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Quantum operations, state transformations and probabilities
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In quantum operations, probabilities characterize both the degree of the success of a state transformation
and, as density operator eigenvalues, the degree of mixedness of the final state. We give a unified treatment of
pure— pure state transformations, covering both probabilistic and deterministic cases. We then discuss the role
of majorization in describing the dynamics of mixing in quantum operations. The conditions for mixing
enhancement for all initial states are derived. We show that mixing is monotonically decreasing for determin-
istic pure— pure transformations, and discuss the relationship between these transformations and deterministic
local operations with classical communication entanglement transformations.
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[. INTRODUCTION sets of pure states. We consider the following scenario: a
quantum system is prepared in one of Mheure state$</fjl>,
Information is carried by physical systems and encoded inwherej=1, ... N. We wish to implement the transforma-

their states. It follows that the ways in which information cantion |)—|¢?), for some other set dfl pure state$y?). In
be manipulated are determined by the scope of the set afeneral, the transformation will not be deterministic, and will
possible operations on the states of the signal carriers. It ignly succeed with some probability for each state. We obtain
for this reason that the recent widespread fascination with theecessary and, for linearly independent initial states, suffi-
information-theoretic properties of quantum systdihishas  cient conditions for the existence of a quantum operation
been accompanied by a renaissance in the study of the quawhich carries out this transformation for a fixed set of suc-
tum operations formalism, which determines what we carcess probabilities. We then examine some consequences of
and cannot do with the state of a quantum system. these conditions, and show how they lead to simple deriva-
In quantum, as in classical-information theory, the sys-ions of established conditions for deterministic state trans-
tems considered may be in one of many possible stateformations and optimal unambiguous state discrimination.
However, quantum states can have attributes that have no For a general quantum operation, when the initial state is
exact classical analogue, such as nonorthogonality and epure, the final state will often be mixed. This effect is com-
tanglement. These features of quantum states, together withon and occurs under many circumstances where we wish to
the numerous ways in which quantum states can be manipgreserve the information content of a quantum state, such as
lated, have given rise to some intriguing discoveries inin quantum communications and quantum computation. To
guantum-information theory, such as teleportation, classicalnderstand this mixing it helps to have an appreciation of its
capacity superadditivity, and quantum error correction. Cerguantitative features. A suitable framework for the discussion
tain limitations on the way in which quantum states can beof mixing is provided by the concept of majorization. This
manipulated, such as the no-cloning theorem, also carry sigsoncept was introduced to quantum mechanics by Uhlmann
nificant benefits, such as the security of quantum key distrif6—8] as a means of comparing mixing in density operators.
bution and consistency with special relativity. Numerous useful theorems relating to majorization have
The many successes in determining optimal transformabeen discoverefR].
tions for carrying out specific important tasks, such as state The subject of majorization has recently received renewed
discrimination/estimation, approximate cloning, and en-attention in quantum-information theory, mainly as a result
tanglement manipulation, have led to some more generdliielsen’s discovery that it provides a suitable framework for
questions being asked about the constraints imposed by tliee discussion of pure, bipartite entanglement transforma-
quantum formalism on state manipulation. In this respecttions [10]. More recently, Nielseri11] has derived several
Hardy and Sond?2] have considered optimal universal ma- interesting majorization relations for static and dynamic mix-
nipulation of a qubit, while Alber, Delgado, and Je&{ have  ing of quantum states, latterly in association with generalized
described universal bipartite entanglement processes. Eveneasurementésee also the related analysis by Fuchs and
more recently, Fiursek [4] has discussed the properties of Jacobg12].) Nielsen has also showed that a density operator
qguantum operations which optimally approximate a givencan represent some ensemble of pure states with fixed prob-
transformation of one set of pure states into another with uniabilities if and only if a certain majorization relation is sat-
probability. The conditions under which such a transforma-isfied [13].
tion can be carried out exactly, at least when the initial states In Sec. Ill, we describe and employ the concept of major-
are linearly independent, have been derive@Sh ization as a tool to help us understand the dynamics of mix-
In this paper we continue to explore the properties ofing in quantum operations. Many nonunitary quantum opera-
general quantum operations and how they transform quartions transform at least some pure states into mixed states.
tum states. Section Il is devoted to giving a unified treatmen®his begs the question: under what conditions does a quan-
of probabilistic and deterministic transformations betweertum operation never decrease the extent to which any initial
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state is mixed? Majorization is a suitable tool for comparing .

the degree of disorder in the initial and final states, and a Pr:Ek AxrpAi pr(p). (2.9
sufficient condition for this monotonic mixing was derived,

in purely algebraic context, by Bapat and Sunfisf]. We |t is clear from Eq.(2.1) thatE, is positive. From the reso-
give a simple derivation of their condition within the context |ution of the identity in Eq.(2.3) we see that

of quantum operations, and show that this condition is also in
fact a necessary condition. We then examine majorization in O<E,<1. (2.9

relation to deterministic pure state transformations, and deret ys denote byE ,(P) the set of admissible probability
rive an intuitive and information-theoretically satisfying ma- yectors for the transformatioR. We would like to determine

jorization relation for such operations. the conditions under which a particular probability vector is
an element of%,,(P). The necessary and sufficient condi-
Il. TRANSFORMATIONS BETWEEN SETS tions for the existence of a transformation which succeeds
OF PURE STATES with probability vectorpe X ,(P) are that it can be realized
) N ] . by a set of linear transformation operators as in ¢} and
A. Transformation conditions for fixed probabilities that the corresponding POVM element satisfies Byd).

