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Cavity QED implementation of the discrete quantum Fourier transform
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We present a scheme for the implementation of the discrete quantum Fourier transform using cavity quantum
electrodynamics. In the proposed scheme a series of atoms whose atomic coherence carries the input state
passes through a series of cavities and classical field, and the resulting state in the cavities is the quantum
Fourier transform of the input state.
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A dramatic example of the potential applications of
quantum computer is the factorization of a composite nu
ber via Shor’s algorithm, and the quantum Fourier transfo
~QFT! lies at the heart of the algorithm@1#. In this paper we
present a scheme based on cavity quantum electrodyna
to implement the QFT. The complexity of implementing t
discrete Fourier transform on a quantum computer arises
to the large number of quantum logic gates interacting
tween several qubits.

Recently a number of approaches have been propose
the implementation of quantum logic gates and simple qu
tum algorithms. One approach is based on nuclear-magn
resonance techniques where logic gates and search
rithms have been experimentally demonstrated at ro
temperature@2#. However, questions have been raised c
cerning the appearance of entanglement in the physical
at any stage of the experiment@3#. Another promising ap-
proach is based on cavity quantum electrodynamics~QED!
@4# where quantum logic gates have been experimentally
alized @5,6# and proposals have been made to implem
search algorithms@7# based on these considerations. Su
schemes are relatively insensitive to thermal decoherenc
fects.

In this paper we propose an implementation of the Q
via a cavity QED scheme. The basic building blocks are
one-bit unitary gate and two-bit quantum phase gate.
proposed scheme relies on the passage of a series of su
chosen atoms through a sequence of classical fields and
Q cavities.

The QFT maps each stateua& into a superposition given
by

NQFTua&5
1

A2q (
c50

2q21

e2p iac/2q
uc&, ~1!

whereq is the number of qubits. Our aim is the impleme
tation of this mapping using quantum logic gates. As qu
tum logic gates operate on qubits, we consider a represe
tion of stateua& in terms of qubits. Thus, for example,u9&
[u1,0,0,1&. For 2q.a.2q21, we therefore requireq qubits
to representua&.
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A universal quantum computer can be built from only tw
gates, namely, a one-bit unitary gate and a two-bit con
tional quantum phase gate. The one-bit quantum gate for
i th qubit is given by

Uu,f
i 5S cosu 2 ie2 if sinu

2 ieif sinu cosu D , ~2!

and a convenient representation ofUu,f in terms of Pauli
spin matrices is given by

Uu,f5cos~u!12 i cos~f!sin~u!sx2 i sin~f!sin~u!sy .
~3!

The transformation for a two-bit quantum phase g
for the j th and kth qubits is given by Qh

jkua j ,bk&
5exp(ihda j ,1

dbk,1)ua j ,bk&, where ua j& and ubk& stand for

the basis statesu0& or u1& of the qubits. Thus the quantum
phase gate introduces a phaseh only when both the qubits in
the input states are 1. A representation of the quantum ph
gate is given by the operator

Qh
jk5u0 j ,0k&^0 j ,0ku1u0 j ,1k&^,0 j ,1ku

1u1 j ,0k&^1 j ,0ku1eihu1 j ,1k&^1 j ,1ku, ~4!

and sinceu0&^0u5(11sz)/2 andu1&^1u5(12sz)/2, Eq.~4!
has the matrix representation

Qh511122
1

4
~12eih!~1112211sz22sz1121sz1sz2!.

~5!

