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Multiparticle reduced density matrix and a useful kind of entangled state
for quantum teleportation
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It is pointed out that the possibility of teleporting anarbitrary unknown one-particle spin state is crucially
connected with the maximal entanglement of the Einstein-Podolsky-Rosen pair, whose one-particle reduced
density matrix isr( i )5

1
2 I2 ( i 51,2). It is shown that, to teleport anarbitrary k-particle spin state, one must

prepare an ancillaryN-particle (N>2k) entangled state, whosek-particle reduced density matrix has the form
(1/2k)I2k (I2k is the 2k32k identity matrix!. An alternative approach to constructing many-particle entangled
states is developed by usingRx(p), the collective rotation ofp around a given axis~say,x axis!. The entangled
states constructed by usingRx(p) operating on the basis of angular momentum uncoupling representation are
just the GHZ states, which cannot be used for the teleportation of an arbitraryk (>2) particle spin state. The
entangled states constructed by usingRx(p) operating on the basis of angular momentum coupling represen-
tation turn out to be effective for the teleportation of anarbitrary multiparticle state. A formal extension of the
scheme of Bennettet al. to deal with the teleportation of an arbitrary two~or more! particle spin state is
discussed.

DOI: 10.1103/PhysRevA.65.052307 PACS number~s!: 03.67.Hk, 03.65.Ta
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I. INTRODUCTION

The first successful scheme for quantum teleportation
developed by Bennettet al. @1#. The idea behind teleporta
tion is that a physical object is equivalent to the informati
needed to construct it@2#, i.e., an event by which a physica
object is transformed from one point in space to anot
without actual material transportation@3# . In classical phys-
ics there is no conceptual impedient to this, because a sy
can be scanned thoroughly without disturbing its state i
given location and using this information one can complet
reconstruct it in a second site. However, this procedure
invalid for any real physical system, which ultimately co
sists of microscopic constituents obeying the principle
quantum mechanics. According to quantum mechanics,
attempt to gain information about an object, in general,
ways changes its state; i.e., a physical object in its orig
state is bound to be destroyed by the process of scann
which has been demonstrated by Wooters and Zurek in
noncloning theorem of an unknown quantum state@4#. It is
encouraging to note that the scheme of quantum teleporta
of Bennett et al. has been realized in various conditio
@5–9#.

In the scheme for quantum teleportation, of Bennettet al.
a key role is played by an ancillary Einstein-Podolsky-Ros
~EPR! pair of particles which will be initially shared by th
sender~Alice! and the receiver~Bob!. The peculiarity of an
entangled state—the nonlocal correlation between two
jects which was first pointed out by Einstein, Podolsky, a
Rosen@10# ~though the term is due to Schro¨dinger @11#!—
represents the quintessential distinction between quan
and classical physics. For a two-particle~spin-1/2) system,
the Bell basis is widely used in quantum communicat
theory:
1050-2947/2002/65~5!/052307~11!/$20.00 65 0523
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uc2&125
1

A2
~ u↑&1u↓&22u↓&1u↑&2),

uc1&125
1

A2
~ u↑&1u↓&21u↓&1u↑&2),

uf2&125
1

A2
~ u↑&1u↑&22u↓&1u↓&2),

uf1&125
1

A2
~ u↑&1u↑&21u↓&1u↓&2), ~1!

which may be considered as the simultaneous eigenstate
a complete set of commuting local two-body observabl
i.e., any two of (Sz

2 ,Sx
2 ,Sy

2) @3# or, equivalently,
(s1zs2z ,s1xs2x ,s1ys2y) @12#.

Following the scheme of Bennettet al. @1#, suppose the
sender Alice has been given a single-particle in stateuf&A
unknown to her,

uf&A5au↑&A1bu↓&A5S a

bD
A

, ~2!

which is to be sent to Bob at a distant location. One m
prepare an ancillary entangled two-particle state, e
uc2&12. The three particles may be of different kinds. The
particle 1 is sent to Bob and particle 2 to Alice. The com
plete state of the entire three-particle system is the prod
state uc2&12uf&A , having neither classical correlation no
quantum entanglement between particleA and particles
(1,2). An entanglement between particlesA and 2~or A and
1! is brought about in the next step—a joint Bell basis me
surement. To describe this process, it is convenient to exp
uc2&12uf&A in terms of the Bell basis for particles (A,2):
©2002 The American Physical Society07-1
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uc2&12uf&A5
1

2
uc2&A2S a

bD
1

1
1

2
uc1&A2S a

2bD
1

1
1

2
uf2&A2S 2b

2aD
1

1
1

2
uf1&A2S b

2aD
1

.

~3!

After Alice’s measurement, Bob’s particle 1 will have be
projected onto one of the four states shown on the right h
side of Eq. ~3!. In the case of the Alice’s first outcom
uc2&A2, Bob’s state is

uf&15S a

bD
1

,

a replica of the original stateuf&A . In the other three cases
Bob may apply a corresponding unitary transformation
his outcome to extract the original state information. That
according to Alice’s outcome which is sent to Bob through
classical channel, Bob may apply one of the following u
tary operations on his outcome to extract a replica of
original stateuf&A :

U15I2 , U25sz , U352sx , U452 isy , ~4!

with I2 being the 232 identity matrix. The situation is simi
lar if the prepared ancillary two-particle state is one of t
other Bell bases, and the corresponding unitary transfor
tions are summarized in Table I.