Consider the following situation: we have in our posses-\When this is the case, the operation can always be realized
sion a quantum system with a finit®;dimensional Hilbert DY introducing an ancillary system, with which our original

spaceH. The initial state of the system is pure, and is anSystem int.eracts. unitarily. FoIIowing this, a pr_ojective mea-
element of the sef 'ﬂ;)} wherej =1 N for some finite  Surement is carried out on the ancilla, and this has two out-
] 1 3oy

comes. The two transformations of the state of the original
system conditioned on these outcomes are the transformation
‘P and the failure transformatigri5].

As a consequence of the necessity and sufficiency of these
conditions, it is worth noting that, if we are not particularly
concerned about the form of the final states when the attempt
to implementP fails, we may, without loss of generality,
assume that there is only one nonzero failure operator, which

can be taken to bAr=J1—-Esg
These criteria, while correct, may not always be the most

N. Our aim is to implement a probabilistic transformatibBn
which transforms the stadeglx}) into some other pure state
|4y for each;.

It is well known, from studies of particular transforma-
tions such as unambiguous state discriminati@] and
probabilistic cloning17] , that we cannot in general expect
the probability of success to be equal to one. pgbe the
probability of successful transformation bp}) into |z//j2>.
These probabilities may be represented as the components

a vectorp={p;}. helpful, due to the large number of parameters describing the

Ciegebrally spea:q?gl, the Ftr_ansflqrmatldihwnlv\t/)e reprlz_l'k transformation operators. The following theorem gives sim-
sented by a compietely posilive, linear map. We would lIiKeE . necessary, and, for linearly independent initial states,

Ejo blf gtilre r:of drfrt]ergnl:i unamb|gugu(sjlyTvr\]/ihe:her i?rn?orgtt? ufficient conditions for the existence of such a transforma-
pﬁgsethatathzOproacle(c)iurea\?viﬁuﬁ;\e/g t?Nd posssiglguoﬁtcgmes on.

. 1
success or failure. It will be described by the transformation The.orele(lj_.et{lz,bJ;) ) tieHa}IsettoN plé;e qLu?nturzn stgtes
operatord Ay}, wherer =S,F, corresponding to success and spanning ab-dimensional Arbert spacét. Le {w’i N €
failure, respectively, an&=1, ... M, for someM. If the another set oN pure states lying irt{. Let the Gram matri-

system is prepared in a state represented by an initial densi s of _the initial and f'”f’*' sets be der_u_)te_d By and I, .
operatorp, then the probability of theth outcome is deter- espectively. If there exists a probabilistic transformation

. 1 2 : HH
mined by the positive quantum detection operator, or positivé - 11#)}—{l#{)} with probability vectorp, then there ex-

operator-valued measufBOVM) element Fts anN>xN matrix IT which satisfies the following condi-
ions:
E,=> ALA. (2.) (i) I1=0,
LR (i) diag(IT) =p,

. . (iii) Ty —II-T',=0,
Throughout this paper, when we speak of a positive operator )
or matrix, we will, unless otherwise indicated, mean oneWhere *” denotes the Hadamartbr Schuy matrix product.
which is positive semidefinite. The probability of tm¢h ~ These conditions are also sufficient if the §pt;)} is lin-
outcome is given by early independent.
Prior to giving a proof of this theorem, we recall that the

p:(p)=Tr(pE,), (2.2 NXN Gram matrixI'={y;,;} corresponding to a set df
pure statesy;) has elementy; ;= (¥;:|¢;). Also, the Had-
where amard productA°B of two matrices A={a;,;} and B
:{b]’J} haSj ,j elementaj/jbj/j .
2 E =1 2.3 Proof. We pegm by proving the necessity part of this theo-
T rem. To do this, we note that there must exist complex coef-

ficientsc,; such that
The postmeasurement state corresponding tottheutcome

is Ad ) =il 7). (2.6
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We can consider these coefficients to be the elements of asatisfied, then so is inequalit2.5), which is equivalent to

M XN matrix C={cy;}. Let us now introduce thisl X N ma- > Al Ars=<1. This completes the proof. |
trix II={;;} defined by We have assumed, for the sake of notational convenience,
that the final states are in the space spanned by the initial
n=c'c. (2.7)  states. This leads to no loss of generality. The linearity of

