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Nonadditive information measure and quantum entanglement in a class of mixed states
of an N" system
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Generalizing Khinchin's classical axiomatic foundation, a basis is developed for nonadditive information
theory with the Tsallis entropy indexed loy The classical nonadditive conditional entropy is introduced and
then translated into quantum theory. To examine if this theory has points superior to the ordinary additive
information theory with the von Neumann entropy corresponding to the bmitl, separability of a one-
parameter family of the Werner-Popescu states oftheystem(i.e., then-partiteN-level systemis discussed.

The nonadditive information theory with>1 is shown to yield a limitation on separability that is stronger
than the one derived from the additive theory. How the strongest limitation can be obtained in the limit
— js also shown.
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[. INTRODUCTION In this paper, we develop a basis for nonadditive quantum
information theory with the Tsallis entropy and the associ-
There is growing interest in the roles of nonadditive mea-ated conditional entropy. To examine if this theory has points
sures in quantum information theory. In Rgt], the inad-  superior to the ordinary additive quantum information theory
equacy of the additive von Neumann entropy as a measure @fith the von Neumann entropy, we apply it to the separabil-
the information content in a quantum state has been pointeity problem of a specific one-parameter family of the mixed
out, for example. Also, there is a theoretical observafgjn  states of theN" system(i.e., then-partite N-level system
that the measure of quantum entanglement may not be addithich are extreme generalizations of the Werner-Popescu-
tive. type states of the 22 system[i.e., the bipartite spirf3)
Recently, the explicit use of nonadditive information mea-systenj [9,10]. The nonadditive conditional entropy is found
sures has been made in quantum information thg®dn6].  to be non-negative for a separaljte, classically correlated
In particular, the problems of separability of mixed states andubfamily of these states but may take negative values for
guantum entanglement have been discussed in Re. the states with quantum entanglement. Based on this fact, we
These attempts are primarily based on the Tsallis entropyghow that the nonadditive quantum information theory with
which is defined by g>1 gives rise to a limitation on separability, which is stron-
ger than that derived from the additive theory corresponding
1 to the limitg— 1. We also show how the strongest limitation
Sq[ﬁ]zm(-rfﬁq—l), (1) can be obtained in the limig—o. This result should be
compared with the discussion in Réfl1], in which it is
stated that local information can never be sufficient for es-

wherep is the system density matrix arglis the positive  apjishing separability of the Werner-Popescu-type states in
entropic index. This quantity is regarded as a one-parametejyq dimensions.

generalization of the von Neumann entropy, which is ob-
tained in the limit sq[p]—>5[a]: —Tr(i)_ln p) (g—1).
Sy p] possesses some important properties as an entropy. It
is non-negative, definitely concave for all values@#$0,
and fulfills theH theorem. AddItIVIty is, however, to be re- Though our interest is in guantum theory, it seems appro-
placed bypseudoadditivitywhich means that, for a product priate to mention here that, at the classical level, the Tsallis
state of a bipartite systemA(B), the total amount satisfies  entropy has its mathematical characterization, such as the
Shannon entropy12,13. Therefore, we wish to devote this
Sl p(A)®p(B)]=S[p(A)]+Sy[p(B)] section to a brief summary of this point.
~ R The axioms and the uniqueness theorem have been pre-
+(1=q)S[p(A)]S[p(B)]. (2 sented for the Tsallis entropy in RéfL4], in which the non-
additive conditional entropy has been introduced for the first
Clearly, additivity holds only in the limig—1. In recent time. Thereby, the Shannon-Khinchin axiomatic framework
years,Sq[p] and its classical counterpart have been widely{12,13 was generalized to nonadditive information theory.
discussed in the area mibnextensive statistical mechanics The set of axioms presented in REE4] is the following. (1)
[7]. Also, classical nonadditive measures have been enS;(p;,p,,...,.pw) is continuous with respect to all its argu-
ployed to generalize the ordinary additive information theoryments and takes its maximum for the equiprobabil-
(see Ref[8], for example. ity distribution pj=1W (i=12,... W), () S4(A,B)

