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Quantum encodings in spin systems and harmonic oscillators
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We show that higher-dimensional versions of qubits, or qudits, can be encoded into spin systems and into
harmonic oscillators, yielding important advantages for quantum computation. Whereas qubit-based quantum
computation is adequate for analyses of quantum vs classical computation, in practice qubits are often realized
in higher-dimensional systems by truncating all but two levels, thereby reducing the size of the precious Hilbert
space. We develop natural qudit gates for universal quantum computation, and exploit the entire accessible
Hilbert space. Mathematically, we give representations of the generalized Pauli group for qudits in coupled
spin systems and harmonic oscillators, and include analyses of the qubit and the infinite-dimensional limits.
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Quantum computation may be able to perform certainsingle qubit along with some nonlinear coupling transforma-
tasks more efficiently than a classical computer; for exampletion between adjacent qubits generated by a two-qubit
Shor’s algorithm{ 1] for factoring prime numbers on a quan- Hamiltonian[6]. For qudit quantum computation, the issue
tum computer is exponentially faster than any known algo-of creating a universal set of gates is more involved. In par-
rithm on a classical computer. The standard model of a quarticular, it is not possible to treat coupled qudits as a collec-
tum computer involves coupling together two-level quantumtion of qubits, becauséypically) one does not have access
systems(qubitg such that the Hilbert space of the systemto “pairwise” Hamiltonians between two arbitrary levels of
grows exponentially in the number of qubits. coupled qudits. For example, in a system of coupled oscilla-

A major obstacle to universal quantum computing is thetors realized as radiation modes in a cavity, Hamiltonians
limit on the number of coupled qubits that can be achieved inhat generate single-gate operations such as a coupling of the
a physical systenj2]. The use ofd-dimensional, orqudit,  jth level of one oscillator and thigh level of another cannot
quantum computing enables a much more compact and efifse realized physically. Thus, quantum computation with qu-
cient information encoding than for qubit computing. Qudit gjts requires an investigation not only into the coupling of

quantum information processing employs fewer coupledy ijeve| systems but also the set of physically realizable
quantum systems: a considerable advantage for the expeti.

A ) ; amiltonians with which one can construct a universal set of
mental realization of quantum computing. The harmonic os

. . . ; >gates. In this paper we develop transformations for a collec-
cillator is a system that naturally provides qudits as quanta ||£f] pap P

its energy spectrum. Qubits are obtained by restricting th(f_glon of coupledd-level systems. These transformations are

dynamics to just two of these quanta, namely, the vacuun?btained as two mathematical' realizations of a basis of uni-
state|0) and the first excited staté); e.g., photons in cavity tary operators for a single qudit. We show how each of these
QED [3] and interferometry[4]. However, the control of reallzatl_ons can be implemented _elther in a spin syst_em ora
entanglement in larger Hilbert spaces is now feasisle., harmonic osc_lllat0[17]. We establish aum gate[?], which
orbital angular momentum states of phot§&g. Our aim is ~ couples qudits and serves as the qudit analogue of the
to show that the restriction to two-dimensional Hilbert controllednoT gate; thissum gate employs a standard two-
spaces is not necessary and that higher-dimensional Hilbefode coupling Hamiltonian.
spaces are an advantage, particularly when the number of The theoretical investigation of qudit computation is best
achievable coupled systems is limited and entanglement b&xpressed in terms of tigeneralized Pauli grougor qudits.
tween systems with larger Hilbert spaces is physically posRecalling the Pauli group for a two-level system, a qubit is
sible. realized as a state in a two-dimensional Hilbert spagGe
A quantum computer also requires gates, realized as thepanned by two normalized orthogonal stat€s, and|1),
unitary evolution under some Hamiltonian. For qubits, a uni-that serve as a computational basis f65. The unitary op-
versal set of gates is given by arbitrary @Urotations of a  erators{X,=0,,Z,=0,}, Where; is a Pauli spin matrix,
generate the Pauli group using matrix multiplication: the el-
ements of this group are known as Pauli operators and pro-
*Electronic address: bartlett@ics.mg.edu.au vide a basis of unitary operators @t.
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A qudit is a state in al-dimensional Hilbert space{y,
with a computational basi§|s);s=0,1, ... d—1} serving
as the generalization of the binary ba$|§),|1)} of the
qubit. A basis for unitary operators dHy is given by the
generalized Pauli operatori8,7]