. o . - . quantum mechanics implies that the dimension of the space
This matrix is clearly positive and thus satisfies condiion  gnanned by the final states cannot exceed that of the input
To see that it also satisfies condm(m) we make use of the  giateqthis is why linearly dependent states cannot be unam-
fact that p;= <‘/’J|EKA Axd i) =Zilcy|?. This is easily biguously discriminated; to transform a linearly dependent
shown to be equal tar;; using Eq.(2.7), which implies that  get into an orthogonal set would necessarily increase the di-
fied by |mposmg Eq (2 5), which requires the expectation ajways be transformed unitarily, and thus reversibly, into a
value of =, AlArs to be no greater than one for any state.subspace of. We can then assume that this is done, satis-
Consider an arbitrary pure stdi) in the subspace spanned fying the conditions of Theorem 1.
by the{|s)}. We may write it ag¢)=v;| i) and calcu-

late B. Examples

It is instructive to see how established results relating to
<¢|[2 A SAkS}|¢> E Uj T 171 i specific transformations follow from the general conditions
in Theorem 1. The first kind of transformation we shall con-
sider is a deterministic transformation, where all of there
<(¢| )=, Uj?‘,vjyjl,j _ (2.8)  equal to 1. Let us writ&&=T"; —II-I',. As a consequence of
i’ (iii), G must be positive. The diagonal elementslgf, I',
and, as a consequence(di), IT are all equal to 1. It follows
that the diagonal elements, and hence the trace; afre
equal to zero. The only positive matrix with zero trace is the
zero matrix. Therefore,

The requirement thaYkAlsAkssl is then seen to be equiva-
lent to the inequality

which holds for every vectov= {vj} From th|s it follows  One situation which is of particular interest is that which
that theN > N matrix with elementg yl [~y ]yl /) is posi- arises wherl", has no zero elements, which corresponds to

tive, which is exactly what is expressed, more concisely, byll of the final states being nonorthogonal. When this is so,

condition (iii ). we can conclude that
To prove the converse for linearly independent initial -
states, we assume the existence of a malrix{;;} which Hn=0r; -, (212

satisfies condition§)—(iii ). Positivity enables us to factorize

II asC'C, for someM X N matrix C={cy;}, where the in- whereI, ! is the Hadamard inverse df,. The Hadamard
tegerM may take any value not less thah Let us now inverse of a matrixA={a;,;} has elements &/,;. Finally,
define the transformation operators imposing condition(ii) gives

FJOFZ 2(), (2.13)

which is identical to conditioriii) in [5] for a deterministic
transformation expressed in terms of Gram matrices and

The |¢J> are the reciprocal vectors corresponding to the Hadamard product notation.

states| ;). These have been found, in studies of operanons The second case we shall consider is that of unambiguous

of unamblguous state discriminati¢h6] and deterministic gy te giscrimination. Here, the final states are orthonormal, so
transformationg5], to be extremely useful in dealing with I,=1. Let A(p) be the matrix withj'j elementp;s
: §9j7j -

transformations of sets of linearly independent states. Th?henHonzA(p). Inserting this intdiii) gives the inequal-
state|¢]> is defined as that iftt which is orthogonal to all  jty
|z// .y for j#j’ and is, up to a phase, unique.

From definition in Eq(2.10, we see thati) is automati- I';—A(p)=0. (2.149
cally satisfied. Also making use of E(.2), is clear tha'pJ ,
the transformation probability for th¢th state, given by This is precisely the inequality obtained by Duan and Guo
<¢]|EKAKSAKS| ;). is equal tomr;; . This shows that condi- using a unitary-reduction scheri7].
tion (i) is satisfied. Finally, the necessary and sufficient con- For a probability vectop which satisfies this inequality,
dition for the transformation operators in E@®.10 to be the correspondindl may be assumed to take a particularly
physically realizable is thaEkAlsAksil. If condition(iii) is  simple form. If 7j,;= \p;/p;, then it can easily be shown
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that I1 satisfies both condition§) and (ii), and that(iii) is ~ ing quantum computers is the phenomenon of decoherence,
equivalent to Eq(2.14). This II matrix is clearly propor- Which is the mixing of the state of the computer by un-
tional to a rank-one projector. wanted, uncontrollable environmental influences.

Matrices of this form have an interesting significance in  The mixing of quantum states is intimately connected
relation to the following question: under what additional with entanglement. In this example, decoherence arises due
conditions can the transformati@hbe carried out with prob- to the entanglement of the computer with the environment. If
ability vectorp when only one of thé\,sis nonzero? Thatis, two systems become entangled, their individual states will be
we are interested in implementing the transformation withmixed even though the state of the entire system will remain
just two transformation operatoré,s and Ag, respectively  pure.
implementing and failing to implement the transformation, |t follows from this that measures of entanglement and
and satisfyingASAs+AfA:= 1. Here we shall show that the mixedness ought to be intimately related, at least when the
necessary and, for linearly independent initial states, suffientire system is a pure, bipartite state. Indeed, the von Neu-
cient condition for the transformatioR be to be implement-  mann entropy of one of subsystems simultaneously satisfies
able this way with probability vectap is that there exists a many of the natural requirements of an entanglement mea-
matrix IT which, in addition to satisfying condition®)—(iii)  syre and also those of a measure of how mixed a subsystem
above, is also proportional to a rank-one projector. state is. However, being a single quantity, it is unable to

To prove necessity, we observe that for the transformatio, ,antity many specific details of entanglement or mixedness,
to meet our specifications, there must exist some OpeAJor jn i ch the same way that the Shannon entropy of a source

such that in classical-information theory, while being sufficient to de-
1 2 scribe many important things, like the maximum asymptoti-
Ad i) =cilyp), (2.19 y Imp - (hing . ymptoti

cally error-free transmission rate, is a less complete descrip-

for some coefficients; . Let us now define thal X N matrix tion of the source than the source symbols accompanied with

