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Quantum nonlocality in two three-level systems
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Recently a new Bell inequality has been introduced by Cokinal. [Phys. Rev. Lett88, 040404(2002],
which is strongly resistant to noise for maximally entangled states ofitdionensional quantum systems. We
prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally
entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce
some other possible measures. The nonmaximally entangled state turns out to be more robust also for these
alternative measures. From these results it follows that two von Neumann measurements per party may be not
optimal for detecting nonlocality. Fod= 3,4, we point out some connections between this inequality and
distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is
distillable.
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I. INTRODUCTION LOCC into M copies of|¥). State distillability, or useful
quantum correlations, offers an alternative way of analyzing
Since the seminal work of Belll], it is known that no quantum nonlocality. All bipartite entangled pure states can
local variable(LV) theory[2] can reproduce all the statistical be reversibly transformed using LOCC inft#) (in the so-
results predicted by quantum mechanics for states of confalled asymptotic regime The ratio of the conversion is
posite systems. In fact, it was proven that the correlation§dual to the entropy of entanglem¢8i. For the mixed-state
observed between two spinparticles in the singlet state CaSe however, the picture is again not cIear:' |n.dee_d it is not
violate some inequalities, called Bell inequalities, that anykn°Wn when a given entangled density matrix is distillable.
LV theory satisfies. This provided a possible definition of't IS &lS0 not known how distillability properties of mixed

guantum nonlocality: a quantum state is said to be nonloca&fta'to\e"S tﬁ;goﬂzﬁggstgb%ﬂ{ Ir?c?r?lgilzlatl?/t Vliale;;[gﬁe)als?étes are
when it violates a Bell inequality. More recently, it was q y

shown that any pure state that is not separiBlei.e.. such essentially solved for the simplest case of two two-level sys-
yp P £l.€., tems, also calledubits There, the Peres-Horodecki criterion

that the parties cannot prepare it using only local operationgs ogitivity of the partial transpositiofil4,15 detects if a
and classical communicatioLOCC), violates a Bell in- iven state is separable or entangled. Furthermore, all two-
equality [4,5]. Unfortunately, the distinction between local qyphit entangled states are distillalles]. As far as the Bell
and nonlocal states is not as clear for densﬂy_matnces. INmequality is concerned, the CHSH inequalfty7] plays a
deed there exist mixed states that, despite being entanglegery important role[18], and it is already known when a
do not violate any Bell inequality6] (see, however, Ref. quantum state violates [.9]. Its maximal violation is only
[7]). Consequently, there are two different ways of considerobtained for the maximally entangled state of two spin-
ing quantum nonlocality: entanglemefguantum nonlocal particles.
resources are required for preparing the $tatel violation Recently an inequalityf20,21 has been found, which
of Bell inequalities. generalizes the CHSH inequality to systems of arbitrary di-
The interest in entanglement has dramatically increasethensiond, often referred to aqudits This offers the oppor-
during the last two decades due to the fact that entanglemetitnity of testing some of the concepts seen above for this
is the key ingredient in many of the recent quantum informainequality. This is the scope of the present paper. We see that,
tion applications. Many efforts have been devoted to quansurprisingly, the maximal violation of the inequality, under
tify entanglement(see, for instance, Ref§8,9]) as a re- Vvon Neumann measurements, is not obtained for thg maxi-
source, and nowadays bipartite pure-state entanglement 1ally entangled state of two three-level systemsorrits

well understood. The maximally entangled state of a bipartitdS€c- ). This leads us to analyze if the resistance to noise is
system|¥) e (Y@, reads a correct measure of nonlocality. By a simple example we

see that it is not. Furthermore, we prove that any state vio-

d—1 lating the inequality with the optimal settings is distillable,
|‘If>=i2 i) (1) and the witness that comes from[itl] is decomposable
Jdi ' (Sec. V.

