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A concept of polarization entanglement for continuous variables is introduced. For this purpose the Stokes-
parameter operators and the associated Poirsgdrere, which describe the quantum-optical polarization prop-
erties of light, are defined and their basic properties are reviewed. The general features of the Stokes operators
are illustrated by evaluation of their means and variances for a range of simple polarization states. Some of the
examples show polarization squeezing, in which the variances of one or more Stokes parameters are smaller
than the coherent-state value. The main object of the paper is the application of these concepts to bright
squeezed light. It is shown that a light beam formed by interference of two orthogonally polarized quadrature-
squeezed beams exhibits squeezing in some of the Stokes parameters. Passage of such a primary polarization-
squeezed beam through suitable optical components generates a pair of polarization-entangled light beams with
the nature of a two-mode squeezed state. Implementation of these schemes using the double-fiber Sagnac
interferometer provides an efficient method for the generation of bright nonclassical polarization states. The
important advantage of these nonclassical polarization states for quantum communication is the possibility of
experimentally determining all of the relevant conjugate variables of both squeezed and entangled fields using
only linear optical elements followed by direct detection.
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[. INTRODUCTION tions. Light that appears unpolarized in classical theory can
show polarization properties when considered in the quan-
The classicalStokes parametefd] provide a convenient tum theory[6,13]. The pair states of single photons can be
description of the polarization properties of light, and themaximally entangled quantum states that are particularly
complete range of the classical states of polarization ismiseful for quantum-information processifg4]. The quan-
readily visualized by the use of the Poincagherg2]. The  tum properties of nonmaximally entangled states of pair pho-
guantumStokes parametef8—6] provide operator represen- tons are described in terms of a density matrix which can be
tations of the polarization that also apply to nonclassicakxperimentally reconstructed by means of quantum-state to-
light. The operators satisfy quantum-mechanical commutamography[15]. The quantum-state tomography allows also
tion relations and the variances of the Stokes parameters afer the reconstruction of the quantum state of two-mode
accordingly restricted by uncertainty relations. The quantunquadrature-squeezed light6]. In contrast to the polarization
states of polarization are conveniently visualized by an apentanglement of photon pair states discussed above, here we
propriate quantum version of the Poincaghere. deal with the quantum polarization properties of intense light
We consider a beam of light whose plane wave fronts ardields. For bright fields intensity measurements no longer re-
perpendicular to the axis and whose polarization lies in the solve discrete photon events and so the intensity effectively
xy plane. The polarization state with quantum-mechanicabecomes a continuous variable. Nevertheless, quantum ef-
coherent-state excitations of both tkeandy polarization fects are still visible in the fluctuations of light. The effect is
components has characteristic uncertainties that separate tblesely related to quadrature squeezing; however, now the
classical and nonclassical regimes. Light is said tpblar-  squeezed or entangled quantities are the quantum uncertain-
ization squeezeif the variance of one or more of the Stokes ties of the relevant quantum polarization variables. Although
parameters is smaller than the corresponding value for cohepolarization squeezing can be produced by mixing a
ent light. Methods to generate polarization-squeezed light ussqueezed vacuum with a coherent bddr®] the properties
ing propagation through an anistropic Kerr medium haveof such squeezing are strictly limited. Here we consider a
been proposefb,7-10 (see[11] for a review. Frequency- different class of polarization-squeezed and entangled states
tunable polarization-squeezed light, produced by combiningreated by mixing two or four beams, respectively, on beam
the squeezed-vacuum output of an optical parametric oscikplitters. An important feature for experimental quantum
lator with an orthogonally polarized strong coherent beam orcommunication is a particularly simple detection scheme for
a polarizing beam splitter, has been applied to quantum-statdetermining the quantum statistics of these nonclassical po-
transfer from a light field to an atomic ensemble, thus geniarization states.
erating spin squeezing of the atoms in an excited $t2g We begin this paper by extending the general theory of
The nontrivial polarization properties of light in the quan- the quantum Stokes parameters and Poinsphere. We then
tum theory have attracted much interest in the last decad@ropose straightforward experiments for generating and de-
mainly because the emphasis is moving from purely fundatecting polarization squeezing and entanglement of bright
mental interest to quantum-information-processing applicalight fields. The basic properties of the Stokes parameters are
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outlined in Sec. Il and these are illustrated in Sec. Ill byStokes operators are thus impossible in general and their
consideration of some simple idealized examples of polarizameans and variances are restricted by the uncertainty rela-
tion states. The quantum Stokes parameters of primary lightons

beams whose two polarization components are formed from R . A

the more practical bright amplitude-squeezed light are evalu- V,V3;=[(S;)|2,  V3Vi=[(S,)]?,  and V,V,=[(S5)|2

ated in Sec. IV. A particular experimental scheme is outlined. (2.9
Linear optical schemes for measuring the means and vari- ) i i )
ances of all three parameters of the primary light beam bﬁereVus a convenient shorthand notat|onAfor the variance
direct detection alone are outlined. The methods resembieS’) —(S;)? of the quantum Stokes paramef&r.

those used for determination of the classical Stokes param- It is readily shown3] that

eters, except that simultaneous measurements of different po- A .

larization components are needed for observation of the S+ 55+ 55=5+2S (2.9
guantum effects. The measurement procedure produces a o . .

two-beam squeezed-state entanglement. Section V considégd this is taken to define the quantum Poincgkere. The

the Einstein-Podolsky-Rose(EPR entanglement of the Mean value Qf the sphere radlus is given by the square root of
Stokes parameters that can be obtained by combination df€ expectation value of either side of Hg.9) and it gen-

two primary light beams with similar polarization character- €rally has a nonzero variance.

istics. The applications of nonclassical polarization states in ' Nne relationg2.1)—(2.4) are equivalent to the well-known

discussed in Sec. VI. terms of a pair of quantum harmonic oscillatqfis’—20.

