PHYSICAL REVIEW A, VOLUME 65, 052307

Multiparticle reduced density matrix and a useful kind of entangled state
for quantum teleportation

Jin-yan Zend;? Hong-bo Zhu? and Shou-yong P&i
1Department of Physics, Peking University, Beijing 100871, China
2Department of Physics, Tsinghua University, Beijing 100084, China
3Department of Physics, Beijing Normal University, Beijing 100875, China
(Received 16 October 2001; revised manuscript received 4 January 2002; published 17 April 2002

It is pointed out that the possibility of teleporting arbitrary unknown one-particle spin state is crucially
connected with the maximal entanglement of the Einstein-Podolsky-Rosen pair, whose one-particle reduced
density matrix isp(i)= %Iz (i=1,2). It is shown that, to teleport arbitrary k-particle spin state, one must
prepare an ancillarii-particle (N=2k) entangled state, whoseparticle reduced density matrix has the form
(1/291 5 (1 is the Zx 2¥ identity matriY. An alternative approach to constructing many-particle entangled
states is developed by usiRy( ), the collective rotation ofr around a given axigsay,x axis). The entangled
states constructed by usify( ) operating on the basis of angular momentum uncoupling representation are
just the GHZ states, which cannot be used for the teleportation of an arbit(zr2) particle spin state. The
entangled states constructed by usiRygw) operating on the basis of angular momentum coupling represen-
tation turn out to be effective for the teleportation ofabitrary multiparticle state. A formal extension of the
scheme of Bennetét al. to deal with the teleportation of an arbitrary twor more particle spin state is

discussed.
DOI: 10.1103/PhysReVvA.65.052307 PACS nuntber03.67.Hk, 03.65.Ta
I. INTRODUCTION 1
|'/’7>12=T(|T>1|l>2_|l>1|T>z)y
The first successful scheme for quantum teleportation was 2
developed by Bennett al. [1]. The idea behind teleporta- 1
tion is that a physical object is equivalent to the information Y o=—=( 1)1l )2t 1)1l T)2),
needed to construct ], i.e., an event by which a physical V2
object is transformed from one point in space to another 1
without actual material transportati¢8] . In classical phys- Y o=—=(T)1lT)2=11)1]1)2),
ics there is no conceptual impedient to this, because a system V2
can be scanned thoroughly without disturbing its state in a 1
given location and using this information one can completely |¢*>12=E(|T>1|T>2+|L>1|1)2), (1)

reconstruct it in a second site. However, this procedure is

”?V"""d for any real_ phys'c"’%' system, Wh'Ch uIUmaFer €ON" \vhich may be considered as the simultaneous eigenstates of
sists of microscopic constituents obeying the principle of

; . . a complete set of commuting local two-body observables,
guantum mec.ha.nlcs. Acpordlng to quantum mechanlcs, any, - any two of & 3535) [3] or, equivalently,
attempt to gain information about an object, in general, al-
ways changes its state; i.e., a physical object in its origina‘olzgzz’ql"azx’Ulyazy) [12].

. P ) Following the scheme of Bennett al. [1], suppose the
sta_te is bound to be destroyed by the process of scanningyqar Alice has been given a single-particle in staig,
which has been demonstrated by Wooters and Zurek in thginown to her,
noncloning theorem of an unknown quantum sf{d It is
encouraging to note that the scheme of quantum teleportation |$Ya=al1)a+Db| [ )a= ( a) )
of Bennettet al. has been realized in various conditions b/’

[5-9.

In the scheme for quantum teleportation, of Beneettl.  which is to be sent to Bob at a distant location. One may
a key role is played by an ancillary Einstein-Podolsky-Roserprepare an ancillary entangled two-particle state, e.g.,
(EPR pair of particles which will be initially shared by the |4 )1,. The three particles may be of different kinds. Then,
sender(Alice) and the receive(Bob). The peculiarity of an  particle 1 is sent to Bob and particle 2 to Alice. The com-
entangled state—the nonlocal correlation between two obplete state of the entire three-particle system is the product
jects which was first pointed out by Einstein, Podolsky, andstate |4~ )15 #)a, having neither classical correlation nor
Rosen[10] (though the term is due to Sclinger[11])—  quantum entanglement between partidde and particles
represents the quintessential distinction between quantuifl,2). An entanglement between partickesind 2(or A and
and classical physics. For a two-parti¢kpin-1/2) system, 1) is brought about in the next step—a joint Bell basis mea-
the Bell basis is widely used in quantum communicationsurement. To describe this process, it is convenient to expand
theory: |~ )15 @) a in terms of the Bell basis for particleé\(2):

A
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TABLE I. The unitary transformations needed to extract a faith-

