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Security of quantum key distribution with entangled photons against individual attacks

Edo Waks, Assaf Zeevi, and Yoshihisa Yamanioto
Quantum Entanglement Project, ICORP, JST, E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305
(Received 10 January 2001; revised manuscript received 20 September 2001; published 25 April 2002

We investigate the security of quantum key distribution with entangled photons, focusing on the two-photon
variation of the Bennett-Brassard 1988B84) protocol proposed in 1992 by Bennett, Brasard, and Mermin
(BBM92). We present a proof of security which applies to realistic sources, and to untrustable sources which
can be placed outside the labs of the two receivers. The proof is restricted to individual eavesdropping attacks,
and assumes that the detection apparatus is trustable. We find that the average collision probability for the
BBM92 protocol is the same as that of the BB84 protocol with an ideal single-photon source. This indicates
that there is no analog in BBM92 to photon splitting attacks, and that the source can be placed between the two
receivers without changing the form of the collision probability. We then compare the communication rate of
both protocols as a function of distance, and show that BBM92 has potential for much longer communication
distances, up to 170 km, in the presence of realistic experimental imperfections. Finally, we propose a scheme
based on entanglement swapping that can lead to even longer distance communication. The limiting factor in
this scheme is the channel loss, which imposes very slow communication rates at longer distances.
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[. INTRODUCTION The experimental effort to perform quantum key distribu-
tion evolved simultaneously as the theory was being formed.
The field of quantum-information theory has brought theSeveral groups reported implementations of the BB84 proto-

potential to accomplish feats considered impossible byl and other single-photon scheniés-10. Long distance

purely classical methods. One of these is the ability to transviolations of Bell's inequality have been demonstrated in

: L . [11], and recently several proof-of-principle experiments us-
mit an unconditionally secure message between two partlelgrIg entangled photons have also been perforfi-14,

known as quantum cryptography. Th? first full protocol for ny practical systems which implement quantum key distri-
quantum cryptography was proposed in 1984 by Bennett anﬁution have a baseline error rate which cannot be distin-
Brassard using four nonorthogonal states of a quantum SY{uished from tampering. A complete analysis of such sys-
tem[1], and has since been known as BB84. Following theiems must relate this finite error rate to the security of the
discovery of the BB84 protocol, other protocols based ontransmission. Furthermore, practical systems handle errors
nonorthogonal quantum states have been prop@8H The by public discussion through two additional steps, error cor-
security of all of these protocols relies on the impossibility ofrection and privacy amplification. The error correction step
measuring the wave function of a quantum system withougerves the dual purpose of correcting all erroneously received
imposing a backaction on the state. This backaction will usubits and giving an estimate of the error rate. Privacy ampli-
ally result in an increase in errors across the communicatiof|cation is then used to distill a shorter key which can be
channel. rr_1ade as secure as desired. A security analysis should con-
In 1991 it was proposed by Ekert that quantum key dis-Slder the effe_ct of these two steps.

T : . The security of quantum key distribution is a complex
tribution could also be implemented using entanglement beg, yiect with several open questions still remaining. Most the-
tween quantum systerié]. Two entangled quantum systems gretical studies of security have dealt with the BB84 proto-
cannot lead to violations of Bell's inequality if they are also col. Early work showed security against several restricted
correlated to a local variable, which an eavesdropper cagypes of attack$15,16. Later, security was proved for the
observe. A test of Bell’s inequality could then provide amost general individual attack47-19, and these proofs
statement of security against eavesdropping. The idea of ugvere extended to practical photon source$2f]. In an in-
ing entangled photons for quantum cryptography was exdividual attack the eavesdropper is restricted to measuring
tended by Bennett, Brassard, and Merm§j to the two-  each quantum transmission independently, but is allowed to
photon variant of BB84. In this protocol, which we refer to use any measurement which is not forbidden by quantum
as BBM92, both receivers measure their respective photonsiechanics. A more general attack allows collective measure-
randomly in two non-orthogonal bases. An eavesdroppements which make use of the correlations introduced during
cannot maintain perfect correlations simultaneously in thoserror correction and privacy amplification by exchange of
two incompatible bases while still learning information aboutblock parties. This information can be used to refine an
the measurement results. eavesdropper’s quantum measurement. Security against these

more general attacks has been showfRitj. The most gen-
eral type of attack is known as a joint attack where the eaves-

*Also at NTT Basic Research Laboratories, Atsugi, Kanagawadropper treats the entire quantum transmission as one system
Japan. which she entangles with a probe of very large dimensional-

1050-2947/2002/65)/05231F16)/$20.00 65 052310-1 ©2002 The American Physical Society



EDO WAKS, ASSAF ZEEVI, AND YOSHIHISA YAMAMOTO PHYSICAL REVIEW A65 052310

ity. There are currently several proofs of security against thigealistic sources, and allows the source to be placed outside
most general scenar{@2-24|. the labs of the two receivers. Although our proof makes as-
Entangled photon protocols have not been studied as thosumptions about the eavesdropper and the detection units, we
oughly as the BB84 protocol. Several proofs of security exisbelieve these assumptions to be realistic under many experi-
for entanglement-based protocols against enemies with urihental conditions. Because the technology to perform col-
limited computational power. Some of these proofs requirdective and joint measurements does not exist, and may not
that the receivers process their qubits through some form dPr quite some time, the assumption of individual attacks is
quantum computef25,26. Others apply to more standard "€@listic for current systems. The assumption that the mea-
entangled photon protocols but require that the source gerfUrement apparatus is reliable may also be argued as reason-
erate only one photon for each receiy27]. Although these able becau_se the measurement systems are located in the labs
proofs represent important progress in the security of en(_)f the receivers. They can therefore be t_ested to make sure
tangled photon protocols, they cannot yet be used directly t§1€Y @€ operating according to expectation, and cannot be

analyze the security of practical systems. physically manipulateq by. the eavesdropper. This is in con-
In order to treat practical entangled photon systems drast to the source which is located somewhere between the

proof of security must be extended to realistic sources. FufWe receivers and can easily be modified.
thermore, in most of these systems the source can be located P€riving a bound on the collision probability allows us to

in between the two receivers and is not trustable. An eavednake several interesting quantitative observations about the

dropper can replace it with a different source that may pro_BBM92 protocol. We show that the collision probability for

vide more information without changing the error rate. in thethis Protocol is the same as BB84 with an ideal single photon

worst case one must also consider the detection apparatus$gurce- This has two interesting implications. First, there is
be untrustable, so that an eavesdropper can in some wdalyp @nalog in BBM92 to the photon splitting attacks which

modify the measurements made by the two communicatin%a” be a severe security risk for the BB84 protocol. Second,

parties. The issue of untrustable source and detection appilere is no advantage to keeping the source in the labs of one

ratus has previously been investigated by Mayers and yaBf the receivers. The source can be put in between the two

