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Quantum operations, state transformations and probabilities
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In quantum operations, probabilities characterize both the degree of the success of a state transformation
and, as density operator eigenvalues, the degree of mixedness of the final state. We give a unified treatment of
pure→pure state transformations, covering both probabilistic and deterministic cases. We then discuss the role
of majorization in describing the dynamics of mixing in quantum operations. The conditions for mixing
enhancement for all initial states are derived. We show that mixing is monotonically decreasing for determin-
istic pure→pure transformations, and discuss the relationship between these transformations and deterministic
local operations with classical communication entanglement transformations.
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I. INTRODUCTION

Information is carried by physical systems and encode
their states. It follows that the ways in which information c
be manipulated are determined by the scope of the se
possible operations on the states of the signal carriers.
for this reason that the recent widespread fascination with
information-theoretic properties of quantum systems@1# has
been accompanied by a renaissance in the study of the q
tum operations formalism, which determines what we c
and cannot do with the state of a quantum system.

In quantum, as in classical-information theory, the s
tems considered may be in one of many possible sta
However, quantum states can have attributes that have
exact classical analogue, such as nonorthogonality and
tanglement. These features of quantum states, together
the numerous ways in which quantum states can be man
lated, have given rise to some intriguing discoveries
quantum-information theory, such as teleportation, class
capacity superadditivity, and quantum error correction. C
tain limitations on the way in which quantum states can
manipulated, such as the no-cloning theorem, also carry
nificant benefits, such as the security of quantum key dis
bution and consistency with special relativity.

The many successes in determining optimal transfor
tions for carrying out specific important tasks, such as s
discrimination/estimation, approximate cloning, and e
tanglement manipulation, have led to some more gen
questions being asked about the constraints imposed by
quantum formalism on state manipulation. In this respe
Hardy and Song@2# have considered optimal universal m
nipulation of a qubit, while Alber, Delgado, and Jex@3# have
described universal bipartite entanglement processes. E
more recently, Fiura´šek @4# has discussed the properties
quantum operations which optimally approximate a giv
transformation of one set of pure states into another with
probability. The conditions under which such a transform
tion can be carried out exactly, at least when the initial sta
are linearly independent, have been derived in@5#.

In this paper we continue to explore the properties
general quantum operations and how they transform qu
tum states. Section II is devoted to giving a unified treatm
of probabilistic and deterministic transformations betwe
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sets of pure states. We consider the following scenario
quantum system is prepared in one of theN pure statesuc j

1&,
where j 51, . . . ,N. We wish to implement the transforma
tion uc j

1&→uc j
2&, for some other set ofN pure statesuc j

2&. In
general, the transformation will not be deterministic, and w
only succeed with some probability for each state. We obt
necessary and, for linearly independent initial states, su
cient conditions for the existence of a quantum operat
which carries out this transformation for a fixed set of su
cess probabilities. We then examine some consequence
these conditions, and show how they lead to simple der
tions of established conditions for deterministic state tra
formations and optimal unambiguous state discrimination

For a general quantum operation, when the initial stat
pure, the final state will often be mixed. This effect is com
mon and occurs under many circumstances where we wis
preserve the information content of a quantum state, suc
in quantum communications and quantum computation.
understand this mixing it helps to have an appreciation of
quantitative features. A suitable framework for the discuss
of mixing is provided by the concept of majorization. Th
concept was introduced to quantum mechanics by Uhlm
@6–8# as a means of comparing mixing in density operato
Numerous useful theorems relating to majorization ha
been discovered@9#.

The subject of majorization has recently received renew
attention in quantum-information theory, mainly as a res
Nielsen’s discovery that it provides a suitable framework
the discussion of pure, bipartite entanglement transform
tions @10#. More recently, Nielsen@11# has derived severa
interesting majorization relations for static and dynamic m
ing of quantum states, latterly in association with generaliz
measurements~see also the related analysis by Fuchs a
Jacobs@12#.! Nielsen has also showed that a density opera
can represent some ensemble of pure states with fixed p
abilities if and only if a certain majorization relation is sa
isfied @13#.

In Sec. III, we describe and employ the concept of maj
ization as a tool to help us understand the dynamics of m
ing in quantum operations. Many nonunitary quantum ope
tions transform at least some pure states into mixed sta
This begs the question: under what conditions does a qu
tum operation never decrease the extent to which any in
©2002 The American Physical Society14-1
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state is mixed? Majorization is a suitable tool for compar
the degree of disorder in the initial and final states, an
sufficient condition for this monotonic mixing was derive
in purely algebraic context, by Bapat and Sunder@14#. We
give a simple derivation of their condition within the conte
of quantum operations, and show that this condition is als
fact a necessary condition. We then examine majorizatio
relation to deterministic pure state transformations, and
rive an intuitive and information-theoretically satisfying m
jorization relation for such operations.