. . II. BELL INEQUALITY FOR QUTRITS
where |j) are the orthonormal bases in each subsystem. Q Q

Given an entangled state @® Y, it is important to know if In this section we review the Bell inequality for qutrits
it can be distilled, i.e., iN copies of it can be transformed by obtained in Refs[20,21]. The two partiesA and B, are al-
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lowed to perform two different three-outcome measure-side. This means that the probabilities resulting from per-
ments,A; andA, for A, andB; andB, for B. Denoting by  forming these measurements on the st@eadmit a LV
P(A;=B;+k) the probability that the outcomes for partiks model when
and B, measuringA; andB;, differ by k modulod (in this

cased=3), one can consider the following Bell inequality:

=0.6962. (5)

Os\<

2
Ia(|W))
|3: P(Al: Bl)+ P(B]_:A2+ 1)+ P(AZZ Bz)“l‘ P(BZZA]_)

P(Ay=B;—1)— P(B;=A,)— P(Ay=B,—1) IIl. MAXIMAL VIOLATION OF THE INEQUALITY
The authors of Refd.20,21] focused their attention onto
—P(By=A—1)<2. 2) the violation of this ingquali:tuy for the maximally entangled
state of two qutrits. However, it may happen that a larger
The authors of Ref$20,21 analyzed the violation of this value ofl 3 is foupd if we consider a different initial state.
inequality by the maximally entangled sta®) of two For the expenm_ental sgttm@_ﬁ),. one can derlvg t'he Bell
qutrits. They consider the following settings: first the two OPerator24] associated with this inequality. The joint prob-
parties apply a unitary operation on each subsystem witRPiliYy: P(Aa=],B,=k), of detecting resulf in A, kin B,
only nonzero terms in the diagonal equaktéa() for A and Wh%” Ag and By, are measured and the initial state|d)
elenli) for B, with j=0,1,2 anda,b=1,2. These unitary op- €C ®C", is given by
eratons are denoted by U(¢,), where ¢,
=[#a(0),6a(1),¢4(2)], for party A, and the same foB I @ TV (o) @ V() | PHPIV(ha) '@ V()]
with ¢ instead ofé. The values of these phases are
=t V($a) ' V(&) T O IV (Ba) © V(8,)| D )N D],

(6)

o aa aa
=0, ¢o(N=%1, eii)==i, @i)=—%], . _
$1()) b2i)=31, el)=5l ei)=—5] where V($.)=UU(dy) and V(3 =U%U(3,). From
(3 this formula the Bell operatoB, such that

with j=0,1,2. In this scenario, the freedom in the choice of l3(|®))=tr(B|®){P|)=(B)g, 7)
the measurement the parties apply is given by this first uni-

tary transformation. Then, party carries out a discrete Fou- s found, and it reads

rier transform,U 1 [22], andB appliesUE;, and finally they

measure in the initial basi$). With these experimental set-

tings, quantum mechanics predicts thia(|V))=4(2v3 0 0 0 0 2 00 0 2
+3)/9=2.8729. Numerical simulationf20,23 show that V3

this is the maximum value df; achieved starting from the

maximally entangled statgp). It is then conjectured that the O 0 0 0 O 2 0 0 o0
described experimental settings are optimal|fy with this V3

inequality.

It is possible to define a more absolute measure of nonlo- c 6 00 0 0 O0 O O
cality in the following way: the initial entangled stafd), is 2
mixed with some amount of noise, the resulting state being 0O 0 0 0 0 0 00— o
equal to V3

2 2

B= ‘73 0O 0 o 0o 0 0 O ‘/—§
p=NW)(¥[+(1-N)3, 4

0 3 0 0 0 O O o O
when 0\ <1. The entanglement ip decreases with, so v3
one can look for the maximal amount of noise, or minimum 0O 0 0 0 O O O o o
\, such that it is still not possible to build a LV model for the 5
predicted probabilities. This measure of nonlocality, known 0O 0 0O — O O O O o
as the resistance to noise, depends on the experimental set- V3
tings, that is, on the number and the type of measurements 5
each party can apply. The inequalit®) reproduces for Eq. 2 0 0 0 = 0 0 0 o
(1) the same resistance to noise as it was found numerically V3
in Ref.[23], with two von Neumann measurements on each (8
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TABLE . Violation of the inequality(10) for two qudits, C°
®CY, up tod=8. The values obtained for the maximally entangled
state(1) and the maximal violation of the inequality corresponding
to the largest eigenvalue of the Bell operator are shown.