1
ful replica of the one-particle spin stalte) to be sent. p(i)I(

o o (=12

- + - +
9712 19712 97D 4712 The basis of angular momentum coupling representation is

|4 )az I o, — 0y ioy the simultaneous eigenstate &*(S,), S=s;+5S,, S,=S;,
[ )z o, I, ~ia, oy +s,,, and denoted bysy(1,2), S=0, M =0 (singlet stati
[ a2 — oy ioy I, o, andS=1, M=0,%=1 (triplet stateg which can be expanded
|¢+>A2 _in Oy 0y I in terms Of|ml>l|m2>2:

1
Xoo(1,2= E(|T>1|l>2_|l>1”>2),

) 1 [a) 1 a
)1 B)a=510 b +§|¢+>A2(_b) 1
! ! X112 =—=(1)1l1)2+11)1l1)2),
1 - 1 b \/E
+§|¢_>A2 _a 1+§|¢+>A2(_a) : x1(1L.2=[1)1l1)2, x1-1(1.2=[1)1])2. (6)

1
3) It is noted that whiley;4(1,2) andy;_41(1,2) are separable,
the other two[ xoo(1,2) andyqo(1,2)] are entangled states,

After Alice’s measurement, Bob’s particle 1 will have beenWhose one-particle reduced density matrip () = 31,. This
projected onto one of the four states shown on the right hantf €asily 2u_nderstood becauss; is a one-body operator,
side of Eq.(3). In the case of the Alice’s first outcome WhereasS” is a two-body operator. _ ,
| ) az, BOb's state is Suppose the prepared ancillary two-part_|cle state is one of
the bases of angular momentum uncoupling representation;
a
|¢>1:<b) )

following the scheme of Bennett al., we have
1

a b
11112 d)a=111)a2 0 1+|lT>A2(0>1,

a replica of the original statep), . In the other three cases,

Bob may apply a corresponding unitary transformation on

his outcome to extract the original state information. That is, 1D é)a=[11)a2
according to Alice’s outcome which is sent to Bob through a

classical channel, Bob may apply one of the following uni-

tary operations on his outcome to extract a replica of the [TD1d d)a=I11)az
original state|¢)a:

U,=1,, Uy=0,, Us=—0y, Usy=—ioy, (4) L) 1d ) a=111)az

b al,

0 0
+111) a2
1

0

°) ity (a)
+ y
. A2 0 .

a

0 0
+|lT>A2(b) . (7)
1 1

W'th |, being the 22 |Qent|ty matrix. _The situation is simi- Obviously, in this case there exists no unitary transformation
lar if the prepared ancillary two-particle state is one of the

other Bell bases. and the corresponding unitary transform to convert Bob's outcome into a replica of the original state
. . . P 9 y ?¢)A; i.e., one cannot realize the teleportation of an arbitrary
tions are summarized in Table I.

It should be emphasized that the possibility of teleportin one-particle spin state. This is inherently connected with the

. . ; . MNGeact that all four bases are disentangled states with one-
an arbitrary, unknown one-particle spin state is crucially Barticle density matrix

connected with the maximal entanglement of the prepare

EPR pair, whose one-particle reduced density matrix is S 0 .

p(i)=3%1, (i=1,2). To illustrate this point of view more p(')_(o o) (1=1,2).

clearly, let us try to perform the teleportation using other two

kinds of basis usually adopted in angular momentum couNext, if the prepared ancillary two-particle state is one of the

pling theory. bases of angular momentum coupling representation
For the description of angular momentum, usually twoyxswu(1,2), we have

representations are adop{dd]: i.e., the angular momentum 1

uncoupling and coupling representations. For a two-particle X00(1,2)|¢)A=§X00(A,2)

(spin-1/2) system, the basis of angular momentum uncou-

pling representation is the simultaneous eigenstate of the

complete set of one-body observablss,(s,,) and denoted

by |m;)1/m,),, (my,m,=+1/2) or, intuitively, denoted by

a2, [Dalb)2, 1alD)2, [1)4l1)2, 6)

a 1 5 a
+_
b/, 2X10(A, ) b/,

a

+i (AZ)(o +i (A2
\/§X11 )| . \/§X171 )

b

X
0

1

whose one-patrticle reduced density matrix is
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Ill, an alternative approach to constructing many-particle en-
tangled states is developed by usiRg(w), the collective

1 a
X10(112)|¢>A:§X00(A=2) b b
1 rotation of 7 around a given axissay,x axis). The entangled

1 a
+ §X10(A12)
1

1 1 b states constructed by usiiy () operating on the basis of
+—x11(A2) +—X11(A,2)( ) ' angular momentum uncoupling representation are just the
V2 al, 2 0/, GHZ states, whereas those by usRg ) operating on the

b basis of angular momentum coupling representation turn to
+ i A2 be effective for the teleportation of an arbitrary multiparticle
\/—XlO( ’ )
1 1

