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Properties of entanglement monotones for three-qubit pure states
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Various parametrizations for the orbits under local unitary transformations of three-qubit pure states are
analyzed. The interconvertibility, symmetry properties, parameter ranges, calculability, and behavior under
measurement are looked at. It is shown that the entanglement monotones of any multipartite pure state uniquely
determine the orbit of that state under local unitary transformations. It follows that there must be an entangle-
ment monotone for three-qubit pure states which depends on the Kempe invariant defined in Phys@Rev. A
910 (1999. A form for such an entanglement monotone is proposed. A theorem is proved that significantly
reduces the number of entanglement monotones that must be looked at to find the maximal probability of
transforming one multipartite state to another.
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[. INTRODUCTION The proof of this theorem is constructive so we can actually
write down the transformation that gives i) from |y).
Entanglement is at the heart of the studies of quantunfror pure states of more than two parts no such nice theorem
computation and quantum information theory. It is whatis known. The question of whether two three-qubit pure
separates these studies from their classical counterparts. dfates can be transformed into each other with nonzero prob-
we are to understand what different phenomena occur wheability by LOCC has been solved by Det al. [9], but just
we look at the true quantum mechanical description of naturgetting a reasonable upper bound on that probability when it
as opposed to the approximations of classical mechanicés nonzero is unsolved. In this paper | attempt to make some
then we must understand how the quantum mechanical dgrogress toward solving this problem for three-qubit pure
scription differs from the classical description. Entanglementtates and hopefully shed some light on how we might solve
is a measure of this difference. While entanglement betweett for larger dimensional spaces and more parts.
two parties is quite well understod@—5], the entanglement One way to findP(|#)—|¢)) is to look at the entangle-
within a quantum algorithm or in a state shared betweement monotone&(|y)) for the two states. For the duration
many parties involves multipartite entanglement, which isof this paper “state” will refer to a pure state unless explic-
just beginning to be understo$d—8]. itly called a mixed state. An entanglement monot¢&b1) is
An integral part of the study of entanglement is determin-defined as a function that goes from states to positive real
ing the probability of transforming one pure state into an-numbers and does not increase under LOCC. As a conven-
other by local operations and classical communicatiortion the value of any EM for a separable state is 0. For mixed
(LOCO). For two-part systems this problem was solved, or aand pure states of any dimension and number of parts the
least reduced to the problem of finding the eigenvalues of &llowing theorem hold$10]:
Hermitian matrix, by[4,5]. For anNXM pure state the
Schmidt decomposition tells us that we can write E(p)
P(p—p')=min ——, 4
n e E(p)
[py=2 VNI, (1)
=1 where the minimization is taken over the set of all EM6].
This can be seen by consideriRfp—p’) as an EM forp.
The problem is that this minimization is difficult to take
since there is no known way to characterize all the entangle-
ment monotones for multipartite states. We would like a
‘ “minimal set” of EMs similar to theE, for the bipartite case
in order to take the minimization.
Ex(| w):izl Mook=1...n-1, @) The situation for three or more parts is somewhat different
than for bipartite pure states. First, genevic< M bipartite
then the highest attainable probability of transformipgyto ~ Stétes have a stabilizére., the set of unitaries that t&lf(las a
|#), P(|#)—|)), is given by[5] sta_te to itself of d|m¢n5|onM -1 |somorph|c to U(1Y .
while pure states with more parts generically have a discrete
stabilizer. States whose parts are not of the same dimension
E([4)) } - I
=L 14, may have larger stabilizers but bipartite states are the only
Ex(|)) ones that always have a continuous stabilizer. Secondly, the
generalized Schmidt decomposition, however you choose to
k=1,...n=-1. (3 generalize if11,12, has complex coefficients for pure states

where the\! are in increasing ordeB;\/ =1, theli) and
li") are an orthonormal set of vectors in spadesnd B,
respectively, anch=min(N,M). If we define

P(|¢>HI¢>)=min[
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with three or more parts. This implies that generally these A. The polynomial invariants
states are not locally unitarily equivalent to their complex
conjugate statef.e., the state with each of its coefficients
complex conjugated Also, for bipartite pure states all the
local unitary(LU) invariants can be calculated from the ei- 1
genvalues of the reduced density matrices but this does not |y)= 2 tijilijk) !
hold for more parts. | will go into more detail about LU Ll k=0
invariants in the next section.