The quantum numberk and m of the angular-momentum
state are related to the quantum numbeysand n, of the

II. QUANTUM STOKES PARAMETERS AND POINCARE harmonic oscillators by

SPHERE

_1 — 1l —
The Hermitian Stokes operators are defined as quantum I=2(n+ny) and m=z(ny—ny). (2.10

versions of their classical counterpafts2]. Thus, in the

notation of[11], A pure state of the polarized light field is denoteg,y)

and a density-operator description is needed for statistical
o Ata | Ata . mixture states. Some simple examples of pure states are
So=axaytayay =N, +ny=n, (2.1 treated in the following section to show the main character-

istic features of the quantum Stokes parameters and Poincare
(2.2 sphere.

ASZZéITéy-FéTA (2.3 IIl. SIMPLE POLARIZATION STATES
A. Number states

S;=i(ajac—ajay), (2.4) Consider first the state of linearly polarized light that has
n photons withx polarization and no photons with polar-

where thex andy subscripts label the creation, destruction, jzation,

and number operators of quantum harmonic oscillators asso-

ciated with thex andy photon polarization modes, arfidis l:x,y)=[n),|0)y . 3.1
the total photon-number operator. The creation and destruc- ) ) )
tion operators have the usual commutation relations The state is an eigenstate of the first two Stokes parameters,
’ with
[a,al1=8, j.k=xy. (2.5 . .

P Solix.y) =81l ix.y)=nlyixy). (3.2
The Stokes operatds, commutes with all the others, Thus

[$,5]=0, =123, (2.6) (5)=(5))=n and Vy=V,=0. (3.3

but the operatorél, éz and§3 satisfy the commutation The other two parameters have zero expectation values,

relations of the s{2) Lie algebra, for example,

(82)=(S)=0, (34
[S;.5]1=2iS;. (2.7 and the expectation values of their squares are
Apart from the factor of 2 and the absence of Planck’s con- ($2)=(S)=n=V,=Vj,. (3.5

stant, this is identical to the commutation relation for com-
ponents of the angular-momentum operator. Simultaneoughe state is, however, an eigenstate of the sum of these
exact measurements of the quantities represented by thesquared Stokes parameters, with
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FIG. 1. Sections of the Poincasphere in the 3,1 and 2,3 planes FIG. 2. Sections of the Poincasphere in the 3,1 and 2,3 planes
for the x-polarized number state. The heavy points and the circlefor the x-polarized coherent state. The shaded disks show the pro-
respectively, show the locus of the tip of the Stokes vector in thesgections of the uncertainty sphere of the Stokes vector in these
planes. planes.

(§§+ §§)|¢;x,y>=2n|w;x,y>. (3.6 The coherent-state complex amplitudes and «, corre-
spond to the amplitudes used in the definitions of the classi-
The uncertainty relations in Eq2.8) are all satisfied as cal Stokes parameters. The various possible states of polar-
equalities for the number state. ization are specified by exactly the same valuea,0hnda,
Figure 1 shows two sections of the Poincaptere for the ~as in the classical theoif]. _
X.p0|arized number state. The radius of the Sphere has a In contrast to the classical theory, however, the radius of
well-defined value in view of the relation®.2) and (3.6). the Poincaresphere is ill defined because of uncertainties in
The tip of the Stokes vectoiS;,S,,S;) lies on a circle per- the values of all the Stokes parameters. Their variances are
pendicular to theS,; axis at coordinat&, =n. The figure is  all equal for the coherent statgs, 11],
identical, apart from some factors of 2, to that for an angular-
momentum vector with a well-define®y, component. Vj=(h,)+(hy)=(n), j=0,1,2,3; (3.10
The number state is an eigenstate of the squared Stokes

parameters in Eq3.5 for the special case af=1, when . .
they bear the same relation to the mean valu&pin Eq.

a2 . 22 . ) (3.9 as do the photon-number variance and mean for the
Slgixy)=Slgixy)=ldixy) for n=1. (3.7 coherent statg24]. It is readily verified that the three uncer-
. ) . tainty relations in Eq(2.8) are satisfied. Note that the above

The corresponding angular-momentum state in this caseyefinition of a coherent polarization state, which comes natu-
given by Eq.(2.10, hasl,m quantum numbers 1/2, 1/2 and 5y a5 a straightforward extrapolation from two individual

the Pauli spin matrices accAordmeg provide a representatlogingle_mode coherent states, does not describe a minimum

for the Stokes operatois;, $,, andS;. uncertainty state of the combined two-mode system in all
three dimensions of the Poincasphergsee Eq(2.9)]. The
B. Coherent states Poincaresphere relatiori2.9) is verified in the form