1
X11(1a2)| ¢>A=EXOO(A2)( 0

0 spin state. The structure of the two-particle reduced density
matrices of the four-particle entangled states thus constructed

A2 a is analyzed in detail. By using this kind of four-particle en-
+xu(A2) 0/’ tangled states, the scheme of Benradttl. is formally ex-
! tended to deal with the teleportation of an arbitrary two-
1 0 1 0 particle spin state in Sec. IV. The extension to teleport an
x1-1(1,2[d)a= —=xo0d A,2) T —=x1dA2) arbitrary k-particle (k>2) spin state is straightforward. A
V2 al, \2 a : MR
1 1 brief summary is given in Sec. V.
0
+X1_1(A’2)<b> : (8)
1 Il. GHZ STATES AND TELEPORTATION

OF MULTIPARTICLE INFORMATION
It is noted that only when the prepared two-particle state is

xoo(1,2) or x1o(1,2) and Alice’s outcome isygo(A,2) or A. General form of GHZ states

Xx10(A,2) can one construct corresponding unitary transfor- For anN-particle (spin-1/2) system, the2orthonormal
mation to convert Bob’s outcome state into a replica of theGHZ states are expressed as

original state| ). In the other two cases, the teleportation

can not be realized. This is also c_onnlecteq tothe factthatfor — —r1m; m,, ... my=|-m;,—m,, ....—myl, (9
the entangled stategy, and g, p(i)=3I, (i=1,2), but for 2

the separable stat¢$l) and|1—1),

L 1 i—19 where |m;,m,,---,my) is the eigenstate  of

p()= 0 0 (i=12). (S17,S05+ - - . SNy With  eigenvalues m=+1/2, (i
=1,2,...N). For N=2, the four GHZ states are just the

To date, the teleportation of an arbitrary one-partiggin-  well-known Bell basis. FON= 3, the eight GHZ states may
1/2) state has been discussed in detail and has been expefie considered as the simultaneous eigenstates of the com-
mentally realized. The next step is to investigate the teleporplete set of commuting observables T1y0 oy 03y,
tation of arbitrary multiparticle information, which is a cru- Fo=01y0203y,F3=01,02y03,) (see Table N or a
cial ingredient for quantum communication and informationsimilar  equivalent set[17]. Similarly, for N=4, the
[14]. As pointed out by Bennetit al.[1], since teleportation 16 GHZ states may be considered as the simultaneous
is a linear operation applied to the quantum statk it will eigenstates of G1= 010240340 ax,G2= 01902y 03yT4y ,
work not only for pure states, but also with various kinds of(33= O1x02xT3y0ay ,Ga= 01,02, 03,04,) (see Table Il).
mixed or entangled states. The key points for teleportation of
a multiparticle information are to prepare a suitable ancillary
many_part|c|e entangled state and to make a Su|tab|e J0|ntB Quantum te|ep0rtati0n of an arbitrary tWO-partiC|e State

measurement. Usually, the Greenberger-Horne-Zeilinger There have been developed some schemes for the telepor-

(GHZ) states are used. The original motivation to prepareation of a multiparticle spin state, in which R+ 1)-particle
three-particle entanglements stems from the observation that

three-particle entanglement leads to a conflict with local re-
alism for nonstatistical predictions of quantum mechanics

TABLE Il. GHZ states of a three-particle system.

[15]. The incentive to produce GHZ states has been signifi;;7 giates IF,F,Fs) GHZ states IF,F,Fs)
cantly increased by the advance of the field of quantum com-

munication and quantum information processii®]. The 1 1

general form of GHZ states is discussed in Sec. Il A, and ing (ITTD L) [===) E(WT%‘HTU) |+—+)

Sec. II B we will show that GHZ states are unable to teleport 1
an arbitrary multiparticle k=2) spin state, except states —(|TT1)—|111)) [+++) —=(TID=ILTL) |—-+-)
with only two components, which is intimately connectedJlz Jf

with the structure of multiparticle reduced density matrlces_(H”HH”)) l—+4+) (LD +ITLL)

++—
(Sec. 1 Q. It is emphasized that ax-particle N=2k) spin- 2 J2 | )
entangled state whoskeparticle reduced density matrices 1 1
have the form of (1/91,« can be used effectively to realize E(HN)—HH)) l+--) E(HT”_HU» ==+

the teleportation of an arbitraparticle spin state. In Sec.
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GHZ state is used as the communication channel to teleport An arbitrary state of a two-particlespin-1/2) system may
a k-particle catlike stat¢18]. For thek=2 cas€19,20, the  be expanded in terms of the Bell basis:
state to be sent is of the form

|W)ag=aly )aptbl¢y ) astclé )agtdld )as
a

|#)as=alTT)atBll1)as OF alll)ast BllDA?iO)