(Xa)3(Zg)®, (1)

whereXy andZy are defined by their action on the compu-
tational basis as follows:

a,be01,...d-1,

Xgls)=|s+ 1(modd)), %))
()

The operatorsy andZ4 generate the noncommutative gen-
eralized Pauli group under matrix multiplication, satisfying

(4)

Z4|s)=exp(2mis/d)|s).

ded: eXF(ZWl/d)XdZd .
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Zg—exd 2mi(j—J,)/d], (7)
which are unitary and satisfy Eq&)—(4).
The operators{y andZ4 are conjugate to one another

®

where the unitary transformatidd is the Fourier transform
in d dimensions. It is convenient to vieXy as the exponent
of a Hermitian operator bz, defined so that Xy
=exp(2mib,/d), just asZy is generated by the operatdy.
The operato, is known as a phase operafd0] for a spin
system.

The generalized Pauli operatoxg, and Z; can also be
realized as operators that act naturally on the sgégcef
dimensiond spanned by harmonic oscillator states of no
more thard —1 bosons. We define the computational basis to
be the set of harmonic-oscillator energy eigenstates

Xq=U"1z,4U,

The analysis of the generalized Pauli group as operators

in spin systems and harmonic oscillators is necessary for

realizing qudit algorithms and error-correcting cod&g9].

s=0,1,...d-1, (9)

|s)=[n=s)yo,

For spin systems, we construct the generators of the genehereN|n),o=n|n)yo. Again, we apply the cyclic notation

alized Pauli group id=2j+1 dimensions using operators
that are expressed in terms of the (8lJangular momentum

|d)=|0). Now defining the generalized Pauli group as op-
erators on this subspace of the harmonic oscillator, the gen-

and phase operators. This construction allows us to conveeratorsXy andZ, are expressed as
niently view a qudit as an element of the Hilbert space of a

d-dimensional irreducible representation of @ For qudits

in a harmonic oscillator, we obtain a generalized Pauli group

generated by the number operakbmand a phase operater

d-1

Xg— 2, |s+1Xs|, Zg—exp2#wiN/d), (10
s=0

A second realization of qudits is given in terms of phaseynich are unitary orily . Again, we viewX, as the exponent

states; this realization is “dual” to the first realization given
here, and allows for the construction of a simplev gate.
By investigating thed— <o limit, we show that it isnot the

of a Hermitian operato#,, such thatX4=exp(2i 6,/d); the
operatord, is the Pegg-Barnett phase operdttt], which is

common generalization of the Pauli group for continuous-Well defined for finited. We will call this representation of

variable quantum informatiorii.e., the Heisenberg—Weyl

group with position eigenstates as the computational basis.

the generalized Pauli group tmeimber representation
An advantage of this explicit realization &f; andZ, as

We begin by constructing a realization of the generalizedmitary operators on the harmonic-oscillator Hilbert space is

Pauli group for a spin system; i.e., in tdedimensional Hil-
bert space of a S@) irreducible representation of highest
weight(angular momentuinj = (d—1)/2. Consider the stan-
dard basis for the S@) algebra{J,,J.=J,*+i,}. Let
{]j,m),;m=—j, ... ,j} denote the standard weight basis for
the Hilbert spacéty-,;, for an SU2) irreducible represen-
tation of highest weightangular momentuinj. We use a
simplifying notation, allowingm to take all the integefor
half-integej values modulo 2+ 1, thus defining|j,j+1),
=i, =)

With the computational basis defined to be

s=0,1,...d—1, (5)

the generators of the generalized Pauli group can be e
pressed in terms of operators that act in a natural way
SU(2) basis states. Because the basis states are eigenstate

