the correlati
observed between two spin-1

2 particles in the singlet stat
violate some inequalities, called Bell inequalities, that a
LV theory satisfies. This provided a possible definition
quantum nonlocality: a quantum state is said to be nonlo
when it violates a Bell inequality. More recently, it wa
shown that any pure state that is not separable@3#, i.e., such
that the parties cannot prepare it using only local operati
and classical communication~LOCC!, violates a Bell in-
equality @4,5#. Unfortunately, the distinction between loc
and nonlocal states is not as clear for density matrices.
deed there exist mixed states that, despite being entan
do not violate any Bell inequality@6# ~see, however, Ref
@7#!. Consequently, there are two different ways of consid
ing quantum nonlocality: entanglement~quantum nonlocal
resources are required for preparing the state! and violation
of Bell inequalities.

The interest in entanglement has dramatically increa
during the last two decades due to the fact that entanglem
is the key ingredient in many of the recent quantum inform
tion applications. Many efforts have been devoted to qu
tify entanglement~see, for instance, Refs.@8,9#! as a re-
source, and nowadays bipartite pure-state entangleme
well understood. The maximally entangled state of a bipar
system,uC&PCd

^ Cd, reads

uC&5
1

Ad
(
i 50

d21

u j j &, ~1!

where u j & are the orthonormal bases in each subsyst
Given an entangled state inCd

^ Cd, it is important to know if
it can be distilled, i.e., ifN copies of it can be transformed b
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LOCC into M copies of uC&. State distillability, or useful
quantum correlations, offers an alternative way of analyz
quantum nonlocality. All bipartite entangled pure states c
be reversibly transformed using LOCC intouC& ~in the so-
called asymptotic regime!. The ratio of the conversion is
equal to the entropy of entanglement@8#. For the mixed-state
case, however, the picture is again not clear: indeed it is
known when a given entangled density matrix is distillab
It is also not known how distillability properties of mixe
states are connected to Bell inequality violation@10–13#.

All these questions about nonlocality in mixed states
essentially solved for the simplest case of two two-level s
tems, also calledqubits. There, the Peres-Horodecki criterio
of positivity of the partial transposition@14,15# detects if a
given state is separable or entangled. Furthermore, all t
qubit entangled states are distillable@16#. As far as the Bell
inequality is concerned, the CHSH inequality@17# plays a
very important role@18#, and it is already known when a
quantum state violates it@19#. Its maximal violation is only
obtained for the maximally entangled state of two spin1

2

particles.
Recently an inequality@20,21# has been found, which

generalizes the CHSH inequality to systems of arbitrary
mension,d, often referred to asqudits. This offers the oppor-
tunity of testing some of the concepts seen above for
inequality. This is the scope of the present paper. We see
surprisingly, the maximal violation of the inequality, und
von Neumann measurements, is not obtained for the m
mally entangled state of two three-level systems orqutrits
~Sec. III!. This leads us to analyze if the resistance to nois
a correct measure of nonlocality. By a simple example
see that it is not. Furthermore, we prove that any state
lating the inequality with the optimal settings is distillabl
and the witness that comes from it@11# is decomposable
~Sec. IV!.

II. BELL INEQUALITY FOR QUTRITS

In this section we review the Bell inequality for qutrit
obtained in Refs.@20,21#. The two parties,A andB, are al-
©2002 The American Physical Society25-1
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lowed to perform two different three-outcome measu
ments,A1 andA2 for A, andB1 andB2 for B. Denoting by
P(Ai5Bj1k) the probability that the outcomes for partiesA
and B, measuringAi and Bj , differ by k modulo d ~in this
cased53!, one can consider the following Bell inequality

I 35P~A15B1!1P~B15A211!1P~A25B2!1P~B25A1!

2P~A15B121!2P~B15A2!2P~A25B221!

2P~B25A121!<2. ~2!

