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Quantum encodings in spin systems and harmonic oscillators
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We show that higher-dimensional versions of qubits, or qudits, can be encoded into spin systems and into
harmonic oscillators, yielding important advantages for quantum computation. Whereas qubit-based quantum
computation is adequate for analyses of quantum vs classical computation, in practice qubits are often realized
in higher-dimensional systems by truncating all but two levels, thereby reducing the size of the precious Hilbert
space. We develop natural qudit gates for universal quantum computation, and exploit the entire accessible
Hilbert space. Mathematically, we give representations of the generalized Pauli group for qudits in coupled
spin systems and harmonic oscillators, and include analyses of the qubit and the infinite-dimensional limits.
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Quantum computation may be able to perform cert
tasks more efficiently than a classical computer; for exam
Shor’s algorithm@1# for factoring prime numbers on a quan
tum computer is exponentially faster than any known al
rithm on a classical computer. The standard model of a qu
tum computer involves coupling together two-level quant
systems~qubits! such that the Hilbert space of the syste
grows exponentially in the number of qubits.

A major obstacle to universal quantum computing is
limit on the number of coupled qubits that can be achieved
a physical system@2#. The use ofd-dimensional, orqudit,
quantum computing enables a much more compact and
cient information encoding than for qubit computing. Qu
quantum information processing employs fewer coup
quantum systems: a considerable advantage for the ex
mental realization of quantum computing. The harmonic
cillator is a system that naturally provides qudits as quant
its energy spectrum. Qubits are obtained by restricting
dynamics to just two of these quanta, namely, the vacu
stateu0& and the first excited stateu1&; e.g., photons in cavity
QED @3# and interferometry@4#. However, the control of
entanglement in larger Hilbert spaces is now feasible~e.g.,
orbital angular momentum states of photons@5#!. Our aim is
to show that the restriction to two-dimensional Hilbe
spaces is not necessary and that higher-dimensional Hi
spaces are an advantage, particularly when the numbe
achievable coupled systems is limited and entanglement
tween systems with larger Hilbert spaces is physically p
sible.

A quantum computer also requires gates, realized as
unitary evolution under some Hamiltonian. For qubits, a u
versal set of gates is given by arbitrary SU~2! rotations of a
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single qubit along with some nonlinear coupling transform
tion between adjacent qubits generated by a two-qu
Hamiltonian @6#. For qudit quantum computation, the issu
of creating a universal set of gates is more involved. In p
ticular, it is not possible to treat coupled qudits as a coll
tion of qubits, because~typically! one does not have acces
to ‘‘pairwise’’ Hamiltonians between two arbitrary levels o
coupled qudits. For example, in a system of coupled osc
tors realized as radiation modes in a cavity, Hamiltonia
that generate single-gate operations such as a coupling o
i th level of one oscillator and thej th level of another canno
be realized physically. Thus, quantum computation with q
dits requires an investigation not only into the coupling
multilevel systems but also the set of physically realiza
Hamiltonians with which one can construct a universal se
gates. In this paper we develop transformations for a col
tion of coupledd-level systems. These transformations a
obtained as two mathematical realizations of a basis of u
tary operators for a single qudit. We show how each of th
realizations can be implemented either in a spin system
harmonic oscillator@17#. We establish aSUM gate@7#, which
couples qudits and serves as the qudit analogue of
controlled-NOT gate; thisSUM gate employs a standard two
mode coupling Hamiltonian.

The theoretical investigation of qudit computation is be
expressed in terms of thegeneralized Pauli groupfor qudits.
Recalling the Pauli group for a two-level system, a qubit
realized as a state in a two-dimensional Hilbert spaceH2,
spanned by two normalized orthogonal states,u0& and u1&,
that serve as a computational basis forH2. The unitary op-
erators$X2[sx ,Z2[sz%, wheres i is a Pauli spin matrix,
generate the Pauli group using matrix multiplication: the
ements of this group are known as Pauli operators and
vide a basis of unitary operators onH2.
©2002 The American Physical Society16-1
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A qudit is a state in ad-dimensional Hilbert spaceHd ,
with a computational basis$us&;s50,1, . . . ,d21% serving
as the generalization of the binary basis$u0&,u1&% of the
qubit. A basis for unitary operators onHd is given by the
generalized Pauli operators@8,7#

~Xd!a~Zd!b, a,bP0,1, . . . ,d21, ~1!

whereXd andZd are defined by their action on the comp
tational basis as follows:

Xdus&5us11~modd!&, ~2!