II. CLASSICAL NONADDITIVE MEASURE AND ITS
AXIOMATIC FOUNDATION
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=5(A) +&(BJA) +(1-0)S(A)K,(BJA) for a composite sys-
tem, (A,B), and (1) Sy(p1,p2,---Pw,Pw+1=0)
=S4(P1,P2,....pw). It can be showrj14] that the quantity
S, satisfying axiomg(l)—(lll) is, up to a multiplicative con-
stant, uniquely given by

1
Sq(pl,pz,...,pW)ESq[p]Im

w
;mMAl<$

which is the classical counterpart 8f[ p] in Eg. (1). Com-
paring this set of axioms with that of Khinchjd3], we see
that the one and only difference is in axioft) (that is,
Khinchin’s second axiom is recovered in the lingt>1).
There, Sy(B|A) is the nonadditive conditional entropy de-
fined as follows:

Sq(BJA) =(S4(BIA)), (4)
provided thatSq(B|Ai) is the Tsallis entropy of the condi-
tional probability distribution ofB with A found in itsith
state,pij(B|A)= pij(A,B)/p;(A) with the marginal probabil-
ity distribution p;(A)=3;p;;(A,B). The symbol (Q){"
stands for thenormalized gexpectation valug¢15] defined
by

<®$=2Qﬂm» (5)
where
(A
PA=S I AT ©)

is the escort distributionassociated wittp;(A), which has
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whereS,(A) is the Tsallis entropy of the marginal probabil-
ity distribution p;(A). This is identical to the generalized
composition law.

Note that there exists the following correspondence rela-
tion between the Bayes law and the generalized composition
law in axiom(ll):

pij(A,B)=p;(A)p;j(B|A)=p;(B)p;;(A|B)

—

Sy(A,B)=S4(A)+Sy(B|A) +(1— ) S4(A)Sy(B|A)
=S4(B)+Sy(A|B)+(1—)S,(B)S,(A|B).
8

In the ordinary additive information theory, the Shannon en-
tropy establishes the following relation between the Bayes
law and the composition law:

Pij(A,B)=pi(A)p;j(B|A)
=p;(B)pj;(A|B)—S(A,B)
=S(A)+S(B|A)=S(B)+S(A|B).

In this, one sees a clear structure in multiplication and addi-
tion. Correspondingly, Eq8) may also be seen to be natural
in view of pseudoadditivity of the Tsallis entrodgf. Eq.
(2)]. The generalized composition law is actually more sat-
isfactory than pseudoadditivity for characterizing the nonad-
ditive feature of the Tsallis entropy since it holds even when
A andB are correlated and the factorization ansatz in 2y.
is not fulfilled.

Let us further discuss the generalized composition law for
a multipartite system. To be specific, here we consider a
tripartite system(A,B,0 as a simple example. The Bayes

originally been introduced in the context of statistical me-ptiplication rule reads

chanical description of chaotic systefidi$]. Though it is not

intuitively clear why such a distribution introduced in the - . -
different area appears also in information theory, one should Pijk(A.B,C)=P;(B,C)pij(A[B,C)
recall that statistical mechanics can be thought of as a branch =px(C)pjk(B|C)pij(AlB,C), 9
of information theory, and accordingly it is desirable to for-
mulate the theories in these two areas in a unified manner.and so on. Accordingly, the generalized composition law be-
Analogously to quantum theory, it is immediate to see thatomes
the classical additive Shannon entropy is recovered in the
limiting case:S;[p]— p]= —Ei"llpi Inp (g—1), in con-
formity with Khinchin’s set of axioms, that is, axion{§)—
(1) with g— 1.
We wish to emphasize that the classical nonadditive con-
ditional entropyS,(B|A) is non-negative, sincgy(B|A) in
Eq. (4) is the non-negative Tsallis entropy of the conditional
probability distribution, as mentioned above.
The generalized composition law in axioffl) can be
recognized in connection with Eq&)—(6). In fact, Eq.(4)
admits the following expression:

S4(A,B,C)=5,(B,C)+S4(A[B,C)+(1—0q)