[28,29. Mayers and Yao present a protocol in which two receivers without changing the form of the collision prob-
receiving parties measure their respective signals rar]don.@blllty. We then show that there is actually a big advantage to

in one of three nonorthogonal bases. It is proven that if thUtting the source midway between the two receivers. Such a

probabilities of the measurement results are consistent witRonfiguration is significantly more robust in the presence of
those produced by a Bell state, then the security of the conf2Ptical losses and detector dark counts, which leads poten-
munication channel is ensured. An eavesdropper cannd@!ly to much longer communication distances. Since the
simulate these probabilities while learning a non-negligibleP"°f applies to any source of entangled photons we can
amount of information about the secret key, even if she i€Xt€nd our analysis to more sophisticated methods of gener-
allowed to modify or control all aspects of the source and®ting entangled pairs, such as those based on entanglement
detection apparatu&e., number of particles per pulse, mea- SWapPping. In the final section we analyze a system based on
surement bases, losseShis proof has the potential to guar- & Series of entanglement swaps using only linear optics. We
antee security for realistic systems with virtually no assumpSnOW that this system can be even less sensitive to detector
tions. However, at this point the proof considers only thed@rk counts and channel losses, which may lead to even
idealized limit where the probabilities are perfect, so it can/ONger communication distances. The limiting factor in this
not be applied to practical systems either. The extension cfcheéme is the channel loss which imposes unreasonably slow
this proof to imperfect probabilities due to effects such acOmmunication rates at longer distances.

imperfect state preparation and channel losses remains an !N Sec. Il, we describe the BBM92 protocol and review
important but difficult question. the general theory behind quantum key distribution. We re-

In this paper we provide a proof of security for an en- state some important information theoretic results on error

tangled photon protocol which can be applied to practicafOrrection, and privacy amplification. We then derive a
systems. This is done by extending the proof Gtkemhaus methoc_l for ha_ndllng the side information leaked during error
for the BB84 protocol with realistic sourcé20] to apply to correction. T'hIS method allows us to account for the effect of
BBM92, the EPR variant of the BB84 protocol. The proof of €7OF correction on the_length of the final key. In Sec. Il we
security relies on two assumptions. The first is that all eavesd€r1ve a proof of security for the BBM92 protocol, and use it
dropping is restricted to individual attacks. The second asi calculate expected communication rates under practical
sumption is that the detection apparatus is trustable. Thi§XPerimental conditions. These rates are compared to the
means that we consider a specific model for the behavior gpB84 Pprotocol with ideal and Poissonian sources. Finally, in
the detection apparatus, which includes losses, and assum&¢: V> We investigate an experimental configuration based
that the eavesdropper cannot modify the measurement app®? €ntanglement swapping, which can be more robust to
ratus beyond this model. With these restrictions, we find £nannel loss and detector dark counts.

guantitative relationship between the security of the final key
and experimentally measurable quantities such as the error
rate. This is achieved by finding an upper bound on the av-
erage collision probability, which is an important quantity in  In this section we provide a review of important concepts
the analysis of privacy amplification. The proof works for in quantum key distributiofQKD). We also derive some

Il. PRELIMINARIES
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preliminary results which we will use in the upcoming sec-logical imperfections in the optics and detectors, but can also

tions. The standard participants in QKD are Alice, Bob, andcome from eavesdropping. In order to achieve noise-free

Eve. Alice would like to exchange a secret key with Bob,communication these errors must be corrected, and this can

which can later be used to encode the actual message. To the done through public discussion.

this she uses both a quantum channel and a public channel. Following the raw quantum transmission Alice, Bob, and

The enemy, Eve, can listen in on the public channel, but i€ve each possess the strings Y, and Z, respectively. In

assumed incapable of altering the messages being exrder to correct the errors, Alice and Bob exchange an addi-

changed. Eve is also allowed to make any measurements stienal messaged) such that knowledge of striny and U

can on the quantum channel. leave very little uncertainty about string One way to math-
The secret key is formed in three steps. The first is the ravematically express this is to use the Shannon entropy func-

quantum transmission, which uses both the quantum antion [30]

public channel simultaneously. The next two steps, error cor-

rection and privacy amplification, make use of only the pub- _

lic channel. After privacy amplification Alice and Bob each H(X) = 2 P(x)logz p(x). ©

possess a copy of the secret key, about which Eve knows

only a negligibly small amount of information. The conditional entropy functiorH(X|Y=y) is defined
as above using the conditional probability distribution
A. Quantum transmission p(x|Y=y). The average conditional entropy(X|Y) is sim-

In the BBM92 protocol Alice and Bob share a pair of ply defined as
photons from a source presumed to be somewhere in be-
tween both parties. In the ideal case the photon pair is in a H(X|Y)=2, p(y)H(X|Y=Y). (4)
guantum-mechanically entangled state such as y

1 The message should provide Bob with enough information

|y = —(|xx)+|yy)), (1)  so thatH(X|YU)=~0. Since stringU is publicly disclosed,
V2 Eve may learn additional information as well, but good error

correction algorithm will reduce this information leakage to

wherex andy are two orthoganol states of the photon wave - icimum. Unfortunately, given the error rage a lower

function. For definiteness we assume thamndy are polar- | L+ o it on the minimum number of bits lih This

ization states, but alternate implementations can usually bl?mit which is a variant of the Shannon noiseless coding
treated in a completely analogous way. The above state in}heo’rem can be stated as

plies that if both receivers measure their photon in xhe
basis, their measurement results will be completely corre-

lated. However, we can define the alternate basis Iim%zh(e), (5)
n—oo
1 . . . . .
luy= ‘72(|x>+|y>), wheren is the length of the strings is the number of bits in

messagdJ, andh(e) is the conditional entropy of a single
bit over a binary symmetric channel which is given by

1
|u)—5(|x>—|y>). h(e)=—elog,e—(1—e)logy(1—e). (6)

Using this basis one can rewrite the above state in thén error correction algorithm should ideally operate very
equivalent form close to this limit. At the same time the algorithm should be

computationally efficient or the execution time may become
1 prohibitively long.
)= 5(|UU>+|UU>)- (2 Error correction algorithms can usually be divided into
two classes, unidirectional and bidirectional. In a unidirec-
tional algorithm information flows only from Alice to Bob.
Alice provides Bob with an additional string which he
éhen uses to try to find his errors. This makes it difficult to
design algorithms which are both computationally efficient
d operate near the Shannon lipdi®,31]. In a bidirectional
algorithm information can flow both ways, and Alice can use
the feedback from Bob to determine what additional infor-
mation she should provide him. This makes it easier to ap-
proach the Shannon limit. These two classes can be further
In any realistic communication system errors are bound teubdivided into two subclasses, one for algorithms which
occur, and some form of error correction is required. Indiscard errors and one for those which correct them. Discard-
guantum cryptography the errors typically arise from technoing errors is usually done in order to prevent additional side

Thus, if both receivers choose to measure inuheinstead
of the x-y basis their measurement results will remain corre
lated. In BBM92 each receiver measures their respectiv
photon randomly in either thg-y or u-v basis. Later they
agree to keep only the instances in which the measureme
bases were the same, forming the “sifted” key.