II={m,;} wherem; ;=c,c;. This matrix is clearly propor- their respectivea priori probabilities.
tional to a rank-one projector. The proof that this matrix must N the study of pure, bipartite entanglement, the analo-
satisfy the three conditions of Theorem 1 proceeds as in th@0US, more complete description is given by the eigenvalues
more general case. It is clearly positive, and so satisfies corff the subsystem density operators. The prominence of these
dition (i). Condition(ii) follows from the fact that Eq(2.15  quantities becomes apparent when the relationship between
gives entanglement and deterministic local operations with classi-
cal communicatiolLOCC) is taken into consideration. En-
p;=|cjl?, (2.16  tanglement is nonincreasing under such operations. This im-
o o S . plies that, if one statg¥,) can be transformed into another
and the derivation of conditiofiii ) is essentially identical to state|W,) by deterministic LOCC, thed®,) can be no
Fhat of the more gen.eral case; obtaining it amounts to nothygre entangled thatW,) with respect to any reasonable
ing more than d-rqppmg the_ indek Thls proves necessary. entanglement measure. The role of the subsystem density
To prove sufficiency for linearly independent statesIlet  operator eigenvalues in determining the conditions under
be anN XN matrix proportional to a rank-one projector. It \hich such a transformation is possible was made clear by
follows thatar,;=cf,c; for somec; . With these coefficients, Nielsen[10], who showed that the necessary and sufficient
we construct the operator condition for such a transformation to be possible is a simple
majorization relation.
Cj o~ 1 In view of this and the connection between entanglement
As=2. = U] (217 and mixing of subsystem states, we should expect majoriza-
. <¢J|¢J> tion to play a similarly important role in describing mixed-
The remainder of the proof proceeds as in the more gerﬁsefg]' wr?c?e?éntggrtezjhItshelsasoliz\giso:%?er;s;%c;idza?;nupolr?ﬁgn
eral case. ClearlyAd ) =c;|4?), as is required. The suc- P Pp J

ity for thath T N study of mixing in quantum states.

cess probability for thgth state isp; = (4| AsAg| ) = It would be helpful, given current concerns about issues
=1cj|*. We can f'”?”y make use of conditidfii) as before g0 45 decoherence, to understand the mixing properties of
to show thatEs=AgAs=<1.

quantum operations. Majorization provides an eminently
suitable framework for the discussion of this issue, and our
I1l. QUANTUM OPERATIONS AND MAJORIZATION aim is to use it to help us understand the information loss,
which often occurs in quantum operations and manifests it-
self as mixing. Fortunately, some progress has been made in

So far we have been considering quantum operationthis direction. Some intriguing theorems in linear algebra due
which convert one set of pure states into another, either dee Bapat and Sundéd4] are particularly useful in this con-
terministically or probabilistically. It is well known, how- text. Here, we will employ one of their results within the
ever, that quantum operations often convert pure states intbamework of quantum operations, to obtain the necessary
mixed states. This effect is often undesirable. For exampleand sufficient condition for a quantum operation to increase
one of the principle obstacles currently in the way of realiz-mixing, in terms of majorization, for every initial state.

A. Majorization relations and mixing
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We then give an intuitive information-theoretic argumentof eigenvalues of a density operatprwill be denoted by
that the density operator for a pure state ensemble should na{p). When is it true that\(p,) <A(p4), the final statep,
become more mixed when the pure states undergo a detezan be characterized as being at least as mixed as the initial
ministic transformation into another set of pure states, andtatep;.
that the majorization relation we have hitherto considered It is not true that for every quantum operation, the final
ought not to apply(except in a certain trivial cageinder  state will always be at least as mixed as the initial state, for
such circumstances. We then prove that, in fact, it is preevery initial state. For example, suppose that we carry out a
cisely the reverse majorization relation that is true. von Neumann measurement in the orthonormal basis},

Prior to doing so, we will briefly review the relevant con- and when we obtain resulf carry out a unitary transforma-
cepts. Consider twdN component vectord={\,} and &  tion which converts the stafe,) into some pure statgx).
={o,}. The components will be taken to be real. From theseFor this procedure, the final state will be the pure staje
vectors, we construct two further vectaks={\'!} and o" irrespective of the initial state, and how mixed it is. An op-
={co}}. The components of' and o' are those ok ando  eration of this kind, which may be viewed as an idealized
arranged in decreasing order. The vedtds said tomajorize  kind of state preparation procedure, clearly does not increase
the vectore if the following conditions hold: mixedness.

The following question then arises: under what conditions
K K does a trace-preserving quantum operation always increase
D or<2 N, 1<ksN-1, (3.1 mixedness or disorder in the sense of majorization, for every
initial state? The answer is given by

N Theorem 2 Consider a completely positive, linear, trace-
> ol=> A (3.2  preserving map described by E¢3.3) and(3.4). The eigen-
r=1 r=1 values of the initial density operator majorize those of the

. Lo . . final density operator, that is,
This majorization ofo- by A\ is written aso<A.