It should be emphasized that the possibility of teleport
an arbitrary, unknown one-particle spin state is crucial
connected with the maximal entanglement of the prepa
EPR pair, whose one-particle reduced density matrix
r( i )5 1

2 I2 ( i 51,2). To illustrate this point of view more
clearly, let us try to perform the teleportation using other t
kinds of basis usually adopted in angular momentum c
pling theory.

For the description of angular momentum, usually tw
representations are adopted@13#: i.e., the angular momentum
uncoupling and coupling representations. For a two-part
~spin-1/2) system, the basis of angular momentum unc
pling representation is the simultaneous eigenstate of
complete set of one-body observables (s1z ,s2z) and denoted
by um1&1um2&2 , (m1 ,m2561/2) or, intuitively, denoted by

u↑&1u↑&2 , u↓&1u↓&2 , u↑&1u↓&2 , u↓&1u↑&2 , ~5!

whose one-particle reduced density matrix is

TABLE I. The unitary transformations needed to extract a fai
ful replica of the one-particle spin stateuf&A to be sent.

uc2&12 uc1&12 uf2&12 uf1&12

uc2&A2 I2 sz 2sx isy

uc1&A2 sz I2 2 isy sx

uf2&A2 2sx isy I2 sz

uf1&A2 2 isy sx sz I2
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r~ i !5S 1 0

0 0D ~ i 51,2!.

The basis of angular momentum coupling representatio
the simultaneous eigenstate of (S2,Sz), S5s11s2 , Sz5s1z
1s2z , and denoted byxSM(1,2), S50, M50 ~singlet state!,
andS51, M50,61 ~triplet states!, which can be expanded
in terms ofum1&1um2&2:

x00~1,2!5
1

A2
~ u↑&1u↓&22u↓&1u↑&2),

x10~1,2!5
1

A2
~ u↑&1u↓&21u↓&1u↑&2),

x11~1,2!5u↑&1u↑&2 , x121~1,2!5u↓&1u↓&2 . ~6!

It is noted that whilex11(1,2) andx121(1,2) are separable
the other two@x00(1,2) andx10(1,2)# are entangled states
whose one-particle reduced density matrix isr( i )5 1

2 I2. This
is easily understood becauseSz is a one-body operator
whereasS2 is a two-body operator.

Suppose the prepared ancillary two-particle state is on
the bases of angular momentum uncoupling representa
following the scheme of Bennettet al., we have

u↑↑&12uf&A5u↑↑&A2S a

0D
1

1u↓↑&A2S b

0D
1

,

u↓↓&12uf&A5u↓↓&A2S 0

bD
1

1u↑↓&A2S 0

aD
1

,

u↑↓&12uf&A5u↓↓&A2S b

0D
1

1u↑↓&A2S a

0D
1

,

u↓↑&12uf&A5u↑↑&A2S 0

aD
1

1u↓↑&A2S 0

bD
1

. ~7!

Obviously, in this case there exists no unitary transformat
to convert Bob’s outcome into a replica of the original sta
uf&A ; i.e., one cannot realize the teleportation of an arbitr
one-particle spin state. This is inherently connected with
fact that all four bases are disentangled states with o
particle density matrix

r~ i !5S 1 0

0 0D ~ i 51,2!.

Next, if the prepared ancillary two-particle state is one of t
bases of angular momentum coupling representa
xSM(1,2), we have

x00~1,2!uf&A5
1

2
x00~A,2!S a

bD
1

1
1

2
x10~A,2!S a

2bD
1

1
1

A2
x11~A,2!S 0

2aD
1

1
1

A2
x121~A,2!

3S b

0D
1

,

-
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x10~1,2!uf&A5
1

2
x00~A,2!S a

2bD
1

1
1

2
x10~A,2!S a

bD
1

1
1

A2
x11~A,2!S 0

aD
1

1
1

A2
x121~A,2!S b

0D
1

,

x11~1,2!uf&A5
1

A2
x00~A,2!S 2b

0 D
1

1
1

A2
x10~A,2!S b

0D
1

1x11~A,2!S a

0D
1

,

x121~1,2!uf&A5
1

A2
x00~A,2!S 0

aD
1

1
1

A2
x10~A,2!S 0

aD
1

1x121~A,2!S 0

bD
1

. ~8!

It is noted that only when the prepared two-particle state
x00(1,2) or x10(1,2) and Alice’s outcome isx00(A,2) or
x10(A,2) can one construct corresponding unitary trans
mation to convert Bob’s outcome state into a replica of
original stateuf&A . In the other two cases, the teleportati
can not be realized. This is also connected to the fact tha
the entangled statesx00 andx10, r( i )5 1

2 I2 ( i 51,2), but for
the separable statesu11& and u121&,

r~ i !5S 1 0

0 0D ~ i 51,2!.