B. Error correction
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information from leaking to Eve. By correcting the errors 2r
one allows for this additional flow of side information, which H(K|GZ)=r— m(Pc(X|Z= 2));, (11
can be accounted for during privacy amplification. Since pri-
vacy amplification is typically a very efficient process, algo-ywhere
rithms which correct the errors tends to perform better.
Although our proof of security is independent of the type
of error correction which is done, the communication rate in <PC(X|ZZZ)>z:§;f P(2)P(X|Z=2) (12
QKD strongly depends on this. For our calculations we will
work with the algorithm given ih31], which is bidirectional s the average collision probability. This is a quantity of cen-

and corrects the errors. This algorithm works within aboutira| importance in privacy amplification. In the case of indi-
15-35% of the Shannon limit, even with rather substantialiqual attacks, théth bit in Z depends only on thith bit in

error rates. X. Under these circumstances the average collision probabil-
ity factors into the product of the average collision probabil-
C. Privacy amplification ity of each bit. Thus,
After error correction, Alice and Bob share an error-free
<PC(X|Z:Z)>z:(pc)nl (13

string X. Eve has also potentially obtained at least partial
information about this string from attacks on the raw quansyperen is the number of bits in string and
tum transmission and side information leaked during error

correction. ThusX cannot by itself be used as a key. How- p?(a,B)
ever, through the method of generalized privacy amplifica- Pe= D D —— . (14)
tion[32], the stringX can be compressed to a shorter stiing «=014=1 P(B)

over which any eavesdropper has only a negligible amounlt the ab : th iol | f
of information. The amount of compression needed depend§1 Ie ab_:)\_/e eA>|<_pre,SS|(tm_|sums over the possi tﬁ va ues_é)l a
on how much information may have been compromised durSingle bitin Alice's string andg sums over ihe possible
ing the previous phases of the transmission measurement outcomes of the probe, which are enumerated

To do privacy ampliication Alce picks a funciiapout 17" % 10 & Suppase that we are abie 10 came up with
of a universal class of functiorgswhich map alln bit strings f—c—s wheresis a securitgz aﬁameter czh/os.en by Alice and
to r bit strings where <n (see[32] for more details Once n ' yp y

g has been picked and publicly announced both parties caE’Ob’ then Eq(11) leads to

culate the stringK =g(X), which serves as the final key. lo(X:Z)<2"In2 15
This key is considered secure if Eve’s mutual information on e(X;2) ’ (15)
K, defined a430] Thus, a bound on the average collision probability allows the
1e(K;GV)=H(K)—H(K|GV), 7) two parties to make Eve’s mutual information exponentially
small ins.
is negligibly small, whereG is the random variable corre- S _ _
sponding to the choice of functiomandV is all the infor- D. Handling side information from error correction
mation available to Eve. _ . - If the only information available to Eve comes from string
An important quantity in the analysis of privacy amplifi- 7 \which is obtained from attacks on the quantum transmis-
cation is the collision probability defined as sion, then the discussion in the previous section is sufficient.
But if Alice and Bob do error corrections Eve will also learn
P.(X)=>, p2X). (8 an addlt!on:all str|ngU_wh|.ch gives he_r more mformatlon
X about Alice’s key. This side information must also be in-

cluded in the calculation. We can apply the bound in €.

One can show that the conditional entropy(K|G) is  tg the conditional distributiop(x|U =u,Z=z), which leads
bounded by([32] theorem 3 to

r r
H(KIG)Br—HPC(X)- 9) H(K|G,U=u,Z=z)>r—“f—ZPC(X|U=u,Z=z).
. _ o o 17
This theorem can be applied to conditional distributions as
well, which leads to We can then try to average both sides of the above expres-
sion but doing this introduces additional complications. The
random variableéJ introduces correlations between different
bits in stringsX andZ. Because of this the average collision
probability no longer factors into the product of individual
whereP (X|Z=2z) is just the collision probability of the dis- bits, as in Eqg.(13). This makes the problem of finding a
tribution p(x|Z=z). By averaging both sides of the above bound on the average collision probability significantly more
equation we get difficult. This problem has been previously investigated in

r

2
H(K|G,Z=Z)>r—mPC(X|Z=Z), (10

052310-4



SECURITY OF QUANTUM KEY DISTRIBUTION WITH . .. PHYSICAL REVIEW A65 052310

[33], where several bounds on the collision probability
P:.X|Z=z,U=u) were derived as a function of LP
P.(X|Z=2). The extension of this work to the average col- (]_ H/V PBS
lision probability involves a few subtleties, which we deal

with in Appendix A. In this appendix we show that if we set Channel ﬁl

: pa
r=nr—k—t—s, (18 . /7 _D

o/(1-a) BS 50/50BS 45, 45 pBs

where
FIG. 1. Detection unit used by Alice and Bob.
7=—log; pc, (19
opposed to active modulation where the measurement basis
« is the number of bits in messagig n is the length of the  for each receiver is switched using a rapid phase modulator.
error corrected key, and bothandt are security parameters We work with a passive modulation scheme because it sim-

chosen by Alice and Bob, then plifies the proof of security and is easier to implement in
s practice.
le<2 '+ (20) In order to account for optical losses we place a beam

splitter in front of the detection apparatus which reflects off a
specified fraction of the light into a loss mode. All losses are
This bound on Eve’s information is still exponentially small lumped into this beam splitter and the subsequent optical
in the security parameters, and only involves the collisioncomponents can be regarded as lossless. This model is real-
probability averaged over her measurements on the quantuistic under two conditions. First, the use of a beam-splitter

In2’

transmission. model is valid if the loss is linear. A linear beam splitter
cannot effectively model loss due to nonlinear effects such as
Ill. SECURITY OF THE BBM92 PROTOCOL two-photon absorption. To incorporate such effects a more

complicated loss model is required. However, in real system
In this section we give a proof of security for the BBM92 multiphoton absorption is typically many orders of magni-
protocol. As shown in the previous section, this involvestude weaker than linear absorption, so a beam-splitter ap-
finding an upper bound op, given in Eq.(14) using the proximation is extremely good. Second, placing the beam
laws of quantum mechanics. We then calculate the commusplitter in front of the detection apparatus requires that the
nication rate in the presence of detector dark counts antbsses to each detector are equal. This is an important point
channel losses for both an ideal source which creates exactig passive modulation. A passive modulation scheme must be
one entangled pair per clock cycle, as well as a more practieonstructed in such a way that a photon has the same prob-

cal source based on parametric down conversion. ability of being detected regardless of which path it takes. If,
for example, one detector has higher quantum efficiency than
A. Proof of security against individual attacks the other three, additional loss should be placed in front of it

to make sure that the above property is satisfied.

Having modeled the loss, we can now define the operation
of the lossless components. For each detection unit we define
E( as the projector onto vacuum aifif, as the projector

In the BBM92 protocol Alice, Bob, and Eve observe or-
thogonal Hilbert spaced 5, Hg, andHg respectively. In the
most general case Eve can control which density mairix

over the spacei,®Hg®He she will share with Alice and onto the state which ham photons with polarizationy,
Bob. This density matrix can span all the photon numbe(/vhere ye{x,y,u,v}. The detection apparatus perforrﬁs a
sta_tes of the two receivers, and EVG’S _measurable s_ubspa Bsitive ope}aior, vélued measurem¢BOVM) whose ele-
which can have any number of d_mensmns. In practice .EV ents corresponds to different combinations of detection
can do this by blocking out the original source and substltut—events from four photon counters. The elements of this
ing her own source which generates the desired state th '

o . . ; . ?JOVM can be broken up int& .., F,, and Fp which
maximizes her information on the final k_ey. We derive acorrespond to no detections, one detection corresponding to

rbolarization ¢, and more than one detection, respectively.

