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Nonadditive information measure and quantum entanglement in a class of mixed states
of an Nn system
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Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

~Received 10 May 2001; published 8 May 2002!

Generalizing Khinchin’s classical axiomatic foundation, a basis is developed for nonadditive information
theory with the Tsallis entropy indexed byq. The classical nonadditive conditional entropy is introduced and
then translated into quantum theory. To examine if this theory has points superior to the ordinary additive
information theory with the von Neumann entropy corresponding to the limitq→1, separability of a one-
parameter family of the Werner-Popescu states of theNn system~i.e., then-partiteN-level system! is discussed.
The nonadditive information theory withq.1 is shown to yield a limitation on separability that is stronger
than the one derived from the additive theory. How the strongest limitation can be obtained in the limitq
→` is also shown.
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I. INTRODUCTION

There is growing interest in the roles of nonadditive me
sures in quantum information theory. In Ref.@1#, the inad-
equacy of the additive von Neumann entropy as a measu
the information content in a quantum state has been poi
out, for example. Also, there is a theoretical observation@2#
that the measure of quantum entanglement may not be a
tive.

Recently, the explicit use of nonadditive information me
sures has been made in quantum information theory@3–6#.
In particular, the problems of separability of mixed states a
quantum entanglement have been discussed in Refs.@5,6#.
These attempts are primarily based on the Tsallis entro
which is defined by

Sq@ r̂#5
1

12q
~Tr r̂q21!, ~1!

where r̂ is the system density matrix andq is the positive
entropic index. This quantity is regarded as a one-param
generalization of the von Neumann entropy, which is o
tained in the limit Sq@ r̂#→S@ r̂#52Tr( r̂ ln r̂) (q→1).
Sq@ r̂# possesses some important properties as an entrop
is non-negative, definitely concave for all values ofq.0,
and fulfills theH theorem. Additivity is, however, to be re
placed bypseudoadditivity, which means that, for a produc
state of a bipartite system (A,B), the total amount satisfies

Sq@ r̂~A! ^ r̂~B!#5Sq@ r̂~A!#1Sq@ r̂~B!#

1~12q!Sq@ r̂~A!#Sq@ r̂~B!#. ~2!

Clearly, additivity holds only in the limitq→1. In recent
years,Sq@ r̂# and its classical counterpart have been wid
discussed in the area ofnonextensive statistical mechani
@7#. Also, classical nonadditive measures have been
ployed to generalize the ordinary additive information theo
~see Ref.@8#, for example!.
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In this paper, we develop a basis for nonadditive quant
information theory with the Tsallis entropy and the asso
ated conditional entropy. To examine if this theory has poi
superior to the ordinary additive quantum information theo
with the von Neumann entropy, we apply it to the separa
ity problem of a specific one-parameter family of the mix
states of theNn system~i.e., then-partite N-level system!,
which are extreme generalizations of the Werner-Popes
type states of the 232 system@i.e., the bipartite spin-~1

2!
system# @9,10#. The nonadditive conditional entropy is foun
to be non-negative for a separable~or, classically correlated!
subfamily of these states but may take negative values
the states with quantum entanglement. Based on this fact
show that the nonadditive quantum information theory w
q.1 gives rise to a limitation on separability, which is stro
ger than that derived from the additive theory correspond
to the limit q→1. We also show how the strongest limitatio
can be obtained in the limitq→`. This result should be
compared with the discussion in Ref.@11#, in which it is
stated that local information can never be sufficient for
tablishing separability of the Werner-Popescu-type state
odd dimensions.

II. CLASSICAL NONADDITIVE MEASURE AND ITS
AXIOMATIC FOUNDATION

Though our interest is in quantum theory, it seems app
priate to mention here that, at the classical level, the Tsa
entropy has its mathematical characterization, such as
Shannon entropy@12,13#. Therefore, we wish to devote thi
section to a brief summary of this point.