The authors of Refs.@20,21# analyzed the violation of this
inequality by the maximally entangled state~1! of two
qutrits. They consider the following settings: first the tw
parties apply a unitary operation on each subsystem w
only nonzero terms in the diagonal equal toeifa( j ) for A and
eiwb( j ) for B, with j 50,1,2 anda,b51,2. These unitary op
erations are denoted by U(fW a), where fW a
[@fa(0),fa(1),fa(2)#, for party A, and the same forB
with w instead off. The values of these phases are

f1~ j !50, f2~ j !5
p

3
j , w1~ j !5

p

6
j , w2~ j !52

p

6
j ,

~3!

with j 50,1,2. In this scenario, the freedom in the choice
the measurement the parties apply is given by this first u
tary transformation. Then, partyA carries out a discrete Fou
rier transform,UFT @22#, andB appliesUFT* , and finally they
measure in the initial basisu j &. With these experimental se
tings, quantum mechanics predicts thatI 3(uC&)54(2)
13)/9.2.8729. Numerical simulations@20,23# show that
this is the maximum value ofI 3 achieved starting from the
maximally entangled state,uC&. It is then conjectured that th
described experimental settings are optimal foruC& with this
inequality.

It is possible to define a more absolute measure of no
cality in the following way: the initial entangled state,uC&, is
mixed with some amount of noise, the resulting state be
equal to

r5luC&^Cu1~12l! 1
9 , ~4!

when 0<l<1. The entanglement inr decreases withl, so
one can look for the maximal amount of noise, or minimu
l, such that it is still not possible to build a LV model for th
predicted probabilities. This measure of nonlocality, kno
as the resistance to noise, depends on the experimenta
tings, that is, on the number and the type of measurem
each party can apply. The inequality~2! reproduces for Eq.
~1! the same resistance to noise as it was found numeric
in Ref. @23#, with two von Neumann measurements on ea
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side. This means that the probabilities resulting from p
forming these measurements on the state~4! admit a LV
model when

0<l<
2

I 3~ uC&)
.0.6962. ~5!

III. MAXIMAL VIOLATION OF THE INEQUALITY

The authors of Refs.@20,21# focused their attention onto
the violation of this inequality for the maximally entangle
state of two qutrits. However, it may happen that a larg
value of I 3 is found if we consider a different initial state.

For the experimental settings~3!, one can derive the Bel
operator@24# associated with this inequality. The joint prob
ability, P(Aa5 j ,Bb5k), of detecting resultj in A, k in B,
when Aa and Bb are measured and the initial state isuF&
PC3

^ C3, is given by

tr@P j ^ PkV~fW a! ^ V~wW b!uF&^FuV~fW a!†
^ V~wW b!†#

5tr@V~fW a!†
^ V~wW b!†P j ^ PkV~fW a! ^ V~wW b!uF&^Fu#,

~6!

where V(fW a)[UFTU(fW a) and V(wW b)[UFT* U(wW b). From
this formula the Bell operator,B, such that

I 3~ uF&)5tr~BuF&^Fu!5^B&F , ~7!

is found, and it reads

B5

¨

0 0 0 0
2

)
0 0 0 2

0 0 0 0 0
2

)
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
2

)
0

2

)
0 0 0 0 0 0 0

2

)

0
2

)
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0
2

)
0 0 0 0 0

2 0 0 0
2

)
0 0 0 0

©
.

~8!
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QUANTUM NONLOCALITY IN TWO THREE-LEVEL SYSTEMS PHYSICAL REVIEW A65 052325
The maximal violation of the inequality with these settin
corresponds to the maximum eigenvalue ofB, which is equal
to 11A11/3.2.9149. Note that this value is a bit larger th
the violation obtained foruC&. Indeed its corresponding e
genvector is a nonmaximally entangled state of two qutr
which reads,

uCmv&5
1

An
~ u00&1gu11&1u22&), ~9!

where g5(A112))/2.0.7923, andn521g2 ~the same
results are obtained starting from the inequality in Ref.@21#!.
All the details of the calculation are given in the Appendi

It is natural to ask about the optimality of the chosen
of measurements. We have performed a numerical searc
this inequality, varying freely the two von Neumann me
surements performed by each of the parties and the in
state. The maximal violation is indeed obtained by the c
figuration shown above. Moreover, in the Appendix w
prove that these experimental settings give a local maxim
for the largest eigenvalue ofB.