In the context of probability, the vectore and A are A(p2)<A(py), (3.5
probability distributions, having positive components which
satisfyS, o, =3\, = 1. The majorization relatioor< X says  for every initial density operatqs, if, and only if,
that the distributioro is no less mixed thak. Two identities
relating to majorization will be of particular importance in > AAI=1. (3.6)
what follows. These are: k

(a) The vectorso and \ satisfy the majorization relation Proof. The sufficiency part of this theorem comes from a
o<\ if and only if there is a doubly stochastic matfsuch ~ more general result due to Bapat and Sur{ddl, and we
that o=S\. A doubly stochastic matrix is a matrix whose will establish it by a variation on the relevant parts of their
elements are real, non-negative, and where the sum of tregument. Numerous extensions and consequences of their
elements in each row and column is equal to 1. o work are discussed by Visidk8]. Let{|¢rl>} and{|¢r2,>} be

(b) If o<\, andA, =1/, theno,=1/N also. This is ef-  complete, orthonormal sets of eigenvectorspefand p,,
fectively a statement of the fact that if a probability distribu- respectively. If either density operator has zero eigenvalues,
tion o is no less mixed than another probability distribution then we simply complete the orthonormal basis with an or-

A, and A\ is the maXima”y mixed, or uniform distribution, thonormal set Spanning the kernel. From 813)’ we obtain
then o must also be the uniform distribution.
A(p2) =SN(p1), 3.7

B. Mixing enhancement and trace-preserving maps . .
g P g map where we have defined the mati®«{S;/,} with elements

Here, we will employ majorization as a tool to help us
understand the increase of disorder in the state of a system

- 2 1\(2
which occurs in many quantum operations. We will consider Sf’r_zk: (e Al br)*. (3.8
a quantum system initially prepared in the statewhich
then undergoes the transformation Clearly, S,/, is real and nonnegative. The majorization rela-

tion (3.5 will hold for every initial density operatqs, if Sis

- + doubly stochastic, which will be the case if the row and
Pﬁpzzgl Acp1Ak 33 ¢olumn sums of are equal to one. For the column sum, we
have
where
U > S=(¢il| 2 AlAC|lh) =1, (3.9
k21 AfA=1. (3.4) r’ X

as a consequence of the completeness o{|t¢é>} and the
The degree of mixedness of a quantum state is completelsesolution of the identity in Eq(3.4). For the row sum, we
characterized by the density operator eigenvalues. The vectgee that
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) density operatoraind satisfy Eq(3.11). In contrast, the em-
|¢r)=1, (3.10  phasis in Theorem 2 is on the quantum operatishich is
independent of the density operat@sd makes a statement
gbout the properties that a particular operation must have if it
is never to decrease mixedness for any density operator.

Any quantum operation which satisfies Ed8.4) and
(3.6) is said to be doubly stochastic. As it happens, for a
two-dimensional quantum system, any doubly stochastic
guantum operation may be written in the fotg11), that is,
as a convex combination of unitary operations. This point is
discussed by Ruskaet al. [20]. However, for higher-
dimensional systems, this is not always possible, as was
shown by Landau and StreafeX1].

by sw=<¢f,|{§ A

when Eq.(3.6) holds, where we have used the completenes
of the {|¢7)}. So, when Eq(3.6) is true, the matrixS is
doubly stochastic and the majorization relation in E3}5)
holds for every initial density operatgr;. This proves suf-
ficiency.

To prove necessity, we must show that Ey6) follows if
the majorization relatioi3.5) is true for every initial density
operatorp,. Actually, we need only consider the case when
p1 is the maximally mixed state, that ig;=1/D, which
implies that\,(p;)=1/D. This, together with the identity
(b), suffices to determine the final density operaigrcom-
pletely. As a consequence of identify), the only possible
choice for A(p,) which is consistent with\,(p;)=1/D is Only operations which satisfy conditiai3.6) do not de-
A(p2)=A(p). It follows thatp, must also be the maximally crease mixedness, in the sense quantified by majorization,
mixed state. Inserting; = p,=1/D into Eq.(3.3), and mul-  for any state. A well-known property of majorization is that
tiplying both sides byD immediately gives Eq(3.6), com- if  A(po)<N(p1), then S(p,)=S(pi), where S(p)
pleting the proof. [ | =—Tr(plogp) is the von Neumann entropy. It follows that

Condition (3.6) is always satisfied if thé\, are normal if p, is at least as mixed gs, in the sense of majorization,
operators, which is a sufficient condition for the sums in Egsthen its von Neumann entropy is also at least as high as that
(3.4) and(3.6) to be identical. It follows that any generalized of p;.
measurement described by a POVM with elemdntswill The von Neumann entropy has long been used to quantify
satisfy Eq.(3.6) if we choose the transformation operators to mixedness, in the sense disorder, in quantum mechanics.
be A= \/E—k This choice of transformation operators for a However, with the advent of the noiseless coding theorems
generalized measurement has been termed the “rawesfor classical and quantum information transmission, it has
implementation by Fuchs and Jacdig]. Theorem 2 gives acquired further significance as a measure of information
this “rawness” a concrete meaning. The term “raw” has which is directly analogous to that of the Shannon entropy in
connotations of simplicity and unembellishment. These declassical information theory. In this context, the density op-
scriptions fit this implementation of a generalized measureerator represents an ensemble of pure states. Consider two
ment, reflecting as they do the absence of an attempt to r@nsembleg; ={q; ,Iz,//jl}} and&,={q; ,|z,/xj2>}, whereq; is the
store or increase the purity of the state following acquisitiona priori probability of both| wf) andlz,/;jz). These ensembles
of the measurement outcome. This is captured by the majohave the density operators
ization relation(3.5).