The discrete Fourier transform~1! is depicted in terms of
the above one-bit unitary gate and two-bit phase gate in
1~a!. Thus, for example, the transformation forq53 in Eq.
~1! is generated by

A0B01B02A1B12A2 , ~6!

whereAi[Up/4,p/2
i andBjk[Qp/2k2 j

jk . The QFT forq qubits
requiresq one-bit gates andq(q21)/2 two-bit phase gates
©2002 The American Physical Society24-1
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FIG. 1. ~a! Circuit diagram for the QFT with
three qubits. HereAi[Up/4,p/2

i is the one-bit gate
and Bjk[Qp/2k2 j

jk is the two-bit quantum phase
gate. ~b! The physical implementation of the
QFT. Here three atoms labeled 0, 1, and 2 inter
with a sequence of classical fields and cavitie
~c! The atomic level scheme for the three atom
as obtained under the influence of magne
fields. For the atom labeled 0, the level spacin
are chosen different in the two cavities resona
with frequenciesn1 andn2.
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This indicates the complexity involved in the implementati
of discrete Fourier transform. We also note that the ini
stateua& may in general be entangled. Before describing
implementation of the QFT, we first describe our quant
optical implementation of one-bit unitary gate and a two-
phase gate.

The unitary one-bit gate can be simply implemented
passing a two-level atom through a classical field. T
Hamiltonian, in the rotating-wave approximation and the
teraction picture, is given by

V5
\V

2
~e2 ifua&^bu1eifub&^au!, ~7!

whereV is the Rabi frequency and we assumeua& to be the
excited state andub& to be the ground state. The correspon
ing time-evolution unitary operator is given by

UI~ t !5expS 2
i

\
Vt D

5cos~Vt/2!~ ua&^au1ub&^bu!

2 i sin~Vt/2!~e2 ifua&^bu1eifub&^au!. ~8!

This corresponds to the one-bit unitary gate~2! with u
5Vt/2.

The quantum phase gate can be implemented via dis
sive coupling of a three-level atom with a cavity field@5#. We
assume a three-level atom inV configuration withub& to be
the ground state andua& anduc& to be the excited states. Th
atomic transitionua&→ub& is completely off resonant with
the cavity field whereas the transitionuc&→ub& is somewhat
off resonant with the cavity field~i.e., is dispersively coupled
to the cavity!. The effective Hamiltonian for the atom and th
cavity field is given by@8#
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\g2

D
~aa†uc&^cu2a†aub&^bu!, ~9!

whereg is a coupling coefficient,a and a† are destruction
and creation operators for the field state inside the cavity,
D5vcb2n is the detuning. For an initial state in which th
atom-field state is

1

2
~ u0,a&1u0,b&1u1,a&1u1,b&), ~10!

the resulting entangled state after the passage of the a
through the cavity is

1

2
~ u0,a&1u0,b&1u1,a&1eihu1,b&), ~11!

where h5g2t/D. The net result is that there is a pha
change only when there is one photon inside the cavity
the atom is in the stateub&. The interaction timet and the
detuningD can be appropriately chosen for a given choice
h. For atomic states such thatua& and ub& correspond to
qubits u0& and u1&, respectively, this represents the quantu
phase gate discussed above and experimentally impleme
in Ref. @5#.

Next we consider the implementation of the QFT usi
these basic building blocks. We shall consider only the c
of q53. A generalization to higher values ofq can be carried
out along similar lines.

The initial state is characterized by the internal states
the atoms labeled 0,1, and 2@Fig. 1~b!#. The atoms consist o
a ground stateub& and three excited statea1 , a0, and a2.
The excited states could be the magnetic sublevels wh
spacings can be changed by applying appropriate magn
fields. For all the atoms, the ground stateub& corresponds to
the qubitu1& anduai& to be the qubitu0& for the ith atom with
4-2
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i 50,1,2. Thus, for example, an initial stateu101& would im-
ply an initial stateub,a1 ,b& for the atoms. The initial state
can in general be an entangled state as would be required
example, in the implementation of Shor’s algorithm. Here
do not address the important question concerning how s
an entangled state can be prepared. We focus instead o
implementation of the QFT of a given initial state.