upper bound, even if Eve is incapable of generating it inThese operators are given pig]

practice.
As mentioned previously, our proof assumes that Eve is F,ac=E°, (22)
restricted to individual attacks and that Alice and Bob’s de-
tection apparatus is trustable. A trustable detection apparatus “o1)\"
is one whose components behave according to a known Fy= (§> E:L, (22)
model which cannot be modified by Eve. In order to define n=t
this model we first have to specify the physical implementa- % 1 /1\n
tion of the detection apparatus, which is shown in Fig. 1. In Fo=2> H__(_) }E ED/]
this detection scheme, a 50/50 beam splitter modulates the n=2 [[2 |2
measurement basis by partitioning the photons and sending 1 ®
them into one of the two polarizing beam splitters. This - nEM_ =nem
modulation technique is known as passive modulation, as - n,;ﬂ EE T EE, @3
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Multiple de_tecti.on events, corresponding tp t.he operator p(a,b,e)=Tr{papeFaF,Fet
Fp, are possible if more than one photon is incident on the
detection apparatus. These events should not be discarded,
because keeping track of them can prevent certain security
loopholes. By incorporating the multiple detection events in
the proof of security for the BB84 protocol, one can make it
disadvantageous for Eve to add additional photons to Alice’s
signal[19]. We will show that monitoring these events can
also significantly simplify the proof of security for the The last step comes from the fact that the projectors com-
BBM92 protocol. In order to incorporate multiple detection mute with Eve’s measurement operator and the invariance
events into the proof of security we will use the disturbanceof the trace under cyclic permutation. If we define
parametere introduced in[19]. This parameter is given by  p{})=E.Elp.,E.EL we see that the joint probability does

not change if we select a density matrix of the form given in
Nerr+WpNp Eq. (25).
0 (24) The main consequence of the above result is that Eve can
keep track of the number of photons she is sending to Alice
whereng,,, Np, andn,e. are the number of error bits, dual @nd Bob without changing the measurement results. Thus,
fire events, and number of bits that entered the errorher collision probability can be broken up into different pho-
corrected key, respectively, amg, is a weighting parameter ton number contributions as
chosen by Alice and Bob. As part of the proof we will show = i)
thatwp=1/2 is a sufficient number to ensure security for the D= 2 Frec p(ij) (28)
BBM92 protocol, just as it was for BB8{L9]. Note that in ¢ i1 Prec ¢
the limit that the dual fire rates are negligibly small the dis-
turbance parameter simplifies to the bit error rate. where

Eve is allowed to pick any density matrix,,. which 5
represents some entangled state of her observable Hilbert (i) _ i p(,m)
space and the signals transmitted to Alice and Bob. She can ¢ _meMm) v pldl p(m)
send any number of photons she wishes, or a coherent super- '
position of photon numbers. Our first step is to show that therhe setM (1) is defined as the set of all measurement results
most general density matrix,p. Can be written as on Eve’s probe if she sertphotons to Alice angd to Bob,
and pll) is the probability that the signal componeptf)),
enters the error-corrected key. We can similarly defifg
and p(D'” as the probability that this signal component enters
the sifted key as an error or causes a dual fire event, respec-

wherep{l) is the density operator over the subspace wherdively. Using Eq.(24) we can break up the disturbance mea-
Alice receivedi photons and Bob receivdghotons. This is  Suree into different photon number contributions as
due to the fact that the detection units consist of only passive (i) (i) (i) (i)
linear optics with vacuum auxiliary modes and single-photon =3 Prec Perr tWoPp™ D Prec ij)
) €= T = e'l, (30)
counters. As can be seen by E(&1)—(23), a detection event T Prec ) T Prec
is represented by a projection operator which is diagonal in
the photon number basis. We defik as the projector onto Our next step is to investigate the tepﬂl) which is the
Alice’s i photon subspace, affi, as the projector onto Bob’s component corresponding to Alice and Bob each receiving
j photon subspace. Suppose tRgtandF, are positive op- one photon. Instead of directly finding a bound on Eve’'s
erators which represent a measurement corresponding to aagllision probability from this component, we show that any
combination of detection events for Alice and Bob, respecbounds derived for the BB84 protocol on single photon states
tively. Because these operators are diagonal in the photogan also be applied to BBM92 when Alice and Bob each
number basis they can be written equivalently as receive one photon. In the BB84 protocol Alice sends a pho-
ton in one of four nonorthogonal states to Bob. Eve performs
o a measurement on the photon and the backaction noise on
FazZ E.FLEL, (26)  the state can be described by a complete positive mapping
(CP map

= %‘4 Tr{PabeEiaE{)FanEiaE{)Fe}

= z Tr EiaE{JPabeEiaE{)F aFpFel-
]

nrec

(29

Pabezijzz1 pgé)ez! (25

Let F, be the positive operator corresponding to Eve’s meawherep, is the density matrix prepared by Alice, apgd is
surement result on her own subspace. The joint probabilityhe density matrix which Bob receives. The only restriction
p(a,b,e) can be written as on the operatorg, is that they satisfy the condition
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B. Ideal entangled photon source

T =
; AAi=1 (32 In this section we will calculate the expected communica-

tion rate for an ideal entangled photon source. This source

_ . creates exactly one pair of photons per clock cycle, whose
In the BBM92 protocol Alice does not directly send Bob a quantum state is given by

density matrix. In the ideal case where both receivers share a

pure entangled pair, if Alice’'s measurement corresponds to 1

the operatoF , she prepares Bob’s density matrix in the state [ )= —([xx)+|yy)). (36)
F;/Tr{Fa}. If one could show that, given Alice obsenfeg, V2
any eavesdropping strategy incorporated by Eve could oncg

again be described by a CP map Ithough proposals for creating such a source €3g{, we

do not know of any successful implementations of such pro-
posals to date. Nevertheless, this simplified analysis will set
F; the groundwork for the analysis of practical sources based on
= AkmAT, (33)  parametric down conversion.
K a When doing two-photon experiments one is interested in
coincidence events where the two receivers simultaneously
then this seemingly different situation is equivalent to thedetect a photon. In all our calculations we will assume that
BB84 protocol attack. Unfortunately, in the BBM92 protocol the dual fire rate is negligibly small, thus the disturbance
there are many eavesdropping strategies which cannot be dearameter simplifies to the error rate. The channel is assumed
scribed by such a mathematical formalism. However, in Apt0 be an exponentially decaying function of distance. Thus,
pendix B we show that there is always an optimal attackhe channel transmissidf: can be written as
which can be described by a CP map. Thus, any bounds _ (oL/10)
which have been derived for the BB84 protocol using a Te=10""""7, (37)
POVM formalism on single-photon states can be directly

applied to BBM92 protocol when one photon is sent to eacﬁNhereU is the loss coefficient. We combine all losses to each

receiver. Several such bounds have alread . rgceiver from the channel, detectors, and optics into one
. y been deriv . . s
. . . .. beam splitter with transmission
[17-19. Since we are interested in the average collision
probability, and since we are assuming the use of a bidirec- a = nTe(L), (38
tional error-correction algorithm which corrects rather than
discards errors, we can use the bound derived likdnhaus  where 7 accounts for all distance independent losses in the
([19], Appendix D. This bound is given by system. We separate the coincidence probability into two
parts, pirye 1S the probability of a true coincidence from a
1 pair of entangled photons, amq,sc is the probability of a
p(c“)s = +2eM—2(1D)2, (34)  false coincidence which, for an ideal source, can only occur
2 from a photon and dark count or two dark counts. In the limit
of negligible dual fire events we have

In order to account for the components with more than one L n
photon for either receiver we show in Appendix C that, if the Peoin™ Prrue™ Praise-

weighting parametewy, in Eq. (24) is set to 1/2, Eve’s 0p- \ye need to decide where to put the source. Setting the source
timal strategy is to only send one photon to Alice and Bob.5 gistancex from Alice andL — x from Bob we have
This argument follows the same line as that given for the