To date, the teleportation of an arbitrary one-particle~spin-
1/2) state has been discussed in detail and has been ex
mentally realized. The next step is to investigate the telep
tation of arbitrary multiparticle information, which is a cru
cial ingredient for quantum communication and informati
@14#. As pointed out by Bennettet al. @1#, since teleportation
is a linear operation applied to the quantum stateuf&, it will
work not only for pure states, but also with various kinds
mixed or entangled states. The key points for teleportatio
a multiparticle information are to prepare a suitable ancill
many-particle entangled state and to make a suitable j
measurement. Usually, the Greenberger-Horne-Zeilin
~GHZ! states are used. The original motivation to prep
three-particle entanglements stems from the observation
three-particle entanglement leads to a conflict with local
alism for nonstatistical predictions of quantum mechan
@15#. The incentive to produce GHZ states has been sign
cantly increased by the advance of the field of quantum c
munication and quantum information processing@16#. The
general form of GHZ states is discussed in Sec. II A, and
Sec. II B we will show that GHZ states are unable to telep
an arbitrary multiparticle (k>2) spin state, except state
with only two components, which is intimately connect
with the structure of multiparticle reduced density matric
~Sec. II C!. It is emphasized that anN-particle (N>2k) spin-
entangled state whosek-particle reduced density matrice
have the form of (1/2k)I2k can be used effectively to realiz
the teleportation of an arbitraryk-particle spin state. In Sec
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III, an alternative approach to constructing many-particle
tangled states is developed by usingRx(p), the collective
rotation ofp around a given axis~say,x axis!. The entangled
states constructed by usingRx(p) operating on the basis o
angular momentum uncoupling representation are just
GHZ states, whereas those by usingRx(p) operating on the
basis of angular momentum coupling representation turn
be effective for the teleportation of an arbitrary multipartic
spin state. The structure of the two-particle reduced den
matrices of the four-particle entangled states thus constru
is analyzed in detail. By using this kind of four-particle e
tangled states, the scheme of Bennettet al. is formally ex-
tended to deal with the teleportation of an arbitrary tw
particle spin state in Sec. IV. The extension to teleport
arbitrary k-particle (k.2) spin state is straightforward. A
brief summary is given in Sec. V.

II. GHZ STATES AND TELEPORTATION
OF MULTIPARTICLE INFORMATION

A. General form of GHZ states

For anN-particle ~spin-1/2) system, the 2N orthonormal
GHZ states are expressed as

1

A2
@ um1 ,m2 , . . . ,mN&6u2m1 ,2m2 , . . . ,2mN&], ~9!

where um1 ,m2 ,•••,mN& is the eigenstate o
(s1z ,s2z , . . . ,sNz) with eigenvalues mi561/2, (i
51,2, . . . ,N). For N52, the four GHZ states are just th
well-known Bell basis. ForN53, the eight GHZ states ma
be considered as the simultaneous eigenstates of the
plete set of commuting observables (F15s1ys2ys3x ,
F25s1ys2xs3y ,F35s1xs2ys3y) ~see Table II! or a
similar equivalent set @17#. Similarly, for N54, the
16 GHZ states may be considered as the simultane
eigenstates of (G15s1xs2xs3xs4x ,G25s1ys2ys3ys4y ,
G35s1xs2xs3ys4y ,G45s1xs2ys3xs4y) ~see Table III!.

B. Quantum teleportation of an arbitrary two-particle state

There have been developed some schemes for the tele
tation of a multiparticle spin state, in which a (k11)-particle

TABLE II. GHZ states of a three-particle system.

GHZ states uF1F2F3& GHZ states uF1F2F3&

1

A2
(u↑↑↑&1u↓↓↓&) u222&

1

A2
(u↑↓↑&1u↓↑↓&) u121&

1

A2
(u↑↑↑&2u↓↓↓&) u111&

1

A2
(u↑↓↑&2u↓↑↓&) u212&

1

A2
(u↑↑↓&1u↓↓↑&) u211&

1

A2
(u↓↑↑&1u↑↓↓&) u112&

1

A2
(u↑↑↓&2u↓↓↑&) u122&

1

A2
(u↓↑↑&2u↑↓↓&) u221&
7-3
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GHZ state is used as the communication channel to tele
a k-particle catlike state@18#. For thek52 case@19,20#, the
state to be sent is of the form

uf&AB5au↑↑&AB1bu↓↓&AB or au↑↓&AB1bu↓↑&AB ,
~10!

which is usually called an EPR state. However, such a s
is not an arbitrary two-particle spin state@see Eq.~11!#. It is
noted that Bennettet al. @1# have given an important state
ment concerning the teleportation of anarbitrary state, ‘‘re-
liable teleportation of anX-state particle requires a classic
channel of 2log2(X) bits capacity.’’ In particular, to realize
the teleportation of an arbitrary two-particle spin state, o
must prepare an ancillary four-particle entangled state. F
let us try to use a four-particle GHZ state to teleport
arbitrary two-particle state.
e

-
il

cl
ru

n
b
t
s
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t
th
m
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An arbitrary state of a two-particle~spin-1/2) system may
be expanded in terms of the Bell basis:

uC&AB5auc2&AB1buc1&AB1cuf2&AB1duf1&AB

5S a

b

c

d

D
AB

. ~11!