(11)
which is usually called an EPR state. However, such a state

is not an arbitrary two-particle spin stdigee Eq(11)]. It is
noted that Bennettt al. [1] have given an important state-
ment concerning the teleportation of arbitrary state, “re-  One may prepare an ancillary four-particle GHZ state, e.g.,
liable teleportation of aiX-state particle requires a classical |+ + — —)1,34. The complete state of the entire system is the
channel of 2log(X) bits capacity.” In particular, to realize pure staté+ + — —)1,3{ V) ag. Then particle€2,4) are sent
the teleportation of an arbitrary two-particle spin state, ondo Alice and particleg1,3) to Bob. A joint measurement of
must prepare an ancillary four-particle entangled state. FirsiGHZ basis for the four-particle system is made by Alice.
let us try to use a four-particle GHZ state to teleport anTo describe this process, it is convenient to expand

o O T

AB

arbitrary two-particle state. |+ 4+ — —)123d'V)ap as follows:
0 0 0
1 0 1 0 1
++__>1234|\I}>AB:§|++__>AZB4 c +§|__++>A284 d +§|+++_>A254 ¢
d C/ 13 d/
0 0
1 0
+§| —+)acea| _|+ +—)a2Ba a +§|_+_+>A254 b
b/ 15 al 13
0
0
+ §| —)nzea| —+++)acpa b (12
—a

13

Obviously, there exists no unitary transformation to converts necessary to consider all theparticle reduced density
Bob’s outcome state for particled,3) into a replica of matrices,n=1,2,--,[N/2] ([N/2] being the largest integer
|W)ag; i.e., it is impossible to teleport an arbitrary two- no larger tharN/2). Thus, for a four-particle system, in ad-
particle spin state using a four-particle GHZ state. We willdition to the one-particle reduced density matrix, the various

show that, like the teleportation of an arbitrary one-particlenyo-particle reduced density matrices must be considered.
spin state using a two-patrticle state, this impossibility is cru-

g;ang;ogtr;?ng to théwo-particle reduced density matrix C. Reduced density matrix of GHZ states
It should be noted that for a complete description of en- Now, we will show that the impossibility of teleporting an

tanglement of a many-particle state, the entanglement bearbitrary two-particle spin state by using the GHZ states of a

tween various subsystems must be taken into account. Let disur-particle system is crucially connected with the structure

assume arN-particle system is divided into two subsystems of the two-particle reduced density matrices.

A+B(N,+Ng=N) and the corresponding reduced density (i) For all GHZ states, the one-particle reduced density

matrices are denoted pfA) andp(B). It can be shown that matrix is of the same form

p(A) andp(B) have the same nonzero eigenvalues, but the

numbers of zero eigenvalue can differ. Therefore, for a com- p(|)— I =12 N (13)

plete description of entanglement of BiRparticle system, it 2 e
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TABLE lll. GHZ states of a four-particle system.

GHZ states |G, G, Gj Gy) GHZ states |G, G, Gj G,)
%(”TTT)"‘HHU) + + = =) %(HTTT)"‘HHU) l+ - = =)
SATTTD=11111) [ L1111 [
ST+ [+ =+ 4 ST+ [+ 4+ o)
SUTTTO-1L) -+ - o) U111 - - -+
ST+ [+ -+ o) ST+ [+ 4+ 4
ST -+ -+ SUTLD-1L111) - - - )
%(HHT)"‘HTLU) l+ - = +) %(”Tll)ﬂll”» l+ + = +)
U111 -+ + o) ST [

(i) For N>2, the two-particle reduced density matrix is wherel . is the 2x 2k identity matrix. In the following we
of the form try to construct an alternative kind of many-particle en-
tangled state meeting this requirement.
1

1 Ill. ALTERNATIVE APPROACH TO CONSTRUCTING

p(i.j)= , i#F ), Lj=12,. . N. ENTANGLED STATES

N| =

0 A. Signature

(14 An effective way to construct entangled states is using a
collective transformation of the system considered. We will
(iii) Similarly, for N>k, the k-particle reduced density show that a collective rotation of around a given axiésay,
matrix is of the form x axis), R,(), is a very useful candidate. The eigenvalue of
R(m), r=e '™, is referred to as a signature(the signa-