It is instructive to compare and contrast Theorem 2 with a _ 1 1
related theorem due to Uhimaifi6—8]. This states that the Pl(Q)_; ajl (5l (3.12
eigenvalues of two density operatops and p, obey the
majorization relatior\(p,) <\(p) if and only if there exists
a probability distributionp, and unitary operators, such Pz(Q)zg qil (Wl (3.13
that

C. Majorization and deterministic transformations

The noiseless coding theorem for classi@d] (quantum
p2=2> pUp1Uf . (3.1  [23)) information with pure quantum states implies that the
k maximum rate of asymptotically error-free classi¢qlian-
tum) information transmission using ensembles S(p;(q))
For a further proof and discussion of this theorem, see Wehtbits (qubity per signal. However, suppose that we could
[19]. Nielsen and Chuanpl] also give a particularly direct transform &; into & with unit probability. If S(p,(q))
proof whose sufficiency part parallels that of the proof we>S(p,(q)), then clearly these coding theorems would be
have given of Theorem 2 above. It is obvious that 8j11)  violated. Such ensemble transformations, which increase the
is a valid quantum operation, indeed one which satisfies Equon Neumann entropy, must be impossible, and lead us to
(3.4). In fact, the sufficiency part of Uhimann’s theorem is suspect that ensemble transformations giving rise to the ma-
easily seen to follow from the sufficiency part of Theorem 2jorization relationA(p,(q))<\(p,(q)) will also be impos-
in the special case whedg,= \/p,Uy. sible [except in the trivial case where all of the equalities in
The necessity parts of Uhlmann’s theorem and Theorem Eq. (3.1) are satisfietl
are, on the other hand, disjoint. In Uhlmann’s theorem, the The transformations we have in mind here are clearly the
emphasis is on the density operators. It says that(if,) deterministic transformations described in the preceding sec-
<M\(p1) then there must be a probability distributippand  tion. The question is then: do the eigenvalues of ensemble
unitary operatordJ, which depend on the initial and final density operators whose constituent pure states are related by
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a deterministic transformation obegny majorization rela-  obtained by Bapat and Sundgk4]: let A andB be NXN

tion? The answer, as we will now see, is yes: it is preciselyHermitian matrices. IA=0, and the diagonal elements Af
the reverse of that considered in Theorem 2, which is highlyare all equal to 1, thef25]

satisfactory in view of the above considerations.
Theorem 3Let{|y)} and{| )} be sets oN pure states. A(A°B)<\(B). (3.19
Consider the mixturep,(q) and p,(q) defined by Egs.

(3.12 and(3.13. If there is a deterministic transformation Let us apply this relation, making the identifications

D:|y)—|y7) V j, then A=II, (3.20
AMpi(D]<A[p2(a)], (3.14 B=QeI,, (3.2
for everya priori probability vectorq. wherell is a positive Nx N matrix with diagonal elements

Prior to proving this, we note that to speak of majoriza-equal to 1 andB is easily shown to be Hermitian, indeed
tion relations,p1(q) andp,(q) must have the same number positive, as a consequence of the positivity of Gram matrices
of eigenvalues. This condition is easily satisfied by “paddingand projectors @ clearly being a projectprand Schur's
out” the spectrum with the lower number of nonzero Eigen'product theoreni26], which states that the Hadamard prod-
values with zeroes so that the spectra of both density opergrt of two positive matrices is also positive. Substituting

tors are of equal size. these definitions into Eq3.19 gives
Proof. We start with the following observation made by
Jozsa and Schlierf24]. For thea priori probability vector A IIo(QeT,) < N(QeT,). (3.22

q, we define the matribQ={q;q;-}. Thenp,(q) has the o
same nonzero eigenvalues, with the same multiplicities, a¥/e know from Eq(2.11) that for a deterministic transforma-

QeI';, and likewise withp,(q) andQeTI',. To see why, con- tion, there exists a positive matrid such thatl’; —II-T',

sider the following entangled state of two systemsndb: ~ =0. We can see from this equation that the diagonal ele-
ments ofIl must be equal to 1. Making use of the commu-

tativity of the Hadamard product, we can see that, for a de-
|q’>:2 \/aj|¢j>a®|xj>b1 (3.19  terministic transformation

where {|#;)} may be either the seffy;)} or {|4)}, and QL =Te(QT). (323
{Ix;)} is an orthonormal set. The purity of this state implieswe can substitut®-T'; into the left-hand side of Eq3.22),
that the eigenvalues of the reduced density operators are thgving the majorization relation on the right-hand side of
same for each subsystem. We find that (3.18. This completes the proof. [ ]
A question of obvious importance is whether or not the
(3.16 converse of Theorem 3 is true, that is, whether or not satis-
' faction of the majorization relatio(8.14) is a sufficient con-
dition for the existence of a deterministic transformation
D:|¢//jl>—>|¢//jz)‘v’j. At the time of writing, this question is
PbZE qu'qj"<l//j|'//j'>|xj'><xj|a open. If it is ever to be answered in the affirmative, then this
i’ could suggest an interesting parallel between the theory of
deterministic transformations of sets of pure states, and that
=> {(QI)T}/i1% )], (3.17  of deterministic LOCC on pure, bipartite entangled states,
i’ which is covered by a theorem due to Nielsen which we
mentioned earlier. To be specific, |&,) and|¥,) be a pair
where I is the Gram matrix of the sef|;)}. Equation  of pure, bipartite entangled states, amdp, be the corre-
(3.17) tells us that the elements pf, in the{|x;)} basis give  sponding reduced density operators for one of the sub-
the matrix Q°I')7, where the superscripT denotes the systems. Then Nielsen'’s theorerh0] states the necessary
transpose. Any Hermitian matrix has the same nonzero eand sufficient condition for the existence of a deterministic

genvalues as its transpoggith corresponding eigenvectors LOCC procedure which transform¥ ;) into |¥,) is
being related by complex conjugation in the standard hasis