The Bell inequality~2! was also extended to arbitrary d
mension in Ref.@20#. There it was shown that the combin
tion of joint probabilities

I d5 (
k50

@d/2#21 S 12
2k

d21D @P~A15B11k!1P~B15A21k11!

1P~A25B21k!1P~B25A11k!2P~A15B12k21!

2P~B15A22k!2P~A25B22k21!

2P~B25A12k21!#<2, ~10!

for LV models. However, this inequality can be violated
we consider the maximally entangled state~1! and similar
experimental settings withf1( j )50, f2( j )5 j p/d, w1( j )
5 j p/(2d), and w2( j )52 j p/(2d), where j 50,•••,d21.
Indeed, this inequality reproduces the resistance to noise
tained numerically in Ref.@23#, but now for two Bell multi-

TABLE I. Violation of the inequality~10! for two qudits,Cd

^ Cd, up tod58. The values obtained for the maximally entangl
state~1! and the maximal violation of the inequality correspondi
to the largest eigenvalue of the Bell operator are shown.

Dimension Violation for
uC&

Maximal violation
~for uCmv&!

Difference
~%!

3 2.8729 2.9149 1.4591
4 2.8962 2.9727 2.6398
5 2.9105 3.0157 3.6133
6 2.9202 3.0497 4.4345
7 2.9272 3.0776 5.1411
8 2.9324 3.1013 5.7588
05232
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ports@25# on each side. Starting from Eq.~10! we can derive
the corresponding Bell operator and a larger violation
again found for partially entangled states of two qudits. Ta
I summarizes these results up tod58. Note that the differ-
ence between the violation foruC& anduCmv& increases with
increase in the dimension.

These results are quite surprising. Previous numer
work in Ref. @23# showed that the resistance to noise for t
maximally entangled state of two qutrits with two von Ne
mann measurements per party is indeed the one predicte
this Bell inequality~5!. Nevertheless, there exists a nonma
mally entangled state,uCmv&, whose quantum correlation
are more resistant to noise, since its violation of Eq.~2! is
larger. Let us mention here that the parties, if they start w
the maximally entangled stateuC&, are always able to prepar
by LOCC and with probability one the stateuCmv&, and then
to check the violation of the Bell inequality. This leads us
analyze more precisely whether the resistance to noise
good measure of nonlocality~see also Ref.@26#!.

Take the following two-qudit state,

uC2&5
1

&
~ u00&1u11&), ~11!

whered22 of the Schmidt coefficients are zero. Now, co
sider the CHSH inequality@17#

^A1~B11B2!1A2~B12B2!&<2, ~12!

where Ai and Bi , i 51,2, are measurements of two ou
comes, labeled by11 and21. The maximum violation of
this inequality attained by quantum states is 2& @27#. The
following choice of measurements achieves this maxim
for the state~11!:

A1
115P0 , A2

115Pp/2 , B1
115P2p/4 , B2

115Pp/4 ,

~13!

wherePv is the projector onto the state 1/&(u0&1eivu1&),
andXi

21512Xi
11, with X5A,B and i 51,2. Since tr(Xi

11)
51 and tr(Xi

21)5d21, the contribution of the maximally
mixed noise to Eq.~12! for these settings is not zero. Indee
it is not difficult to see that in this case the resistance to no
for uC2& is

l5

12S d22

d D 2

&2S d22

d D 2 , ~14!

which tends to zero whend→`. One can argue that Eq.~11!
is not really a two-qudit state, but similar results can
obtained for states of full Schmidt number that are infinite
mally close to it. This example shows that the resistance
noise is not a good measure of nonlocality. Let us brie
explore here other alternative candidates.
5-3
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A. ACÍN, T. DURT, N. GISIN, AND J. I. LATORRE PHYSICAL REVIEW A65 052325
The first possibility consists of studying the resistance
entangled states when they are mixed with the state resu
from the tensor product of the reduced density matric
Then, given an entangled stateuF&PCd