Just as the photon-number polarization state is an analog

of the angular-momentum state with well-defined magnitude (S2+S5+ S =(A%+2A)=(A)2+3(A)  (3.1D)
andS; component, the coherent polarization state is an ana-
log of the coherent angular-momentum, spin, or atomic stat
[18,21,23. This coherent polarization state has been define&
as a two-mode state where both modes are excited to ind?I
pendent single-mode coherent stafBsll]. We denote the
combined product state by

nd the variance in the squared radius of the sphere is non-
ero. The quantum Poincasphere for the coherent polariza-
on state is therefore fuzzy, in contrast to that for the number
state. Figure 2 shows two sections of the Poincpere,
which are drawn for the mean radius obtained from the
square root of Eq(3.11). Here «, is set equal to zero for
ease of comparison with Fig. 1. It is seen that, because of the
A ] ] ) equal variance$3.10 of the three Stokes parameters, the
whereDj(«;), j=x.y, is the usual coherent-state displace-yncertainty is now represented by the shaded sphere of ra-

ment operator. The state is a simultaneous eigenstate of thg s J3(n) centred on the mean valugn),0,0) of the
mode destruction operatoés and a, with eigenvaluesey,  gigkes vector. Y

anda,, respectively. The expectation values of the quantum the poincaresphere has the well-defined surface of its
Stokes parameters are then obtained by replacwlg the Crerassical counterpart only in the limit of very large mean
ation and destruction operators in E@1)—(2.4 by aj and  photon numbers(n)>1, corresponding to bright coherent

l:%,y) =)yl ay)y=D(a)Dy(@,)|0),]0),, (3.9

a; as appropriat¢23], for example, light, where the uncertainties in the Stokes parameters are
) negligible in comparison to the mean amplitude of the Stokes
(Soy=|ay| 2+ ay|2= (D) + (D) =(N). (3.9  vector. The radius of the uncertainty sphere in Fig. 2 then
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shrinks relative to that of the quantum Poincaphere and single-photon state ifi is set equal to 1 and the roles of the

the tip of the Stokes vector approaches the surface of thg, and S, axes are interchanged. The 45° rotation of the

Poincaresphere. polarization leads to a 90° rotation on the Poincspaere.
Light is said to bepolarization squeezeld], according to  The corresponding angular-momentum state is that of spin

the definition in Sec. I, when the variance in one or more ofas is discussed after E.7).

the Stokes parameters is smaller than the coherent-state

value, D. Two-mode quadrature-squeezed vacuum state

Vi<(hy, j=1,23. (3.12 The squeezed vacuum state of the two polarization modes
is denoted
The Stokes parameter wifl=0 is excluded, as the condition
(3.12 in this case is the same as that for photon-number 1£:%,Y)=S(0)|0),]0)y, where (=s€?. (3.19
squeezing. The photon-number state is polarization squeezed
in the S; Stokes parameter according to Eg§.3), although  Here
this too is equivalent to photon-number squeezing.

Sy()=exp({*aa,— (aja)) (3.20

is the usual two-mode squeeze opergf#], not to be con-
fused with the Stokes parameters, with the properties

C. Entangled single-photon state

Consider a number state defined as in B31) but now
for a single photon excited with polarization in a directidn
that bisects thex andy axes, and no photons excited with
polarization in the orthogonal’ direction. The state can be
written

ély( §)éx§xy(§) =&, coshs— é;e“’ sinhs,
§(0)a,5,,({)=a,coshs—aje'’sinhs.  (3.21)
[ix,y)= |1>x’|0>y’ = é.l,|0>= 2_1/2(21)T(+ é.;)|0>

:2_1/2(|1>x|0>y+|0>x|1>y): (3.13

where|0) is the two-dimensional vacuum state. The resulting

state in thex and y coordinate system is a two-mode The state is another example of an entangled state of the two
polarization-entangled state. It satisfies the eigenvalue relgolarization modes.

tions The two-mode quadrature-squeezed vacuum state satisfies

R . the eigenvalue relation
Sol i %,Y) = Sal i x,y) = |#:x,y) (3.14

with unit eigenvalues. Thus

The mean photon numbers in the two modes are

(A =(Ry)=sinl?s. (3.22

S

£x,y)=0, (3.23

N N A which expresses the equality of the photon numbers in the
(So)=(M)=($)=1 andV,=V,=0. 319 o modes, and therefore

The state considered is not an eigenstate of the remaining

Stokes parameters, whose mean values are (S1)=0 andV;=0. (3.29
(8)=(8y)=0. (3.16 The mean values of the remaining Stokes parameters are
However, the state does satisfy eigenvalue relations for the (S)=(A)=2sins and(S,)=(S;)=0 (3.29

squares of these parameters, with

Slyix,y)=Slwix,y) = ¢x,y) (3.17)

and corresponding variances

and their variances are

The mean values and variances of the Stokes parameters are
Vi=Vz=1. (3.18  all independent of the phas# of the complex squeeze pa-
) ) - . . ) rameter. The two-mode quadrature-squeezed vacuum state
It is readily verified that the three uncertainty relations in Eq.iS always polarization squeezed 3 but not inS, and ;.

(2.8) are satisfied as equalities. ) : "
The state has unit total photon number and it is polariza:rhe expectation values of both sides of the Poincpigere

i o i ““relation (2.9) are equal to 2 sirth2s.
tion squeezed in th8, Stokes parameter in accordance with

the criterion(3.12. The operators on both sides of £g.9),
which define the Poincargphere, have eigenvalues equal to
3 for the entangled single-photon state. The sphere is well The state that has both polarization modes excited in iden-
defined for this state, with a radius equahtd The sections tical but independent minimum-uncertainty amplitude-
of the Poincaresphere shown in Fig. 1 apply to the entangledsqueezed coherent staf@$] is denoted

E. Minimum-uncertainty amplitude-squeezed coherent states

052306-4



POLARIZATION SQUEEZING AND CONTINUOUS. .. PHYSICAL REVIEW A 65 052306

@, &;%,Y)=Dy(@)S()Dy(a)S,(£)|0)4]0), gg{fggﬁn S,

where state

{=sé?. (3.27)