X S4(B,C)S4(A|B,C)
=54(C)+54(B|C) +Sy(A|B,C)
+(1-q)[S4(C)Sy(BIC)
+S4(B|C)S4(A|B,C)
+S4(A|B,C)S4(C)
+(1-0)S;(C)S4(B|C)S4(A[B,C) .
(10

Sy(A,B)— Sy(A)

ST g A

(@)
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Therefore, we have

S4(A,B,C)—[Sy(C) +S4(A|B,C) +(1—)S4(C)S4(A|B,C)]

S¢(B|C)= , 11
Bl = L (T )[Sy(C)+ Sy(ATB.C)+ (1~ Q) Sy(C)Sy(AIB.C)] 0
|
for example. It is of interest to observe that the system q
plays only an auxiliary role in this equation singg(B|C) §a: Ex: wyry(a)| Sy(Bla)
does not directly contain information ok This discussion S4(BlA) = 7 , (15)
can be generalized to an arbitrary multipartite system in an
obvious way. ; ; war(@)
where

Ill. QUANTUM NONADDITIVE CONDITIONAL
ENTROPY

1
Sq<B|a>=m[§[w(b|a>P—1], (16)

Equation(7) is assumed to remain form invariant under
its quantum-mechanical generalization, that is,

g wyr(a)s,(b)

(12) m(bla)= . (17)
E}\: wy I (a)

Sy(AB)—S,(A)

SN T gsm)

where Sq(A,B)=S[p(A.B)] and Sy(A)=S,[p(A)] with _ _ _ _
H(A) the marginal density matrix given by the partial trace, Equation(15) is to be compared with Eq4). m(b|a) in Eq.
p(A)=Trg p(A,B). a7 ha}s_, the_sa_me_ properties as the classical conditional
In classical theory, the nonadditive conditional entropy isProbability distribution does:m(bla) €[0,1], Z,m(bla)
always non-negative as already mentioned, whereas it can bel- This is the reason why E(L6) is written in the notation
negative in quantum theory, in general. An important pointof classical theory. Consequenti,(B|A) in Eq. (15) is
arising here is that the occurrence of negative values mafjon-negative for any classically correlated states satisfying
actually be asignatureof quantum entanglement. Consider a the above-mentioned simultaneous diagonalizability assump-

classically correlated state, or a separable statéA & tion. In other words, negative values of the nonadditive con-
ditional entropy indicate the existence of nonclassical corre-

lation, i.e., quantum entanglement. In the recent w@Bk6],
. _ A A this point has been discussed in detail for a class of the
p(A’B)_; WapA(A)@DA(B), (13 density matrices of the 22 system. In particular, the stron-
gest limitation[17] on separability of a one-parameter family
) ] ] of the Werner-Popescu stdi®,10] has been obtained by us-
wherew, €[0,1] with Z,w, =1. This state is a nonproduct jnq the nonadditive conditional entrop§]. Also, it has been
state but is known to admit locally realistic hidden-variable ghown how the nonadditive conditional entropy is superior
models[9]. Let us assume bothp,(A)} and{p\(B)} be o the conditional von Neumann entropyS(B|A)

simultaneously diagonalizable for all values ®f Then, =|imq_>15q(B|A), and to the Bell inequality for constrain-
pr(A) andp,(B) can be expressed in the diagonalizing Or-ing validity of local realism.
thonormal basega) and|b), as follows:

IV. QUANTUM ENTANGLEMENT IN A CLASS OF
STATES OF MULTIPARTITE SYSTEMS

A =2 r(@la)al, p(B)=2 syb)lb)(bl, , - o |
a a As the simplest multipartite generalization of the previous
(14 discussion about the22 system[5,6], first let us consider
the tripartite spin) system. A one-parameter family of the

wherer, (a), s,(b) €[0,1] with Z,r,(a)=3,s,(b)=1. The ~ Werner-Popescu-type state of such a system is given by
above assumption defines a subclass of the density matrices L
of the classically correlated states, and is not valid, in gen- .. 17X » o BN\ /a1, (3)
eral. However, since we are limiting our discussion here to p(AB,C)= 8 l2(A)@12(B)®15(C) + X2 ) (V2|
the Werner-Popescu-type stati@efined later in Eqs(18)

and(30)], it may actually be valid in such a limited class of (xe[0,1]), (18
the states. With this assumption, the nonadditive quantum R
conditional entropy in Eq(12) is calculated to be wherel, denotes the X2 unit matrix and
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W)= 5(10)a®|0)g®[0)c+[1)a®]1)g®[1)c).
(19