The structure of the paper is as follows. In Sec. Il the
interconvertibility, behavior under measurement, symmetry
properties, parameter ranges, and calculability of two gener- P, (] zﬁ>)=2 ik, ’tiankntilJ'U(l)kT(l)' . ’tinig(n)kf(n)
alizations of the Schmidt decomposition of Hd) and the ®)
polynomial invariantgdefined below are looked at. In Sec.
llit is shown that the entanglement monotones uniquelywhere ¢ and 7 are permutations om elements, repeated
determine the orbit of multipartite pure states and this is useg,gices are summed, artdstands for the complex conjugate
to show that there must be an EM_aIgebrs_;\icaIIy independery; [13]. If one applies a unitary to any of the qubits|in)
of the known EMs. A form for this EM is proposed and .4 explicitly writes outP, (|#)) again it becomes appar-

studied. Section IV discusses other monotones that must eyt thatp (ly)) is invariant. Of course, any polynomial in
ist and their properties. Lastly, in Sec. V a theorem is proveferms of the polynomial invarian®, (| %)) is another poly-

that significantly reduces the number of EMs that must b, mia| invariant. In fact, it can be shown that all the poly-
minimized over to geP(p—p’) of Eq. (4). nomial invariants are of this form.

We know from[11] that the number of independent poly-

A general polynomial invarian®, .(|¢)) for a three-
qubit state of the form

is written as

Il. DECOMPOSITIONS AND INVARIANTS OF THREE- nomial invariants is given by
QUBIT PURE STATES dim{ ¢2® C?®C2]-3dim SU(2)] - dim[U(1)]-1=5,
Let|¢) be a multipartite state i, ®H,- - - ® H,, and let )

Al :H,—H/ be Krauss operators for an operation on the . .
‘ . 0T~ (i . : where the last-1 is due to the fact that we are using nor-
Hilbert space™; with 3, A{’TA('=7, and Z; the identity 9

; . ¢ . . malized states. The five independent continuous invariants
acting on; . A (nonincreasingEM is a real valued function

are
E(]#)) such that
I1=Pe (12)
1,9 0Al® - a1,
E(ly)=2 pE (5) 12=P2)e,
z Vpi
13=P(12),(12), (10
for any state ), operationAl), and spacé where
14=P(123),(132),
P=lh® - oA - @1,y (6) _Is
Is= i1k i ok i gkl 44k
This definition for pure states is taken from the definition for 2
a general state ifL0]. One can always transform a state into X € i€, €111,€151 4 EKkyi5 ko 4|

product states and a product state cannot be transformed into

anything but another product state so the value of an EM fo{ynere €00=€11=0, €o1=—€10=1, and again repeated in-
a product state is chosen to be zero and all other states Mygtes are summed., is the Kempe invarianf1]. If one
have a non-negative value for the EM. Singf can be a  writes outls and uses the identity;; €,s= 8y, 8js— 8is 5y it
unitary operator or the inverse of that operator, E).im-  can be shown thalts is just the sum and difference of 64

plies that all EMs must be invariant under LU. Hence, a firstyolynomials of the form in Eq(8). With one more discrete
step to understanding the EMs is to look at the LU invariantSpyariant

that parametrize the set of orbits.

There are many ways to find LU invariants for three-qubit l6=sg IM(P (34)(56),(13524) ] (11)
states[13,12,14,11,6,15,16some of which can be general-
ized to more parts and larger spaces, but for now | willthe LU orbit of a three-qubit state is determined uniquely
concentrate on the three-qubit case. The three sets of invafi12,17. In this paper | will define sdix] as 1 for non-
ants | will look at in this section are the polynomial invari- negative numbers and 1 otherwise. The polynomial invari-
ants[13], what | will call the diagonalization decomposition ants have the advantage of being easy to compute for any
[12], and what | will call the maximization decomposition state and the four previously known independent E&|sre
[11]. the following simple functions of,, 1,, I3, andls:
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J4= \/E’

Tapc=2(1—11),

Tace=2(1—13), 1/5 4
e Js=7 §—|1—|2—|3+§|4—2J|_,

(12
T(BC)A:2(1_|3),

TABCZZ\/E-

B. The diagonalization decomposition

then the coefficients are given by

L Ja+5EVY

o ="2(3,+3,)