II. TRANSFORMATIONS BETWEEN SETS
OF PURE STATES

A. Transformation conditions for fixed probabilities

Consider the following situation: we have in our poss
sion a quantum system with a finite,D-dimensional Hilbert
spaceH. The initial state of the system is pure, and is
element of the set$uc j

1&%, wherej 51, . . . ,N for some finite
N. Our aim is to implement a probabilistic transformationP
which transforms the stateuc j

1& into some other pure stat
uc j

2& for eachj.
It is well known, from studies of particular transforma

tions such as unambiguous state discrimination@16# and
probabilistic cloning@17# , that we cannot in general expe
the probability of success to be equal to one. Letpj be the
probability of successful transformation ofuc j

1& into uc j
2&.

These probabilities may be represented as the componen
a vectorp5$pj%.

Generally speaking, the transformationP will be repre-
sented by a completely positive, linear map. We would l
to be able to determine unambiguously whether or not
desired transformation has succeeded. This requiremen
plies that the procedure will have two possible outcom
success or failure. It will be described by the transformat
operators$Akr%, wherer 5S,F, corresponding to success an
failure, respectively, andk51, . . . ,M , for someM. If the
system is prepared in a state represented by an initial de
operatorr, then the probability of ther th outcome is deter-
mined by the positive quantum detection operator, or posi
operator-valued measure~POVM! element

Er5(
k

Akr
† Akr . ~2.1!

Throughout this paper, when we speak of a positive oper
or matrix, we will, unless otherwise indicated, mean o
which is positive semidefinite. The probability of ther th
outcome is given by

pr~r!5Tr~rEr !, ~2.2!

where

(
r

Er51. ~2.3!

The postmeasurement state corresponding to ther th outcome
is
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AkrrAkr
† /pr~r!. ~2.4!

It is clear from Eq.~2.1! that Er is positive. From the reso
lution of the identity in Eq.~2.3! we see that

0<Er<1. ~2.5!

Let us denote bySp(P) the set of admissible probability
vectors for the transformationP. We would like to determine
the conditions under which a particular probability vector
an element ofSp(P). The necessary and sufficient cond
tions for the existence of a transformation which succe
with probability vectorpPSp(P) are that it can be realized
by a set of linear transformation operators as in Eq.~2.4! and
that the corresponding POVM element satisfies Eq.~2.1!.
When this is the case, the operation can always be real
by introducing an ancillary system, with which our origin
system interacts unitarily. Following this, a projective me
surement is carried out on the ancilla, and this has two o
comes. The two transformations of the state of the origi
system conditioned on these outcomes are the transforma
P and the failure transformation@15#.

As a consequence of the necessity and sufficiency of th
conditions, it is worth noting that, if we are not particular
concerned about the form of the final states when the atte
to implementP fails, we may, without loss of generality
assume that there is only one nonzero failure operator, wh
can be taken to beAF5A12ES.

These criteria, while correct, may not always be the m
helpful, due to the large number of parameters describing
transformation operators. The following theorem gives si
pler necessary, and, for linearly independent initial sta
sufficient conditions for the existence of such a transform
tion.

Theorem 1. Let $uc j
1&% be a set ofN pure quantum state

spanning aD-dimensional Hilbert spaceH. Let $uc j
2&% be

another set ofN pure states lying inH. Let the Gram matri-
ces of the initial and final sets be denoted byG1 and G2,
respectively. If there exists a probabilistic transformati
P: $uc j

1&%→$uc j
2&% with probability vectorp, then there ex-

ists anN3N matrix P which satisfies the following condi
tions:

~i! P>0,
~ii ! diag(P)5p,
~iii ! G12P+G2>0,

where ‘‘+ ’’ denotes the Hadamard~or Schur! matrix product.
These conditions are also sufficient if the set$uc j

1&% is lin-
early independent.

Prior to giving a proof of this theorem, we recall that th
N3N Gram matrixG5$g j 8 j% corresponding to a set ofN
pure statesuc j& has elementsg j 8 j5^c j 8uc j&. Also, the Had-
amard productA+B of two matrices A5$aj 8 j% and B
5$bj 8 j% has j 8 j elementaj 8 jbj 8 j .

Proof. We begin by proving the necessity part of this the
rem. To do this, we note that there must exist complex co
ficientsck j such that

AkSuc j
1&5ck juc j

2&. ~2.6!
4-2
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We can consider these coefficients to be the elements o
M3N matrix C5$ck j%. Let us now introduce theN3N ma-
trix P5$p j 8 j% defined by

P5C†C. ~2.7!

This matrix is clearly positive and thus satisfies condition~i!.
To see that it also satisfies condition~ii !, we make use of the
fact that pj5^c j

1u(kAkS
† AkSuc j

1&5(kuck ju2. This is easily
shown to be equal top j j using Eq.~2.7!, which implies that
P satisfies condition~ii !. Finally, condition~iii ! can be veri-
fied by imposing Eq.~2.5!, which requires the expectatio
value of (kAkS

† AkS to be no greater than one for any sta
Consider an arbitrary pure stateuf& in the subspace spanne
by the$uc j

1&%. We may write it asuf&5( jv j uc j
1& and calcu-

late

^fuF(
k

AkS
† AkSG uf&5(

j j 8
v j 8

* v jp j 8 jg j 8 j
2 ,

<^fuf&5(
j j 8

v j 8
* v jg j 8 j

1 . ~2.8!