Zdus&5exp~2p is/d!us&. ~3!

The operatorsXd andZd generate the noncommutative ge
eralized Pauli group under matrix multiplication, satisfyin

ZdXd5exp~2p i/d!XdZd . ~4!

The analysis of the generalized Pauli group as opera
in spin systems and harmonic oscillators is necessary
realizing qudit algorithms and error-correcting codes@7,9#.
For spin systems, we construct the generators of the ge
alized Pauli group ind52 j 11 dimensions using operator
that are expressed in terms of the SU~2! angular momentum
and phase operators. This construction allows us to con
niently view a qudit as an element of the Hilbert space o
d-dimensional irreducible representation of SU~2!. For qudits
in a harmonic oscillator, we obtain a generalized Pauli gro
generated by the number operatorN̂ and a phase operatorû.
A second realization of qudits is given in terms of pha
states; this realization is ‘‘dual’’ to the first realization give
here, and allows for the construction of a simpleSUM gate.
By investigating thed→` limit, we show that it isnot the
common generalization of the Pauli group for continuo
variable quantum information~i.e., the Heisenberg–Wey
group! with position eigenstates as the computational ba

We begin by constructing a realization of the generaliz
Pauli group for a spin system; i.e., in thed-dimensional Hil-
bert space of a SU~2! irreducible representation of highe
weight ~angular momentum! j 5(d21)/2. Consider the stan
dard basis for the SU~2! algebra $Ĵz ,Ĵ65 Ĵx6 iĴy%. Let
$u j ,m)z ;m52 j , . . . ,j % denote the standard weight basis f
the Hilbert spaceHd52 j 11 for an SU~2! irreducible represen
tation of highest weight~angular momentum! j. We use a
simplifying notation, allowingm to take all the integer~or
half-integer! values modulo 2j 11, thus definingu j , j 11)z
5u j ,2 j )z .

With the computational basis defined to be

us&[u j , j 2s)z , s50,1, . . . ,d21, ~5!

the generators of the generalized Pauli group can be
pressed in terms of operators that act in a natural way
SU~2! basis states. Because the basis states are eigensta
Ĵz , we have

Xd° (
m52 j

j

u j ,m)z~ j ,m11u, ~6!
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Zd°exp@2p i~ j 2 Ĵz!/d#, ~7!

which are unitary and satisfy Eqs.~2!–~4!.
The operatorsXd andZd are conjugate to one another

Xd5U21ZdU, ~8!

where the unitary transformationU is the Fourier transform
in d dimensions. It is convenient to viewXd as the exponen
of a Hermitian operator ûz , defined so that Xd

5exp(2piûz/d), just asZd is generated by the operatorĴz .
The operatorûz is known as a phase operator@10# for a spin
system.

The generalized Pauli operatorsXd and Zd can also be
realized as operators that act naturally on the spaceHd of
dimensiond spanned by harmonic oscillator states of
more thand21 bosons. We define the computational basis
be the set of harmonic-oscillator energy eigenstates

us&[un5s&HO, s50,1, . . . ,d21, ~9!

whereN̂un&HO5nun&HO. Again, we apply the cyclic notation
ud&5u0&. Now defining the generalized Pauli group as o
erators on this subspace of the harmonic oscillator, the g
eratorsXd andZd are expressed as

Xd° (
s50

d21

us11&^su, Zd°exp~2p iN̂/d!, ~10!

which are unitary onHd . Again, we viewXd as the exponen
of a Hermitian operatorûz , such thatXd5exp(2piûz/d); the
operatorûz is the Pegg-Barnett phase operator@11#, which is
well defined for finited. We will call this representation o
the generalized Pauli group thenumber representation.