The diagonalization decompositidibD) introduced by

Acin et al. [12] is accomplished by first defining matrices M.i——lt i1=2,3,4,

(To)jk=tojx and (T4); k=t1jx, where thet;;, are given by Ho

Eq. (7). Next find a unitary operation on spaéghat makes

T, singular and unitaries on spacBsand C that makeT, s gl JotJ3t+dy (16)
diagonal. Use the remaining phase freedom to get rid of as K1==-"Ho e '

many phases as possible. What is left is a state of the form

| o0) = V10| 000) + e 1€'?[100) + 2| 101y + V5| 110)
+Vua|111), (13

where u;=0, o+ pmi+ust+puztus=1, and C<p=<m.
Note that generically there are two unitaries that will make
Ty singular but it can be shown that only one will leadgo
between 0 andr. If there is another solution, witlkb be- where Y = (344 Jg)2— 4(31+ 3,) (Jo+ 3,) (Ja+ 35)=0. The
tweenw and 2 exclusive, it is referred to as the dual state |~ solﬁtior?s for thé co?effic?enté co?reséondhmm}
of | ¥op). Some nice properties of DI_D are that there Is a ON&nd its dual state. The inversion of the equationsl foras
to one corresppndence with the orbits and there are a set agne independently ifiL7]. Note that their definition of, is
invertible functions between the parameters of the decompodifferent from the one in this paper

sition and the set of polynomial invariants given above; '

pi g+ pa s —J

cog ™) =

2Vpt s w3 py

sg (sin( ™) ]1=1e SO\ py py p3 pa {d1—J233— 4

X[Jo+ I3+ 34— ()21,

namely,
11=1=2po(pot pna) — 24,
12=1=2po(pat pua) =24,

3= 1= 2po( ot gt pa),
(14

l4=1=3[(p2t pa) (o= pa) + pa(l—pg) — pmopspo
(1= po)(A—pipa)l,

ls=4uius,
l6=Sg{SiN( ) ug\ w1 mopatia

X[A = pa(1=2po+ p1) — popsl},
whereA = pq s+ popg— 2+ o3t 4COSE). If we define

1
Ji=7(1-hi=lp+ 3= 24Ty,

1
Jo=7(1=lit15- 13- 24Ty,

1
Jg=7(1+11= 1= 13- 241y, (15

Another nice property of the DD is that we can perform
an arbitrary measurement on it in spacand stay in the DD
form. Since any measurement can be broken into a series of
two outcome measurement$8], we can look at the two
outcome measuremert; and A, where AIA;+AJA,=1.
Using the singular value decomposition we can wite
=U;D;V whereV does not depend on because the two
positive Hermitian operatoré&!A; and AJA, sum to the
identity and therefore must be simultaneously diagonaliz-
able. The diagonal matricd3; can be written as

1—x° 0
0 J1-y?

where O<x,y<1 [9]. Since we are only concerned with
what orbit the outcomes are in we may chooselhédrans-
formation. Also, matrices of the form

x 0

1: s D2:

g1 0

where ¢, and ¢, are real numbers, commute with tig
matrices so the most geneidlcan be written as

1- %'’

o
[_me—w «

where O=a<1 and@ is real. If we choose

: (19
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1 Ya —x/1—a?e?
U,=— . ,
! \/; x1—a’e 't ya
y=y2a?+x3(1-a?), (20
and similarly for U, with (x,y) replaced by

(V1—x2,\1—y?), then in going from ¢pp) to A|¢pp) the

DD coefficients undergo the following transformations:

XZYZMO

o~ :
0 y

1 ) i
M1—>;|97'0(X2_y2)a po(1—a?) +eyuql?,
(21)

mi—piy, 1=23,4,

p—arde (x2—y?) auo(1—a?) + ey uql,

PHYSICAL REVIEW A 65 052302

nately, the parameters as they are given above are not in one
to one correspondence with the orbits. While the decompo-
sition is generically unique, there are choices of the param-
eters within the given ranges that are not the result of the
decomposition. For example, states wili=1/5+¢, b?
=c?=d%=f?=1/5— /4, and any choice of have

1 1 1 .2
(25

for e<0.014. Hence, these choices of the parameters are not
a result of the decomposition. The true ranges of the param-
eters that would give a one to one correspondence with the
orbits are as yet unknown.