Since the subsystemA, B, and C appear symmetrically,

there are essentially two different kinds of the marginal den-

sity matrices,

p(B,C)=Trap(A,B,C)

= = 1(B)1(C)+ 5 (0)as(0] @] 0)cc(O)

+]1)ge(1l®[1)cc(1]), (20)

p(C)=Trapp(A,B,C)=3I5(C). (21)

The eigenvalues op(A,B,C), p(B,C), andp(C) are, re-
spectively, given by
1-x

e (sevenfold degenerate

[p(A,B,C)],
(22

8

1-x
T(doubly degeneraje

1+x
T(doubly degeneraje [p(B,C)], (23

3 (doubly degeneraje [p(C)]. (24)
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1}

0 S 10 15 20 9
FIG. 1. Implicit plot of S,(A,B|C)=0 with respect toq
e[0°) and xe[0,1]. In the limit g—«, X converges to%. All
guantities are dimensionless.

that obtained fromS,(A,B|C). It is also seen in Fig. 2 that
the regime in which local realism holds is given by

Therefore, the two independent nonadditive conditional en-

tropies are calculated to be

S4(A,B,C)—5,(C)
1+(1-)S,(C)

q (1+7x
J’_

S4(AB|C)=

1-x a

(29)

S4(A,B,C)—8,(B,C)

1+(1-q)S,(B,C)
(1—x q (1+7x

1| 178 Tl

T1-q 2(1—xq (l+xq 1

S4(AIB,C)=

q

4 4

(26)

0=x<4%. (27)
Note that, in fact, this condition is obtained from Eg6) in
the limit q—cc. [Actually, it is necessary and sufficient for
separability ofp(A,B,C) in Eq.(18). See the general discus-
sion below] Equation(27) should be compared with the fol-
lowing condition obtained from the conditional von Neu-
mann entropy corresponding ®(A|B,C)=0 in the limit
g—1: 0=x<0.68293 ..., which is clearly much more
tolerant for separability than Eq27). Thus, one can appre-
ciate superiority of the present nonadditive quantum infor-
mation theory to the ordinary additive approach at least in
the 2x2x2 example(as well as the X2 example dis-
cussed in Ref[5]).

The above result suggests that the nonadditive conditional
entropy of the form

Sq(AllAz, A, A

_ SqAu A, A = Sq(Ag A,
1+(1_Q)Sq(A2aA31aAn)

An) 28)

In Figs. 1 and 2, we present the implicit plots of the equa-

tions S4(A,B|C)=0 andS,(A|B,C) =0, respectively. Both

is to be examined in general. It should be noted thmathe

show that the value of for the border of separability of the asymptotic evaluation of this quantity in the limit—epe,

density matrix in Eq(18) monotonically decreases with re- it

spect to the index;. From them, it is seen how,(A|B,C)

puts limitation on separability, which is clearly stronger thanSq(A1|A2,A3,...

is sufficient to consider the largest eigenvalues
of  p(A1,As,...A) and p(As,Az,...,A,), since
/A,) can also be expressed as follows:
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1-x. N «
x P(ALA, ... A= g IN(AD) B TN(A) @ @ T (Ay)
14
X PRNPR (xe[0,1]),  (30)
wherely is the N N unit matrix and|¥{") is given by
0.8 . N—1
Tiy=—= 2 |K)a ®|K)p, ® - ®|K)a . 31
(i) = 5 Z, Waelkae el @D
0.6 The marginal density matrix of interest is
ﬁ(AZyA&---1An):TrAlb(A11A21A31---aAn)
1-x. A A
0.4 :W'N(A2)®|N(A3)®‘"®|N(An)
N—1
X
N kZO 1K) aa, (K
0.2
®[k)aa kl@ - ®k)a a(kl. (32
It can be found that the eigenvaluesidfA ,A,,... A,) and
ol p(A5,Az,... A, are, respectively, given by
¢ s 10 15 20 ° 1—x 1+(N"—1)x
N [(N"—1)-fold degenerafg — N
FIG. 2. Implicit plot of S,(A|B,C)=0 with respect toq [p(ALA,,... An], (33
e[0>) andxe[0,1]. In the limit g—%, X converges to%. All
quantities are dimensionless. 1-—x no1
Nl [(N""*=N)-fold degeneratg
1 [Trp%AL A, A
Sq(A1|A2,A3,...,An): — ~q . 1+ Nn72_1 X
1 q TI‘P (A25A31-..,An) (29) %(N_fokj degeneram [i)(AZ!ABY"'!An)]'