The requirement that(kAkS
† AkS<1 is then seen to be equiva

lent to the inequality

(
j j 8

v j 8
* v j~p j 8 jg j 8 j

2
2g j 8 j

1
!<0, ~2.9!

which holds for every vectorv5$v j%. From this it follows
that theN3N matrix with elements$g j 8 j

1
2p j 8 jg j 8 j

2 % is posi-
tive, which is exactly what is expressed, more concisely,
condition ~iii !.

To prove the converse for linearly independent init
states, we assume the existence of a matrixP5$p j 8 j% which
satisfies conditions~i!–~iii !. Positivity enables us to factoriz
P as C†C, for someM3N matrix C5$ck j%, where the in-
teger M may take any value not less thanN. Let us now
define the transformation operators

AkS5(
j

ck j

^c̃ j
1uc j

1&
uc j

2&^c̃ j
1u. ~2.10!

The uc̃ j
1& are the reciprocal vectors corresponding to

statesuc j
1&. These have been found, in studies of operati

of unambiguous state discrimination@16# and deterministic
transformations@5#, to be extremely useful in dealing wit
transformations of sets of linearly independent states.
stateuc̃ j

1& is defined as that inH which is orthogonal to all
uc j 8

1 & for j Þ j 8 and is, up to a phase, unique.
From definition in Eq.~2.10!, we see that~i! is automati-

cally satisfied. Also making use of Eq.~2.2!, is clear thatpj ,
the transformation probability for thej th state, given by
^c j u(kAkS

† AkSuc j&, is equal top j j . This shows that condi-
tion ~ii ! is satisfied. Finally, the necessary and sufficient c
dition for the transformation operators in Eq.~2.10! to be
physically realizable is that(kAkS

† AkS<1. If condition~iii ! is
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satisfied, then so is inequality~2.5!, which is equivalent to
(kAkS

† AkS<1. This completes the proof. j

We have assumed, for the sake of notational convenie
that the final states are in the space spanned by the in
states. This leads to no loss of generality. The linearity
quantum mechanics implies that the dimension of the sp
spanned by the final states cannot exceed that of the i
states~this is why linearly dependent states cannot be una
biguously discriminated; to transform a linearly depend
set into an orthogonal set would necessarily increase the
mension of the space they span.! So, the final states can
always be transformed unitarily, and thus reversibly, into
subspace ofH. We can then assume that this is done, sa
fying the conditions of Theorem 1.

B. Examples

It is instructive to see how established results relating
specific transformations follow from the general conditio
in Theorem 1. The first kind of transformation we shall co
sider is a deterministic transformation, where all of thepj are
equal to 1. Let us writeG5G12P+G2. As a consequence o
~iii !, G must be positive. The diagonal elements ofG1 , G2
and, as a consequence of~iii !, P are all equal to 1. It follows
that the diagonal elements, and hence the trace, ofG are
equal to zero. The only positive matrix with zero trace is t
zero matrix. Therefore,

G12P+G250. ~2.11!

One situation which is of particular interest is that whi
arises whenG2 has no zero elements, which corresponds
all of the final states being nonorthogonal. When this is
we can conclude that

P5G1+G2
+21 , ~2.12!

whereG2
+21 is the Hadamard inverse ofG2. The Hadamard

inverse of a matrixA5$aj 8 j% has elements 1/aj 8 j . Finally,
imposing condition~ii ! gives

G1+G2
+21>0, ~2.13!

which is identical to condition~ii ! in @5# for a deterministic
transformation expressed in terms of Gram matrices
Hadamard product notation.

The second case we shall consider is that of unambigu
state discrimination. Here, the final states are orthonorma
G251. Let D(p) be the matrix with j 8 j elementpjd j 8 j .
ThenP+G25D(p). Inserting this into~iii ! gives the inequal-
ity

G12D~p!>0. ~2.14!

This is precisely the inequality obtained by Duan and G
using a unitary-reduction scheme@17#.

For a probability vectorp which satisfies this inequality
the correspondingP may be assumed to take a particular
simple form. If p j 8 j5Apj 8pj , then it can easily be shown
4-3
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ANTHONY CHEFLES PHYSICAL REVIEW A 65 052314
that P satisfies both conditions~i! and ~ii !, and that~iii ! is
equivalent to Eq.~2.14!. This P matrix is clearly propor-
tional to a rank-one projector.

Matrices of this form have an interesting significance
relation to the following question: under what addition
conditions can the transformationP be carried out with prob-
ability vectorp when only one of theAkS is nonzero? That is
we are interested in implementing the transformation w
just two transformation operators,AS and AF , respectively
implementing and failing to implement the transformatio
and satisfyingAS

†AS1AF
†AF51. Here we shall show that th

necessary and, for linearly independent initial states, su
cient condition for the transformationP be to be implement-
able this way with probability vectorp is that there exists a
matrix P which, in addition to satisfying conditions~i!–~iii !
above, is also proportional to a rank-one projector.