< ture exponentwhich is widely used in nuclear physi¢21].
1 For an everN-particle (spin-1/2) system, R ()2
o o1 0 =Ry (2m)=1; thus,r’=1 andr=+1 (=0 or 1 Mod 2.
pliniiz, o) = 2 ’ For an oddN-particle systemR,(7)?=R,(27)=—1; thus,
r’=—1,r=%i (a=51/2 Mod 2.
0 It is easy to show that the GHZ sta® may be expressed
as
iliizi"':réik, il,iz,...,ik:].,z,...N. (15)
From the structure of these reduced density matrices, one can \/5[1+rRX( mlmm;, ... My, N even,
understand why the GHZ states are unable to teleport an
arbitrary k-particle spin state, except for a special one with 1
only two components in the*adimensional Hilbert space. —[1-rRy(m)]|my,m,, ... ,my), Nodd, (17
Therefore, to teleport an arbitrakyparticle spin state us- \/E

ing an ancillary N-particle entangled stateN&2k), the .
k-particle reduced density matrices should have the structur@hich is the eigenstate &,() with eigenvaluer =e™'";
i.e., the GHZ states can be constructed by us@r) op-
1 erating on the basis of angular momentum uncoupling repre-
plivsia, )= plok I Fip# - Fiy, sentation. That is, the GHZ states for ldsparticle(spin-1/2)
2 system may be considered as the simultaneous eigenstates of
the complete set of commuting local observables
1,0, . =1,2,... N, (16)  (Is14.IS04], - - - Isnd Ru(7)). In fact, under the operation
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TABLE IV. Labeling of the Bell basis. B. Two-particle system, Bell basis

Bell basis M) Usual labeling For a two-partlgle(spln-1/2) system, th_e bas_ls of angular

momentum coupling representation is given in Eg). As

1 mentioned above, the two basis with=0, yqoandyq, are
E(mlll)z—ll)lmz) |00)12 [ )12 themselves eigenstates &, () with r=+1 (a=0,1),

1 whereas the other twg,; and y;_, are not. According to
— (M2 14l 1)2) |02)4, [+ 1, Eq. (18), we may construct the spin-entangled state of a two-
V2 particle system which is just the well-known Bell basis:

1
=Dl D211l 10 ¢ -

\/§(| 1T 2=11)l1)2) 1101, l¢ )12 Xoo=|¥" )12,

1
—= a2+l 1)2) |11)1, [ )12
V2 X10=|‘/’+>12:

[1+rRy ()], any quantum state of an evéhsystem be- 1

comes an eigenstate Bf () with eigenvalug = = 1. Simi- =1 x1-10=9¢ )12,

larly, under the operatiojil —rR,( )], any quantum state of V2

an oddN system becomes an eigenstateRy{ ) with ei-

genvaluer = *1i. 1

Therefore, one may construct an alternative kind of en- —(xutxi-0)=léHw. (21

tangled states by using,(w) operating on the basis of an- V2

gular momentum coupling representation, which is a simul-

taneous eigenstate of the complete set of commuting locah fact, the four states are the simultaneous eigenstates of

observables £,S%,S,), labeled by xysm- Sxasm=S(S  (|S,|,Ry()), labeled||M|,«), as shown in Table IV.

+1)xasm, Sxasm=Mxasw (A=1), andh (an eigenvalue It is interesting to note that the entangled states con-

of A) is the other quantum number necessary for charactestructed by usingR.(7) in terms of the basis of angular

izing the quantum state, which depends on the order of anmomentum uncoupling representatitsee Eq.(9)] and the

gular momentum coupling. The alternative kind of orthonor-pasis of angular momentum coupling representdtia®e Eq.

mal entangled states thus constructed is (21)] are the same for a two-particle system, i.e., the Bell
basis. However, the situation is quite different fér(>2)
particle systemgsee below

N even,r=*1

1
W[PF rRy(7) Ixrsm»
MO

C. Four-particle system
The basis of a four-particle system in angular momentum
coupling representation may be chosen as the simultaneous
eigenstate of $7,,S3,,S%,S,), labeled byxs, s,,.sm» Stz

1 . =S5;+5S,, 834:S3+S41 SZSlZ+SB4:
E[l_rRx(W)]X}\SMv N odd, r=*i

(=0 or 1 Mod 2, (18)

S%ZX512,S34,S,M =S1 St 1)X812,834,S,M . S12=0,1,

(a=7F1/2 Mod 2. (19) ,

S3axs,, 55, 5M=84(Saat D xs , 5., M0 S3a=0,1,
It can be shown that under a suitable phase convefh#igh

X1 80.5M=S(St D) xs, 5,.5m0 S=0%1%2,
Re(m) xasm=(—1) xrs-m - (20)

Thus, fogM =0, x\so itself is an eigenstate d®,(7) with Sxsy, sy, 5M=MXs,, s;,,.5m0 [M[=<S. (22)
r=(—1).