BB84 protocol in[19]. Given that this is the optimal strategy Prrue= Qx| —x= N0 ,
one is led directly to the result

(39

and
Pe<3+2e— 26, (39 Pratse=4a,d+ 4, _,d+16d2, (40)

L . . keeping only terms which are second orderaipandd. It

which is exactly the same as the collision probability for the.on e seen that the probability of a true coincidence does

BB84 protocol using a single-photon source. __not change withx, but the false coincidence rate does. A
The above result highlights two important points. First, giynje optimization shows that the false coincidence rate

one does not have to confine the source to either Alice’s 0L chieves a minimum halfway between Alice and Bob, which
Bob’s lab. Allowing Eve to have total control of the source is given by '

does not effect the form of the collision probability. Second,
there is no analog to the photon splitting attack for the Psalse= 8| jpd + 16d2. (41)
BBM92 protocol since the collision probability bound was

derived without assumptions on the source. The error rat®Ve definen,,; as the total number of signal pulses sent to the
and dual fire rate are sufficient to determine how much priteceivers, and,.. as the length of the error corrected key.
vacy amplification is necessary. Thus,
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TABLE 1. Benchmark performance of error correction version, is extensively used to generate entanglement in po-
algorithm. larization as well as other degrees of freedom such as energy
and momentum. Parametric amplifiers exploit the second-
e f(e) order nonlinearities of noncentrosymmetric materials. These
0.01 116 nonlinearities couple three different modes of an electromag-
' ' tic field via the interaction Hamiltonigi35]
0.05 1.16 ne
0.1 1.22 H|=ih)((z)Vei(‘”_“’a_“’b)téTBT-l- H.c.,
0.15 1.35
where modesa and b are treated quantum mechanically
while the third modeve'®! is considered sufficiently strong
n... —MtotPeick (47 0 be treated classically. The state of the field after the non-
rec 2 linear interaction is given by
The error ratee is 1 (7
[)=exg i | Hibdt||0).
o Pralse2+ 4 Pirue (43)
Pcoin ’ We assume the energy conservation conditiens w,
) ) ) . + wp, Which leads directly to
where o is the baseline error rate of the signal. Using Eg.
(18) we have | ) = ex(@b'=ab) gy
_ _ K 44 where the parametey depends on several factors including
I=nNpec 7(e) t—s. (44) . N ) .
rec the nonlinear coefficient'<’, the pump energy, and the in-

] ) o teraction time. Using the operator ident[35]
We define the asymptotic communication rate as

r ex(éTB*—éﬁ): eréTEﬁe— gata+btb+ Do FéB' (49)
R= lim —. (45
Ny tot where
In order to incorporate the effect of the error-correction al- I'=tanhy,
gorithm we define the functiofi(e) in the same way as was _
done in[20]. This function determines how far off from the g=Incoshy,

Shannon limit the algorithm is performing. An algorithm can

- irectly | he relati
be tested to determine the value f{). For example, the directly leads to the refation

values given in Table | are for the error-correction algorithm 1 =
given in[31]. Using this definition we have |p)=——— >, tanH y|n),|n)y. (49
coshy =0
K
lim =—f(e)[elogy(e)+(1—e)log,(1—e)]. The above equation makes it clear that whenever a photon is
Nrec—o r€c detected in one mode, the conjugate mode must also contain

46 4 photon. In order to generate entanglement in polarization
If we fix the value of Eve's information on the final key °N¢ needs to create a correlation between the polarization of
Y these two modes. This is typically done using noncollinear

given by Eq.(20), thensis a constant and varies roughly . X ;
logarithmically withn,,, so both terms drop out in the limit -Ir;wygree (I:Ior%r::)ellisc?dtgjaitr?thel ?adci%n which leads to the slightly

of large strings. This leads to an expression for the commu-

nication rate H =ihx @A (alb]+alb])+H.c.,

R= p°°‘“{T(e)+f(e)[e|ogz e+(1—e)logy,(1—e)]}. wherex andy refer to the polarization of the photon. Since
2 all creation operators in the Hamiltonian commute, we can
(47 apply Eq.(48) to both mode pairs which directly leads to
The values ofp.,i, ande can be calculated from Eq&39) etanhx(éll;;+é;6l)
and (43). | )= |0). (50

cosit x

C. Entangled photons from parametric down conversion If y is sufficiently small that the above expression can be

A more practical way of generating entangled photons iskept only to first order then a parametric down converter
to use the spontaneous emission of a nondegenerate paramaeates a Bell state. By¢ cannot be made small without
ric amplifier. This technique, known as parametric down con-sacrificing the rate of down conversion.
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We want to calculate the probability..;, and the error tracing out loss modes andd and ignoring the coherence
ratee as a function of the parametgr as well as the optical between different photon number states, the density matrix
losses and dark counts of the detectors. We begin by definingecomes
the field operator a b A b a b

L pae=Apy, +Bpe®pot+Clpu®potpe®py)
A etanhx(alb;+é§bl>

= (51) +Dpi@py+(1-A-B—2C-D)pp, (59

cosit x
. . _ where is the matrix which represents all the possible
The beam-splitter model that we have introduced previously; .« ﬁwahich more than one ph(?ton is in either n£ded

to account for the losses becomes very useful here. The be%nafter the losses. The coefficiems B, C, andD are
splitters perform a unitary operation on the modes which is ' T

given by A 1 2af ytant? x -

aa__) aleéa__'_ ll_aleeg-, COSHX (:I._tanh2 X(l_aL/2)2)4,

R “ - 1 1

b,— Va pb,+V1—ad,, =

o Na b, appd, B cosif x (—tanf x(1=a, )27’ (55

where o represents polarization and the moaeandd are
the reflected modes of the beam splitters. To determine the _ 1 2ay (11— ayp)tantt x (56
state of the photons after the loss we first apply this beam- cost y (1—tantf x(1— ay »)%)*’
splitter transformation. To simplify the notation we define
another field operator 1 4a?,(1—a p)?tant x -

D= .
- - costf xy (1—tanlf x(1—ay»)?)*
‘r//pz,b:ﬁld’;"_ﬁ;d’)tv X ( X( L))

i . _ In the above expression is the probability that Alice and
wherep and ¢ are any two independent modes. Using thisgop share an entangled pair of photons. This component on
definition, Eq.(51) is transformed by the two beam splitters e signal will be defined as a true coincidence, because it

into leads to error-free transmission. The coefficiBris then the
1 probability that neither receiver gets a photon, either because
= exd tanhy (e ptap+ Va (1= aL ) the source failed to generate a pair or because all photons
coslf x HeTa - - were lost. Similarly,C is the probability that one of the two

receivers gets a photon but the other does not. In order for
these signals to be factored into the key they must be accom-
panied by dark counts. Coefficiebt is the probability that
both receivers get a photon, but these photons are unpolar-
ized and uncorrelated. Note thatis at least fourth order in

X (Pagt o) + (1= ayp) Pea) I
We can expand this expression in termsabfandb’ as

ES exfg tanhyx(1— ay ) ¥eal tanhy, indicating that at least two pairs must be created in
cosit x ; . SoS .
order for it to exist. The intuitive explanation for the pres-
x{1+tanhyVa o (1— a2 ¥ag+ Yedl ence of this unpolarized component is that when higher-order
number states are created, and some of these photons are
+tanhy gap+tantt ya (11— ay ) Yaptheat Yo} lost, the loss modes andd play a similar role to Eve. The

) ) . photons in this mode can potentially carry some information
whereyp is the wave operator which contains all the termsapout the quantum state of the other photons, and will thus
that create more than one photon in either modes. It is nowesuylt in decoherence. Since this component of the signal

necessary to operate on the vacuum and trace out over modgguses a 50% error, we can lump it into the definition of a
c andd to get the final density matrix. As shown in Sec. lll A fa|se coincidence. Hence,

we can ignore any off-diagonal terms that couple different

photon number states because they do not contribute to the Pirue=A,
signal. We define the density-matrix, as the two-photon

i ix in whi e =16d?B+8dC+D.
density matrix in which the photons are in the entangled state Ptaise

|} given in Eq.(36). The matricep? and p represent a
zero-photon vacuum state in modendb, respectively. Fi-
nally we define the matrices? andp? as

The communication rate can be calculated by simply plug-
ging these expressions into E¢89), (43), and(47).