To prove necessity, we observe that for the transforma
to meet our specifications, there must exist some operatoAS
such that

ASuc j
1&5cj uc j

2&, ~2.15!

for some coefficientscj . Let us now define theN3N matrix
P5$p j 8 j% wherep j 8 j5cj 8

* cj . This matrix is clearly propor-
tional to a rank-one projector. The proof that this matrix m
satisfy the three conditions of Theorem 1 proceeds as in
more general case. It is clearly positive, and so satisfies
dition ~i!. Condition~ii ! follows from the fact that Eq.~2.15!
gives

pj5ucj u2, ~2.16!

and the derivation of condition~iii ! is essentially identical to
that of the more general case; obtaining it amounts to n
ing more than dropping the indexk. This proves necessary

To prove sufficiency for linearly independent states, letP
be anN3N matrix proportional to a rank-one projector.
follows thatp j 8 j5cj 8

* cj for somecj . With these coefficients
we construct the operator

AS5(
j

cj

^c̃ j
1uc j

1&
uc j

2&^c̃ j
1u. ~2.17!

The remainder of the proof proceeds as in the more g
eral case. Clearly,ASuc j

1&5cj uc j
2&, as is required. The suc

cess probability for thej th state ispj5^c j
1uAS

†ASuc j
1&5p j j

5ucj u2. We can finally make use of condition~iii ! as before
to show thatES5AS

†AS<1.

III. QUANTUM OPERATIONS AND MAJORIZATION

A. Majorization relations and mixing

So far we have been considering quantum operati
which convert one set of pure states into another, either
terministically or probabilistically. It is well known, how
ever, that quantum operations often convert pure states
mixed states. This effect is often undesirable. For exam
one of the principle obstacles currently in the way of rea
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ing quantum computers is the phenomenon of decohere
which is the mixing of the state of the computer by u
wanted, uncontrollable environmental influences.

The mixing of quantum states is intimately connect
with entanglement. In this example, decoherence arises
to the entanglement of the computer with the environmen
two systems become entangled, their individual states wil
mixed even though the state of the entire system will rem
pure.

It follows from this that measures of entanglement a
mixedness ought to be intimately related, at least when
entire system is a pure, bipartite state. Indeed, the von N
mann entropy of one of subsystems simultaneously satis
many of the natural requirements of an entanglement m
sure and also those of a measure of how mixed a subsy
state is. However, being a single quantity, it is unable
quantify many specific details of entanglement or mixedne
in much the same way that the Shannon entropy of a so
in classical-information theory, while being sufficient to d
scribe many important things, like the maximum asympto
cally error-free transmission rate, is a less complete desc
tion of the source than the source symbols accompanied
their respectivea priori probabilities.

In the study of pure, bipartite entanglement, the ana
gous, more complete description is given by the eigenval
of the subsystem density operators. The prominence of th
quantities becomes apparent when the relationship betw
entanglement and deterministic local operations with cla
cal communication~LOCC! is taken into consideration. En
tanglement is nonincreasing under such operations. This
plies that, if one stateuC1& can be transformed into anothe
state uC2& by deterministic LOCC, thenuC2& can be no
more entangled thanuC1& with respect to any reasonab
entanglement measure. The role of the subsystem den
operator eigenvalues in determining the conditions un
which such a transformation is possible was made clear
Nielsen @10#, who showed that the necessary and suffici
condition for such a transformation to be possible is a sim
majorization relation.

In view of this and the connection between entanglem
and mixing of subsystem states, we should expect major
tion to play a similarly important role in describing mixed
ness. Indeed, that this is so was understood by Uhlm
@6–8# who pioneered the application of majorization to t
study of mixing in quantum states.

It would be helpful, given current concerns about issu
such as decoherence, to understand the mixing propertie
quantum operations. Majorization provides an eminen
suitable framework for the discussion of this issue, and
aim is to use it to help us understand the information lo
which often occurs in quantum operations and manifests
self as mixing. Fortunately, some progress has been mad
this direction. Some intriguing theorems in linear algebra d
to Bapat and Sunder@14# are particularly useful in this con
text. Here, we will employ one of their results within th
framework of quantum operations, to obtain the necess
and sufficient condition for a quantum operation to increa
mixing, in terms of majorization, for every initial state.
4-4
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We then give an intuitive information-theoretic argume
that the density operator for a pure state ensemble should
become more mixed when the pure states undergo a d
ministic transformation into another set of pure states,
that the majorization relation we have hitherto conside
ought not to apply~except in a certain trivial case! under
such circumstances. We then prove that, in fact, it is p
cisely the reverse majorization relation that is true.

Prior to doing so, we will briefly review the relevant con
cepts. Consider twoN component vectorsl5$l r% and s
5$s r%. The components will be taken to be real. From the
vectors, we construct two further vectorsl↓5$l r

↓% and s↓

5$s r
↓%. The components ofl↓ ands↓ are those ofl ands

arranged in decreasing order. The vectorl is said tomajorize
the vectors if the following conditions hold:

(
r 51

k

s r
↓<(

r 51

k

l r
↓ , 1<k<N21, ~3.1!