So, we see thap, and Q°I" have the same nonzero eigen- A(p1)<N(p2). (3.249
values. This implies that

pa=Ejl ajl )l

The similarity between Eq93.14) and (3.24) is striking,

N (@) 1< p2(9) ] NQeT) <A (QeI',)Vq. especially when we consider the fact that, in both contexts,
(3.19  the mixing, whose nonincrease is expressed by the appropri-

ate majorization relation, is related to a useful quantity or

Consequently, we will be able to establish the majoriza+tesource, rather than simple disorder. In the context of deter-
tion relation(3.14) if we can establish that on the right-hand ministic transformations of sets of pure states, the degree of
side of EQ.(3.18. It turns out that the latter relation can be mixing can be intuitively understood as expressing the dis-
proven rather straightforwardly using the following result tinguishability of the set of states, at least when they are
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linearly independent. We feel that a further open problemwhich has been examined is a deterministic transformation,
whose solution may require that of the preceding one, is howvhich converts one set of pure states into another with unit
one can make this intuition quantitatively precise. probability. However, probabilistic transformations, of which
In the second context, that of deterministic LOCC en-deterministic transformations represent a limiting case, have
tanglement transformations, the degree of mixing relates t@ot previously been investigated in full generality. To do so
how entangled the state is. The fact that useful quantitiegas the objective of Sec. II. For pure state transformations,
such as entanglement and distinguishability cannot increasge derived necessary and, when the initial states are linearly
under the appropriate kinds of deterministic transformation;ngependent, sufficient conditions for such a transformation
and that this fact can be expressed by simple, similar majorg, pe hossible with given conditional probabilities for each of
ization relations suggests that both scenarios are related, apth siates.
that this relationship could be understood in terms of some Extending our analysis to cover more general quantum

broader, as yet unproposed unifying framework. operations, it is easily shown that the purity of states is not
preserved in general. For the sake of simplicity, the probabi-
IV. DISCUSSION listic assumption was removed anq our er_nphasis _sh_ifted
from selective to nonselective operations. This scenario is of
In this paper, we have obtained some general results ra&onsiderable practical importance since it applies to a quan-
lating to transformations of quantum states, and associatedm system whose state we wish to control, deterministically,
probabilities or density operator eigenvalues, which aresuch as that of a quantum computer, but which is subject to
closely related to and in some contexts can be interpreted ascontrollable influences such as that of the environment.
probabilities. The main emphasis has been on transforma- One of the most basic questions we can ask about such
tions of pure states. Probabilities play an essential role imuantum operations is: under what circumstances is the final
guantum mechanics in quantifying the likelihood of a par-state always at least as mixed as the initial state, for every
ticular measurement outcome, given certain informatiorpossible initial state? Quantifying the extent to which a state
about how the system was prepared, namely, its initial states mixed, at least when the Hilbert space dimension exceeds
vector or, more generally, density operator. This has beetwo, is nontrivial. However, under certain circumstances, we
known since the early days of quantum theory. However, ircan unambiguously compare the degree of mixing of two
recent decades, it has become apparent, though a carefylantum states for arbitrary quantum systems: specifically,
analysis of the postulates of quantum mechanics and exploitvhen the eigenvalues of one density operator majorize those
ing the possibilities afforded by interactions between quanef the other. The nontriviality of mixing comparison is quan-
tum systems, that the quantum formalism permits more gertitatively captured by the fact that majorization enforces only
eral measurements than those whose outcome probabilities partial order on equivalence classes of density operators
are obtained by direct application of Born’s rule, and where(with respect to unitary symmetryvhich allows for incom-
the resulting post-measurement states are obtained by dirgearable states. We described how a simple, elegant, sufficient
application of the von Neumann—tars projection postu- condition obtained by Bapat and Sunder is also necessary.
late. Such measurements are known as generalized measuvée then showed that the eigenvalues of the source density
ments. The formalism of quantum operations, which de-operators for initial and final pure state ensembles related by
scribes both aspects of this general measurement process, leasleterministic transformation obey the opposite majoriza-
been of enormous interest recently, especially due to its rekion relation. In this context, mixing, rather than characteriz-
evance to the developing field of quantum-informationing disorder, is related to the information content or distin-
theory. guishability of the ensemble, and this majorization relation
Since the early days of quantum theory, it was recognize@xpresses the fact that such aspects of an ensemble cannot be
that the measurement process is inextricably bound up with amplified and is perhaps in the same spirit as the no-cloning
disturbance of the state of the system. With the developmeriheorem. Indeed, it is quite simple to show that the strong
of generalized measurements, it has become recognized tHatrm of the no-cloning theorem, which states that it is im-
the large disturbance associated with a sharp, von Neumarpossible to deterministically copy a set of nonorthogonal
measurement is an extremal case of a general trade-off bstates, follows from this majorization relation.
tween information and disturban¢&2,27. In this context, We noted the resemblance between this majorization rela-
information is treated as a “good” thing, while the associ- tion and that obtained by Nielsen in the context of LOCC
ated disturbance is considered to be an undesirable but uentanglement transformations. The latter is a necessary and
avoidable by-product. However, in situations where we ainmsufficient condition for deterministic LOCC transformation
to tailor the disturbance to produce a particular state, andf one pure, bipartite entangled state into another. The
where we wish to minimize the probability of other transfor- former is only known to be a necessary condition for a de-
mations being carried out, it is almost as though the conventerministic transformation of one set of pure states into an-
tional “morality” of the information/disturbance trade-off is other pure set. We argued that if it can also be shown to be
inverted. sufficient, then there is the possibility that deterministic
Specific probabilistic transformations, such as cloning and OCC and pure set transformations could be incorporated
unambiguous state discriminatigwhich is a probabilistic  within and understood in terms of a broader encompassing
transformation of a nonorthogonal set into an orthogonal setframework. This could lead to interesting insights into the
have been studied in detail. A further kind of transformationrelationship between entanglement and distinguishability.
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With this possibility in mind, let us consider the fact that are they related to more general sets of distinguishability