I D. Calculations

a,b__
Pu- =7 (52 We now use the previously derived equation to calculate
the rate of communication using the BBM92 protocol. We
wherel is the identity matrix. The above matrices correspondwould also like to compare these rates to those of the BB84
to an unpolarized photon in modeor b, respectively. After  protocol with ideal and realistic sources. The equations for
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the communication rate of the BB84 protocol against indi- a) 10°

vidual attacks are given bj20] 10° [ 2584~ Poisson

- - - BB84 - |deal
F------ BBM92 - PDC
o= BBMO2 - Ideal

Repsi= ™ |B7(elf)+ f(e)[elogs e+ (1-e)

log(1—e)]}. (58)

The factorr is again defined as Eq19). The parameteg
accounts for the photon splitting attacks due to multiphoton
states emitted by the source, and is given by

Bits per Pulse

T T T T T T T 1
60 80 100 120 140 160 180 200

_ Pclick— Pm_ (59) Distance (km)
Pclick

B

1x10°

In the above equatiop,, is the probability the source emits )
a multiphoton state, angcx is the probability that Bob o
detects a photon. For an ideal soungg=0, while for a xio *
Poissonian light source it is given by

—— BB84 - Poisson
- - - BB84 - Ideal
[Feemes - BBM92 - PDC
------ BBM92 - Ideal

1x10

1x10 ¢ RSN

Pm=1—(1+Me ™", (60)

1x10 ™ N

Bits per Pulse
4

wheren is the average number of photons per pulse. Bob's _ )
probability of detection can be broken up into a signal and 0 R
dark count component as 1107 '

107" T T T
20 40 80 ao 100 120

Loss (dB)

o 4

Pclick= Psignalt Pdark (61

where we again ignore simultaneous signal and dark count

events. These components are given by FIG. 2. Comparison of communication rate for the BB84 and

BBM92 protocols. Plo{a) is for 1.5 um fiber optical communica-

Psignal= @LN (62) tion experiment. In this wavelength=0.18,d=5x10"°, and the
channel losso is set to 0.2 dB/km. For the Ekert protocol the

Pdark=4d. (63) distance is the total separation between Alice and Bob: (-l?:_lbt _
shows calculated values for free-space quantum key distribution

For an ideal source=1, but for a Poissonian source it be- With visible photons. The rate is plotted as a function of the total

comes a free variable which should be optimized. Note thaloss. including detector quantum efficiency. The detectors are as-

the loss coefficient i1t62) is now «, instead ofa, ,. Thisis  Sumed to have a dark count rate @#5x 10 °. For the Ekert

because in the BB84 protocol the photon starts in Alice’s lagProtocol the loss is the total loss in both arms.

and must travel all the way to Bob, in contrast to the BBM92

protocol where the photons start half way in between. Théum efficiency to 0.18d=5x10"°, and the channel loss

error rate is given by 0=0.2 dB/km. We also set the baseline error rate 0.01,
and add an extra 1 dB of loss to account for losses in the
Pdark/2+ LPsignal receiver unit. The curves corresponding to the BBM92 pro-
e= ' (64) tocol plot the distance from Alice to Bob, with the source

Pelick
e assumed halfway in between. Plb) shows calculations for

We perform simulations for fiber optical and free-spacefree space quantum key distribution. The communication rate
key distribution experiments. For the fiber-optical simulationis plotted as a function of the total loss, including the detec-
we look at the 1.5um telecommunication window, while for tor quantum efficiency. In the free-space curves for the
free space communication we focus on the visible waveBBM92 protocol we again put the source halfway between
lengths where single-photon counters tend to perform besflice and Bob and plot the rate as a function of the total loss
In free space communication the channel loss is no longer aim both arms. The dark counts of the detectors are set to 5
exponential function of distance. Instead, it is a complicated< 10~8. In the curve for the BB84 protocol with a Poisson
function which results from atmospheric effects, beam dif-light source the average photon numhbes a free adjustable
fraction, and beam steering problems. Thus, for free spacparameter. Similarly with parametric down conversion we
we are more interested in the rate as a function of the totadre free to adjusk. For both cases we numerically optimize

loss rather than distance. the communication rate at each point with respect to the
Figure 2 shows the calculation results for both BB84 andadjustable parameter.
BBM92 protocols with ideal and realistic sources. In flat Each curve features a cutoff distance where the commu-

of the figure we show results for fiber optical channels. Us-nication rate quickly drops to zero. This cutoff is due to the
ing experimental values frofl0] we set the detector quan- dark counts, which begin to make a non-negligible contribu-
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shown in the inset of Fig. 3. This scheme will distinguish
C{ gV Hy K between the states

1
0/50 lp)= 5(|XY>i|yX>)a (69

.ee e but will register an inconclusive result if sent the states
R A R A R X \0/\0/\0/ 1
EPR  EPR EPR EPR  EPR EPR | )= E(|XX> *lyy)). (66)

FIG. 3. Experimental setup for quantum key distribution with

entanglement swaps. The state generated by the entangled photon sources is

assumed to bpy, ). Considering only a single swap, we can

tion to the signal at some point. However the two curves forite

BBM92 feature a much longer cutoff distance than their 1

BB84 counterparts. This is due partially to the absence of the | V1l s Yaa= = [ Yo s Yra— Y od 014
photon splitting attacks. But even when performing the 2

BB84 protocol with ideal single-photon sources, which do _
not suffer from photon splitting attacks either, the cutoff dis- b iiiam|d-)add-)id. (67)

tance for BBM92 is still significantly longer. This is because The above expression makes it clear that a Bell measurement
in BBM92 a dark count alone cannot produce an error. lton photons 2 and 3 leaves photons 1 and 4 in an entangled
must be accompanied by a photon or another dark count, s@ate, and the measurement result tells which one. Adter

it is much less likely to contribute to the signal. The differ- g,ch Bell measurements photon 1 ard ®ill be entangled,
ence in rates between the ideal entangled photon source aggd theN Bell measurement results will allow Alice and Bob
the parametric down converter can be attributed to the intefg know which entangled state they share. Knowledge of this
play between coefficied in Eq. (55), and coefficienD in  state allows them to perform the BBM92 protocol and inter-
Eq.(57). TermAlis the probability of a real coincidence, and pret their data correctly. Since our Bell analyzer has an effi-

increases withy. Term D on the other hand contributes to cjency of only 50%, in the best possible case we will pay a
false coincidences and increases wittas well, but is of  price of 27N in communication rate.