The axioms and the uniqueness theorem have been
sented for the Tsallis entropy in Ref.@14#, in which the non-
additive conditional entropy has been introduced for the fi
time. Thereby, the Shannon-Khinchin axiomatic framewo
@12,13# was generalized to nonadditive information theo
The set of axioms presented in Ref.@14# is the following.~I!
Sq(p1 ,p2 ,...,pW) is continuous with respect to all its argu
ments and takes its maximum for the equiprobab
ity distribution pi51/W ( i 51,2, . . . ,W), ~II ! Sq(A,B)
©2002 The American Physical Society23-1
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5Sq(A)1Sq(BuA)1(12q)Sq(A)Sq(BuA) for a composite sys-
tem, (A,B), and ~III ! Sq(p1 ,p2 ,...,pW ,pW1150)
5Sq(p1 ,p2 ,...,pW). It can be shown@14# that the quantity
Sq satisfying axioms~I!–~III ! is, up to a multiplicative con-
stant, uniquely given by

Sq~p1 ,p2 ,...,pW![Sq@p#5
1

12q F(
i 51

W

~pi !
q21G , ~3!

which is the classical counterpart ofSq@ r̂# in Eq. ~1!. Com-
paring this set of axioms with that of Khinchin@13#, we see
that the one and only difference is in axiom~II ! ~that is,
Khinchin’s second axiom is recovered in the limitq→1!.
There,Sq(BuA) is the nonadditive conditional entropy de
fined as follows:

Sq~BuA!5^Sq~BuAi !&q
~A! , ~4!

provided thatSq(BuAi) is the Tsallis entropy of the condi
tional probability distribution ofB with A found in its i th
state,pi j (BuA)5pi j (A,B)/pi(A) with the marginal probabil-
ity distribution pi(A)5S j pi j (A,B). The symbol ^Q&q

(A)

stands for thenormalized q-expectation value@15# defined
by

^Q&q
~A!5(

i
Qi Pi~A!, ~5!

where

Pi~A!5
@pi~A!#q

( i@pi~A!#q ~6!

is the escort distributionassociated withpi(A), which has
originally been introduced in the context of statistical m
chanical description of chaotic systems@16#. Though it is not
intuitively clear why such a distribution introduced in th
different area appears also in information theory, one sho
recall that statistical mechanics can be thought of as a bra
of information theory, and accordingly it is desirable to fo
mulate the theories in these two areas in a unified mann

Analogously to quantum theory, it is immediate to see t
the classical additive Shannon entropy is recovered in
limiting case:Sq@p#→S@p#52( i 51

W pi ln pi (q→1), in con-
formity with Khinchin’s set of axioms, that is, axioms~I!–
~III ! with q→1.

We wish to emphasize that the classical nonadditive c
ditional entropySq(BuA) is non-negative, sinceSq(BuAi) in
Eq. ~4! is the non-negative Tsallis entropy of the condition
probability distribution, as mentioned above.

The generalized composition law in axiom~II ! can be
recognized in connection with Eqs.~4!–~6!. In fact, Eq.~4!
admits the following expression:

Sq~BuA!5
Sq~A,B!2Sq~A!

11~12q!Sq~A!
, ~7!
05232
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whereSq(A) is the Tsallis entropy of the marginal probab
ity distribution pi(A). This is identical to the generalize
composition law.

Note that there exists the following correspondence re
tion between the Bayes law and the generalized compos
law in axiom ~II !:

pi j ~A,B!5pi~A!pi j ~BuA!5pj~B!pi j ~AuB!

↔

Sq~A,B!5Sq~A!1Sq~BuA!1~12q!Sq~A!Sq~BuA!

5Sq~B!1Sq~AuB!1~12q!Sq~B!Sq~AuB!.

~8!

In the ordinary additive information theory, the Shannon e
tropy establishes the following relation between the Ba
law and the composition law:

pi j ~A,B!5pi~A!pi j ~BuA!

5pj~B!pi j ~AuB!↔S~A,B!

5S~A!1S~BuA!5S~B!1S~AuB!.

In this, one sees a clear structure in multiplication and ad
tion. Correspondingly, Eq.~8! may also be seen to be natur
in view of pseudoadditivity of the Tsallis entropy@cf. Eq.
~2!#. The generalized composition law is actually more s
isfactory than pseudoadditivity for characterizing the non
ditive feature of the Tsallis entropy since it holds even wh
A andB are correlated and the factorization ansatz in Eq.~2!
is not fulfilled.

Let us further discuss the generalized composition law
a multipartite system. To be specific, here we conside
tripartite system~A,B,C! as a simple example. The Baye
multiplication rule reads

pi jk~A,B,C!5pjk~B,C!pi jk~AuB,C!

5pk~C!pjk~BuC!pi jk~AuB,C!, ~9!

and so on. Accordingly, the generalized composition law
comes

Sq~A,B,C!5Sq~B,C!1Sq~AuB,C!1~12q!

3Sq~B,C!Sq~AuB,C!