The phase angle of the coherent complex amplitades
equal to9/2 for amplitude squeezing. We assume, without
loss of generality, that both these angles are zero. The
squeeze parametef then takes the real valus and the

squeeze operator is given by S, coherent
state

S(Oexp(3s[(8)2— (a2}, j=xy. (3.28

The various required expectation values are evaluated by the FIG. 3. Representations of quantum polarization states of bright
standard method®4]. Thus the mean photon numbers in the coherent and bright amplitude-squeezed light on the Poincare
two modes are sphere. The latter shows polarization squeezing in the parameters
A . . S, 5,, andS,, with antisqueezing ir5;.
(A =(Ay)=a’+sinl?s. (3.29 '

The noise properties of the squeezed states are expressed@sented in Fig. 3. It is also squeezed in Beparameter,
terms of the expectation values of theand — quadrature corresponding to photon-number squeezing.
operators, defined by
)A(r =§lJ-T+§lj and )A(l_ =i(é;r—éj), (3.30 IV. BRIGHT AMPLITUDE-SQUEEZED LIGHT
We now discuss the production and measurement of po-
whose means and variances for the minimum-uncertaintyarization squeezing using a pair of bright amplitude-
amplitude-squeezed coherent states are squeezed beams. Recently, an effective method for produc-
R ~ ing such a pair of squeezed beams has been demonstrated
(X )=2a, (X[)=0, (3.3)  experimentally{26,27. In the following we will couch our
discussion in terms of this technique for squeezing genera-
and tion. However, any pair of amplitude-squeezed beams will
Sirp s G2 2s exhibit similar properties. Like its predecessors, the proposed
((6X))=e"=, ((oX]))=e, (332 experiment, represented in Fig. 4, uses a fiber Sagnac inter-
ferometer followed by a polarizing beam spliti&BS [28]
to produce two orthogonally polarized amplitude-squeezed
pulses, labeleck andy. At the outputs, the two pulses are
separated in time owing to the birefringence of the fiber, but
they can be brought into coincidence by an appropriate delay

wherej =X,y throughout. Thet+ quadrature is squeezed and
the — quadrature is antisqueezed.
The expectation values of the Stokes parameters are

a2 i
(Sp)=2a*+2sinit's (3.33 of the y mode. The two pulses are then recombined at a
and second beam splitter. In a previous experim@], the po-
(S)=(53)=0, (5;)=2a". (334
The corresponding variances are - Ar
©
Vo=V,=V,=2a%e 25+sini? 2s (3.35 f‘;’
©
£
and &
Vy=2a%e%. (3.36 O phase lock
system
It is seen that the light may be separately squeezed or anti Y

squeezed in all of the Stokes parameters by appropriate
choices of the values af ands.

Much of the remainder of the present paper is concerne
Wi-th bright amplitude-squeezed light, defined b}sinhs_. late; 90/10, beam splitter with 90% reflectivity; PBS, polarizin
It !S seen f.rom qu(,g,?g), (335, and(.3.3A® that tAhe light in Eeam splitter; Cr:YAGFT chromium-doped yttriun’): aluminupm garnegt
this case is polarization squeezefi in Beand S, Stokes  |aser. The two orthogonal polarizations from the Sagnac interferom-
parameters and antisqueezed in $ieparameter, as is rep- eter are labelea andy.

d FIG. 4. Experimental setup for the generation of bright
polarization-squeezed light. VA, variable attenuatd@, half-wave
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larization of thex mode was rotated into thedirection by a

: . : < trum o
N2 plate, inserted after the first beam splitter; recombination ; :ﬁgf,;? So
by an ordinary beam splitter then produced two entangled a * [-F= spectum ¢
output beams, both polarized in tlyedirection. Because of - v analyzer °1

thermal fluctuations, the optical phase of the interference had PBS

t(.) be stabilized by a feedback loop, Controlle(_j by equ_al de FIG. 5. Scheme for measurement of the Stokes param8gers
signals of the detectors. By contrast, the version of this ex- -«

periment considered here has x@ plate and the pulses are ands, .

brought together into one optical channel by a second PBS. ) i )

This produces a single output beam with independemtdy The four Stokes parameters in classical optics are mea-
contributions to the polarization, each represented by an efured by well-known techniques that involve transmission of
fectively classical amplitude and a quantum uncertainty. Thdhe light beam of interest through appropriate combinations

quantum uncertainties provide the source of the polarizatioRf guarter-wave plates with polarization rotatdi4,28.
squeezing, while the classical amplitudes must be locked ifl '€ parameters are then obtained by measurements of the

phase to obtain a beam with a defined polarization. Ideallyntensities of orthogonally polarized components of the out-
the light is guided into one output beam of the PBS but, inPut light. These measurements are usually made succes-
practice, imperfections in the PBS cause some fraction ofiVely; first on one polarization and then on the other. The
each polarization to be lost to the other output. This losgn€an values of the quantum Stokes parameters are similarly
effect can be used to implement the controller of a phasemeasurable by direct detection after appropriate processing

locking loop. The polarization-squeezed beam so generatedf the incident light. However, more care is needed in the
is referred to as therimary beam measurement of the quantum noise properties of the Stokes