Dimension Violation for Maximal violation  Difference
|v) (for |¥m,)) (%)
3 2.8729 2.9149 1.4591
4 2.8962 2.9727 2.6398
5 2.9105 3.0157 3.6133
6 2.9202 3.0497 4.4345
7 2.9272 3.0776 5.1411
8 2.9324 3.1013 5.7588

The maximal violation of the inequality with these settings
corresponds to the maximum eigenvalueopfvhich is equal

to 1+ /11/3=2.9149. Note that this value is a bit larger than
the violation obtained fotW¥). Indeed its corresponding ei-

genvector is a nonmaximally entangled state of two quitrits,

which reads,

1

mv>: \/ﬁ

(100 +¥[11)+|22), ©)

where y=(111-v3)/2=0.7923, andn=2+y? (the same
results are obtained starting from the inequality in R2L]).
All the details of the calculation are given in the Appendix.

It is natural to ask about the optimality of the chosen set
of measurements. We have performed a numerical search f%r
this inequality, varying freely the two von Neumann mea-
surements performed by each of the parties and the initia'P
state. The maximal violation is indeed obtained by the con-

figuration shown above. Moreover, in the Appendix we

prove that these experimental settings give a local maximum A1+1= Po,

for the largest eigenvalue @.

The Bell inequality(2) was also extended to arbitrary di-
mension in Ref[20]. There it was shown that the combina-
tion of joint probabilities

>

2 |

+P(A;=B,+k)+P(B,=A;+k)— P(A;=B;—k—1)

[di2]-1

) k
Cd-1

—P(B,=A;—k—1)]<2, (10)

for LV models. However, this inequality can be violated if
we consider the maximally entangled sté&ig¢ and similar
experimental settings withb,(j) =0, ¢éo(j)=]jw/d, ¢41(j)
=jml/(2d), and ¢,(j)=—]j=/(2d), wherej=0,--,d—1.
Indeed, this inequality reproduces the resistance to noise o
tained numerically in Ref.23], but now for two Bell multi-

05232

PHYSICAL REVIEW A65 052325

ports[25] on each side. Starting from E(LO) we can derive
the corresponding Bell operator and a larger violation is
again found for partially entangled states of two qudits. Table
| summarizes these results upde-8. Note that the differ-
ence between the violation f¢#) and| ¥ ,,,) increases with
increase in the dimension.

These results are quite surprising. Previous numerical
work in Ref.[23] showed that the resistance to noise for the
maximally entangled state of two qutrits with two von Neu-
mann measurements per party is indeed the one predicted by
this Bell inequality(5). Nevertheless, there exists a honmaxi-
mally entangled statd¥,,), whose quantum correlations
are more resistant to noise, since its violation of Ej.is
larger. Let us mention here that the parties, if they start with
the maximally entangled staf#), are always able to prepare
by LOCC and with probability one the stdt# ), and then
to check the violation of the Bell inequality. This leads us to
analyze more precisely whether the resistance to noise is a
good measure of nonlocalifgee also Ref.26]).

Take the following two-qudit state,

1
|‘1'2>=5(|00>+|11>), 11)

whered—2 of the Schmidt coefficients are zero. Now, con-
sider the CHSH inequalitj/17]

(A1(B1+B3)+Ax(B;—By))=<2, (12

where A; and B;, i=1,2, are measurements of two out-
mes, labeled by+1 and —1. The maximum violation of

is inequality attained by quantum states & 227]. The
llowing choice of measurements achieves this maximum
r the state(11):

CcO

f
0

Bz—l: P7T/4’
(13

whereP,, is the projector onto the statev®(|0)+e'“|1)),
andX. *=1-X"!, with X=A,B andi=1,2. Since trk;"%)

=1 and tr(Xi’l)=d—1, the contribution of the maximally
mixed noise to Eq(12) for these settings is not zero. Indeed
it is not difficult to see that in this case the resistance to noise

for [W,) is
2
e

which tends to zero wheth— . One can argue that E¢L1)

is not really a two-qudit state, but similar results can be
obtained for states of full Schmidt number that are infinitesi-
mally close to it. This example shows that the resistance to
Imoise is not a good measure of nonlocality. Let us briefly
explore here other alternative candidates.