One may prepare an ancillary four-particle GHZ state, e
u1122&1234. The complete state of the entire system is t
pure stateu1122&1234uC&AB . Then particles~2,4! are sent
to Alice and particles~1,3! to Bob. A joint measurement o
GHZ basis for the four-particle system is made by Alic
To describe this process, it is convenient to expa
u1122&1234uC&AB as follows:
u1122&1234uC&AB5
1

2
u1122&A2B4S 0

0

c

d

D
13

1
1

2
u2211&A2B4S 0

0

d

c

D
13

1
1

2
u1112&A2B4S 0

0

2c

d

D
13

1
1

2
u2221&A2B4S 0

0

2d

c

D
13

1
1

2
u1212&A2B4S 0

0

a

b

D
13

1
1

2
u2121&A2B4S 0

0

b

a

D
13

1
1

2
u1222&A2B4S 0

0

2a

b

D
13

1
1

2
u2111&A2B4S 0

0

b

2a

D
13

. ~12!
r
-
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Obviously, there exists no unitary transformation to conv
Bob’s outcome state for particles~1,3! into a replica of
uC&AB ; i.e., it is impossible to teleport an arbitrary two
particle spin state using a four-particle GHZ state. We w
show that, like the teleportation of an arbitrary one-parti
spin state using a two-particle state, this impossibility is c
cially connected to thetwo-particle reduced density matrix
of GHZ states.

It should be noted that for a complete description of e
tanglement of a many-particle state, the entanglement
tween various subsystems must be taken into account. Le
assume anN-particle system is divided into two subsystem
A1B(NA1NB5N) and the corresponding reduced dens
matrices are denoted byr(A) andr(B). It can be shown tha
r(A) andr(B) have the same nonzero eigenvalues, but
numbers of zero eigenvalue can differ. Therefore, for a co
plete description of entanglement of anN-particle system, it
rt

l
e
-

-
e-
us

e
-

is necessary to consider all then-particle reduced density
matrices,n51,2,•••,@N/2# (@N/2# being the largest intege
no larger thanN/2). Thus, for a four-particle system, in ad
dition to the one-particle reduced density matrix, the vario
two-particle reduced density matrices must be considere

C. Reduced density matrix of GHZ states

Now, we will show that the impossibility of teleporting a
arbitrary two-particle spin state by using the GHZ states o
four-particle system is crucially connected with the structu
of the two-particle reduced density matrices.

~i! For all GHZ states, the one-particle reduced dens
matrix is of the same form

r~ i !5
1

2
I2 , i 51,2, . . . ,N. ~13!
7-4



MULTIPARTICLE REDUCED DENSITY MATRIX AND A . . . PHYSICAL REVIEW A 65 052307
TABLE III. GHZ states of a four-particle system.

GHZ states uG1 G2 G3 G4& GHZ states uG1 G2 G3 G4&

1

A2
(u↑↑↑↑&1u↓↓↓↓&) u1 1 2 2&

1

A2
(u↓↑↑↑&1u↑↓↓↓&) u1 2 2 2&

1

A2
(u↑↑↑↑&2u↓↓↓↓&) u2 2 1 1&

1

A2
(u↓↑↑↑&2u↑↓↓↓&) u2 1 1 1&

1

A2
(u↑↑↑↓&1u↓↓↓↑&) u1 2 1 1&

1

A2
(u↑↓↑↓&1u↓↑↓↑&) u1 1 1 2&

1

A2
(u↑↑↑↓&2u↓↓↓↑&) u2 1 2 2&

1

A2
(u↑↓↑↓&2u↓↑↓↑&) u2 2 2 1&

1

A2
(u↑↑↓↑&1u↓↓↑↓&) u1 2 1 2&

1

A2
(u↑↓↓↑&1u↓↑↑↓&) u1 1 1 1&

1

A2
(u↑↑↓↑&2u↓↓↑↓&) u2 1 2 1&

1

A2
(u↑↓↓↑&2u↓↑↑↓&) u2 2 2 2&

1

A2
(u↑↓↑↑&1u↓↑↓↓&) u1 2 2 1&

1

A2
(u↑↑↓↓&1u↓↓↑↑&) u1 1 2 1&

1

A2
(u↑↓↑↑&2u↓↑↓↓&) u2 1 1 2&

1

A2
(u↑↑↓↓&2u↓↓↑↑&) u2 2 1 2&
is
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~ii ! For N.2, the two-particle reduced density matrix
of the form

r~ i , j !5
1

2 S 1

1

0

0

D , iÞ j , i , j 51,2, . . . ,N.

~14!

~iii ! Similarly, for N.k, the k-particle reduced density
matrix is of the form

r~ i 1 ,i 2 , . . . ,i k!5
1

2 S 1

1

0

�

0

D ,

i 1Þ i 2Þ•••Þ i k , i 1 ,i 2 , . . . ,i k51,2, . . . ,N. ~15!

From the structure of these reduced density matrices, one
understand why the GHZ states are unable to telepor
arbitrary k-particle spin state, except for a special one w
only two components in the 2k-dimensional Hilbert space.

Therefore, to teleport an arbitraryk-particle spin state us
ing an ancillary N-particle entangled state (N>2k), the
k-particle reduced density matrices should have the struc

r~ i 1 ,i 2 , . . . ,i k!5
1

2k
I2k, i 1Þ i 2Þ•••Þ i k ,

i 1 ,i 2 , . . . ,i k51,2, . . . ,N, ~16!
05230
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whereI2k is the 2k32k identity matrix. In the following we
try to construct an alternative kind of many-particle e
tangled state meeting this requirement.