. . 34
Now, we consider the problem of separability of a one- 349
parameter family of the Werner-Popescu-type state ofthe Using these eigenvalues, the nonadditive conditional entropy
system. The density matrix of this state is written as follows:in Eq. (28) [or Eq.(29)] is calculated to be

N 1)(1—x)q+ 1+(N"—1)x]d
1 NN N"
Sq(A1|A2!A31---!An): —q 1—x\d 1+(Nn_2—1)X q_l' (35)
n—-1
(N _N) anl anl

For fixed N and n, the value of x satisfying and p(A,,A;z,...,A,), we find that the density matrix is
Sq(A1|A2,A3,...,An)=0 monotonically decreases with re- separable if

spect tog, as in the tripartite spiifz) system discussed pre-

viously. Therefore, the nonadditive theory wib- 1 yields a 1

limitation on separability of the density matrix in E(B0)
that is stronger than the one derived from the additive von
Neumann theory corresponding to the lingt=1. In the It has recently been shown using algebraic methods
limit g—oe, evaluating the eigenvalues p{A;,A,,...,A,) [18,19 that Eq.(36) is actually the necessary and sufficient

(36)
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condition. This is the main result of the present work. Itthe reduced X2 system derived from th&V state of the
indicates how the generalized nonadditive information theop 2% 2 system: there, the conditional entropy vanishes for

retic approach sheds more light on characterizing quanturgy| yalues ofq but the Peres criterion tells us that the state is
entanglement in a one-parameter family of the Wernergpiangled20].

Popescu-type states of multipartite systems. Finally, we make a comment on the guantum-mechanical

version of the Rmyi entropy defined bySﬁ[f)]=(1
V. CONCLUSION —q) " *InTrpY. This quantity is related to the Tsallis entropy

We have developed a basis for nonadditive generalizatioﬁslsgz(l_Q) ' In[1+(1-0)Sy], and satisfies strict addi-
of the ordinary framework of quantum information. To ex- tivity. In Ref. [21], this quantity withq=2 is examined for
amine if this theory has points superior to the ordinary addiharacterizing quantum entanglement. However, we wish to
tive theory with the von Neumann entropy, we have applied?0int out that, unlike the Tsallis entropy, theiy@ entropy
it to the problem of separability of a one-parameter family Odees not possess the information content and, in addition, it
the Werner-Popescu-type states of & system. We have IS not concave ifi>1. These may be seen as serious draw-
found that the present theory with the Tsallis entropy and th@acks from the unified viewpoint of information theory and
associated nonadditive conditional entropy with the entropidtatistical mechanics.
index g greater than unity leads to a limitation on separabil-
ity of the state that is stronger than the one derived from the
additive theory corresponding to the lingit— 1. In particu-
lar, the necessary and sufficient condition for separability has The author would like to thank Professor A. Mann, Pro-
been obtained in the limig— . fessor A. Peres, and Professor M. Revzen for informative

It is logically clear that the present nonadditive quantumdiscussions, and the Technion-Israel Institute of Technology
information theoretic approach does not lead to the necessafgr hospitality. Correspondence with Professor A. K. Rajago-
and sufficient condition for separability, in general. For ex-pal has been extremely beneficial. This work was supported
ample, it can be shown that this approach fails to give dn part by the Grant-in-Aid for Scientific Research of Japan
criterion for separability of the marginal density matrix of Society for the Promotion of Science.
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