Following the analysis ii29], the mode operators for the Parameters. Itis clear from Eqe2.1) and (2.2) that the sta-
primary beam are expressed as sums of identical real clasdistical properties of the observed Stokes parameigrand

cal amplitudesy and quantum noise operatosg,; , S,, including their means and variances, can be obtained
~ R R R from the sum and difference of the directly detected photon
a=atda, anday=a+sa,. (4.1 numbers in the andy components of the primary beam. The

perimental setup for their detection is shown in Fig. 5.
ese Stokes parameters essentially describe properties of
the individual polarization components and their photon-
number squeezing. A measurement scheme based on the
difference-intensity photocurrent detection in a direct exten-
sion of the classical case was already presentefil#i.
There, the polarization basis is rotated at the input of the
. cr o - PBS in Fig. 5 using an appropriate phase plate and the dif-
Si=a(dX, = 6X;), (S)=0, (4.3 ferences of the photocurrents at the outputs of the PBS are
R R R R recorded. Then the quantum operators are assigned to the
S;=2a%+a(6X; +0X;), (S)=20°, (4.4  photon number difference in two orthogonal polarizations in
three different bases, two linear bases rotated by 45° and a
Se=—a(3X, —8X,), (S5)=0, (4.5  circular basis. These operators correspond to the quantum

Stokes parameterS;, S,, and S; and the variances of
where the quadrature operators are defined in BB0.  Stokes operators are derived with the assumption of their
Their mean values agree with those of the minimum-zero mean values, as appropriate for a classically unpolarized
uncertainty squeezed states in EB33 and (3.34 when  |ight [13]. By calculating the quantum statistics of these dif-
a>sinhs; they are also the same as those for identicakerence photon-number operators the specific quantum polar-
coherent-state excitations in the two polarization modes. jzation properties of classically unpolarized light have been

The variances of the Stokes parameters are theoretically predictefl13], which are referred to as the light
N N with hidden polarization and the polarization scalar light.
Vo=V1=V,=a{((8X;)?)+((8X;)?},  (4.6)  The theoretical analysis dfL3] for classically unpolarized
light provides a useful tool for determination of the variances
V3= a?{((3X;)3)+((8X;))}. (4.77  of the Stokes operators. From the point of view of experi-
mental quantum communication using nonclassical polariza-
These expressions apply for arbitrary values of thetion states it is important, however, to further elaborate the
quadrature-operator variances. In the special case a@xperimental details of the detection scheme for the particu-
minimum-uncertainty amplitude-squeezed coherent statdar case of linearly polarized input light with high coherent
with @>sinhs, they agree with the variances obtained fromexcitation in both orthogonally polarized modes. Therefore,
Egs. (3.32, (3.35, and (3.36. More generally, for the transformation of the input Stokes parameters is derived
amplitude-squeezed states that do not satisfy the minimunbelow for the particular case of bright amplitude-squeezed
uncertainty condition, polarization squeezing of the primarybeams from the Sagnac interferomdi2¥]. The analysis is
beam may still occur for the Stokes parameters in (Bd). accomplished using the formalism of Jones matrj@&3, the

The expectation values of the noise operators are assumed?c)g(1
be much smaller than the coherent amplitud&@hen, to first
order in thedd; , the Stokes operators from Edg.1)—(2.4)
are

So=202+a(sX{+ X)), (So)=20%, (4.2
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& ¢, - . .
j * & & FIG. 6. Polarizing beam splitter showing the
&X$ /’ $ a, notation for input and output modes.

~

l;x’ b)”
linearized approactd.1), and the experimentally more prac- arms of the PBS. It is emphasized that, in general, simulta-
tical combinations oh/2\/4 wave plates with a PBS. neous measurements are made on the individual pulses that
Consider the quantum properties of eparameter. The Make up the primary beam. These measurements provide
C|assica| measurement Of th|5 parameter is made by Subtraexperimental Values fOI’ the mean al’ld the Variance Ca|CU|ated
tion of the directly detected intensities of the beam after itdn Eqs. (4.4) and (4.6), respectively. However, for the as-
passage through polarizers successively oriented at 45° amed bright beams in both tieinputs, thec, output is
—45° to thex axis. With use of the Jones matricg28], a  dark and can be neglected. The outplt is bright with
rotation of the polarizations through 45° with respect toxhe intensity variance equal t&,. Figure 7 shows the corre-
axis converts the mode operators to new primed axes in agponding experimental setup. Note that, in contradtl®],

cordance with only thed,, output of the PBS is detected.

A =12 o-124 A measurement of thé3 parameter is made by a variant
Ay Ay . . ..
- :[ 12 o-1el|a | 4.8 of the gbove procc_adure in which a quarter-wave plate is in-
ay] [—2 2 y serted into the primary beam before polarization rotation.

. . With use of the appropriate Jones ma , the inverted
However, in contrast to the classical procedure, where Sep?ﬁput-output relatigrrl)s ;re now 2]

rate measurements are made on the two polarization compo-
nents, the polarization-rotated beam is here sent intcathe

arm of the PBS represented in Fig. 6. The transmission and —2712 g7

a»

x
o

o8

reflection axes of the PBS are oriented parallel to the primed a, 2=V -1 ey
axes and its input-output relations are e = A (4.12
b, 1 dy
(o 1 8, by: 1]Ldy
Cyr 1 W
i = - (4.9 . :
X/ 1 by and it is easily shown that
ayr 1 By/ . it s )
S;=i(aja—afay)=d,do—¢,y, (4.13

With no input to theb arm of the beam splitter, so that both

b polarization modes are in their vacuum states, the inputy, sccordance with the definition in Eq2.4. The final
output relations are conveniently inverted to give Stokes parameter is thus again measured by taking the dif-