5Sq~C!1Sq~BuC!1Sq~AuB,C!

1~12q!@Sq~C!Sq~BuC!

1Sq~BuC!Sq~AuB,C!

1Sq~AuB,C!Sq~C!

1~12q!Sq~C!Sq~BuC!Sq~AuB,C!#.

~10!
3-2



NONADDITIVE INFORMATION MEASURE AND QUANTUM . . . PHYSICAL REVIEW A 65 052323
Therefore, we have

Sq~BuC!5
Sq~A,B,C!2@Sq~C!1Sq~AuB,C!1~12q!Sq~C!Sq~AuB,C!#

11~12q!@Sq~C!1Sq~AuB,C!1~12q!Sq~C!Sq~AuB,C!#
, ~11!
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for example. It is of interest to observe that the systemA
plays only an auxiliary role in this equation sinceSq(BuC)
does not directly contain information onA. This discussion
can be generalized to an arbitrary multipartite system in
obvious way.

III. QUANTUM NONADDITIVE CONDITIONAL
ENTROPY

Equation~7! is assumed to remain form invariant und
its quantum-mechanical generalization, that is,

Sq~BuA!5
Sq~A,B!2Sq~A!

11~12q!Sq~A!
, ~12!

where Sq(A,B)5Sq@ r̂(A,B)# and Sq(A)5Sq@ r̂(A)# with
r̂(A) the marginal density matrix given by the partial trac
r̂(A)5TrB r̂(A,B).

In classical theory, the nonadditive conditional entropy
always non-negative as already mentioned, whereas it ca
negative in quantum theory, in general. An important po
arising here is that the occurrence of negative values m
actually be asignatureof quantum entanglement. Consider
classically correlated state, or a separable state, of~A,B!

r̂~A,B!5(
l

wlr̂l~A! ^ r̂l~B!, ~13!

wherewlP@0,1# with (lwl51. This state is a nonproduc
state but is known to admit locally realistic hidden-variab
models @9#. Let us assume both$rl(A)% and $rl(B)% be
simultaneously diagonalizable for all values ofl. Then,
r̂l(A) and r̂l(B) can be expressed in the diagonalizing o
thonormal bases,ua& and ub&, as follows:

r̂l~A!5(
a

r l~a!ua&^au, r̂l~B!5(
a

sl~b!ub&^bu,

~14!

wherer l(a), sl(b)P@0,1# with (ar l(a)5(bsl(b)51. The
above assumption defines a subclass of the density mat
of the classically correlated states, and is not valid, in g
eral. However, since we are limiting our discussion here
the Werner-Popescu-type states@defined later in Eqs.~18!
and~30!#, it may actually be valid in such a limited class
the states. With this assumption, the nonadditive quan
conditional entropy in Eq.~12! is calculated to be
05232
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Sq~BuA!5

(
a

F(
l

wlr l~a!Gq

Sq~Bua!

(
a

F(
l

wlr l~a!Gq , ~15!

where

Sq~Bua!5
1

12q H(
b

@p~bua!#q21J , ~16!

p~bua!5

(
l

wlr l~a!sl~b!

(
l

wlr l~a!

. ~17!

Equation~15! is to be compared with Eq.~4!. p(bua) in Eq.
~17! has the same properties as the classical conditio
probability distribution does:p(bua)P@0,1#, (bp(bua)
51. This is the reason why Eq.~16! is written in the notation
of classical theory. Consequently,Sq(BuA) in Eq. ~15! is
non-negative for any classically correlated states satisfy
the above-mentioned simultaneous diagonalizability assu
tion. In other words, negative values of the nonadditive c
ditional entropy indicate the existence of nonclassical co
lation, i.e., quantum entanglement. In the recent works@5,6#,
this point has been discussed in detail for a class of
density matrices of the 232 system. In particular, the stron
gest limitation@17# on separability of a one-parameter fami
of the Werner-Popescu state@9,10# has been obtained by us
ing the nonadditive conditional entropy@5#. Also, it has been
shown how the nonadditive conditional entropy is super
to the conditional von Neumann entropy,S(BuA)
5 limq→1Sq(BuA), and to the Bell inequality for constrain
ing validity of local realism.