+1_ +1_
A2 _P7T/2’ Bl _P_’IT/4’

d-2

A= (14)

d
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The first possibility consists of studying the resistance of—B, such that trpsW)=0 for all separable statgss, and
entangled states when they are mixed with the state resultingere exists an entangled state, that is detected, i.e.,
from the tensor product of the reduced density matricesy(,\W) < 0. There exists a class of entanglement witnesses,

Then, given an entangled staf®)eC'®C?, we want to  cajled decomposablaV,, that can be written as
determine the minimum value af such that there is no LV

model for the state -
Wy=P+Q'A, (17)
p' =N'[®NP[+(1-\")pa®pg, (19 \yhereP andQ are positive operators, aid denotes partial
transposition with respect to subsysteéin Note that these

where pa=trg(|P)(P|) and similarly for B. This measure .
pa=1ra(|D)(]) y f%ptanglement withesses are not able to detect entangled

has the advantage of being equal to the resistance to noise i . ) . .
lates with positive partial transposition, sincg k=0 we

maximally entangled states, and avoids problems as the o i T

previously discussed. A second possibility can be to consid av]? rrf(o\/\/)h—trl((pP) Etr(p Q) ?0 Thfus, t_hey are not \f/ery

mixtures of the initial entangled states with the closest sepagse u Orlg ?Cl'g%t € geparah "%O agiven lzt(ﬂee, or

rable one,oag. Similarly as for the relative entropy of en- Instance, Re 915,33), since they do not provide more in-
formation than the partial transposition operation. In the fol-

tanglement 28], one can choose the relative entropy as o ) . .
measure of distance$(p,o)=tr(pInp—plIn ). Therefore al;xg%ggg;g:’; show that the witness coming from E2).is

i fin h minimizigg| P ){ P ver th o . .
7ag iS defined as the state 8| D)(P|, ) over the Our aim is to prove that there exist some positive opera-

i?ts(jciegfgtag:g ;[Z:Sgg]_ Now, we look for the minimum tors,P andQ satisfying Eq(17). Note that the role of is to
detect the entangled state,Tso we will chooseTan ope@ator
maximizing tr(V ) (¥ | Q' A) =tr(| ¥ mu XV mo| ' AQ). We
p"=N"|ONP[+(1-\")pap (16  will take then(dg prgifortic;r']al to the |proj(va>c<tor ovrlwto the space
of negative eigenvalues df¥’ (¥ ,|™, the state that
%ives the maximal violation of the inequality. If we work in
, the Schmidt basis of this state, it is easy to see @as

the”three numbers for each state coincide, Min=Amin  proportional to the projector onto the antisymmetric space of
=Nmin- Thus, no change is observed by using these alterngy,q qutrits,

tive measures of nonlocality.
All these reasonings suggest that two von Neumann mea- 1
surements are not optimal for detecting nonlocality in two- _- O L L
qutrit systems. A possible way out can be that more general Pa_z ; gj (1K) = [ki)) (Cik] = <kiD). (18)
measurementgpositive operator valued measurdOVM)]
are required for having a larger violation fpb). It seems  Our guess then for the decompositik¥) of W is
more likely that more observables for each party, and a new
Bell inequality, are needed. Another interesting scenario con- W=P+kP'A, (19
sists of the analysis of these quantum correlations under se- 2

quences of measurements as in R26]. Indeed, state#d)  \yherek is a positive number to be determined. Now, we look
are entangled and distillable for N¢-1)<x<1 [30]. Fi- for a value of this constant such thet=W—kP'2=0 or
a )

nally, it also follows from this result that it is not correct . . - : : o .
quivalently, its minimum eigenvalue is positive. In Fig. 1

even for pure states to quantify entanglement by means of e .
the violation of a particular Bell inequaliti1]. we have represented the minimum of these eigenvalues as a

function of the constark. There exists a range &fwhereP

is positive, which means that the witness is decomposable
IV. DISTILLABILITY AND BELL INEQUALITIES (for instance, taking=1.2)