~ o125l . ference of two direct-detection measurements on the PBS
?X 1 1 ?X' outputs. However, in contrast to the measuremerfs,ofor
a 2 2 Cy/ . A N ~
= K (4.10  bright & inputs, both output beams,, and dy are now
bxr 1 dxr
by, 1 dyr A _spectrum 4
d KK analyzer 2
It is readily shown that x’
a M2 o pBS
~ Ata Ata ~t o~ At A = X i X é\
S;=a,8,+ay8,=d, dy— ¢, , (4.11 5 ;go 5 o
A
in accordance with the definition in E€2.3). TheS, Stokes ’b\

parameter of the primary beam is thus obtained by taking the
difference between direct-detection measurements of the re- FIG. 7. Scheme for measurement of the Stokes pararSgtier
spectivex’ andy’ polarization components in the two output bright beams.
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A A A 1 A .2
d a c=ﬁ(a+zb)
x’ spectrum §
’a\ . 7»{]4 X kl/]Q +’ PBS analyzer ©3
> 7} I | Za | 7 "
y Uy By 2N
A c
b b d=$(3-zb)

FIG. 8. Scheme for measurement of the Stokes parameter . L
- FIG. 9. Interference of two bright polarization-squeezed beams

Ss- on a beam splitter.

bright and actually contribute to the variance of the Stokes
parameteréa. The quantum fluctuations in these outputtem to bg en.tangled.was formulated in tgrms of thg precision
beams are correlated for each pulse and it is essential f inferring information about both conjugate variables of
measure the beams simultaneously in order to obtain exper@ne beam through the measurement of the other. This crite-
mental values of the variancé; for comparison with Eq. rion is thus based on the apparent violation of the Heisenberg
(4.7). The detection scheme is depicted in Fig. 8. Note thatincertainty relation and in this sense follows the arguments
the vacuum operatoifs,, andb,, affect only the unobserved of Einstein, Podolsky, and Ros¢8l]; hence the established
&, and ay, output modes for the measurements of b&jh _nameEPR entanglemenRege_ntly, this issue was addressed
A in terms of the nonseparability of a quantum state of a sys-
ands;. . tem described by continuous variables, i.e., for arbitrary
In the special case where _th.e two components of the prlF]igh—dimensional Hilbert spad82,33. That nonseparability
mary beam are excited in minimum-uncertainty amplitude- = . . . . )
squeezed coherent states, the joint squeeze operator fro(%nrlterlon represents a rigorous e.xte.nsmn for_ higher d“.me”'
Egs.(3.28 and (4.1 is sions of the_Peres—Horodeqlfl crlterlpn for discrete-variable
systems, which uses a positive partial transpose of the sys-
1 tem density matrix as an indication of separability. The
e & _ (A28 V2 (at\2_ aty2 Peres-Horodecki criterion for continous variables delivers a
SO exp[z sL(@)™H ()7~ (807 (3y)'] sufficient condition for a state to be entangled for a general
class of state§32,33 and a necessary and sufficient condi-
tion for the certain subclass of Gaussian sté8%. In what
follows we apply these concepts, originally developed for
This has the same form as the operator in 820 and the  amplitude and phase quadratures or position and momentum,
Cy/ andd,, outputs from the PBS in Fig. 8 are thus excited into quantum states of polarizatio@ontinuous-variable po-
an entangled two-mode squeezed coherent state. larization entanglementefers to a quantum nonseparable
The above analysis shows that the variances of the Stokestate of two light beams and implies correlations of the quan-
parameters are closely related to the quadrature variancesim uncertainties between one or more pairs of Stokes op-
Thus measurements of the Stokes parameters essentially dgators of two spatially separated optical beams. It has the
termine the quadrature variances by appropriate manipularature of two-mode squeezing as well as entanglement of the
tions of the two polarization components of the primaryamplitude and phase. In what follows, we use both ap-

beam. All three of the Stokes measurements involve onlyroaches, following the arguments of RE&0] and of Duan
direct detection and there is no need for the local oscillatogt 5|, [32], to evaluate continuous-variable polarization en-

normally used in phase-sensitive observations of the quadr"t‘anglement of bright beams.

ture _squ_eezing. In the experimen_ts proposed here, _the two A straightforward way to generate EPR entanglenfigii}
polarization components of the primary beam essentially rer - 1ha quantum Stokes parameters is an extension of the

place th_e squeezed s_ignal and coherent local oscillator of tl~\ﬁterference scheme efficiently used in a number of experi-
conventional squeezing measurement. ments [27,34. Suppose we combine two independent

polarization-squeezed primary beams, of the type discussed
V. POLARIZATION EPR STATES in the previous section, on an ordinary beam splitter, analo-

Continuous-variable entanglement can be understood &#0Us to the scheme presented 29]. Suppose also that we
the quantum correlations of conjugate continuous variable§nPose a phase shift o&/2 on one of them before letting
between two spatially separated subsystems. These quantdigm interfere on a beam splitter. The relations between input
correlations have to satisfy certain requirements ensuring th@nd output mode operators of the beam splitter then have the
nonseparability of the quantum state of the system as Erms shown in Fig. 9. The phases of the combinations are
whole. The concept of continuous-variable entanglementhus arranged so that squeezed and antisqueezed quadratures
emerged in consideration of the Einstein-Podolsky-Rosenof the various beams are superimposed. This is a direct gen-
like nonlocal correlations of phase and amplitude betweeralization of the method used to generate standard EPR en-
the output beams of an optical parametric oscilld@e].  tanglemen{35]. The mode operators of the output beams
There, a sufficient condition for a continuous-variable sys<,,¢, andd,,d, are given by

= exp{ —s(&y,dy — X}, d},)}. (4.14
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1 A Here the output in Fig. 9 is assigned to the subsyst&n
5[(1+i)a+ day+idb,], and the outputl to subsystenD. Now, after performing the

e=

linearization, we have that

1 R A At a ot a A ~ A~ ~ N
éy:E[(l"_ a+ 5é.y+ i 5by], 6S1c= CICX_ C;Cy: %a’( 5X;—x+ OXax— 5X;y_ 5Xay+ 5)(;—)(
— 8Ky — 8Ky + 8Xpy) (5.4)