^ Cd, we want to
determine the minimum value ofl8 such that there is no LV
model for the state

r85l8uF&^Fu1~12l8!rA^ rB , ~15!

where rA[trB(uF&^Fu) and similarly for B. This measure
has the advantage of being equal to the resistance to nois
maximally entangled states, and avoids problems as the
previously discussed. A second possibility can be to cons
mixtures of the initial entangled states with the closest se
rable one,sAB . Similarly as for the relative entropy of en
tanglement@28#, one can choose the relative entropy as
measure of distance,S(r,s)5tr(r ln r2r ln s). Therefore
sAB is defined as the state minimizingS(uF&^Fu,s) over the
set of separable states@29#. Now, we look for the minimum
l9 such that the state

r95l9uF&^Fu1~12l9!rAB ~16!

does not admit a LV description. Remarkably, for the sta
~1! and~9!, the settings defined above and the inequality~2!,
the three numbers for each state coincide, i.e.,lmin5lmin8
5lmin9 . Thus, no change is observed by using these alte
tive measures of nonlocality.

All these reasonings suggest that two von Neumann m
surements are not optimal for detecting nonlocality in tw
qutrit systems. A possible way out can be that more gen
measurements@positive operator valued measures~POVM!#
are required for having a larger violation foruC&. It seems
more likely that more observables for each party, and a n
Bell inequality, are needed. Another interesting scenario c
sists of the analysis of these quantum correlations unde
quences of measurements as in Ref.@26#. Indeed, states~4!
are entangled and distillable for 1/(N11),l<1 @30#. Fi-
nally, it also follows from this result that it is not correc
even for pure states to quantify entanglement by mean
the violation of a particular Bell inequality@31#.

IV. DISTILLABILITY AND BELL INEQUALITIES

Violation of Bell inequalities is a possible manifestatio
of nonlocality, but, as it has been discussed in the Introd
tion, there are other ways of thinking about nonlocali
From the point of view of quantum information it is interes
ing to know if the correlations in a quantum state are use
i.e., if the state is distillable. It is usually conjectured th
Bell inequality violation implies the distillability of the stat
@10#. In this section we show that, for the experimental s
tings seen above, the corresponding entanglement witne
decomposable. This implies that any bound entangled s
with positive partial transposition@32# does not violate this
inequality. Moreover, from our construction, it can be prov
that any state violating the inequality is distillable.

From Eq.~2! it is possible to construct the Bell operat
@24#, B, and from it the entanglement witness@11#, W52
05232
f
ng
s.

for
ne
er
a-

a

s

a-

a-
-
al

w
n-
e-

of

c-
.

l,
t

-
is

te

2B, such that tr(rSW)>0 for all separable statesrS , and
there exists an entangled state,r, that is detected, i.e.
tr(rW),0. There exists a class of entanglement witness
called decomposable,Wd , that can be written as

Wd5P1QTA, ~17!

whereP andQ are positive operators, andTA denotes partial
transposition with respect to subsystemA. Note that these
entanglement witnesses are not able to detect entan
states with positive partial transposition, since ifrTA>0 we
have tr(rW)5tr(rP)1tr(rTAQ)>0. Thus, they are not very
useful for checking the separability of a given state~see, for
instance, Refs.@15,33#!, since they do not provide more in
formation than the partial transposition operation. In the f
lowing lines we show that the witness coming from Eq.~2! is
decomposable.

Our aim is to prove that there exist some positive ope
tors,P andQ satisfying Eq.~17!. Note that the role ofQ is to
detect the entangled state, so we will choose an operatoQ
maximizing tr(uCmv&^CmvuQTA)5tr(uCmv&^CmvuTAQ). We
will take thenQ proportional to the projector onto the spa
of negative eigenvalues ofuCmv&^CmvuTA, the state that
gives the maximal violation of the inequality. If we work i
the Schmidt basis of this state, it is easy to see thatQ is
proportional to the projector onto the antisymmetric space
two qutrits,

Pa5
1

2 (
j

(
kÞ j

~ u jk&2uk j&)~^ jku2^k j u!. ~18!