higher order. One cannot make arbitrarily large without Consider the single swap. We will defireto be the de-
getting an increased contribution froBw This leads to an  tection probability for each photon. The probability that both
optimum value fory which is less than one. photons 2 and 3 reach the Bell analyzer and are successfully

projected is
IV. ENTANGLEMENT SWAPPING

true _1 2 (68)
. . . Pswap— 2 "
In this section we analyze a more complicated scheme

based on entanglement swapping. Figure 3 gives a diagrama photon is lost in the fiber or due to detector inefficiency
of the proposed configuration. A series of entangled photohe Bell analyzer may still indicate that a Bell measurement

sources, which we assume to be ideal sources, are spread ¢igls been performed due to detector dark counts. The prob-
an equal distance apart from Alice to Bob. The sources argpility of this happening is

clocked to simultaneously emit a single pair of entangled

photons. Each of the pair is sent to a corresponding Bell state pLi‘JZS= 6ad+12d°. (69
analyzer, whose actions are to perform an entanglement

swap. If all the swaps have been successfully performedpefining the factor

Alice and Bob will share a pair of entangled photons. Ex- true

perimental demonstrations of a single entanglement swap 9= Pswap (70)

can be found i{37]. Entanglement swapping is a key ele- pterL\l,gp‘f' Pswap.

ment for quantum repeaters, which use entanglement purifi-

cation protocols to reliably exchange quantum correlatedt is straightforward to show that, given the Bell analyzer
photons between two parti¢38]. We show that even with- registered a successful Bell measurement, the density matrix
out such protocols, using only linear optical elements, phoof photons 1 and 4 is given by

ton counters, and a clocked source of entangled photons,
swapping can enhance the communication distance.

The key element to the scheme is the Bell analyzer. Since
we restrict ourselves to passive linear elements and vacuum
auxiliary states we cannot achieve a complete Bell measurevherep, is the pure statéy, ) or |¢_) depending on the
ment. It has recently been shown that Bell analyzers basemheasurement result.
on only these components cannot have better than a 50% For the case oN entanglement swaps the detection prob-
efficiency[39]. One scheme which achieves this maximum isability for each photon is

I
P1a=9py, +(1-0) 7, (71)
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FIG. 4. Comparison of BBM92 protocol with regulated EPR
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restricted to individual attacks and that the detection appara-
tus is trustable. With these assumptions a bound was derived
on Eve’s average collision probability, and hence on her mu-

tual information as a function of the final key length.

Using the above results we compared the performance of
this protocol to the BB84 protocol for both ideal and practi-
cal sources. We investigated fiber-optic as well as free-space
key distribution scenarios. The BBM92 protocol was shown
to have significantly better performance at longer distance
provided that the source can be placed midway between the
two communicating parties. This opens up the possibility for
communication lengths of up to 170 km.

Finally, we analyzed a more complicated scheme based on
entanglement swaps using only linear optical components,
photon counters, and a clocked source of entangled photons.
Entanglement swapping can allow for even longer distance
secure communication, but at some point the natural loss of
the fiber becomes so severe that the communication rate is

source, one swap scheme, and two swap schemes. Fibers and gohibitively slow.

tectors are taken for the 1&m window.

a= 7]107(10(2N+2),

where L is the distance from Alice to Bob. It is again
straightforward to show that aft& swaps, the state of pho-

tons 1 and Rl is

|
p1an=09"p,, +(1—-g") 2

and the probability that alN bell measurements registered a

successful result is

true + fals

Pgen= ( Pswap pSWag) N,

We then have

—_ N _2
Ptrue= Pgeld a*,

Pralse= Pgen(8ad+ 1602+ (1- gN)a’z)-

These can be plugged into E@d3) and(47) to get the final

communication rate.
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APPENDIX A: INFORMATION BOUNDS
ON EAVESDROPPING

In this appendix we show how to bound Eve’s expected
informationl ¢(K;GUZ) by the average collision probability

<pc(x|z>>z=§ p(z)P(X|Z=2), (A1)
where
Pc<><|2=z>:§ p?(X|2). (A2)

Let U and Z be arbitrary, possibly correlated, random vari-
ables over alphabet# and Z, respectively. Let:| denote the

In Fig. 4 we show a comparison between the BBM92cardinality of a given set. Let>0 be a security parameter
protocol with an ideal entangled photon source, a one-swaphosen by Alice and Bob and define gets

scheme, and a two-swap scheme using a fiber optic channel

at 1.5um. The swaps result in a longer cutoff distance which 27t

can lead to longer communication ranges. It should be noted A=1(u,2)e(U,2):p(u[2)= Tl (A3)
however that at these distances the natural fiber loss is sub-

stantial and will lead to very s_Iow communicatio.n rates. It is Defining A°® as the complement of sétwe have

unclear whether swapping will lead to a practical form of

guantum key distribution, but a single swap could be useful

for very long distance QKD. P(A= X p(uz= X p(ulz)p(2)
(u,z) e A® (u,z) e A®
V. DISCUSSION 2t
> p)=2"

g —_—
In this paper we provided a proof of security for quantum Ul wellzez
key distribution with the entangled photon protocol proposed
by Bennett, Brassard, and Mermii5], referred to as Thus with probability of at least+2 ' the combined string

BBM92. This proof is based on the assumptions that Eve isU, Z) take a value irA. Then for another random variabe
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(Pu(X|Z=2)),= Z;g p(z@ p?(x|2)

2

=Z§Zp<z>§ gup<u|z>p<x|uz>
= gz p(z@ EM p?(u|2)p(x|uz)

= Eeu p(u,Z)p(UIZ)g p?(x|uz)

ze Z,u

= > p(UIZ)p(u,z)g p?(x|uz)

zZ,u)eA
—t

Z —_—
| <z,E

u)e A

p(u,z)P(X|U=2,2=2).
Thus

> X P(u,2)P(X|U=2,2=2)<2"|U(P(X|Z=2)),.
(z,u) e (A4)

We can now use this result to boukl{K|GUZ) as follows:

H(K|GUZ)=2, p(u,2)H(K|G,U=u,Z=2)

= > p(u,2HK|G,U=u,Z=2)
A

(u,z) e
_ p(u,2)H(K|G,U=u,Z=2)
(u,z) e A®

= > p(u,2H(K|G,U=u,Z=2),
A

(u,2) e

PHYSICAL REVIEW A65 052310

—S

H(K|GUZ)=(1-2 Yr— —

N2 (AB)

Eve’'s mutual information can now be bounded by

—S

2
le(KiGUZ)=H(K) ~H(K|GUZ)=<2 1 + 1 —.

Plugging Egs(13) into (A5) leads directly to

r=nr—t—k-—s, (A7)

wherer= —log, p..

APPENDIX B: ONE-PHOTON CONTRIBUTION

In this appendix we show that there is always an optimal
eavesdropping strategy for the contribution frpg’p}g which
can be described by a set of complete projecfyrs These
complete projectors may depend on the measurement basis
used by Alice and Bob.