It is noted that, though[S,,R,(7)]#0, we have Among the 16 bases, the two bases With= +2 (S=2) are
[S?,R,(7)]=0. Thus, the stated8) and(19) are the simul-  separable, whereas the six bases Witk 0 (S=02,13,2) are
taneous eigenstates of the complete set of commuting locantangled states with(i) =31, (i=1,2,3,4). The remaining
observables(A,S?,|S,|,R, (7)), and may be labeled as eight bases wittM =1 (S=1%2) are of the intermediate-
IN,S,|M[,a), whose physical meaning is very clear. It is case with various forms of one-particle reduced density ma-
noted that the property of entangled states thus constructedtisces.
quite different for everlN and oddN. In this paper we focus The 16 four-particle entangled states constructed by Eq.
on the everN system. (18) for a four-particle system are
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TABLE V. The entangled states of a four-parti¢ipin-1/2) system|S,,,S;4,S,|M|,a).

No.  [S15,S:4,S,|M|,a) Expansion in terms offM|a) 1| |M'|a’ )z, Expansion in terms off M| a)14|M’|a’ )24
1
1 10,0,0,0,0 |00)15/00)34 §(| 11)13/11) 24— [10)13 10) 54— [01) 13/ 01) 54+ 00) 13 00) )
1
2 10,1,1,0,2 |00)15/01)34 E(_|11>13|10>24+|10>13|11>24_|01>13|00>24
+100)1401),4)
1
3 10,1,1,1,0 |00)15/10)34 §(|11>13|01>24*|10>13|00>24*|01>13|11>24+|00>13|10>24)
1
4 10,1,1,1,3 |00)15/11)34 E(_|11>13|00>24+|10>13|01>24_|Ol>13|10>24
+100)1411),4)
1
5 11,0,1,0,2 |01)15/00)34 >~ [11)15/10) 54+ [10)19 11) 54+ |01) 15/ 00) 24
—100)1401),,)
1
6 11,0,1,1,0 110)1,/00)34 §(| 11)1401) 54+ |10)15/00) 54— [01) 13 11) 54— |00) 15 10) 24)
1
7 11,0,1,1,2 111)15/00)34 §(| 11)13/00) 24+ |10)15 01) 54— [01) 13 10) 24— |00) 15 11) )
1 1
8 [1,1,0,0,0 ﬁ(|11>12|11>34_|10>12|10>34_|01>12|01>34) m(_|11>13|11>24+|10>13|10>24+|01>13|01>24
+3/00)1400),,)
9 |1110:D 1( |ll> |10> +|10> |1l>4) 1 (|Ol> |00> +|00> |01> )
NA 1210)34 1211)3 2 1300)24 1301) 24
1 1
10 1,1,1,1, —(|11)1,/01)5,—|01)1,/11 —(/10)14/00),,4+ |00)14/10
| 0 \/§(| )1201)34—|01) 15/ 11)54) \/§(| )13 00) 24+ |00) 13 10)5,)
1 1
11 1,1,1,1, —(|{10)1,/01)5,—|01),,/10 —(]11)15/00),,+|00),4/11
| 2 \/§(| )1201)34—|01) 15/ 10)34) \/§(| )19 00) 24+ 00) 13 11) 54)
1 1
12 11,1,2,0,2 %(|11>12|11>34*|10>12|10>3thr 2|01)1,/01)54) %(|11>13|11>24*|10>13|10)24+2|01>13|01>24)
1 1
13 1,1,2,1, —({10)15/01)34+|01)1,/10 —(]10)14/01),4+|01)14/10
| 2 \/§(| )12101) 34+ [01) 15 10)34) \/§(| )19 01) 24+ [01)13/10) )
1 1
14 1,1,2,1, —({11)15/01)34+|01) 1,11 —(|11)15/01) 54+ |01) 1411
| 2 \/§(| )1201)34+|01) 15/ 11)54) \/§(| )1301) 24+ [02)1511)5,)
1 1
15 1,1,2,2, —({11)15/10)54+|10)1,/11 —(111)15/10),,4+|10)14/11
| 2 \/§(| 1121034+ |10) 15/ 11)54) \/§(| )13 10) 24+ [10)1411)5,)
1 1
16 11,1,2,2,2 — —= (111)1912) 54+ |10)15/10)4)

5 (112)15/11) 34+ |10)1210)34)

V2

bases are shown in Table V, in which also are given the
expansions in terms of the direct product of the Bell basis for
1 both subsystems (1,2)(3,4) and (1,3®(2,4). The relation
|S12/834,S,[M| ’a>:W between the two expansions can be easily established by us-
Mo ing the 9§ symbol in angular momentum coupling theory. It
is important to find that, while all one-particle reduced den-
sity matrices are the same for both the 16 GHZ states and the
(23 states of Eq(23), p(i)=3I, (i=1,2,3,4), the structure of
two-particle reduced density matrices is quite different. The
which are the simultaneous eigenstates of the complete set sfructure of the two-particle reduced density matrices for the
commuting observable$S?,,S3,,5%,|S,|,R(7)). The 16 16 entangled statd$,,,S:4,S,|M|,a) are as follows.