IV. QUANTUM ENTANGLEMENT IN A CLASS OF
STATES OF MULTIPARTITE SYSTEMS

As the simplest multipartite generalization of the previo
discussion about the 232 system@5,6#, first let us consider
the tripartite spin-~1

2! system. A one-parameter family of th
Werner-Popescu-type state of such a system is given by

r̂~A,B,C!5
12x

8
Î 2~A! ^ Î 2~B! ^ Î 2~C!1xuC2

~3!&^C2
~3!u

~xP@0,1# !, ~18!

where Î 2 denotes the 232 unit matrix and
3-3
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uC2
~3!&5 1

& ~ u0&A^ u0&B^ u0&C1u1&A^ u1&B^ u1&C).
~19!

Since the subsystemsA, B, and C appear symmetrically
there are essentially two different kinds of the marginal d
sity matrices,

r̂~B,C!5TrA r̂~A,B,C!

5
12x

4
Î 2~B! ^ Î 2~C!1

x

2
~ u0&BB^0u ^ u0&CC^0u

1u1&BB^1u ^ u1&CC^1u!, ~20!

r̂~C!5TrA,B r̂~A,B,C!5 1
2 Î 2~C!. ~21!

The eigenvalues ofr̂(A,B,C), r̂(B,C), and r̂(C) are, re-
spectively, given by

12x

8
~sevenfold degenerate!,

117x

8
@ r̂~A,B,C!#,

~22!

12x

4
~doubly degenerate!,

11x

4
~doubly degenerate! @ r̂~B,C!#, ~23!

1
2 ~doubly degenerate! @ r̂~C!#. ~24!

Therefore, the two independent nonadditive conditional
tropies are calculated to be

Sq~A,BuC!5
Sq~A,B,C!2Sq~C!

11~12q!Sq~C!

5
1

12qF 7S 12x

8 D q

1S 117x

8 D q

2S 1

2D q 21G ,

~25!

Sq~AuB,C!5
Sq~A,B,C!2Sq~B,C!

11~12q!Sq~B,C!

5
1

12qF 7S 12x

8 D q

1S 117x

8 D q

2S 12x

4 D q

12S 11x

4 D q21G .

~26!

In Figs. 1 and 2, we present the implicit plots of the equ
tions Sq(A,BuC)50 andSq(AuB,C)50, respectively. Both
show that the value ofx for the border of separability of the
density matrix in Eq.~18! monotonically decreases with re
spect to the indexq. From them, it is seen howSq(AuB,C)
puts limitation on separability, which is clearly stronger th
05232
-

-

-

that obtained fromSq(A,BuC). It is also seen in Fig. 2 tha
the regime in which local realism holds is given by

0<x, 1
5 . ~27!

Note that, in fact, this condition is obtained from Eq.~26! in
the limit q→`. @Actually, it is necessary and sufficient fo
separability ofr̂(A,B,C) in Eq. ~18!. See the general discus
sion below.# Equation~27! should be compared with the fol
lowing condition obtained from the conditional von Ne
mann entropy corresponding toSq(AuB,C)50 in the limit
q→1: 0<x,0.682 931 . . . , which is clearly much more
tolerant for separability than Eq.~27!. Thus, one can appre
ciate superiority of the present nonadditive quantum inf
mation theory to the ordinary additive approach at leas
the 23232 example~as well as the 232 example dis-
cussed in Ref.@5#!.

The above result suggests that the nonadditive conditio
entropy of the form

Sq~A1uA2 ,A3 ,...,An!

5
Sq~A1 ,A2 ,...,An!2Sq~A2 ,A3 ,...,An!

11~12q!Sq~A2 ,A3 ,...,An!
~28!

is to be examined in general. It should be noted that,in the
asymptotic evaluation of this quantity in the limit q→`,
it is sufficient to consider the largest eigenvalu
of r̂(A1 ,A2 ,...,An) and r̂(A2 ,A3 ,...,An), since
Sq(A1uA2 ,A3 ,...,An) can also be expressed as follows:

FIG. 1. Implicit plot of Sq(A,BuC)50 with respect toq
P@0,̀ ) and xP@0,1#. In the limit q→`, x converges to3

7. All
quantities are dimensionless.
3-4
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Sq~A1uA2 ,A3 ,...,An!5
1

12q FTr r̂q~A1 ,A2 ,...,An!

Tr r̂q~A2 ,A3 ,...,An!
21G .

~29!

Now, we consider the problem of separability of a on
parameter family of the Werner-Popescu-type state of theNn

system. The density matrix of this state is written as follow

FIG. 2. Implicit plot of Sq(AuB,C)50 with respect toq
P@0,̀ ) and xP@0,1#. In the limit q→`, x converges to1

5. All
quantities are dimensionless.
-
-

o
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r̂~A1 ,A2 ,...,An!5
12x

Nn Î N~A1! ^ Î N~A2! ^¯^ Î N~An!