(
r 51

N

s r
↓5(

r 51

N

l r
↓ . ~3.2!

This majorization ofs by l is written assal.
In the context of probability, the vectorss and l are

probability distributions, having positive components whi
satisfy( rs r5( rl r51. The majorization relationsal says
that the distributions is no less mixed thanl. Two identities
relating to majorization will be of particular importance
what follows. These are:

~a! The vectorss andl satisfy the majorization relation
sal if and only if there is a doubly stochastic matrixS such
that s5Sl. A doubly stochastic matrix is a matrix whos
elements are real, non-negative, and where the sum of
elements in each row and column is equal to 1.

~b! If sal, andl r51/N, thens r51/N also. This is ef-
fectively a statement of the fact that if a probability distrib
tion s is no less mixed than another probability distributi
l, and l is the maximally mixed, or uniform distribution
thens must also be the uniform distribution.

B. Mixing enhancement and trace-preserving maps

Here, we will employ majorization as a tool to help u
understand the increase of disorder in the state of a sys
which occurs in many quantum operations. We will consid
a quantum system initially prepared in the stater1 which
then undergoes the transformation

r1→r25 (
k51

M

Akr1Ak
† , ~3.3!

where

(
k51

M

Ak
†Ak51. ~3.4!

The degree of mixedness of a quantum state is comple
characterized by the density operator eigenvalues. The ve
05231
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of eigenvalues of a density operatorr will be denoted by
l(r). When is it true thatl(r2)al(r1), the final stater2
can be characterized as being at least as mixed as the i
stater1.

It is not true that for every quantum operation, the fin
state will always be at least as mixed as the initial state,
every initial state. For example, suppose that we carry o
von Neumann measurement in the orthonormal basis$uxk&%,
and when we obtain resultk, carry out a unitary transforma
tion which converts the stateuxk& into some pure stateux&.
For this procedure, the final state will be the pure stateux&,
irrespective of the initial state, and how mixed it is. An o
eration of this kind, which may be viewed as an idealiz
kind of state preparation procedure, clearly does not incre
mixedness.

The following question then arises: under what conditio
does a trace-preserving quantum operation always incr
mixedness or disorder in the sense of majorization, for ev
initial state? The answer is given by

Theorem 2. Consider a completely positive, linear, trac
preserving map described by Eqs.~3.3! and~3.4!. The eigen-
values of the initial density operator majorize those of t
final density operator, that is,

l~r2!al~r1!, ~3.5!

for every initial density operatorr1 if, and only if,

(
k

AkAk
†51. ~3.6!

Proof. The sufficiency part of this theorem comes from
more general result due to Bapat and Sunder@14#, and we
will establish it by a variation on the relevant parts of the
argument. Numerous extensions and consequences of
work are discussed by Visick@18#. Let $uf r

1&% and$uf r 8
2 &% be

complete, orthonormal sets of eigenvectors ofr1 and r2,
respectively. If either density operator has zero eigenvalu
then we simply complete the orthonormal basis with an
thonormal set spanning the kernel. From Eq.~3.3!, we obtain

l~r2!5Sl~r1!, ~3.7!

where we have defined the matrixS5$Sr 8r% with elements

Sr 8r5(
k

u^f r 8
2 uAkuf r

1&u2. ~3.8!

Clearly, Sr 8r is real and nonnegative. The majorization re
tion ~3.5! will hold for every initial density operatorr1 if S is
doubly stochastic, which will be the case if the row a
column sums ofS are equal to one. For the column sum, w
have

(
r 8

Sr 8r5^f r
1uF(

k
Ak

†AkG uf r
1&51, ~3.9!

as a consequence of the completeness of the$uf r 8
2 &% and the

resolution of the identity in Eq.~3.4!. For the row sum, we
see that
4-5
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(
r

Sr 8r5^f r 8
2 uF(

k
AkAk

†G uf r 8
2 &51, ~3.10!

when Eq.~3.6! holds, where we have used the completen
of the $uf r

1&%. So, when Eq.~3.6! is true, the matrixS is
doubly stochastic and the majorization relation in Eq.~3.5!
holds for every initial density operatorr1. This proves suf-
ficiency.

To prove necessity, we must show that Eq.~3.6! follows if
the majorization relation~3.5! is true for every initial density
operatorr1. Actually, we need only consider the case wh
r1 is the maximally mixed state, that is,r151/D, which
implies thatl r(r1)51/D. This, together with the identity
~b!, suffices to determine the final density operatorr2 com-
pletely. As a consequence of identity~b!, the only possible
choice for l(r2) which is consistent withl r(r1)51/D is
l(r2)5l(r1). It follows thatr2 must also be the maximally
mixed state. Insertingr15r251/D into Eq. ~3.3!, and mul-
tiplying both sides byD immediately gives Eq.~3.6!, com-
pleting the proof. j

Condition ~3.6! is always satisfied if theAk are normal
operators, which is a sufficient condition for the sums in E
~3.4! and~3.6! to be identical. It follows that any generalize
measurement described by a POVM with elementsEk will
satisfy Eq.~3.6! if we choose the transformation operators
be Ak5AEk. This choice of transformation operators for
generalized measurement has been termed the ‘‘raw
implementation by Fuchs and Jacobs@12#. Theorem 2 gives
this ‘‘rawness’’ a concrete meaning. The term ‘‘raw’’ ha
connotations of simplicity and unembellishment. These
scriptions fit this implementation of a generalized measu
ment, reflecting as they do the absence of an attempt to
store or increase the purity of the state following acquisit
of the measurement outcome. This is captured by the ma
ization relation~3.5!.