X[1+rRy(7)]Xs,, 55,,5M

052307-7
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(A) For the former seven states wis,=0 and/orSy,

=0,

p(1,2=p(3,4=

0

(29)

PHYSICAL REVIEW 45 052307

For the remaining seven, like all the GHZ states,
1

N| =

p(i,j)= , i#Fj, 1,]=1,2,3,4. (29

0

The construction of entangled states forNwparticle sys-
tem (N even, N>4) by Eq.(18) is similar, and it is found

which implies that there exists no entanglement between thg ot there do exist some entangled states wheparticle

subsystems1,2) and(3,4). However,

1
p(1,3=p(24=p(1AH=p(23= ;la;

i.e., the seven states may be considered as maximally en-
tangled states between two subsystéin3) and(2,4), which

(29

(k=N/2) reduced density matrices have the form (g,
which is essential for the teleportation of an arbitrary
k-particle spin state.

IV. EXTENSION OF THE SCHEME OF BENNETT et al. TO
THE TELEPORTATION OF AN ARBITRARY
UNKNOWN TWO-PARTICLE STATE

turns out to be essential for teleporting an arbitrary two-

particle statesee Sec. IV.
(B) The latter nine states witB;,=S;,=1.
For the state1,1,2,0,2,

1
1 1
p(.))=5 .| i#l Li=1234
0
(26)
For the staté¢1,1,0,0,0,
1
1
p(1.29=p(3.4 =3 1 , (27)
0
1
1 1
p(1,3=p(24=p(1H=p(23 =15 L
9
(28)

Following the same line of scheme of Bennettal., we
investigate the teleportation of an arbitrary, unknown two-
particle state using the ancillary entangled states shown in
Eqg. (23). Assume Alice is asked to send an arbitrdon-
known to hey two-particle statd W),z to Bob at a distant
location:

| W) ag=2a|00) sg+b|0D) pg+C|10) pg+d[11) a5

. la|?+|b?+|c|?+|d]?=1. (30

o O T 9

AB

To teleport anarbitrary two-particle spin state, it is neces-
sary to prepare an ancillary four-particle entangled state, of
which some two-particle reduced density matrices are of the
form %1,. Assume the prepared ancillary four-particle en-
tangled state is, for examplg),0,0,0,04,34. Particles(2,4)

are sent to Alice and particled,3) to Bob. Then, Alice
makes a four-particle joint measurement of the complete set
of commuting observablesSg,,Sg4,S,|M|,@) which will
project the state of particlesA(2,B,4) onto one of the 16
baseqsee Eq.(23)] and in the meantime the original state

| W) g is destroyed. The reentangling process may be ex-
pressed as

TABLE VI. Unitary transformations for the teleportation of an arbitrary two-particle spin state. The seven elements in the first column and tle first ro

denote the input and outcome states.

|O'OVOVOrQAZBA \0,1,1,0,]}AZB4 |0x1'111vQA254 |0v111v1|1)A254 ‘1vov1x0|j?A234 |110v1v1vQAZB4 |lvorlvlvj)AZB4
10,0,000155 12(1)®1(3) 12(1)®0,(3) —12(1)®0,(3) —12(1)®icy(3) 01)212(3) —o(1)®12(3) —iay(1)®12(3)
01103125 1p(1)®0,(3) 12(1)®1(3)  12(1)®ioy(3) 12(1)®0(3) 0 (1)®03) -, (1)®0,3) —ioy(1)®ay(3)
101,1,1,0103s —12(1)®0,(3) —12(1)®i0y(3) 12(1)®1x(3)  12(1)®0,(3) —0A1)®0u(3) o, (1)®0y(3) oy (1)@ 0y(3)
01,11300m 12(1)®icy(3) 12(1)@0(3) 12(1)®0y(3)  12(1)@1x(3)  10:(De0y(3)  —ig(oay(3) oy(1)®0y(3)
11,0,1,0,2125  a(1)®12(3) 0(1)®@0/3)  —0,(1)@0(3) —io1)®0y(3) 12(1)®1,(3) iy (1)@12(3)  o(1)®12(3)
110110125 —o(1)212(3) ~ox(D®0A3) g (1)®o,(3) io()e0y(3)  —ig(Leiz(3) 12(1)@1x(3) o (1)@l2(3)
110113105 jg(1)ein(3)  19W(D®0A3)  —ig(1)0y(3) oy (1)@0y(3) a(1)@12(3)  a(1)®12(3)  12(1)®13(3)