III. ALTERNATIVE APPROACH TO CONSTRUCTING
ENTANGLED STATES

A. Signature

An effective way to construct entangled states is usin
collective transformation of the system considered. We w
show that a collective rotation ofp around a given axis~say,
x axis!, Rx(p), is a very useful candidate. The eigenvalue
Rx(p), r 5e2 ipa, is referred to as a signature (a, the signa-
ture exponent! which is widely used in nuclear physics@21#.

For an even-N-particle ~spin-1/2) system, Rx(p)2

5Rx(2p)51; thus,r 251 andr 561 (a50 or 1 Mod 2!.
For an odd-N-particle system,Rx(p)25Rx(2p)521; thus,
r 2521, r 56 i (a571/2 Mod 2!.

It is easy to show that the GHZ state~9! may be expressed
as

1

A2
@11rRx~p!#um1 ,m2 , . . . ,mN&, N even,

1

A2
@12rRx~p!#um1 ,m2 , . . . ,mN&, N odd, ~17!

which is the eigenstate ofRx(p) with eigenvaluer 5e2 ipa;
i.e., the GHZ states can be constructed by usingRx(p) op-
erating on the basis of angular momentum uncoupling rep
sentation. That is, the GHZ states for anN-particle~spin-1/2)
system may be considered as the simultaneous eigensta
the complete set of commuting local observab
„us1zu,us2zu, . . . ,usNzu,Rx(p)…. In fact, under the operation
7-5
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@11rRx(p)#, any quantum state of an even-N system be-
comes an eigenstate ofRx(p) with eigenvaluer 561. Simi-
larly, under the operation@12rRx(p)#, any quantum state o
an odd-N system becomes an eigenstate ofRx(p) with ei-
genvaluer 56 i .

Therefore, one may construct an alternative kind of
tangled states by usingRx(p) operating on the basis of an
gular momentum coupling representation, which is a sim
taneous eigenstate of the complete set of commuting l
observables (L,S2,Sz), labeled by xlSM . S2xlSM5S(S
11)xlSM , SzxlSM5MxlSM (\51), andl ~an eigenvalue
of L) is the other quantum number necessary for charac
izing the quantum state, which depends on the order of
gular momentum coupling. The alternative kind of orthon
mal entangled states thus constructed is

1

A2~11dM0!
@11rRx~p!#xlSM , N even, r 561

~a50 or 1 Mod 2!, ~18!

1

A2
@12rRx~p!#xlSM , N odd, r 56 i

~a571/2 Mod 2!. ~19!

It can be shown that under a suitable phase convention@22#

Rx~p!xlSM5~21!SxlS2M . ~20!

Thus, forM50, xlS0 itself is an eigenstate ofRx(p) with
r 5(21)S.

It is noted that, though@Sz ,Rx(p)#Þ0, we have
@Sz

2 ,Rx(p)#50. Thus, the states~18! and~19! are the simul-
taneous eigenstates of the complete set of commuting l
observables„L,S2,uSzu,Rx(p)…, and may be labeled a
ul,S,uM u,a&, whose physical meaning is very clear. It
noted that the property of entangled states thus construct
quite different for evenN and oddN. In this paper we focus
on the even-N system.

TABLE IV. Labeling of the Bell basis.

Bell basis uuM u,a& Usual labeling

1

A2
(u↑&1u↓&22u↓&1u↑&2) u00&12 uc2&12

1

A2
(u↑&1u↓&21u↓&1u↑&2) u01&12 uc1&12

1

A2
(u↑&1u↑&22u↓&1u↓&2) u10&12 uf2&12

1

A2
(u↑&1u↑&21u↓&1u↓&2) u11&12 uf1&12
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B. Two-particle system, Bell basis

For a two-particle~spin-1/2) system, the basis of angul
momentum coupling representation is given in Eq.~6!. As
mentioned above, the two basis withM50, x00 andx10, are
themselves eigenstates ofRx(p) with r 561 (a50,1),
whereas the other twox11 and x121 are not. According to
Eq. ~18!, we may construct the spin-entangled state of a tw
particle system which is just the well-known Bell basis:

x005uc2&12,

x105uc1&12,

1

A2
~x112x121!5uf2&12,

1

A2
~x111x121!5uf1&12. ~21!

In fact, the four states are the simultaneous eigenstate
(uSzu,Rx(p)), labeleduuM u,a&, as shown in Table IV.

It is interesting to note that the entangled states c
structed by usingRx(p) in terms of the basis of angula
momentum uncoupling representation@see Eq.~9!# and the
basis of angular momentum coupling representation@see Eq.
~21!# are the same for a two-particle system, i.e., the B
basis. However, the situation is quite different forN (.2)
particle systems~see below!