It is instructive to compare and contrast Theorem 2 wit
related theorem due to Uhlmann@6–8#. This states that the
eigenvalues of two density operatorsr1 and r2 obey the
majorization relationl(r2)al(r1) if and only if there exists
a probability distributionpk and unitary operatorsUk such
that

r25(
k

pkUkr1Uk
† . ~3.11!

For a further proof and discussion of this theorem, see W
@19#. Nielsen and Chuang@1# also give a particularly direc
proof whose sufficiency part parallels that of the proof
have given of Theorem 2 above. It is obvious that Eq.~3.11!
is a valid quantum operation, indeed one which satisfies
~3.4!. In fact, the sufficiency part of Uhlmann’s theorem
easily seen to follow from the sufficiency part of Theorem
in the special case whereAk5ApkUk .

The necessity parts of Uhlmann’s theorem and Theore
are, on the other hand, disjoint. In Uhlmann’s theorem,
emphasis is on the density operators. It says that ifl(r2)
al(r1) then there must be a probability distributionpk and
unitary operatorsUk which depend on the initial and fina
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density operatorsand satisfy Eq.~3.11!. In contrast, the em-
phasis in Theorem 2 is on the quantum operation,which is
independent of the density operatorsand makes a statemen
about the properties that a particular operation must have
is never to decrease mixedness for any density operator

Any quantum operation which satisfies Eqs.~3.4! and
~3.6! is said to be doubly stochastic. As it happens, fo
two-dimensional quantum system, any doubly stocha
quantum operation may be written in the form~3.11!, that is,
as a convex combination of unitary operations. This poin
discussed by Ruskaiet al. @20#. However, for higher-
dimensional systems, this is not always possible, as
shown by Landau and Streater@21#.

C. Majorization and deterministic transformations

Only operations which satisfy condition~3.6! do not de-
crease mixedness, in the sense quantified by majoriza
for any state. A well-known property of majorization is th
if l(r2)al(r1), then S(r2)>S(r1), where S(r)
52Tr(r logr) is the von Neumann entropy. It follows tha
if r2 is at least as mixed asr1 in the sense of majorization
then its von Neumann entropy is also at least as high as
of r1.

The von Neumann entropy has long been used to quan
mixedness, in the sense ofdisorder, in quantum mechanics
However, with the advent of the noiseless coding theore
for classical and quantum information transmission, it h
acquired further significance as a measure of informat
which is directly analogous to that of the Shannon entropy
classical information theory. In this context, the density o
erator represents an ensemble of pure states. Consider
ensemblesE15$qj ,uc j

1&% andE25$qj ,uc j
2&%, whereqj is the

a priori probability of bothuc j
1& and uc j

2&. These ensemble
have the density operators

r1~q!5(
j

qj uc j
1&^c j

1u, ~3.12!

r2~q!5(
j

qj uc j
2&^c j

2u. ~3.13!

The noiseless coding theorem for classical@22# ~quantum
@23#! information with pure quantum states implies that t
maximum rate of asymptotically error-free classical~quan-
tum! information transmission using ensembleEi is S„r i(q)…
bits ~qubits! per signal. However, suppose that we cou
transform E1 into E2 with unit probability. If S„r2(q)…
.S„r1(q)…, then clearly these coding theorems would
violated. Such ensemble transformations, which increase
von Neumann entropy, must be impossible, and lead u
suspect that ensemble transformations giving rise to the
jorization relationl„r2(q)…al„r1(q)… will also be impos-
sible @except in the trivial case where all of the equalities
Eq. ~3.1! are satisfied#.

The transformations we have in mind here are clearly
deterministic transformations described in the preceding s
tion. The question is then: do the eigenvalues of ensem
density operators whose constituent pure states are relate
4-6
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a deterministic transformation obeyany majorization rela-
tion? The answer, as we will now see, is yes: it is precis
the reverse of that considered in Theorem 2, which is hig
satisfactory in view of the above considerations.

Theorem 3. Let $uc j
1&% and$uc j

2&% be sets ofN pure states.
Consider the mixturesr1(q) and r2(q) defined by Eqs.
~3.12! and ~3.13!. If there is a deterministic transformatio
D:uc j

1&→uc j
2& ; j , then

l@r1~q!#al@r2~q!#, ~3.14!

for everya priori probability vectorq.
Prior to proving this, we note that to speak of majoriz

tion relations,r1(q) andr2(q) must have the same numb
of eigenvalues. This condition is easily satisfied by ‘‘paddi
out’’ the spectrum with the lower number of nonzero eige
values with zeroes so that the spectra of both density op
tors are of equal size.