Our guess then for the decomposition~17! of W is

W5P1kPa
TA, ~19!

wherek is a positive number to be determined. Now, we lo
for a value of this constant such thatP5W2kPa

TA>0, or
equivalently, its minimum eigenvalue is positive. In Fig.
we have represented the minimum of these eigenvalues
function of the constantk. There exists a range ofk whereP
is positive, which means that the witness is decomposa
~for instance, takingk51.2!.

This decomposition gives us an insight into the nonlo
properties of these states violating the inequality~2! with the
optimal settings described above. First, all the states w
positive partial transposition do not violate this inequali
Moreover, if a given stater is detected by the correspondin
witness, tr(rW),0, it follows that tr(rPa

TA),0, and since

Pa
TA51/2(12duC&^Cu), we have

^CuruC&.
1

d
, ~20!

which means that the state is distillable@30#. Thus, for these
settings, Bell inequality violation implies state distillabilit
@13#.
5-4
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FIG. 1. Variation of the mini-
mum eigenvalue ofP in Eq. ~19!
with k.
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It would be nice if the recipe for finding this decompos
tion was general and if it worked for other choices of t
experimental settings, or higher dimension. Unfortunat
this is not the case. Indeed we have seen numerically tha
same procedure does not work for other settings viola
~2!, i.e., such that there exists a state that is detected by
corresponding witness or Bell operator. We have also con
ered higher dimensional systems, with the correspond
Bell inequality ~10! and optimal settings. A similar decom
position is found ford54 but our method fails ford55,6.
Looking at the variation of the Bell operator spectrum~for
the optimal settings!, when d increases, we can someho
understand why this procedure does not work anymore.
d53, (d54), the maximum eigenvalue ofB is .2.9149
~.2.9727!, while for the maximally entangled state, havin
the same Schmidt basis, we have.2.8729~.2.8962!. This
may mean that this maximally entangled state is quite cl
to the region of maximal violation, and then Eq.~20! holds
for those states violating the inequality. For higher dimens
the difference between these two values increases~3.0517 vs
2.9105 ford55!, what can explain why the decomposition
not possible? Let us mention here that in the case of t
qubits we are able to findP andQ for any witness associate
to the CHSH inequality following a similar approach@34#
~actually, it is a known result that any two-qubit entang
ment witness is decomposable@15#!. Whether a better gen
eralization of the CHSH inequality exists also satisfying t
construction is an interesting open question.

V. CONCLUDING REMARKS

In this work we analyzed different manifestations
quantum nonlocality in two-qutrit systems. The starting po
was the Bell inequality introduced in Refs.@20,21#.
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First, we observed that the largest violation of the inequ
ity over all possible von Neumann measurements and in
states is not obtained for the maximally entangled state
two qutrits. We also proved that the resistance to noise is
a good measure of nonlocality, and we proposed some sim
alternatives. However, even for these measures, the max
resistance seems not to be given by the maximally entan
state~further research in this direction is needed!. Our results
suggest that two von Neumann measurements per site do
detect two-qutrit nonlocality in an optimal way. Notice th
the results in Table I may imply that indeed two measu
ments on each side become less efficient for the detectio
nonlocality when the dimension increases. It is not exclud
that POVMs would give a larger Bell inequality violation fo
the two-qutrit maximally entangled state. However, it see
more likely that more observables on each side are nee
In this sense, we still lack a good generalization of t
CHSH inequality to qutrits.

We also related the violation of this inequality to oth
manifestations of nonlocality. For the optimal settings,
demonstrated that the corresponding witness is decom
able by explicitly deriving its decomposition~17! in terms of
P andQ. Moreover, our construction sheds light on the d
tillability properties of those states violating the inequali
In fact, bound entangled states do not violate the inequa
for the optimal settings~see also Ref.@12#!.