052307-8
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a —b —C —d
1 b 1 - 1 - 1 —
|0,0,0,0,()1234|\II)AB=Z|O,0,0,O,()A2B4 c + Z|O,1,1,0,1} + Z|0,1,1,1,Q T Z|0,1,1,1,1) b
d 13 c -b a
b c d 3a
+11010 2 +1101l - +11011 ¢ + ! 1,1,0,0 P
4| 1M == 7$ d 4| [ B | 10 4| L e | 1» b 4\/§| 1= 10 c
c —-b —-a —d
b c d
J2 -a| 2 0 NA 0 1 -
+—11,1,1,0, +—11,1,1,1, +—01,11,1, +——11,1,2,0,
0 0 a
0 0 0 0
V2 —c| 2 —d| 2 0| 2
+T|1,1,2,1,1> b +T|1,1,2,1,2 0 +T|1,1,2,2,1) g +T|1’1’2’2’2}
0 b c d
(31

For brevity, the labeling of each particle is omitted on the right-hand (@greept the first term It is seen that for the former

seven(Nos. 1-7 in Table ¥ outcomes for particlesA,2,B,4), Bob may extract a faithful replica of the two-particle state
| W) ag by using the following unitary transformations:

Ui=1,4=1(1)®14(3),

~o, O 0o -l
u2=( 0 0):|2<1>®oz<3>, u3=(_|2 02)=—|2<1)®ax<3),

0 Oy .

0 o 0 —io,
u6=<02 0 )=—ax<1>®|2(3>, u7=( 0 y)=—i<fy(1>®'z<3>’ 32

—I(ry

which can be realized by simplmear andlocal operations. However, for the latter nifidos. 8—16 in Table Y outcomes,
one cannot extract the replica [o0F),g. Thus, the teleportation efficiency is 7/16.

For the other six statedNos. 2—7 with S;,=0 or S3,=0, the situation is similar, and the corresponding unitary transfor-
mations are summarized in Table VI. It should be mentioned that for the former seven outcomes, Alice’s joint measurement is,
in fact, equivalent to a combination of two Bell basis projections for particdeg)(and B,4) (see Table V.

However, if the prepared ancillary four-particle state is any one of the remaining nine (Mates8—16 in Table Ywith
S1,=S34=1, one cannot realize the teleportation of an arbitrary unknown two-particle|9tajg . For example,

052307-9
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3a —3b —3c
1 -b 1 a 1
|11110-0101234‘1’>A82m|01010-010A284 ¢ +m|01111’0-1> _d +m|07111v110 a
—d/ —-C b
-3d 3b 3c
+i|01111> ‘ +i|10103) e +i|10110
a3 T b [T BT —d ] T BT a
—a —-C b
3d 9a 3b 3c
1 c 1 b 1 a 1 0
+m|1,0,1,1,1> b +1—2|1,1,0,0,Q c +ﬁ|1’1’1’0'1} 0 +%|1,1,1,1,Q a
a d 0 0
3d 0 0 0
1 0 1 2b 1 c 1 d
+%|1,1,1,1,1> 0 +$|1,1,2,0,2) . +%|1,1,2,1,1; b +ﬁ|1,1,2,1,2} 0
_a —d —b
0 0
1 0 1 0
+2—\/€|1,1,2,2,J> q +2—\/€|1,1,2,2,3 c (33
-C —d

An extension to deal with the teleportation of an arbitriyarticle k>2) spin state is straightforward.

|
V. SUMMARY forward. Of course, this is only a theoretical scheme; how to
experimentally prepare a kind of ancillary entangled states
and how to make a joint measurement of this kind of basis
need further investigation.
What we have demonstrated above can be used to address
any two-level system having the same algebra as a[&8in

It is shown that, to teleport an arbitrakyparticle spin
state, one must prepare an ancilldyparticle (N=2k) en-
tangled state, whodeparticle reduced density matrix has the
structure (1/9)1,«. From this one can understand why it is

impossible to teleport amrbitrary unknown k-particle ie. the levelde) andla) mav be seen as the spin “up” and
=2) state using an ancillary GHZ state. An alternative kind“‘d(.),wn” statej o>f a fic|:?it>iousyspin 1/2 along an %rbitrzg@z
of entangled states is constructed by invoking the collectivedirection s,—1/2(e)(g| +]a)(el). s,~1/(2)(e)g|~|a)
rotation of = aroundx axis, R (), operating on the basis of x(e]), s;z)(1/2(| exel— g)(gl). l\/ioreover, this scheme for

e aaciaGonaucing criangled staes can be exiended 1o sstems
P Y composed of particles with arbitrary sgin

kind of four-particle entangled states is investigated. The
scheme of Bennett al. is extended to deal with the telepor-
tation of an arbitrary two-particle spin state by using the
four-particle entangled states thus constructed. The extension This work is supported by the Natural Science Foundation
to teleport an arbitrark (>2) particle spin state is straight- of China.
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