C. Four-particle system

The basis of a four-particle system in angular moment
coupling representation may be chosen as the simultan
eigenstate of (S12

2 ,S34
2 ,S2,Sz), labeled byxS12 ,S34 ,S,M , S12

5s11s2 , S345s31s4 , S5S121S34:

S12
2 xS12 ,S34 ,S,M5S12~S1211!xS12 ,S34 ,S,M , S1250,1,

S34
2 xS12 ,S34 ,S,M5S34~S3411!xS12 ,S34 ,S,M , S3450,1,

S2xS12 ,S34 ,S,M5S~S11!xS12 ,S34 ,S,M , S502,13,2,

SzxS12 ,S34 ,S,M5MxS12 ,S34 ,S,M , uM u<S. ~22!

Among the 16 bases, the two bases withM562 (S52) are
separable, whereas the six bases withM50 (S502,13,2) are
entangled states withr( i )5 1

2 I2 ( i 51,2,3,4). The remaining
eight bases withM561 (S513,2) are of the intermediate
case with various forms of one-particle reduced density m
trices.

The 16 four-particle entangled states constructed by
~18! for a four-particle system are
7-6
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TABLE V. The entangled states of a four-particle~spin-1/2) system,uS12,S34,S,uM u,a&.

No. uS12,S34,S,uM u,a& Expansion in terms ofuuM ua&12uuM 8ua8&34 Expansion in terms ofuuM ua&13uuM 8ua8&24

1 u0,0,0,0,0& u00&12u00&34

1
2

(u11&13u11&242u10&13u10&242u01&13u01&241u00&13u00&24)

2 u0,1,1,0,1& u00&12u01&34

1
2

(2u11&13u10&241u10&13u11&242u01&13u00&24

1u00&13u01&24)

3 u0,1,1,1,0& u00&12u10&34

1
2

(u11&13u01&242u10&13u00&242u01&13u11&241u00&13u10&24)

4 u0,1,1,1,1& u00&12u11&34

1
2

(2u11&13u00&241u10&13u01&242u01&13u10&24

1u00&13u11&24)

5 u1,0,1,0,1& u01&12u00&34

1
2

(2u11&13u10&241u10&13u11&241u01&13u00&24

2u00&13u01&24)

6 u1,0,1,1,0& u10&12u00&34

1
2

(u11&13u01&241u10&13u00&242u01&13u11&242u00&13u10&24)

7 u1,0,1,1,1& u11&12u00&34

1
2

(u11&13u00&241u10&13u01&242u01&13u10&242u00&13u11&24)

8 u1,1,0,0,0&
1

A3
(u11&12u11&342u10&12u10&342u01&12u01&34)

1

2A3
(2u11&13u11&241u10&13u10&241u01&13u01&24

13u00&13u00&24)

9 u1,1,1,0,1&
1

A2
(2u11&12u10&341u10&12u11&34)

1

A2
(u01&13u00&241u00&13u01&24)

10 u1,1,1,1,0&
1

A2
(u11&12u01&342u01&12u11&34)

1

A2
(u10&13u00&241u00&13u10&24)

11 u1,1,1,1,1&
1

A2
(u10&12u01&342u01&12u10&34)

1

A2
(u11&13u00&241u00&13u11&24)

12 u1,1,2,0,2&
1

A6
(u11&12u11&342u10&12u10&3412u01&12u01&34)

1

A6
(u11&13u11&242u10&13u10&2412u01&13u01&24)

13 u1,1,2,1,1&
1

A2
(u10&12u01&341u01&12u10&34)

1

A2
(u10&13u01&241u01&13u10&24)

14 u1,1,2,1,2&
1

A2
(u11&12u01&341u01&12u11&34)

1

A2
(u11&13u01&241u01&13u11&24)

15 u1,1,2,2,1&
1

A2
(u11&12u10&341u10&12u11&34)

1

A2
(u11&13u10&241u10&13u11&24)

16 u1,1,2,2,2&
1

A2
(u11&12u11&341u10&12u10&34)

1

A2
(u11&13u11&241u10&13u10&24)
et

the
for

us-
It
n-
the

f
he
the
uS12,S34,S,uM u,a&5
1

A2~11dM0!

3@11rRx~p!#xS12 ,S34 ,S,M ,
~23!

which are the simultaneous eigenstates of the complete s
commuting observables„S12

2 ,S34
2 ,S2,uSzu,Rx(p)…. The 16
05230
of

bases are shown in Table V, in which also are given
expansions in terms of the direct product of the Bell basis
both subsystems (1,2)̂(3,4) and (1,3)̂ (2,4). The relation
between the two expansions can be easily established by
ing the 9j symbol in angular momentum coupling theory.
is important to find that, while all one-particle reduced de
sity matrices are the same for both the 16 GHZ states and
states of Eq.~23!, r( i )5 1

2 I2 ( i 51,2,3,4), the structure o
two-particle reduced density matrices is quite different. T
structure of the two-particle reduced density matrices for
16 entangled statesuS12,S34,S,uM u,a& are as follows.
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~A! For the former seven states withS1250 and/orS34
50,

r~1,2!5r~3,4!5S 1

0

0

0

D , ~24!

which implies that there exists no entanglement between
subsystems~1,2! and ~3,4!. However,

r~1,3!5r~2,4!5r~1,4!5r~2,3!5
1

4
I4 ; ~25!

i.e., the seven states may be considered as maximally
tangled states between two subsystems~1,3! and~2,4!, which
turns out to be essential for teleporting an arbitrary tw
particle state~see Sec. IV!.