Our last point is more general and concerns the charac
ization of nonlocality. As it has been mentioned, the res
tance to noise has proven to be an incorrect criterion for
analysis of nonlocality. Is a single number enough for d
scribing all the nonlocal features of quantum states for bip
tite systems of dimension greater than qubits, even for
5-5
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pure-state case? Or, as it happens for other questions re
to entanglement, are more parameters needed?
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APPENDIX: MAXIMIZATION OF THE BELL INEQUALITY
VIOLATION BY ENTANGLED QUTRITS

Consider the situation that was described in Sec. II. T
three-dimensional subsystemsA and B are prepared in an
arbitrary entangled stateuF&PC3

^ C3. Then, the two parties
apply a unitary operation on each subsystem with only n
zero terms in the diagonal equal toeifa( j ) for A and eiwb( j )

for B, with j 50,1,2 anda,b51,2. The setting of the six
phasesfa( j ) andwb( j̃ ) ( j 50,1,2) defines an experiment
configuration. Later,A carries out a discrete Fourier tran
form, UFT , andB appliesUFT* . Finally, at the output of such
devices, the states are detected in the local basesukA& and
xi
t
i

t
t a
n

e

05232
ted
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u l B&. When the state is prepared initially in the pure sta
uF&5(

j , j̃ 50

2
a j , j̃ u j j̃ & the probability of a joint detection in

the kth detector inA and in thel th detector inB is equal to

P~k,l !5
1

9U (
j , j̃ 50

2

expF i S fa~ j !1wb~ j̃ !1~ jk2 j̃ l !
2p

2 D Ga j , j̃U2

.

~A1!

It was shown in Ref.@23# by numerical methods that whe
the state is maximally entangled@Eq. ~1!#, the maximal re-
sistance of nonlocality against noise, when all the poss
phasesfa( j ),wb( j ) are considered~with a,b51,2 and j
50,1,2! corresponds to the optimal phase settings~3!.

Let us now consider the associated Bell inequality~2!.
When Eq.~3! is satisfied and we let vary the stateuF&PC3

^ C3, the violation of this inequality is maximal when th
state uF& is, up to normalization,u00&1gu11&1u22&, with
g5(A112))/2.0.7923. The violation is equal to 1
1A11/3'2.914 85.

Indeed, take the general stateuF&5(
j , j̃ 50

2
a j , j̃ u j j̃ & ~where

(
j , j̃ 50

2 ua j , j̃ u251 by normalization!. Then, Eq.~2! can be re-
written as follows:
I 3~ uF&)5
1

9 (
j , j̃ ,m,m̃50

2

am,m̃
* a j , j̃ (

k50

2

expH i
2p

3
@k~ j 2m!2k~ j̃ 2m̃!#J H exp$ i @f1~ j !2f1~m!1w1~ j̃ !2w1~m̃!#%

3F12expS 2 i
2p

3
~ j 2m! D G1exp$ i @f2~ j !2f2~m!1w1~ j̃ !2w1~m̃!#%FexpS 2 i

2p

3
~ j̃ 2m̃!21G

1exp$ i @f2~ j !2f2~m!1w2~ j̃ !2w2~m̃!#%F12expS 2 i
2p

3
~ j 2m! D G

1exp$@f1~ j !2f1~m!1w2~ j̃ !2w2~m̃!#%F12expS i
2p

3
~ j̃ 2m̃!G J . ~A2!
I 3(uF&) can be expressed as^FuBuF& whereB is the ~self-
adjoint! Bell operator. The maximal value ofI 3 is thus
reached whenuF& is the eigenstate associated with the ma
mal eigenvalue ofB, uCmv&. We must now determine wha
this eigenvalue is. The problem is considerably simplified
we note that(k50

2 exp (i2p/3k(p2q)53dpq
(3) , where dpq

(3)

51 whenp5q modulo 3 and 0 otherwise. This means thaB
can be decomposed into the sum of three operators tha
decoupled and act individually inside the subspaces span
by the vectors $u00&u11&,u22&%, $u01&,u12&,u20&%, and
$u02&,u10&,u21&%, respectively. Inside the subspace spann

by the vectors$u00&,u11&,u22&%, j 2m5 j̃ 2m̃ and the reduced
Bell operator obeys the following equation:
-

f

re
ed

d

~Bred1!m j5
2

3 H expS i
2p

3

~ j 2m!

4 D2expS 2p

3

~22!~ j 2m!

4 D
1expS i

2p

3

~21!~ j 2m!