J,, we have

|S>E|j,j—S)Z,

j
Xg— 2 |im),(j,m+1],

(6)

S

that it enables us to explore tle—oo limit in a rigorous
way; this limit yields continuous-variable quantum computa-
tion. The limiting procedure for phase operators has been
thoroughly investigated11,12. In this limit, the computa-
tional basis remains the harmonic-oscillator energy eigen-
states(now including all statess=0,1, ... ), following

Eg. (9). Note that defining the phase operator on the infinite-
dimensional Hilbert spacH.. of the harmonic oscillator pre-

sents challenged?]. The number operatdd and the phase

operatorf9z are conjugate in the same sense that momentum
and position are conjugate, but the limit dosst yield the
usual continuous-variable Pauli group: the Heisenberg—Weyl

group, with positionx and momentunp operators as gen-
erators. It is also important that the states of the computa-

O)fi'onal basis for the limiting case remain harmonic-oscillator

gn?rgy eigenstates, rather than positi@r momentum

e%enstates or squeezed Gaussians, as are commonly used for
continuous-variable quantum computing.

A second realization oKy andZ, in the Hilbert spacé
for an irreducible representation of 8) can be constructed,
with a computational basis given by &) phase states; this
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representation is “dual” to the number representation. Contations of the harmonic oscillator are dual. For the number
sider the relationX,=exgdi(m/2)X,] for qubits; i.e., that representation, the computational basis states are eigenstates

of J,, and the phase operatat, generates the “ladder”
transformations. In th@hase representatiogiven here, the

The Pauli operatoX, has two interpretations, each of which computational basis states are eigenst?tes of the phase opera-
can be generalized in a different way. In the number repretor 6y, i.e., “phase eigenstates,” and itdg which generates
sentation, we interpreX, as a cyclic number state raising the ladder transformations via rotations about thaxis.
operator| 1) = X,|0) and generalize this operator as a cyclic Both of these representations can be considered as natural
raising operator. However, using the relatiil), we can generalizations of the qubit case, because the standard com-
also viewX, as a rotation[Using the SW2) representation putational ba5|s|0>—|2,2 , and |1)=|3,—3), are both

X2=23X, this rotation is about theaxis.] Thus, the statgl) eigenstates odlZ and phase eigenstates &;j
is obtained(up to a phaseby rotating|0) by an anglew As with the number representation, this phase representa-
about thex axis. The computational basis states needed fofion of the generalized Pauli group can be expressed in a
this type of generalization to qudits are Q) phase states harmonic-oscillator Hilbert space. Again, considering the fi-
and have been investigated by Vourdag] (although using 4o pjnert spacdly, the eigenstates o, (unlike J, of the
rotations generated by, rather thanl,). These states form ,ymper representatipare replaced with harmonic-oscillator
an orthonormal basis for the $2) irreducible representa- ,,mber state$n) with a boson number less thah The
tion. . L . . . computational basis, then, consists of firdtgghase eigen-
SUI(_S)I |{r| rjézinl}éi,brre_r; g) ,re.s.e.r;{[itit())?l t(f)lfe z\il\rlgglhatr bﬂii';;ﬁ:ulﬁ? states. The generalized Pauli operat§gsandZ, are gener-
- A i ) ated by the number operator and Pegg-Barnett phase opera-
=(d—1)/2, where J, rather thanJ, is diagonal; i.e., o respectively. Again, the—c limit yields challenging
J,lj.m),=mlj,m),. For this representation, we define the problems: it is well known that phase eigenstates do not exist
computational basis states to be in the infinite-dimensional Hilbert spadé, of the harmonic
. oscillator[11].
J Despite the issues involvind—co phase operators, uni-
\/— M= exp(2mims/d)|j,m)s, d odd, versal qudit quantum computation is well defined for firdte
|s)= J [7]. In thg foIIowing, we discuss these requir_emen_ts in terms
L 2 exp[2mi(m+ 1)s/d][j.m),, d even. of an optical realization, where the harmonic oscillators are
i

|1)=Xo|0)=(—i)e'(™2*2|0). (12)