An advantage of this explicit realization ofXd andZd as
unitary operators on the harmonic-oscillator Hilbert space
that it enables us to explore thed→` limit in a rigorous
way; this limit yields continuous-variable quantum compu
tion. The limiting procedure for phase operators has b
thoroughly investigated@11,12#. In this limit, the computa-
tional basis remains the harmonic-oscillator energy eig
states~now including all statess50,1, . . . ,̀ ), following
Eq. ~9!. Note that defining the phase operator on the infini
dimensional Hilbert spaceH` of the harmonic oscillator pre
sents challenges@12#. The number operatorN̂ and the phase
operatorûz are conjugate in the same sense that momen
and position are conjugate, but the limit doesnot yield the
usual continuous-variable Pauli group: the Heisenberg–W
group, with positionx̂ and momentump̂ operators as gen
erators. It is also important that the states of the compu
tional basis for the limiting case remain harmonic-oscilla
energy eigenstates, rather than position~or momentum!
eigenstates or squeezed Gaussians, as are commonly us
continuous-variable quantum computing.

A second realization ofXd andZd in the Hilbert spaceHd
for an irreducible representation of SU~2! can be constructed
with a computational basis given by SU~2! phase states; this
6-2
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representation is ‘‘dual’’ to the number representation. C
sider the relationiX25exp@i(p/2)X2# for qubits; i.e., that

u1&5X2u0&5~2 i !ei (p/2)X2u0&. ~11!

The Pauli operatorX2 has two interpretations, each of whic
can be generalized in a different way. In the number rep
sentation, we interpretX2 as a cyclic number state raisin
operatoru1&5X2u0& and generalize this operator as a cyc
raising operator. However, using the relation~11!, we can
also viewX2 as a rotation.@Using the SU~2! representation
X252Ĵx , this rotation is about thex axis.# Thus, the stateu1&
is obtained~up to a phase! by rotating u0& by an anglep
about thex axis. The computational basis states needed
this type of generalization to qudits are SU~2! phase states
and have been investigated by Vourdas@10# ~although using
rotations generated byĴz rather thanĴx). These states form
an orthonormal basis for the SU~2! irreducible representa
tion.

Let $u j ,m)x ;m52 j , . . . ,j % be the weight basis for an
SU~2! irreducible representation of angular momentumj
5(d21)/2, where Ĵx rather than Ĵz is diagonal; i.e.,
Ĵxu j ,m)x5mu j ,m)x . For this representation, we define th
computational basis states to be

us&[5
1

Ad
(

m52 j

j

exp(2p ims/d)u j ,m)x, d odd,

1

Ad
(

m52 j

j

exp[2p i (m1 1
2 )s/d] u j ,m)x, d even.

~12!

These states form an orthonormal basis forHd @10#. They are
referred to as SU~2! phase statesbecause they are eigenstat
of a phase operator for spin systems.

The generalized Pauli operatorXd on this computationa
basis is given by

Xd°H exp~2p i Ĵx /d!, d odd,

exp~2 ip/d!exp~2p i Ĵx /d!, d even,
~13!

satisfying Eq.~2!. Note that (Xd)d5 1̂ for both j integral and
half integral. The generalized Pauli operatorZd is given by

Zd° (
s50

d21

exp~2p is/d!us&^su, ~14!

which is unitary and satisfies Eq.~3!. Note that we can ex-
pressZd as the exponent of a Hermitian operator

Zd5exp~2p i ûx /d!, ûx[ (
s50

d21

sus&^su; ~15!

the operatorûx is a phase operator for a spin system.
Note that this representation of the generalized P

group is ‘‘dual’’ to the number representation of Eqs.~6!–~7!
in the same sense that the position and momentum repre
05231
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tations of the harmonic oscillator are dual. For the num
representation, the computational basis states are eigens

of Ĵz , and the phase operatorûz generates the ‘‘ladder’’
transformations. In thephase representationgiven here, the
computational basis states are eigenstates of the phase o

tor ûx , i.e., ‘‘phase eigenstates,’’ and it isĴx which generates
the ladder transformations via rotations about thex axis.
Both of these representations can be considered as na
generalizations of the qubit case, because the standard
putational basisu0&5u 1

2 , 1
2 )z and u1&5u 1

2 ,2 1
2 )z are both

eigenstates ofĴz and phase eigenstates ofûx .
As with the number representation, this phase represe

tion of the generalized Pauli group can be expressed
harmonic-oscillator Hilbert space. Again, considering the

nite Hilbert spaceHd , the eigenstates ofĴx ~unlike Ĵz of the
number representation! are replaced with harmonic-oscillato
number statesun& with a boson number less thand. The
computational basis, then, consists of finite-d phase eigen-
states. The generalized Pauli operatorsXd andZd are gener-
ated by the number operator and Pegg-Barnett phase op
tor, respectively. Again, thed→` limit yields challenging
problems: it is well known that phase eigenstates do not e
in the infinite-dimensional Hilbert spaceH` of the harmonic
oscillator @11#.