First consider the POVM which Alice performs on her
photon. Since we only look at the subspace where she re-
ceives exactly one photon, there can only be one detection
event. The four detectors map out to the four operators

Fy=2D0)(x], (B1)
Fy=2ly)yl, (B2)
Fu=3lu)(ul, (B3)
F,=z[v)(dl, (B4)

where we use the shorthand notatiap |y), |u), and|v) to

indicate one photon polarized along the direction indicated
by the state. Note that for the above four operators
F;/Tr{Fa} are the same as the density matrices prepared by

using the positivity of the conditional entropy functions, andAlice in the BB84 protocol.

the fact thall andZ are independent d@&. Plugging Eq(17)
into the above inequality leads to

p(u,z)

u,z)eA

H(K|GUZ)= >
(

r

2
X r—mpC(X|U=u,Z=z)

r

2
2(1_2_t)r_ m2t|U|<pc(X|Z=Z)>Z
:(1_2%)'. _2r+t+Iogz|u|+logz(pc(x\z=z)z,
as follows from Eq.(A4). We can then set
r=—logxpc(X|Z=2)),~t—k—s, (A5)

wherex =log,|i| is the number of bits in messageandsis
another security parameter. This leads to the bound

Eve is allowed to choose any density-matrjglblg. We
can assume without loss of generality tbgglg is a pure state
because any mixed state can be generated by a pure state
with a probe of higher dimensions by ignoring some of its
degrees of freedom. Discarding information cannot enhance
Eve’s knowledge on the final key. The most general pure
state can be written as

| ¢abe> = |XX>| Pxx> + |yy>| Pyy> + |Xy>| ny+ |yx>| F’yx)’
(B5)

where [Py,), [Pyy), |Pyy), and|Py,) are states of Eve’s
probe and are not assumed to be normalized or orthogonal.
Alternatively we can write this wave function in tlwev basis

as

|¢abe>: |UU>| Puu>+ |vv>| va>+ |UU>| F,uv>+ |UU>| Pvu>!
(B6)

where Eve’s probe states in thiev are given by
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Py = %(lpxx>+|Pyy>+|ny>+|Pyx>)1 (B7) Without loss of ggnerality we can assume that the opera-
tors A, are real matrices. If this is not true than one can write

|Puu>:%(|Pxx>+|Pyy>_|ny>_|Pyx>)r (88) Ak as

|Puv>:%(|PXX>_|Pyy>_|ny>+|Pyx>)v (BQ) Ak: Rk+i|k’

_1 _ " _ _ whereR,< andl, are real matrices. The joint probability that
[P ) = 2(IPud =Py +[Puy) = [Py) (B10 Alice measure$, and Eve measures, is

Throughout this discussion we will use dirac notation in- T T T
terchangeably with the matrix notation Tr{AFaAG = TR R+ Tr{lFal i

Since there is no mixing between the real and imaginary

X) = 1 parts Eve could break ufy, into two real operatorR, andl
1¥)=|g|:
0 by adding one more dimension to her probe. This type of
probability split can only enhance her final collision prob-
ly)= 0} ability ([_40], Appendix B.
1 Starting with Eq.(B13) we sum ovelk to get
Suppose that Alice measures the positive opergtpmwith +
the general form % AAx
a b
Fas| . | (B11) __ TR
b c Tr{|¢abe><'r//abe|':a}
Then <Pxx| Pxx>+<ny| ny> <Pxx| Pyx>+<ny| IDyy)
Trae{| wabe><l/fabe| Fa} <Pyx| Pxx>+<Pyy| ny> <Pyy| Pyy>+<Pyx| l:)yx> .
= . B12
P ™ T o (VavdFal (812 (B14)

We now show that there is always an optimal attack which
satisfies the following symmetry conditions:

) TET (kP <k|Pyx>} (PedPd=(PyylPyy), (B15)
M= \/Tr{|wabe><¢ab4a}{<k|ny> (P, T

If we define the operator

. <ny| ny>:<Pyx| Pyx>v (B16)
then one can verify that
- <Puu| Puu>:<Puu| Puu>v (B17)
_ a_ a1
po= 20 Ay Ax (PulPu) = (Pl Pou). (B18)

In the ideal case, where Alice and Bob share a maximallyfgr?;gzﬁ;haévtehi;\r/]a\;e frnf;'gii)"g\zﬁs ntcr);r?sa;gffrzattri]c?r?eto
entangled pair of photons, we have ' PRIy 9

both Alice and Bob’s photon

T
P )=y, lyy= 1), (B19)
TH{F,}
and it can be shown that this does not effect the error rate or
The operatorg\, map the ideal channel to the noisy channel.collision probability. She can also apply the transformation
We are not done yet. We must still show that the operators

satisfy the completeness relation [Xy—=>[x),lyy—>—1y), (B20)
which is the same as flippinjg) with |v). This does not effect
E AlAk=I, (B13 the collision probability or the error rate either. Thus, Eve
K can send any one of the four states below without changing

and that they do not depend &7,. In the BB84 protocol anything

these conditions come naturally because Eve's interaction + 4 +

with the signal must be unitary. In the BBM92 protocol there (D) Boo1Pa +YY)IPy) +xY)Ps) + 1) Py,
are attacks which do not satisfy these conditions and thus (2) |XX>|Pyy>+|YY>|PXX>+|XV>|Pyx>+|yX>|ny>,
cannot be described by a CP map. However, we will show

that there is always an optimal attack which does satisfy  (3) [xx)|Py + YY) Pyy) = XY} Pyy) = [y X) [Py,
these two conditions, and can thus be characterized by such a

map. (4) [xx)] Pyy) +IyYIPw) = [xy)| Pyx> —|yx)| ny> .
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first state. The third state is obtained by applying EBRO) ppl=2 5 et (CY
to the first state, and the fourth state is obtained by first
applying Eq.(B19), then Eq.(B20). Eve could send an equal _ 1\ _
mixture of all four states without altering the error rate or pﬁé{?sz(i) Tr{p\Hl}, (C2
collision probability, and one can verify that this equal mix-

ture would satisfy the desired symmetry conditions.

Condition (B16), along with the fact that, EB5) must

The second state is obtained by applying Eg{L9) to the A {1 (1)1}
5| |Tde
2

which leads to

be normalized, amounts to [1 (1)1}
(1) 5 |2
< Pxx| Pxx> + < ny| ny> = < F)yy| I:)yy> + < Pyx| Pyx> =1/2. Po = 2 2 =1 (C3)
(B21) = (1>1 =
Knowing thatA is a real matrix, we then have from condi- 2

tion (B18), The argument is completely equivalent if Eve sengsho-

(P Py +(Pyy | Py ) = 0. (822  tons to Alice and one photon to Bob. Now if Eve sends
Y ey photons to Alice and photons to Bob, whergj>1, then
These two relations immediately imply that

TH{F .} pg=2 3—(1)| L E)J]Tr{p“é;)e} (C4
r 2 \2) 2 |2 abel
Tr{l'ﬂabe><¢abe|Fa}: 2 2 )

) 1\f/ 1\ )
which means that ngc)gz(i) (5) Tr{p4l (CH

A=V2 which leads to

(k[P <kIPyX>}
(KIPxy)  (KIPyy |
_ 1 (1)1 (1}
So Ay are independent frork, and the completeness rela- p(ij) ==l Pl
D

tion (B13) comes directly from EqgB21) and (B22). 2 2| 2 ( 1)ZJ =1. (C6)

—=
(i})
rec

1

2

2

APPENDIX C: HIGHER-ORDER NUMBER
STATE CONTRIBUTIONS
A disturbance of 1/2 already implies that Eve can obtain the
Higher-order number states are taken into account by sentire string. So setting/p to 1/2 means that Eve can do at
ting wp, sufficiently large so that Eve’s optimal strategy is t0 |east as good by sending oty Thus

only use thepglblg component. First suppose Eve sends one

photon to Alice and photons to Bob, wherg>1. Then P=3+2€e— 262 (C7
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