A nice property of the MD is that it is symmetric in par-
ticle exchange. Exchanging the particles is equivalent to ex-
changingb, c, andd. This makes the permutation properties
of the polynomial invariants easier to see when written in
terms of the MD coefficients. They take the following forms:

and again similarly foA,|#pp). Things become more com-
plicated wheng becomes larger thair and we have a dual
solution. In this case we need to transform to the dual state,
which can be quite tedious. It should also be noted that if we
want to put this last form for the DD coefficients into Egs.
(14) the normalization must be taken into account. The nor-

I,=1-2[(a?+d?)(b%+c?)+af?],
I,=1—2[(a?+c?)(b?+d?) +a?f?],

l,=1-2[(a?+b?)(c®+d?) +a?f?],

malization will just be the sum of the form@1) for ug
through 4.

C. The maximization decomposition

The maximization decompositiaiMD) [11] has a some-

(26)
l,=1—3[a%(1—a?) —(b%c®+b%d?+c?d?)(1—2a?)
—2b?%c?d?—2abcdfcog ¢)],

ls=a?|af?+4bcde?|?,

what different way of decomposing the three-qubit states.

First we find the statefsp,), |¢g), and|¢c), each defined
up to an overall phase, that maximize

d(|pa).|de).ldc)) = (b dedlde)l?
and apply a unitary such thap,)| ¢g)| ¢c) becomeg000y).

(22

le=sgr{abcdPsin(¢)[a%(1—2a?)(1—2a—f?)
—4b?c%d?—2abcd cog ¢)]}.

It is apparent from these equations that |,, andl; are
symmetric in permutations of particlesB, AC, andBC,

Defining |1), up to an overall phase, as the vector perpenfespectively, andl;, 15, andls are symmetric in any permu-

dicular to|0), then the derivative of along|1) at the point
|000),

0(10)+ €[1).]0),[0)) ~g([0).[0}|0)

li
e—0 €
=2 Rd(4{100)(000/%)]

must be zero becaugg|0),|0),|0)) is a maximum. Since
we still have phase freedom [0) and|1) this implies that
(#/100y=0 and similarly for{|010) and{|001). Using
the remaining phase freedom in the choicé@fand|1) we
can eliminate all but one phase, leaving us with

(23

| yvp) =a€'#|000)+b|011)+¢|101)
+d[110)+f|111), (24)

wherea®+b?+c?+d?+f?=1, 0<¢=<2m, O<a,b,c,d,f,
andb,c,d,f<a. Note thatg(|0,),|0g),|0c)) =a2. Unfortu-

tation of the particles. Unfortunately, the equations(26)
are not as easy to invert as thosg14). In fact, just calcu-
lating the MD coefficients for an arbitrary state is not an easy
task, as it is in the case of the polynomial invariants and the
DD coefficients, since determining the unitaries for the MD
involves maximizing over a six-dimensional space with typi-
cally many local maxima.

One more interesting fact about the MD is that 42 is a
nonincreasing EM. We know this becausd 18] it is shown
that a function of the form

Ei, kg ke([¥))= max [Ca@Tgolc|y)|?,

Tp.Tg.Tc

(27)

where I'y is a ky-dimensional projector on systenX
=A,B,C, is a nondecreasing EM arf, ; (| #))=a% The
EM 1—a? can be shown to be independent ofrom Eq.
(12) by looking at the gradient vectors of 1—a? andN
=a?+b2+c?+d?+f2, at, for instance, the pointa
=3, b,c,d,f=1, and ¢=w/2. Since the gradient vectors
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span a six-dimensional space,- 42 cannot be written in  pend onl , since ther are invertible functions off;, 1, I3,
terms of ther andN. The problem with using +a% as an  andls, respectively. The following function fulfills that cri-
EM is that one needs to find the global maximum of a six-terion:

dimensional space with many local maxima to calculate it.

This is a difficult task for most states. opapc=3— (11 +1,+13)1,, (32

lIl. EIETH INDEPENDENT EM and numerical results suggest that it is an EM. After gener-
ating over 300000 random states and applying a random
In Sec. Il it was shown that all EMs must be invariant operation to each of them the inequality in E5). was never
under LU and hence are determined by the orbit of the stateiolated byoagc. Also, note thairagc is symmetric in par-
For three-qubit states this means that EMs are a function afcle permutations as isygc. For the rest of the paper | will
only the polynomial invariants, DD coefficients, or MD co- assume thatragc is an EM. Indeed, it may be that there is a

efficients. In fact, this determination is unique. set of measure zero or perhaps just a very small measure for

Theorem 1The set of all EMs for any multipartite pure which o g is not a monotone and my numerical test did not
state|y) uniquely determines the orbit of the state. explore this space, but there must exist some function of the