4 D
2expS i

2p

3

3~ j 2m!

4 D , ~A3!

and in matricial notation,
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Bred15
2

3 S 0 ) 3

) 0 )

3 ) 0
D . ~A4!

Inside the two other subspaces, we obtain in a similar fash
the following expression for the reduced Bell operator:

Bred25Bred35
2

3 S 0 ) 0

) 0 0

0 0 0
D . ~A5!

The problem consists now of determining the maximal
genvalues of these 333 matrices. One can check direct
that in this matrical notationuC& is not an eigenstate ofBred1

so that it does not certainly maximize the violation of t
Bell inequality. The eigenvalues ofBred1 are equal to22, 1
2A11/3, and 11A11/3, while forBred2,3we have22/), 0,
and 2/), so that the maximal violation is equal to
1A11/3'2.914 85. It is easy to check that the correspond
eigenvector is, up to normalization,u00&1gu11&1u22&, with
g5(A112))/2.0.7923.

Note that at first sight it could seem strange that the ma
mally entangled state does not maximize the violation of
inequality~2!, because it seems that the statesu00&, u11&, and
u22& are indistinguishable in our approach. The discrete F
rier transforms are well known for their cyclic propertie
and in this inequality all the detectors are treated on an e
footing ~the Bell operator contains cyclic summations
probabilities of coincident firings!. Nevertheless, if we con
sider Eq. ~A2!, we can notice that the matrix coefficien

^mm̃uBu j j̃ & contains expressions of the type exp$i@fa(j)
2fa(m)1wb( j̃)2wb(m̃)#% wherefa( j ) andwb( j̃ ) are locally
adjustable phases. Due to the presence of factors of this
the cyclic invariance is broken~in the sense that whenj
2m5 j 82m8 modulo 3 andj̃ 2m̃5 j̃ 82m̃8 modulo 3, it is
not necessarily true that^mm̃uBu j j̃ &5^m8m̃8uBu j 8 j̃ 8&). Note
that when the phase settings are optimal, they depend
early on the indicesj, m, j̃ , m̃ according to Eq.~3! and

^mm̃uBu j u j̃ & depends onj, m, j̃ , m̃ only through the combi-
b
s

tr
m

ho
us
a

05232
n

-

g

i-
e

-

al

e,

n-

nations j 2m and j̃ 2m̃. Thus, the matrix coefficients

^mm̃uBu j j̃ & and^(m1d)(m̃1 d̃)uBu( j 1d)( j̃ 1 d̃)& are equal.
This explains whyBred25Bred3 and also why the statesu00&
andu22& appear symmetrically in the matrixBred1. Neverthe-
less, the cyclic invariance is still broken~in the sense made
precise above!, which explains whyBred1 is singularized
relatively to Bred2 and Bred3, as u11& relatively to u00& and
u22&.

Finally, we prove that we must not expect a larger vio
tion of the inequality~2! if we modify the phase setting
defined in Eq.~3!. Indeed, let us varyfW 1 , keeping the other
phases fixed,

f1~0!50, f1~1!5a, f1~2!5b,

f2~ j !5
p

3
j , w1~ j !5

p

6
j , w2~ j !52

p

6
j . ~A6!

Then,

Bvaried
red 5

1

3 S 0 ) 3

) 0 )

3 ) 0
D

1
1

3 S 0 )eia 3eib

)e2 ia 0 )ei ~b2a!

3e2 ib )ei ~a2b! 0
D .

~A7!

It is easy to check that the two matrices that appear in
~A7! have the same eigenvalue equation and thus the s
spectrum, which is21, (12A11/3)/2, and (11A11/3)/2.
The maximal eigenvalue of these matrices is also equa
their norm in the present case, so that the norm ofBvaried

red1 , and
thus its maximal eigenvalue, is certainly not larger than
1A11/3. Entirely similar results can be obtained whenfW 2 ,
wW 1 , or wW 2 are varied. This proves that the phase settin
defined in Eq.~3! maximize locally~in the space of all pos-
sible phase settings! the violation of the Bell inequality~2!.
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