.1 _ o
dx:ﬁ[(l_')‘ﬁ 0y 1by], where the indiceax, ay, bx, andby are related to the corre-

sponding polarization modég andb;, j=x,y, and&S, is
~ 1 i A given by the same expression but with the signs of all con-
dy—‘72[(1—|)a+5ay—|5by], D tributions 5~ reversed. Similarly,

where the bright beams in tlieandb inputs have identical 8830 =1(8)8x—EJEy) = s a( 5K~ K= 8Ky + 6K,y
real classical amplitudes plus quantum noise operators,
similar to Eq.(4.1). Such beams have been considered before
as a continuous-variable teleportation reso|i@4,36], for -
generating entanglement of bright optical pulg#, and for ~ @nddSsp is given by the same expression but with the signs
creating Bell-type correlations for continuous varialjlg3]. of all contributionséX™ reversed. It follows from these ex-
In these cases, quadrature amplitude measurements emplgyessions that
ing local oscillators were employ¢84,36,31, or an indirect R . R R
interferometric scheme was used for inferring the phase cor- ((8S1c)?)=((8Ssc)?)=((8S1p)?) =((8Ssp)?)
relations. Here we will show that the Stokes parameters of 1
the two beams, directly measurable as previously described, = @AV AV VI AV AV, + Ve
satisfy the standard EPR condition for entanglement. 4 2 2 e Y

EPR entanglement is defined to occur when measure-
ments carried out on one subsystem can be used to infer the
values of noncommuting observables of another, spatiall d
separated subsystem to sufficient precision that an “appal An
ent” violation of the uncertainty principle occuf80]. The & & \_ _/ea st
precision with which we can infer the value of an observable (35108S10) = (S0 5sc)

Zp of subsystemD from the measurement & on sub-

— 8K — 8K+ 8K+ 6Kpy) (5.5

+Vpyt (5.6

1
=Za%v;—v;+v;—V‘

systemC is given by the conditional variance ay
. (620 6Zc)|? + Vi = Vot Viv— Voot (5.7)
Vcono(ZD|ZC):<(5ZD)2>_A—2- (5.2 § g Y Y
((62¢)%) where, for exampley,,=((5X,,)?). Finally,

Then EPR entanglement of the Stokes parameters will be

c 2__ 4
realized, for example, if [(S2c)|*=4a". (5.8

Veond S30lSs¢) Veond SinlSic) <[(S:c)|?. (5.9 The conditional variances are thus

Veond S1ip | Slc) = Vcono( S3D| SSC)
= 7&%(Vayt Vayt Vay + Vo + Vot Vi, + Vi +Vp)

ax

B az(V;x_V;x+V;y_ V;y+vgx_vk;x+vgy_vk;y)2 (5.9
A(V gt Vax T Vay+ Vay + Vot Vi, Vi +Vp) '

These expressions can be used to assess the EPR entangle- Vi= V;y:\/gx:\/gy:\ﬁ and
ment condition in Eq(5.3).
If we assume that the modes making up to original Vax=Va,=Vox=Vp,=V", (5.10
polarization-squeezed beams all have equal quadrature
squeezing, that is, then we obtain from Eq(5.9)
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+y\7—

V™V
Veond S1D| SlC) =Veond S3D| Ssc) = 45"2W .

4 PBS
(5.11) /f
- amplitude 4
Compare now Eqs(5.3), (5.8, and (5.11). For minimum- squeezed y
uncertainty quadrature-squeezed modes, wkiéné~ =1 as Beans j)\
in Eq. (3.32, any level of squeezing will lead to the Stokes y
EPR condition (5.3) being satisfied. Nonminimum- ~
uncertainty states must fulfill more stringent squeezing con- bx PBS

ditions [38], although there remain ranges of values\of
(or V") for which Eq. (5.3 is satisfied whernv™<1 (or
V™ <1). For example, wheW " <1/2, which corresponds to
3 dB of squeezing, Stokes EPR entanglement occurs for
values ofV~ in the range ¥ "<V~ <. We propose that
these polarization-entangled EPR states can be useful
employed to implement continuous-variable quantum-
information protocols in the absence of a local oscillator.
Another way to analyze our polarization-entanglemen
states is to use the continuous-variable Peres-Horodecki ¢
terion for separability. This criterion verifies whether two
subsystem® and C are entangled32]. For two pairs of

conjugate variableﬁD ,WD anch ,\7VC of these subsystems
the criterion can be written in the form

FIG. 10. Experiment for the generation of continuous-variable
alr:[PR polarization-entangled states.

te variablesS; andS; (or S, andS;, etc) to drop below

e limit imposed by the continuous-variable version of the
Peres-Horodecki criteriof82,33. We refer to entanglement
gatisfying Eq.(5.14 as squeezed-state entanglem¢&s|.
Such a nonseparability conditidb.12) in its modified form
5.14) is important for the application of entanglement in
guantum-communication protocols. Both conjugate variables
have to exhibit a quantum correlation to guarantee secure
quantum key distribution. A quantum correlation of both
conjugate variables is also preferable for the reconstruction
(5.12 of an unknown state in quantum teleportation. The squeezed-