Despite the issues involvingd→` phase operators, uni
versal qudit quantum computation is well defined for finited
@7#. In the following, we discuss these requirements in ter
of an optical realization, where the harmonic oscillators
realized as modes in a cavity; such a realization has b
discussed in@13#. However, this realization is formally
equivalent to any oscillator system.

To perform arbitrary unitary transformations on a sing
oscillatorefficiently, one may employ a combination of linea
optics, squeezing, and a nonlinear process such as ph
detection@7# or a nonlinear optical Kerr interaction@14#. Of
particular importance is to realize the Fourier-transform o
eration on a single qudit, which takes number eigenstate
phase eigenstates and vice versa. This operation is the
eralization of the Hadamard transformation for qubits; as i
a unitary transformation on a single oscillator, it can be p
formed efficiently as described above.

For quantum computation, we must also realize a gate
performs a two-qudit interaction. A simple controlled tw
qudit interaction gate is theSUM gate@7#

SUM: us1&1^ us2&2°us1&1^ us11s2~modd!&2 . ~16!

Consider two oscillators coupled by the four-wave mixi
interaction HamiltonianxN̂1N̂25xâ1

†â1â2
†â2. This Hamil-

tonian for an optical system describes a four-wave mix
process in whichx is proportional to the third-order nonlin
ear susceptibility@15#. Let oscillator 1 be in a stateus1&1
encoded in the number state basis, and let oscillator 2 be
stateus2&2 encoded in the phase state basis. This interac
Hamiltonian generates the transformation
6-3



g

r
c

th
th
ha
p

a
s
ns

lic
em
il-
ca

the
of
a-

e
tage
in-
dif-
and
al-
ez-
in

ant
u-
ces-
u-
a

e-
ity

h S.

BARTLETT, de GUISE, AND SANDERS PHYSICAL REVIEW A65 052316
e2 ixN̂1N̂2tus1&1^ us2&25us1&1^US xt

2p D s11s2~modd!L
2

.

~17!

Thus, with fixed interaction timet52px21, this Hamil-
tonian generates theSUM transformation on two qudits.~Note
that a similar gate can be defined for spin systems usin
Ĵz1Ĵz2-type Hamiltonian@16#.!

Quantum computation with multiple qudits could be pe
formed by coupling several modes in a single cavity; ea
mode realizes a single qudit@13#. Modes are coupled via a
SUM interaction of the time described above. Note that
control qudit for the sum operation must be encoded in
number state basis, and the target qudit must be in the p
state basis. The encodings of each qudit can be swap
~between number and phase state bases! using the Fourier
transform.

In summary, we have presented realizations of qudit qu
tum computation in spin systems and harmonic oscillator
terms of number and phase operators. The representatio
the generalized Pauli group, viewed in terms of SU~2! or
harmonic-oscillator operators, allows for qudits to be exp
itly encoded into such systems. An advantage of this sch
is that theSUM gate employs a standard two-mode Ham
tonian to couple two qudits. From a rigorous mathemati
on

,
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viewpoint, these realizations give natural extensions of
qubit-based Pauli group, and allow for the investigation
the d→` limit and continuous-variable quantum comput
tion.

By employing qudits rather that qubits, the full size of th
accessible Hilbert space can be exploited, with the advan
of requiring fewer coupled systems for a given quantum
formation process. However, the use of qudits requires a
ferent set of quantum gates than the usual qubit rotations
two-qubit interactions that are normally assumed. The re
ization of a universal set of gates using linear optics, sque
ing, and a nonlinear interaction is convenient for certa
harmonic-oscillator systems but is not unique; an import
challenge is to identify the optimal set of gates for a partic
lar system. The analysis presented here provides the ne
sary theoretical tools for developing qudit quantum comp
tation in spin systems and harmonic oscillators as
promising alternative to qubit quantum computation.
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