1xuCN
~n!&^CN

~n!u ~xP@0,1# !, ~30!

where Î N is theN3N unit matrix anduCN
(n)& is given by

uCN
~n!&5

1

AN
(
k50

N21

uk&A1
^ uk&A2

^¯^ uk&An
. ~31!

The marginal density matrix of interest is

r̂~A2 ,A3 ,...,An!5TrA1
r̂~A1 ,A2 ,A3 ,...,An!

5
12x

Nn21 Î N~A2! ^ Î N~A3! ^¯^ Î N~An!

1
x

N (
k50

N21

uk&A2A2
^ku

^ uk&A3A3
^ku ^¯^ uk&AnAn

^ku. ~32!

It can be found that the eigenvalues ofr̂(A1 ,A2 ,...,An) and
r̂(A2 ,A3 ,...,An) are, respectively, given by

12x

Nn @~Nn21!-fold degenerate#,
11~Nn21!x

Nn

@ r̂~A1 ,A2 ,...,An!#, ~33!

12x

Nn21 @~Nn212N!-fold degenerate#,

11~Nn2221!x

Nn21 ~N-fold degenerate! @ r̂~A2 ,A3 ,...,An!#.

~34!

Using these eigenvalues, the nonadditive conditional entr
in Eq. ~28! @or Eq. ~29!# is calculated to be
Sq~A1uA2 ,A3 ,...,An!5
1

12q

~Nn21!S 12x

Nn D q

1F11~Nn21!x

Nn Gq

~Nn212N!S 12x

Nn21D q

1NF11~Nn2221!x

Nn21 Gq21. ~35!
ods
nt
For fixed N and n, the value of x satisfying
Sq(A1uA2 ,A3 ,...,An)50 monotonically decreases with re
spect toq, as in the tripartite spin-~1

2! system discussed pre
viously. Therefore, the nonadditive theory withq.1 yields a
limitation on separability of the density matrix in Eq.~30!
that is stronger than the one derived from the additive v
Neumann theory corresponding to the limitq→1. In the
limit q→`, evaluating the eigenvalues ofr̂(A1 ,A2 ,...,An)
n

and r̂(A2 ,A3 ,...,An), we find that the density matrix is
separable if

0<x,
1

11Nn21 . ~36!

It has recently been shown using algebraic meth
@18,19# that Eq.~36! is actually the necessary and sufficie
3-5
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condition. This is the main result of the present work.
indicates how the generalized nonadditive information th
retic approach sheds more light on characterizing quan
entanglement in a one-parameter family of the Wern
Popescu-type states of multipartite systems.

V. CONCLUSION

We have developed a basis for nonadditive generaliza
of the ordinary framework of quantum information. To e
amine if this theory has points superior to the ordinary ad
tive theory with the von Neumann entropy, we have appl
it to the problem of separability of a one-parameter family
the Werner-Popescu-type states of theNn system. We have
found that the present theory with the Tsallis entropy and
associated nonadditive conditional entropy with the entro
index q greater than unity leads to a limitation on separab
ity of the state that is stronger than the one derived from
additive theory corresponding to the limitq→1. In particu-
lar, the necessary and sufficient condition for separability
been obtained in the limitq→`.

It is logically clear that the present nonadditive quantu
information theoretic approach does not lead to the neces
and sufficient condition for separability, in general. For e
ample, it can be shown that this approach fails to give
criterion for separability of the marginal density matrix
ev

,
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the reduced 232 system derived from theW state of the
23232 system: there, the conditional entropy vanishes
all values ofq but the Peres criterion tells us that the state
entangled@20#.

Finally, we make a comment on the quantum-mechan
version of the Re´nyi entropy defined by Sq

R@ r̂#5(1
2q)21 ln Tr r̂q. This quantity is related to the Tsallis entrop
as Sq

R5(12q)21 ln@11(12q)Sq#, and satisfies strict addi
tivity. In Ref. @21#, this quantity withq52 is examined for
characterizing quantum entanglement. However, we wish
point out that, unlike the Tsallis entropy, the Re´nyi entropy
does not possess the information content and, in additio
is not concave ifq.1. These may be seen as serious dra
backs from the unified viewpoint of information theory an
statistical mechanics.
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