Proof. Suppose two statdgy) and|¢) in H;®H,®---  polynomial invariants which is independent of ths and is
®H, have the same values for the EMs but lie in differentan EM. For it to be useful in improving our upper bound for
orbits. We know by using Eq4) that P(|¢)—|¢)) there should be pairs of statég) and |¢)

such that
P(lp)—|oN)=P(d)—|y))=1, (28)
g T

so|) can be transformed tap) (and vice versgpby n-party recl|4)) min L) (32
LOCC (n-LOCC), with probability 1. Since EMs are nonin- oasc[4)) - 7(14)

creasing with any-LOCC they must remain constant during ]

the entire transformation fromy) to |¢) (and vice versa and | have found such states numerically. The largest value
Also, we know that any two-party EM (2-EM between a of
systemX=A,B, ... and the rest of the systems thought of
as onele.g., betweerB and (ACD . ..)] is also ann-party aaec|¥) in 714))
EM. This comes from the fact that the setmi.OCC is a oasclle) T, ()
subset of the 2-LOCCs for any choiceXifSince a 2-EM is

nonincreasing over 2-LOCC for any valueXthen itis also  that | found in my limited number of examples of was 0.01.
nonincreasing under-LOCC and hence it is an EM. In par- | was able to find examples of states for which
ticular, the sum of the lowest eigenvectors of the reduced (|))/7(|¢)) is greater than 1 for all 7 and

density matrices, aasc(| ) oasc(| #)) is less than 1.

(33

k
El)<((|l//>):;1 AI[PX(W’»] (29 IV. OTHER EMS AND THE DISCRETE INVARIANT

The five independent continuous EMgag)c, T(ac)B

. . X TBC)A» Tasc, andoagc can easily be inverted to find—I 5
li.e., the 2 .EMS in Eq(2)] must be EMs. So thé, (|4)) but to completely determine the orbit of a state we must also
must remain unchanged and hence the spectrumyois N : ' :

: ; have an EM that will give us the value of the discrete invari-
unchanged during the transformation frdm) to |¢). In

articular. an operation on spage given by A, and A ant lg. This is equivalent to finding an EM that is not the
pmust be éuch thpat P 9 Y A1 2 same for a state and it complex conjugate state. Note that

I, ...,lsand hence andosgc do not change when a state
is conjugated but by looking at any of the sets of LU invari-
Px( Aily) —Upy(|))U", (30) ant.s we can see that ger_1erically a state is not LU equivglent
JN to its conjugate. By looking at Eq4) we can see that this

implies that there must be EMs that are not the same for the
whereN is the normalization. This can always be satisfiedgeneric state and its conjugate. It is also easy to see that for
with A;/\/N a unitary matrix. Since every operation can beany operation that takes a stat@ to its conjugate i) with

written as a unitary|y) and |¢) are unitarily equivalent. probability p there is an operation that takig) to |i) with
This contradicts our original supposition. B the same probability. So for a generic staié there must be
Since we know there are five parameters that determmgn EM that goes down for the 0perati¢¢r>—>|$} and a

the orbit of a three-qubit state then by Theorem 1 there must. . ==
be five independent, continuous EMs. To the best of the ai@iMilar one that goes down the same amount| for— ).

thor's knowledge the only four known independent continu-ThuS EMs of the following form must exist:
ous EMs that do not require a difficult maximization over a
multidimensional space are the fourEMs defined in Eq. v (|4 =
(12). Any candidate for the fifth independent EM must de-

v+, +lg=1, 3
. 4
otherwise, (34)
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where v and o' are functions of 7agc, Tac)E: first for the one-dimensional case.
T(8c)A» Taec, andoapc- Lemma 11If f(x) is anf-type function withn=1 then
Also, from [9] we know that there are two classes of
three-part  entangled  states (i.e., states  with f(x) ~min X 1 40
T(aB)C»T(AC)B  T(B)a>0) that can be converted into each fly) y’
other with some nonzero probability within the class and
zero probability between the classes; namely, the GHZ clagi®r any x,yeS.
which contains Proof.
Case 1 For x=y from property 2 we knowf (x)=f(y)
1 and hence
|GHZ)= —(|000) +|111)) (35
V2 f(x)
f(_)B (42
and has nonzere,gc and the W class which contains y
L Case 2 For x<y if we choosep=(x/y)¢€[0,1) then we
W)= ——(|00D) +|010) +|100) (36) know from properties 1 and 3 th&fpy)=pf(y) and so
V3
f(x) x
. . —=—-. (42
and hasragc=0. Looking again at Eq4) we see thatagc fly) vy

tells us thaP (| ) — | ¥gnHz)) =0 but none of the previously ] ] )

defined EMs tell us thaP(|guz)—|¥w))=0. Since the For n dimensions we have the following theorem.
only way to getP(|gpz)— | #w)) =0 is to have an EM that Theorem 21f f(x) is anf-type function then

is finite for GHZ-class states and infinite for W-class states or

zero for GHZ-class states and nonzero for W-class states, f(x) =min X 1 i—192 n 43)
such an EM must exist. f(y) i)’ e
V. FINDING A MINIMAL SET for X,yeS.
Proof. Let