Proof. We start with the following observation made b
Jozsa and Schlienz@24#. For thea priori probability vector
q, we define the matrixQ5$Aqjqj 8%. Then r1(q) has the
same nonzero eigenvalues, with the same multiplicities
Q+G1, and likewise withr2(q) andQ+G2. To see why, con-
sider the following entangled state of two systems,a andb:

uF&5(
j

Aqj uc j&a^ uxj&b , ~3.15!

where $uc j&% may be either the set$uc j
1&% or $uc j

2&%, and
$uxj&% is an orthonormal set. The purity of this state impli
that the eigenvalues of the reduced density operators are
same for each subsystem. We find that

ra5(
j

qj uc j&^c j u, ~3.16!

rb5(
j j 8

Aqjqj 8^c j uc j 8&uxj 8&^xj u,

5(
j j 8

$~Q+G!T% j 8 j uxj 8&^xj u, ~3.17!

where G is the Gram matrix of the set$uc j&%. Equation
~3.17! tells us that the elements ofrb in the $uxj&% basis give
the matrix (Q+G)T, where the superscriptT denotes the
transpose. Any Hermitian matrix has the same nonzero
genvalues as its transpose~with corresponding eigenvector
being related by complex conjugation in the standard bas!.
So, we see thatra and Q+G have the same nonzero eige
values. This implies that

l@r1~q!#al@r2~q!#⇔l~Q+G1!al~Q+G2!;q.
~3.18!

Consequently, we will be able to establish the majori
tion relation~3.14! if we can establish that on the right-han
side of Eq.~3.18!. It turns out that the latter relation can b
proven rather straightforwardly using the following res
05231
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obtained by Bapat and Sunder@14#: let A and B be N3N
Hermitian matrices. IfA>0, and the diagonal elements ofA
are all equal to 1, then@25#

l~A+B!al~B!. ~3.19!

Let us apply this relation, making the identifications

A5P, ~3.20!

B5Q+G2 , ~3.21!

whereP is a positive,N3N matrix with diagonal elements
equal to 1 andB is easily shown to be Hermitian, indee
positive, as a consequence of the positivity of Gram matri
and projectors (Q clearly being a projector! and Schur’s
product theorem@26#, which states that the Hadamard pro
uct of two positive matrices is also positive. Substituti
these definitions into Eq.~3.19! gives

l@P+~Q+G2!#al~Q+G2!. ~3.22!

We know from Eq.~2.11! that for a deterministic transforma
tion, there exists a positive matrixP such thatG12P+G2
50. We can see from this equation that the diagonal e
ments ofP must be equal to 1. Making use of the comm
tativity of the Hadamard product, we can see that, for a
terministic transformation

Q+G15P+~Q+G2!. ~3.23!

We can substituteQ+G1 into the left-hand side of Eq.~3.22!,
giving the majorization relation on the right-hand side
~3.18!. This completes the proof. j

A question of obvious importance is whether or not t
converse of Theorem 3 is true, that is, whether or not sa
faction of the majorization relation~3.14! is a sufficient con-
dition for the existence of a deterministic transformati
D:uc j

1&→uc j
2&; j . At the time of writing, this question is

open. If it is ever to be answered in the affirmative, then t
could suggest an interesting parallel between the theory
deterministic transformations of sets of pure states, and
of deterministic LOCC on pure, bipartite entangled stat
which is covered by a theorem due to Nielsen which
mentioned earlier. To be specific, letuC1& anduC2& be a pair
of pure, bipartite entangled states, andr1 ,r2 be the corre-
sponding reduced density operators for one of the s
systems. Then Nielsen’s theorem@10# states the necessar
and sufficient condition for the existence of a determinis
LOCC procedure which transformsuC1& into uC2& is

l~r1!al~r2!. ~3.24!

The similarity between Eqs.~3.14! and ~3.24! is striking,
especially when we consider the fact that, in both conte
the mixing, whose nonincrease is expressed by the appro
ate majorization relation, is related to a useful quantity
resource, rather than simple disorder. In the context of de
ministic transformations of sets of pure states, the degre
mixing can be intuitively understood as expressing the d
tinguishability of the set of states, at least when they
4-7
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ANTHONY CHEFLES PHYSICAL REVIEW A 65 052314
linearly independent. We feel that a further open proble
whose solution may require that of the preceding one, is h
one can make this intuition quantitatively precise.

In the second context, that of deterministic LOCC e
tanglement transformations, the degree of mixing relate
how entangled the state is. The fact that useful quanti
such as entanglement and distinguishability cannot incre
under the appropriate kinds of deterministic transformati
and that this fact can be expressed by simple, similar ma
ization relations suggests that both scenarios are related
that this relationship could be understood in terms of so
broader, as yet unproposed unifying framework.