Violation of Bell inequalities is a possible manifestation ~ This decomposition gives us an insight into the nonlocal
of nonlocality, but, as it has been discussed in the IntroducProperties of these states violating the inequalywith the
tion, there are other ways of thinking about nonlocality.OPtimal settings described above. First, all the states with
From the point of view of quantum information it is interest- Positive partial transposition do not violate this inequality.
ing to know if the correlations in a quantum state are usefulMoreover, if a given statg is detected byr the corresponding
i.e., if the state is distillable. It is usually conjectured thatwitness, trpW) <0, it follows that trP_ *)<0, and since
Bell inequality violation implies the distillability of the state PTA:1/2(1—d|\II><\II|), we have
[10]. In this section we show that, for the experimental set- é
tings seen above, the corresponding entanglement witness is
decomposable. This implies that any bound entangled state
with positive partial transpositiof82] does not violate this
inequality. Moreover, from our construction, it can be proven
that any state violating the inequality is distillable. which means that the state is distillap80]. Thus, for these

From Eq.(2) it is possible to construct the Bell operator settings, Bell inequality violation implies state distillability
[24], B, and from it the entanglement witnegkl], W=2 [13].

does not admit a LV description. Remarkably, for the state
(1) and(9), the settings defined above and the inequdily

1
(Vlpl¥)>7, (20)
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FIG. 1. Variation of the mini-
mum eigenvalue oP in Eq. (19
with k.

Minimum eigenvalue of P

p ; ; ; ; ;

0 05 1 1.5 2 25 3
Value of k

It would be nice if the recipe for finding this decomposi-  First, we observed that the largest violation of the inequal-
tion was general and if it worked for other choices of theity over all possible von Neumann measurements and initial
experimental settings, or higher dimension. Unfortunatelystates is not obtained for the maximally entangled state of
this is not the case. Indeed we have seen numerically that thg,o qutrits. We also proved that the resistance to noise is not
same procedure does not work for other settings violating, good measure of nonlocality, and we proposed some simple

(2), i.e., such that there exists a state that is detected by tIc;@ternatives. However, even for these measures, the maximal

corresponding witness or Bell operator. We have also consid-_ . ;
ered higher dimensional systems, with the correspondin esistance seems not to be given by the maximally entangled

Bell inequality (10) and optimal settings. A similar decom- tate(further research in this direction is neede@ur regults
position is found ford=4 but our method fails fod=5,6.  Suggest that two von Neumann measurements per site do not
Looking at the variation of the Bell operator spectrgfor ~ detect two-qutrit nonlocality in an optimal way. Notice that
the optimal settings whend increases, we can somehow the results in Table | may imply that indeed two measure-
understand why this procedure does not work anymore. Fanents on each side become less efficient for the detection of
d=3, (d=4), the maximum eigenvalue d@ is =2.9149 nonlocality when the dimension increases. It is not excluded
(=2.9727, while for the maximally entangled state, having that POVMs would give a larger Bell inequality violation for
the same Schmidt basis, we hav@.8729(=2.8962. This  the two-qutrit maximally entangled state. However, it seems

may mean that this maximally entangled state is quite closggre Jikely that more observables on each side are needed.
to the region of maximal violation, and then HQO) holds |, this sense, we still lack a good generalization of the
for those states violating the inequality. For higher dimension- gy inequality to qutrits.

tzhg 1d(;gefre(rjlc_e5betmr/]een these }WO va;]luers] lndcrea’gd%l_?_vs . We also related the violation of this inequality to other