the majorization relatiori3.14) implies that the quantities

k
) =2, A} . 1=<k=N (4.1)
r=1

; il

monotones? Indeed, what criteria are the necessary and suf-
ficient conditions to qualify a functional as being a distin-
guishability monotone, or measure? To answer these ques-
tions, we would require a greater understanding of the
distinguishability of sets of pure quantum states, comparable

are nonincreasing under any deterministic transformatiomto that which we have of pure, bipartite entanglement.

D: |y})—|¢f)V] for any set of final state§y7)}. Can we
refer to such quantities as “distinguishability monotones,”

ACKNOWLEDGMENT

by analogy with the concept of entanglement monotones in-

troduced by Vidal[28]? If so, then how are they related to

This work was supported by the UK Engineering and

operations which distinguish between quantum states? Howhysical Sciences Research Council.

[1] M. A. Nielsen and I. L. ChuangQuantum Computation and

tions of Quantum Theor{Springer-Verlag, Berlin, 1983

Quantum Information(Cambridge University Press, Cam- [16] A. Chefles, Phys. Lett. 239, 339 (1998.

bridge, 2000.
[2] L. Hardy and D. D. Song, Phys. Rev.&8, 032304(2002.
[3] G. Alber, A. Delgado, and 1. Jex,
quant-ph/0006040.
[4] J. Fiuraek, Phys. Rev. %64, 062301(2001).
[5] A. Chefles, Phys. Lett. 70, 14 (2000.
[6] A. Uhlmann, Wiss. Z. Karl-Marx-Univ. Leipzig.20, 633
(1979).
[7] A. Uhlmann, Wiss. Z. Karl-Marx-Univ. Leipzig.21, 427
(1972.
[8] A. Uhlmann, Wiss. Z. Karl-Marx-Univ. Leipzig.22, 139
(1973.
[9] R. Bhatia,Matrix Analysis(Springer-Verlag, Berlin, 1991
[10] M. A. Nielsen, Phys. Rev. LetB3, 436(1999.
[11] M. A. Nielsen, Phys. Rev. 83, 022114(200J.
[12] C. A. Fuchs and K. Jacobs, Phys. Rev63, 062305(2002.
[13] M. A. Nielsen, Phys. Rev. &2, 052308(2000.
[14] R. B. Bapat and V. C. Sunder, Linear Algebra App2, 107
(1985.

LANL e-print

[17] L.-M. Duan and G.-C. Guo, Phys. Rev. Le80, 4999(1998.

[18] G. Visick, Linear Algebra Appl304, 45 (2000.

[19] A. Wehrl, Rev. Mod. Phys50, 221 (1978.

[20] M. B. Ruskai, S. Szarek, and E. Werner, LANL e-print
quant-ph/0101003.

[21] L. J. Landau and R. F. Streater, Linear Algebra A@8i3 107
(1993.

[22] P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and
W. K. Wootters, Phys. Rev. A4, 1869(1996.

[23] B. Schumacher, Phys. Rev.34, 2614(1996.

[24] R. Jozsa and J. Schlienz, Phys. Rev6Z 012301(2000.

[25] The majorization relatior{3.19 is actually a special case of
the following more general result discussed by ViditR] : let
A andB be NXN Hermitian matrices. IfA=0 then\(A-B)
<[ (1°A)B]. This reduces to the majorization relatih19
in the special case where all of the diagonal elemenis afe
equal to 1, in which castgeA=1.

[26] R. Horn and C. JohnsoMatrix Analysis(Cambridge Univer-
sity Press, Cambridge, 1985

[27] C. A. Fuchs and A. Peres, Phys. Rev53, 2038(1996.

[15] K. Kraus, States, Effects and Operations: Fundamental No-[28] G. Vidal, J. Mod. Opt47, 355(2000.

052314-9