IV. DISCUSSION

In this paper, we have obtained some general results
lating to transformations of quantum states, and associ
probabilities or density operator eigenvalues, which
closely related to and in some contexts can be interprete
probabilities. The main emphasis has been on transfor
tions of pure states. Probabilities play an essential role
quantum mechanics in quantifying the likelihood of a p
ticular measurement outcome, given certain informat
about how the system was prepared, namely, its initial s
vector or, more generally, density operator. This has b
known since the early days of quantum theory. However
recent decades, it has become apparent, though a ca
analysis of the postulates of quantum mechanics and exp
ing the possibilities afforded by interactions between qu
tum systems, that the quantum formalism permits more g
eral measurements than those whose outcome probabi
are obtained by direct application of Born’s rule, and whe
the resulting post-measurement states are obtained by d
application of the von Neumann–Lu¨ders projection postu
late. Such measurements are known as generalized mea
ments. The formalism of quantum operations, which
scribes both aspects of this general measurement proces
been of enormous interest recently, especially due to its
evance to the developing field of quantum-informati
theory.

Since the early days of quantum theory, it was recogni
that the measurement process is inextricably bound up w
disturbance of the state of the system. With the developm
of generalized measurements, it has become recognized
the large disturbance associated with a sharp, von Neum
measurement is an extremal case of a general trade-of
tween information and disturbance@12,27#. In this context,
information is treated as a ‘‘good’’ thing, while the assoc
ated disturbance is considered to be an undesirable bu
avoidable by-product. However, in situations where we a
to tailor the disturbance to produce a particular state,
where we wish to minimize the probability of other transfo
mations being carried out, it is almost as though the conv
tional ‘‘morality’’ of the information/disturbance trade-off i
inverted.

Specific probabilistic transformations, such as cloning a
unambiguous state discrimination~which is a probabilistic
transformation of a nonorthogonal set into an orthogonal!
have been studied in detail. A further kind of transformati
05231
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which has been examined is a deterministic transformat
which converts one set of pure states into another with u
probability. However, probabilistic transformations, of whic
deterministic transformations represent a limiting case, h
not previously been investigated in full generality. To do
was the objective of Sec. II. For pure state transformatio
we derived necessary and, when the initial states are line
independent, sufficient conditions for such a transformat
to be possible with given conditional probabilities for each
the states.

Extending our analysis to cover more general quant
operations, it is easily shown that the purity of states is
preserved in general. For the sake of simplicity, the proba
listic assumption was removed and our emphasis shi
from selective to nonselective operations. This scenario i
considerable practical importance since it applies to a qu
tum system whose state we wish to control, deterministica
such as that of a quantum computer, but which is subjec
uncontrollable influences such as that of the environmen

One of the most basic questions we can ask about s
quantum operations is: under what circumstances is the
state always at least as mixed as the initial state, for ev
possible initial state? Quantifying the extent to which a st
is mixed, at least when the Hilbert space dimension exce
two, is nontrivial. However, under certain circumstances,
can unambiguously compare the degree of mixing of t
quantum states for arbitrary quantum systems: specifica
when the eigenvalues of one density operator majorize th
of the other. The nontriviality of mixing comparison is qua
titatively captured by the fact that majorization enforces o
a partial order on equivalence classes of density opera
~with respect to unitary symmetry! which allows for incom-
parable states. We described how a simple, elegant, suffic
condition obtained by Bapat and Sunder is also necess
We then showed that the eigenvalues of the source den
operators for initial and final pure state ensembles related
a deterministic transformation obey the opposite majori
tion relation. In this context, mixing, rather than character
ing disorder, is related to the information content or dist
guishability of the ensemble, and this majorization relati
expresses the fact that such aspects of an ensemble cann
amplified and is perhaps in the same spirit as the no-clon
theorem. Indeed, it is quite simple to show that the stro
form of the no-cloning theorem, which states that it is im
possible to deterministically copy a set of nonorthogo
states, follows from this majorization relation.

We noted the resemblance between this majorization r
tion and that obtained by Nielsen in the context of LOC
entanglement transformations. The latter is a necessary
sufficient condition for deterministic LOCC transformatio
of one pure, bipartite entangled state into another. T
former is only known to be a necessary condition for a d
terministic transformation of one set of pure states into
other pure set. We argued that if it can also be shown to
sufficient, then there is the possibility that determinis
LOCC and pure set transformations could be incorpora
within and understood in terms of a broader encompass
framework. This could lead to interesting insights into t
relationship between entanglement and distinguishability
4-8
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With this possibility in mind, let us consider the fact th
the majorization relation~3.14! implies that the quantities

mk~q!5(
r 51

k

l r
↓F(

j
qj uc j

1&^c j
1uG , 1<k<N ~4.1!

are nonincreasing under any deterministic transforma
D: uc j

1&→uc j
2&; j for any set of final states$uc j

2&%. Can we
refer to such quantities as ‘‘distinguishability monotone
by analogy with the concept of entanglement monotones
troduced by Vidal@28#? If so, then how are they related t
operations which distinguish between quantum states? H
-

t

o

05231
n

’’
-

w

are they related to more general sets of distinguishab
monotones? Indeed, what criteria are the necessary and
ficient conditions to qualify a functional as being a disti
guishability monotone, or measure? To answer these q
tions, we would require a greater understanding of
distinguishability of sets of pure quantum states, compara
to that which we have of pure, bipartite entanglement.
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