' 9L|_7 I)_’W atcan exp e;:nw }/]t e er(]:omposmc;n 'S manifestations of nonlocality. For the optimal settings, we
notb_p033| e: t()elt us fmg““od“ fere that in the case o t‘é"odemonstrated that the corresponding witness is decompos-
qubits we are able to fink an Q or any witness associated 5 by explicitly deriving its decompositiqid7) in terms of
to the CH.SH inequality following a similar app'roactB4] P and Q. Moreover, our construction sheds light on the dis-
(actually, it is a Ianown result that \E;‘Vng thwo-qulglt entangle- anility properties of those states violating the inequality.
ment witness is decomposallis]). Whether a better gen- |, 0 "hound entangled states do not violate the inequality
eralization of the CHSH inequality exists also satisfying thISfor the optimal settingésee also Ref,12))

construction is an interesting open question. Our last point is more general and concerns the character-
V. CONCLUDING REMARKS ization of n_onlocality. As it has bee_n mentione_d, f[he resis-
tance to noise has proven to be an incorrect criterion for the
In this work we analyzed different manifestations of analysis of nonlocality. Is a single number enough for de-
guantum nonlocality in two-qutrit systems. The starting pointscribing all the nonlocal features of quantum states for bipar-
was the Bell inequality introduced in Ref®0,21]. tite systems of dimension greater than qubits, even for the
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pure-state case? Or, as it happens for other questions relatdd). When the state is prepared initially in the pure state
to entanglement, are more parameters needed? |¢>=E,-2]:001;,T|1'T> the probability of a joint detection in

the kth detector inA and in thelth detector inB is equal to
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APPENDIX: MAXIMIZATION OF THE BELL INEQUALITY sistance of nonlocality against noise, when all the possible

VIOLATION BY ENTANGLED QUTRITS phases®,(j),¢p(j) are consideredwith a,b=1,2 and ]

: o . . =0,1,2) corresponds to the optimal phase settif@)s
Consider the situation that was described in Sec. Il. Two Let us now consider the associated Bell inequalBy.

three-dimensional subsystemdsand B are prepared in an . I 3

. . When Eq.(3) is satisfied and we let vary the state) e C
arbitrary erjtangled 5“’_‘1@ eC°®C?. Then, the two parties ®Cs, theq violation of this inequality is )rlnaxima? W>hen the
apply a unitary operation on each subsystem with only nonétate|<l>> is, up to normalization|00) + y|11)+|22), with

zero terms in the diagonal equal é5*a()) for A ande'¢b() A
e i : - y=(y11—v3)/2=0.7923. The violation is equal to 1
for B, with j=0,1,2 anda,b=1,2. The setting of the six & VI1/3~2.914 85

phasesp,(j) and ¢p(j) (j=0,1,2) defines an experimental o2 T
configuration. LaterA carries out a discrete Fourier trans- 2Indeed, take the genera-ll St.éi@>_zi,j=0aivj|”> (where
form, Uy, andB appliesU%;. Finally, at the output of such 2| 5_ole;5|°=1 by normalization Then, Eq.(2) can be re-
devices, the states are detected in the local bisgsand  written as follows:

1 : * : -277 . ~ o~ . . ~ ~
(1P =5 2 anmeii> exp[lg[ku—m)—ku—m)]]|exp{l[asl(n—¢1<m>+gol<1>—<pl<m>]}
j,j,m,m=0 -
2 : : ~ . 2T
X l—eXp(—I?(J—m) +expli ¢2(j) — a(m) +¢1(j) —@1(M) ]} eXD(—I?(J—m)—l

+explil ¢2(j) — da(m) + 2(]) — @o(M) ]}

1 2m
—exr{—l?(J—m))

~ 2T
+expl[ d1()) — (M) + () — @o(M) I} 1—eXP(i %(J —ﬁ"l)“- (A2)

I5(]®)) can be expressed &®|B|®) whereB is the (self- et 2 27 (j—m) 27 (—2)(j—m)
adjoint Bell operator. The maximal value df; is thus (B Imj=g1exq i3 — ) - ‘{? a4
reached whefd) is the eigenstate associated with the maxi-

mal eigenvalue oB, |¥,,). We must now determine what )

this eigenvalue is. The problem is considerably simplified if +exp<i 27 (-1)(J —m))

we note thatSg_, exp (2m/3k(p—q) =34, where 5{) 3 4

=1 whenp=q modulo 3 and 0 otherwise. This means tBat

can be decomposed into the sum of three operators that are 27 3(j—m)

decoupled and act individually inside the subspaces spanned —e ;{i —_ ) (A3)
by the vectors{|00)|11),|22)}, {|01),]12),|20)}, and 3 4