Having set the stage, we proceed to describe the pre
QFT implementation. The atoms pass through a sequenc
three classical fields that implement the one-bit unitary ga

Ai[Up/4,p/2
i ~12!

and a sequence of three cavities labeledC2 , C1, and C0
resonant with frequenciesn2 , n1, and n0, respectively,
which serve to implement quantum phase gatesBjk . We also
need another sequence of classical fieldsUp/2,0

i in order to
flip the statesuai& and ub& beforei th atom enters the cavity
Ci . This transformation is required because we label
ground stateub& asu1& and the excited statesuai& asu0& and
a switching of atomic states before entering the cavity wo
ensure that the qubitsu1& and u0& lead to photon statesu1&
and u0&, respectively, inside the cavity. The magnetic fiel
are applied in such a way that, for thei th atom, theuai&
→ub& transition is resonant with the corresponding class
field Uu,f

i and is resonant with the cavity field inCi . In
addition, for the zeroth atom, the magnetic field in cavitie
and 2 are such that the detuning with respect to the ca
fields ared1 for ua1&→ub& transition inC1 andd252d1 for
ua2&→ub& transition inC2, respectively@see Fig. 1~c!#.

Thus when thej th atom is passing through thekth cavity
with j Þk, a quantum phase gate is implemented withh
5g2t/dk2 j where g is the coupling constant andt is the
interaction time. We have takeng and t to be equal for all
atoms and for all levels for the sake of simplicity. The inte
action times, the coupling constants and the detuningsd i are
chosen such thatg2t/dk2 j5p/2k2 j . The interaction times
and coupling constants are also chosen in such a way th
the j th atom is passing through thej th cavity, it transfers its
coherence to the cavity and leaves in the ground stateubj&.

With these conditions it is easy to see how the QFT lo
can be implemented. Initially all the cavities are prepared
the vacuum state, i.e.,u0,0,0&. The first atom~denoted as 2
because it serves to encode the coefficient of 22) passes
through a classical field that is resonant with theua2&→ub&
transition. The Rabi frequency and the interaction time
chosen such that the one-bit gateA2[Up/4,p/2

2 is imple-
mented. Atom 2 then passes through the classical field
responding toUp/2,0

2 in order to flip the statesua2& and ub&.
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Finally, atom 2 passes through the cavityC2 that is also
resonant with theua2&→ub& transition and the interaction
time is chosen such that the atom transfers its coherenc
the cavity, exits the cavity in the ground stateub2&, and is
discarded.

For the second atom, labeled as ‘‘1,’’ the applied magne
field leads to the level spacings such thatua1&→ub& is tuned
to n1 and ua2&→ub& transition is detuned with respect ton2
by an amountd1. Atom 1 first passes through the cavityC2,
and makes a quantum phase gate as discussed above. T
followed by a passage through a classical field resonant w
ua1&→ub& transition and implement the one-bit gateA2
[Up/4,p/2

1 . The atom 1 then passes through a classical fi
to flip the statesua1& and ub&. Finally, it passes through th
cavity C1 that is resonant with theua1&→ub& transition and
transfers its coherence to the cavity and leaves in the gro
stateub&.

For the third atom, labeled as ‘‘0,’’ the applied magne
fields are different in the two cavitiesC2 and C1 and are
such that, during the passage of the atom 0 through th
cavities, phase gates with appropriate phase shifts are im
mented @Fig. 1~c!#. Thus the atom 0, after implementin
phase gates via interaction with the fields in cavitiesC2 and
C1, forms a one-bit gate with a classical field, flips the sta
ua0& and ub&, and leaves the resulting atomic coherence
the cavityC0. The quantum state of the fields in the thr
cavities is the resulting quantum Fourier transform of t
initial states of the three atoms.

The readout would require three more atoms that are re
nant with the cavity fields. These atoms are sent in the
spective cavities in the ground state such that, after the
sage through the cavity, a ground state would correspon
the output zero and the excited state would correspond to
output 1.

The proposed scheme can be extended to an arbit
numbern of qubits. However, that would requiren cavities
and a configuration of atoms in which a single level
coupled to atoms withn levels whose level spacings can b
appropriately manipulated with external fields. A simpl
scheme with a single cavity can be designed in which ato
interact with various modes of the cavity. The level spacin
are modulated by the field inside the cavity and are such t
at a given time, the atom interacts with only one mode, eit
resonantly or dispersively as the situation requires.
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