~B! The latter nine states withS125S3451.
For the stateu1,1,2,0,2&,

r~ i , j !5
1

6 S 1

1

4

0

D , iÞ j , i , j 51,2,3,4.

~26!

For the stateu1,1,0,0,0&,

r~1,2!5r~3,4!5
1

3 S 1

1

1

0

D , ~27!

r~1,3!5r~2,4!5r~1,4!5r~2,3!5
1

12S 1

1

1

9

D .

~28!
05230
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For the remaining seven, like all the GHZ states,

r~ i , j !5
1

2 S 1

1

0

0

D , iÞ j , i , j 51,2,3,4. ~29!

The construction of entangled states for anN-particle sys-
tem (N even, N.4) by Eq.~18! is similar, and it is found
that there do exist some entangled states whosek-particle
(k5N/2) reduced density matrices have the form (1/2k)I2k,
which is essential for the teleportation of an arbitra
k-particle spin state.

IV. EXTENSION OF THE SCHEME OF BENNETT et al. TO
THE TELEPORTATION OF AN ARBITRARY

UNKNOWN TWO-PARTICLE STATE

Following the same line of scheme of Bennettet al., we
investigate the teleportation of an arbitrary, unknown tw
particle state using the ancillary entangled states show
Eq. ~23!. Assume Alice is asked to send an arbitrary~un-
known to her! two-particle stateuC&AB to Bob at a distant
location:

uC&AB5au00&AB1bu01&AB1cu10&AB1du11&AB

5S a

b

c

d

D
AB

, uau21ubu21ucu21udu251. ~30!

To teleport anarbitrary two-particle spin state, it is neces
sary to prepare an ancillary four-particle entangled state
which some two-particle reduced density matrices are of
form 1

4 I4. Assume the prepared ancillary four-particle e
tangled state is, for example,u0,0,0,0,0&1234. Particles~2,4!
are sent to Alice and particles~1,3! to Bob. Then, Alice
makes a four-particle joint measurement of the complete
of commuting observables (SA2 ,SB4 ,S,uM u,a) which will
project the state of particles (A,2,B,4) onto one of the 16
bases@see Eq.~23!# and in the meantime the original sta
uC&AB is destroyed. The reentangling process may be
pressed as
first ro
TABLE VI. Unitary transformations for the teleportation of an arbitrary two-particle spin state. The seven elements in the first column and thew
denote the input and outcome states.

u0,0,0,0,0&A2B4 u0,1,1,0,1&A2B4 u0,1,1,1,0&A2B4 u0,1,1,1,1&A2B4 u1,0,1,0,1&A2B4 u1,0,1,1,0&A2B4 u1,0,1,1,1&A2B4

u0,0,0,0,0&1234 I2(1)^ I2(3) I2(1)^ sz(3) 2I2(1)^ sx(3) 2I2(1)^ isy(3) sz(1)^ I2(3) 2sx(1)^ I2(3) 2 isy(1)^ I2(3)

u0,1,1,0,1&1234 I2(1)^ sz(3) I2(1)^ I2(3) I2(1)^ isy(3) I2(1)^ sx(3) sz(1)^ sz(3) 2sx(1)^ sz(3) 2 isy(1)^ sz(3)

u0,1,1,1,0&1234 2I2(1)^ sx(3) 2I2(1)^ isy(3) I2(1)^ I2(3) I2(1)^ sz(3) 2sz(1)^ sx(3) sx(1)^ sx(3) isy(1)^ sx(3)

u0,1,1,1,1&1234 I2(1)^ isy(3) I2(1)^ sx(3) I2(1)^ sz(3) I2(1)^ I2(3) isz(1)^ sy(3) 2 isx(1)^ sy(3) sy(1)^ sy(3)

u1,0,1,0,1&1234 sz(1)^ I2(3) sz(1)^ sz(3) 2sz(1)^ sx(3) 2 isz(1)^ sy(3) I2(1)^ I2(3) isy(1)^ I2(3) sx(1)^ I2(3)

u1,0,1,1,0&1234 2sx(1)^ I2(3) 2sx(1)^ sz(3) sx(1)^ sx(3) isx(1)^ sy(3) 2 isy(1)^ I2(3) I2(1)^ I2(3) sz(1)^ I2(3)

u1,0,1,1,1&1234 isy(1)^ I2(3) isy(1)^ sz(3) 2 isy(1)^ sx(3) sy(1)^ sy(3) sx(1)^ I2(3) sz(1)^ I2(3) I2(1)^ I2(3)
7-8
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u0,0,0,0,0&1234uC&AB5
1

4
u0,0,0,0,0&A2B4S a

b

c

d

D
13

1
1

4
u0,1,1,0,1&S 2b

2a

d

c

D 1
1

4
u0,1,1,1,0&S 2c

2d

2a

2b

D 1
1

4
u0,1,1,1,1&S 2d

2c

b

a

D
1

1

4
u1,0,1,0,1&S b

a

d

c

D 1
1

4
u1,0,1,1,0&S c

2d

a

2b

D 1
1

4
u1,0,1,1,1&S d

2c

b

2a

D 1
1

4A3
u1,1,0,0,0&S 3a

2b

2c

2d

D
1

A2

4
u1,1,1,0,1&S b

2a

0

0

D 1
A2

4
u1,1,1,1,0&S c

0

2a

0

D 1
A2

4
u1,1,1,1,1&S d

0

0

a

D 1
1

2A6
u1,1,2,0,2&S 0

22b

c

d

D
1

A2

4
u1,1,2,1,1&S 0

2c

2b

0

D 1
A2

4
u1,1,2,1,2&S 0

2d

0

b

D 1
A2

4
u1,1,2,2,1&S 0

0

2d

c

D 1
A2

4
u1,1,2,2,2&S 0

0

2c

d

D .