{]02),|10),|21)}, respectively. Inside the subspace spanned

by the vectorg|00),/11),|22)}, j —m=] —f and the reduced

Bell operator obeys the following equation: and in matricial notation,
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0 v3 3 nations j—m and J—m. Thus, the matrix coefficients

2 ~ g -~ . ~ o~
Bedi_=v3 0 3| (A4)  (mTBjj) and((m+ &)(M+9)[B|(j+ 5)(j + 9)) are equal.

3 3 V3 0 This explains whyB™%= B and also why the statd60)
and|22) appear symmetrically in the matrB®®%. Neverthe-

Inside the two other subspaces, we obtain in a similar fashiol£SS the cyclic invariance is still brokém the sense made

the following expression for the reduced Bell operator: precise above which explains WhyBrEd.l is singularized
relatively to B2 and B™% as|11) relatively to |00) and
0 V3 0 22).
gred2_ Bredgzz Vi 0 0] (A5) Finally, we prove that we must not expect a larger viola-

tion of the inequality(2) if we modify the phase settings

0 00 defined in Eq(3). Indeed, let us varyZl, keeping the other

The problem consists now of determining the maximal ei-Phases fixed,

genvalues of these >33 matrices. One can check directly _ _ _
that in this matrical notatiohV’) is not an eigenstate &9 $1(0)=0, $r(D)=a, bu(2)=8,
so that it does not certainly maximize the violation of the
Bell inequality. The eigenvalues &% are equal to-2, 1 do(j)= zj, ei(j)= Zj, ea(j)=— fj_ (A6)
—/11/3, and 3 \/11/3, while forB™%3we have—2A#/3, 0, 3 6 6

and 243, so that the maximal violation is equal to 1 Then

+./11/3~2.914 85. It is easy to check that the corresponding
eigenvector is, up to normalizatiof@0) + y|11) +|22), with

0 v3 3

y=(J11-v3)/2=0.7923. w1

Note that at first sight it could seem strange that the maxi- Buaried™ 3 3 Vi 0 v3
mally entangled state does not maximize the violation of the 3 v3 0
inequality (2), because it seems that the std@, |11), and o 8
|22) are indistinguishable in our approach. The discrete Fou- 0 Ve 3e
rier transforms are well known for their cyclic properties, V3eia 0 v3el(B~a)
and in this inequality all the detectors are treated on an equal 3618 y3eilap) 0

footing (the Bell operator contains cyclic summations of
probabilities of coincident firings Nevertheless, if we con- (A7)
sider Eq.(A2), we can notice that the matrix coefficient

(mMB|jj) contains expressions of the type &kpa(j)
— (M) +ep(j) — @n(M) I} Where ¢,(j) and ¢p(j) are locally
adjustable phases. Due to the presence of factors of this typ.

h lic invariance is brokefin th n hat whej X .
the cyc ¢ inva Z cl:e S bdo e(l_t € se sedt Iat 1 their norm in the present case, so that the norm!ft., and
—m=j’—m’ modulo 3 andj j'=m" modulo 3, itis 5 jts maximal eigenvalue, is certainly not larger than 1

”hOt ”eﬁessar:"y trhue thamB|j])=(m’m’ |||3|Jrl]l ,>)d Noted i V11/3. Entirely similar results can be obtained whés,
that when the phase settlngs are optimal, they depen 'nél, or ¢, are varied. This proves that the phase settings

early on the indiceg, m, J,~m according to Eq.(3) and  defined in Eq(3) maximize locally(in the space of all pos-
(mMBJj|j) depends on, m, j, M only through the combi- sible phase settingshe violation of the Bell inequality2).

It is easy to check that the two matrices that appear in Eq.
(A7) have the same eigenvalue equation and thus the same
ectrum, which is—1, (1—11/3)/2, and (¥ \11/3)/2.
he maximal eigenvalue of these matrices is also equal to
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