Jd mst realized as modes in a cavity; such a realization has been
(12)  discussed in[13]. However, this realization is formally
equivalent to any oscillator system.
These states form an orthonormal basistifyr{ 10]. They are To perform arbitrary unitary transformations on a single
referred to as S(2) phase statebecause they are eigenstatesoscillatorefficiently one may employ a combination of linear
of a phase operator for spin systems. optics, squeezing, and a nonlinear process such as photon
The generalized Pauli operatiy on this computational detection[7] or a nonlinear optical Kerr interactidi4]. Of
basis is given by particular importance is to realize the Fourier-transform op-
eration on a single qudit, which takes number eigenstates to
exp(2mid,/d), d odd, phase eigenstates and vice versa. This operation is the gen-
Xg—> A (13 eralization of the Hadamard transformation for qubits; as it is

exp( —im/d)exp2midy/d), d even, a unitary transformation on a single oscillator, it can be per-

formed efficiently as described above.

satisfying Eq.(2). Note that (Xd)dZ}l'fOr bothj integral and For quantum computation, we must also realize a gate that
half integral. The generalized Pauli operafris given by performs a two-qudit interaction. A simple controlled two-
d-1 gudit interaction gate is theum gate[7]
Zg— >, exp(2mis/d)|s)(s], (14)
s=0

SUM:  [S1)1®][Sp)2>81)1®[S1 +Sp(modd)),.  (16)
which is unitary and satisfies E¢3). Note that we can ex-
pressZy as the exponent of a Hermitian operator
Consider two oscillators coupled by the four-wave mixing
(15  interaction HamiltonianyN;N,= yala,aja,. This Hamil-
tonian for an optical system describes a four-wave mixing
process in whichy is proportional to the third-order nonlin-
the operatom, is a phase operator for a spin system. ear susceptibility{ 15]. Let oscillator 1 be in a stats;);
Note that this representation of the generalized Paulencoded in the number state basis, and let oscillator 2 be in a
group is “dual” to the number representation of E¢®).—(7) state|s,), encoded in the phase state basis. This interaction
in the same sense that the position and momentum represedamiltonian generates the transformation

Zg=exp(2mi 6,/d), EZ
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AR viewpoint, these realizations give natural extensions of the
e Nil|s)) @ [s,),=(51)1® 5,/ S1tsz(modd) ) . qubit-based Pauli group, and allow for the investigation of
2 the d—o limit and continuous-variable quantum computa-

17) tion.

Thus, with fixed interaction timg=2my %, this Hamil- By employing qudits rather that qubits, the full size of the
tonian generates treuM transformation on two qudit§Note access[b_le Hilbert space can be exploited, \(wth the advant_age
that a similar gate can be defined for spin systems using @f requiring fewer coupled systems for a given quantum in-
3,,3,,-type Hamiltoniar[16].) formation process. However, the use of qudits requires a dif-
z1Yz27 . B :
Quantum computation with multiple qudits could be per_ferent set of quantum gates than the usual qubit rotations and

formed by coupling several modes in a single cavity; eacﬁwo.'quit inter.actions that are norm_ally .assumet_j. The real-
mode realizes a single qudit3]. Modes are coupled v,ia a Ization of a universal set of gates using linear optics, squeez-

SUM interaction of the time described above. Note that th ing, and a nonlinear interaction is convenient for certain
control qudit for the sum operation must be éncoded in th armonic-oscillator systems but is not unique; an important

number state basis, and the target qudit must be in the pha Qallenge Is o identify 'ghe optimal set of gates_for a particu-
state basis. The encodings of each qudit can be swapp y system. The analysis presented here provides the neces-

(between number and phase state basesg the Fourier sary thgoretiqal tools for developing qut_jit quantum compu-

transform. tation in spin systems and harmonic OSCI||8..'[0I‘S as a
In summary, we have presented realizations of qudit quanprom|smg alternative to qubit quantum computation.

tum computation in spin systems and harmonic oscillators in
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