Since Tagycs T(Ac)B: T(BC)A» TABC, Tasc, and v
determine the orbit of the state all other EMs must depend on Xi
them. A fairly general way to create further EMs from known c= min(f} . (44)
EMs is to use what | will calf-type functions. i

Definition 1 A function f:SCRR"—R is anf-type function  Then we have two cases.

if it satisfies the following (1) f(0)=0; (2) if x,=y; for all Case 1If c=1 then from property Z(x)=f(y) and so
i=12,...n then f(x)=f(y) for x,yeS; (3) f(px+(1 R
—p)y)=pf(X)+(1—p)f(y) for anyx,yeS and O<p=<1. f0 (45)
For a set of EMs{E;}, we have f7)
(y)
Aql ) Aol i) Case 2 If c<1 then define
Ei(|¥))=pE +(1-p)E; (37)
PR i
zi=—, i=12,...n, (46)
for any measurememnt;, A,, and any statg)). So we have ¢
Al Aol andg(r)=f(rf). Notice thatg(r) is anf-type function with
f(E(It/f>))>f(pI§( - )+(1—p)é( - )) n=1 and hence
Vp Vi-p
9(c) _ 4
Adl ) ) e @7

>pf(é( ))+<1—p)f(é( — )) (38)
\/B 1=p or substituting inf we have

where the first inequality comes from property 2 and the

second comes from property 3. Hend€E,, ... E,) is f(x) >c (48)
also an EM. We can show that any ENIE, . . . E,) that f(z)
is an f-type function of monotone&,, ... ,E, does not
modify the upper bound oR(|#)—|®)) given by Using z;=y; and property 2 we have
_Ei(|¥)) f(x)
P < ; 39 =
([ —18)) Ming gy (39 =y >c. B (49)
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For three-qubit states if we take the minimum of
E(l)/E(|#)) over E={r@apc, (a0 T(BO)AITABC:
oasc,v”} we are actually taking the minimum over the in-
finite set of allf-type functions of. Although from Theorem

1 we know that all EMs must be a function &ft is possible
that there exist EMs that are netype functions of€. These
EMs could causeP(|¢)—|¢)) to be lower than the mini-
mum of E(|))/E(|¢)) over & The EM mentioned at the
end of Sec. IV is an example of such an EM.

VI. CONCLUSIONS AND FURTHER RESEARCH

Theorem 1 along with Theorem 2 implies that there
should be dnot necessarily finiteminimal set of EMaM for
which all EMs for three-qubit states or similarly for any type
of multipartite state ard-type functions ofM. | conjecture
that such a minimal set should be simple since fitgpe
functions seem to be a rather general way of creating EM
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a, b, ¢, d, f, and¢ in terms oflq, ...l that would
allow us to calculate the EM%a? not to mention find the
ranges for and calculate the valuesagh,c,d,f, and¢. The

EM 1—a? could be used to replacesgc or perhaps as an
addition to€ and may prove more useful thamgc. As far

as finding the minimal EMs and showing that they are mini-
mal, the arbitrary measurement on the DD at the end of Sec.
Il B may be useful since it allows us to look at the value of
I, ...,lg before and after an arbitrary measurement on an
arbitrary state with far fewer parameters than if we did not
take out the LU freedom. Also, it may be able to tell us the
maximal probability of transforming the general complex

state| ) to its conjugate statgy) and this is a crucial piece
of information that is needed to calculaié in Eq. (34).
Unfortunately, most of these tasks involve trying to solve
nontrivial equations or systems of equations with many vari-

g\bles, which can be difficult or even impossible.

that are functions of other EMs. The difficult part seems to

be finding the EMs that are minimal and showing that they

are minimal. Using numerical results it seems thamay be
minimal. | looked at functions of that are almost but not
quitef type such as*%*and numerically tested whether they
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