V.i(Zp,Zc)+V-(Wp,We)<2,
=(Zp.Zc) (Wp,We) state entanglement has the nature of a two-mode squeezed

where the relevant variances are defined as state, hence its name. The values of the variances for coher-
ent bright beams can be calculated using expres<i®i®5
V(Zp+70) (3.10, and (4.2—(4.7), giving V(SE+ jcg*)=4q2, i
Vi(Zp,Ze)=——, =1,2,3. If we again assume that the modes making up the
V(ZE"™+ 28" original polarization-squeezed beams all have the equal
squeezing5.10), then for the bright beam example described
V(Wp +We) above we get squeezing variandgsl3 and (5.14) of
V. (Wp,W¢)= o o (5.13
VWE" -+ WE™) .
V. (Si . Sic) = V(Sip+Sic) _y
and the values labeled “coh” correspond to the respective +(510.51c v/(&eoh, geohy '
coherent states. This definition has to be restricted to vari- e
ables, the coherent variances of which lead to an equal sign VT
in the corresponding inequalify\Eq. (2.8)]. This restriction V_(S3p,S30) = S1T8D WCL (5.15
hinges directly onto the feature of the coherent polarization V(S S5

state defined in Sec. Ill that it cannot be simultaneously a o ]
minimum uncertainty state with respect to all three variables] N€ criterion of squeezed-state entanglement is thus always

The criterion of Eq.(5.12 is in general sufficient. For the satis+ﬁed +for anUt amplitude-squeezed beams wtf,
special case that the system is symmetric with respect to the Vay=Vpx=Vpy=V " <1. S
conjugate variables and the subsystems the criterion is also Note that the Peres-Horodecki criterigf 12

necessary. In the spirit of this nonseparability criterjidg], P
we define the following entanglement boundary for the Vi (S1p,S1c) +V_(S3p,S3c) =V, +Vp <2 (5.16

Stokes operators, for examplg, and S;: is satisfied also when only one of the input fieM§,=V;,
. =V, and V=V, =V, exhibits amplitude quadrature
V(Sip*Sic) -1 squeezingV, <1 orV, <1), the other one being coherent.
V(‘Scl:%h+ éﬁ% ' Hence a nonsepara_ble two-mpde_ field is generated in_ the
interference of one single polarization-squeezed beam with a
V(§3 1@3 ) coherent(or \(acuurr) one on a beam splittgr. _
8b7T el . (5.14 The experimental setup for the generation of bright beams
V(S &Y quantum correlated in polarization is represented in Fig. 10.
Quantum correlations between the uncertainties of the Stokes
Here a more stringent condition is introduced as compared toperators already emerge in the interference of a
the one used if32]. It requires the variances @bthconju-  polarization-squeezed beam with a vacuum or coherent field

V-(S1p,Sic)=

V:(S3p,Ssc0) =
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in the other input of a beam splitter, as was shown in Sec. I\photon-number states, entangled single-photon states, the
and as follows from Eqg5.12 and(5.16. However, taking two-mode quadrature-squeezed vacuum state, and the
into account the realistic squeezing levels of the input fieldsninimum-uncertainty amplitude-squeezed coherent states.
achievable in an experiment, the interference of twoFor many practical applications, it is preferable to use the
polarization-squeezed beams is needed to produce a degreeght amplitude-squeezed light that is available experimen-
of continuous-variable polarization entanglement hightally and this was considered in Sec. IV. It was shown in

enough for communication applications. particular how all of the Stokes parameters can be measured
by the use of linear optical elements and direct detection
VI. CONCLUSIONS schemes that are sensitive to the quantum correlations in the

. two polarization components of the light. These measure-

Both the classical and quantum Stokes parameters represent schemes are developments of the well-known methods
sent useful tools for the description of the polarization of afy; getermination of the classical Stokes parameters to pre-
light beam and also, more generally, of the phase propertiegsrye the guantum noise properties.
of two-mode fields. They include explicitly the phase differ-  The continuous-variable polarization EPR entanglement
ence between the modes and they can be reliably measurggnsidered in Sec. V implies correlations between the quan-
in experiments. These features have triggered the use @fim uncertainties of a pair of Stokes operators as conjugate
Stokes operators for the construction of a formalism for thg ariaples. The entanglement can be generated by linear inter-
quantum description of relative phaf20]. The striking dif-  ference of two polarization-squeezed beams on a beam split-
ferences between the classical and quantum descriptions gfy and the relevant conjugate variables are measured as be-
polarization tha_t can occur for discrete ph.oton states havgyre by direct detection schemes. We propose to apply bright
been explored in measurements on the pair states generatggiarization-entangled beams to continuous-variable quan-
in spontaneous parametric down-convergiéh tum cryptography{41,42, where the method allows one to
~ The current development of methods for quantum-gispense with the experimentally costly local oscillator tech-
information processing based on quantum continuous variiques. Implementation of the protocolst1,42 using
ables has also stimulated interest in nonclassical polarizatiofyntinuous-variable polarization entanglement combines the
states. The formalism of the quantum Stokes operators Wagdvantages of intense easy-to-handle sources of EPR-
recently used to describe the mapping of the polarizatiorsntangled light and efficient direct detection, thus opening
state of a light beam onto the spin variables of atoms inpe way to secure quantum communication with bright light.
excited state$39,40; the correspondence between the algen general, we believe that nonclassical polarization states
bra_ls_ of the Stokes operators ano! the spin operators enables &h pe used with advantage in quantum-information proto-
efficient transfer of quantum information from a freely ¢qjs that involve measurements of both conjugate continuous

propagating optical carrier to a matter system. These develariaples and in quantum-state transfer from light fields to
opments pave the way toward the quantum teleportation ghatter systems.

atomic states and toward the storage and read-out of quan-
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