~31!

For brevity, the labeling of each particle is omitted on the right-hand side~except the first term!. It is seen that for the forme
seven~Nos. 1–7 in Table V! outcomes for particles (A,2,B,4), Bob may extract a faithful replica of the two-particle sta
uC&AB by using the following unitary transformations:

U15I45I2~1! ^ I2~3!,

U25S 2sx 0

0 sx
D 5I2~1! ^ sz~3!, U35S 0 2I2

2I2 0 D 52I2~1! ^ sx~3!,

U45S 0 sx

2sx 0 D 52I2~1! ^ isy~3!, U55S sx 0

0 sx
D 5sz~1! ^ I2~3!,

U65S 0 sz

sz 0 D 52sx~1! ^ I2~3!, U75S 0 2 i sy

2 i sy 0 D 52 isy~1! ^ I2~3!, ~32!

which can be realized by simplelinear and local operations. However, for the latter nine~Nos. 8–16 in Table V! outcomes,
one cannot extract the replica ofuC&AB . Thus, the teleportation efficiency is 7/16.

For the other six states~Nos. 2–7! with S1250 or S3450, the situation is similar, and the corresponding unitary trans
mations are summarized in Table VI. It should be mentioned that for the former seven outcomes, Alice’s joint measure
in fact, equivalent to a combination of two Bell basis projections for particles (A,2) and (B,4) ~see Table V!.

However, if the prepared ancillary four-particle state is any one of the remaining nine states~Nos. 8–16 in Table V! with
S125S3451, one cannot realize the teleportation of an arbitrary unknown two-particle stateuC&AB . For example,
052307-9
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u1,1,0,0,0&1234uC&AB5
1

4A3
u0,0,0,0,0&A2B4S 3a

2b

2c

2d

D
13

1
1

4A3
u0,1,1,0,1&S 23b

a

2d

2c

D 1
1

4A3
u0,1,1,1,0&S 23c

d

a

b

D
1

1

4A3
u0,1,1,1,1&S 23d

c

2b

2a

D 1
1

4A3
u1,0,1,0,1&S 3b

2a

2d

2c

D 1
1

4A3
u1,0,1,1,0&S 3c

d

2a

b

D
1

1

4A3
u1,0,1,1,1&S 3d

c

2b

a

D 1
1

12
u1,1,0,0,0&S 9a

b

c

d

D 1
1

2A6
u1,1,1,0,1&S 3b

a

0

0

D 1
1

2A6
u1,1,1,1,0&S 3c

0

a

0

D
1

1

2A6
u1,1,1,1,1&S 3d

0

0

2a

D 1
1

6A2
u1,1,2,0,2&S 0

2b

2c

2d

D 1
1

2A6
u1,1,2,1,1&S 0

c

b

0

D 1
1

2A6
u1,1,2,1,2&S 0

d

0

2b

D
1

1

2A6
u1,1,2,2,1&S 0

0

d

2c

D 1
1

2A6
u1,1,2,2,2&S 0

0

c

2d

D . ~33!

An extension to deal with the teleportation of an arbitraryk-particle (k.2) spin state is straightforward.
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V. SUMMARY

It is shown that, to teleport an arbitraryk-particle spin
state, one must prepare an ancillaryN-particle (N>2k) en-
tangled state, whosek-particle reduced density matrix has th
structure (1/2k)I2k. From this one can understand why it
impossible to teleport anarbitrary unknown k-particle (k
>2) state using an ancillary GHZ state. An alternative ki
of entangled states is constructed by invoking the collec
rotation ofp aroundx axis,Rx(p), operating on the basis o
an angular momentum coupling representation. The struc
of the two-particle reduced density matrix of the alternat
kind of four-particle entangled states is investigated. T
scheme of Bennettet al. is extended to deal with the telepo
tation of an arbitrary two-particle spin state by using t
four-particle entangled states thus constructed. The exten
to teleport an arbitraryk (.2) particle spin state is straigh
05230
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re
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forward. Of course, this is only a theoretical scheme; how
experimentally prepare a kind of ancillary entangled sta
and how to make a joint measurement of this kind of ba
need further investigation.

What we have demonstrated above can be used to add
any two-level system having the same algebra as a spin@23#;
i.e., the levelsue& andug& may be seen as the spin ‘‘up’’ an
‘‘down’’ states of a fictitious spin 1/2 along an arbitraryOz
direction, sx51/2(ue&^gu1ug&^eu), sy51/(2i )(ue&^gu2ug&
3^eu), sz51/2(ue&^eu2ug&^gu). Moreover, this scheme for
constructing entangled states can be extended to sys
composed of particles with arbitrary spinj.
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