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Properties of entanglement monotones for three-qubit pure states

R. M. Gingrich
California Institute of Technology, Pasadena, California 91125

~Received 3 July 2001; published 15 April 2002!

Various parametrizations for the orbits under local unitary transformations of three-qubit pure states are
analyzed. The interconvertibility, symmetry properties, parameter ranges, calculability, and behavior under
measurement are looked at. It is shown that the entanglement monotones of any multipartite pure state uniquely
determine the orbit of that state under local unitary transformations. It follows that there must be an entangle-
ment monotone for three-qubit pure states which depends on the Kempe invariant defined in Phys. Rev. A60,
910 ~1999!. A form for such an entanglement monotone is proposed. A theorem is proved that significantly
reduces the number of entanglement monotones that must be looked at to find the maximal probability of
transforming one multipartite state to another.
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I. INTRODUCTION

Entanglement is at the heart of the studies of quan
computation and quantum information theory. It is wh
separates these studies from their classical counterpar
we are to understand what different phenomena occur w
we look at the true quantum mechanical description of na
as opposed to the approximations of classical mechan
then we must understand how the quantum mechanical
scription differs from the classical description. Entanglem
is a measure of this difference. While entanglement betw
two parties is quite well understood@2–5#, the entanglemen
within a quantum algorithm or in a state shared betwe
many parties involves multipartite entanglement, which
just beginning to be understood@6–8#.

An integral part of the study of entanglement is determ
ing the probability of transforming one pure state into a
other by local operations and classical communicat
~LOCC!. For two-part systems this problem was solved, o
least reduced to the problem of finding the eigenvalues
Hermitian matrix, by @4,5#. For an N3M pure state the
Schmidt decomposition tells us that we can write

uc&5(
i 51

n

Al i
↑u i &u i 8&, ~1!

where thel i
↑ are in increasing order,( il i

↑51, the u i & and
u i 8& are an orthonormal set of vectors in spacesA and B,
respectively, andn5min(N,M). If we define

Ek~ uc&)5(
i 51

k

l i
↑ , k51, . . . ,n21, ~2!

then the highest attainable probability of transforminguc& to
uf&, P(uc&→uf&), is given by@5#

P~ uc&→uf&)5minH Ek~ uc&!

Ek~ uf&!
,1J ,

k51, . . . ,n21. ~3!
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The proof of this theorem is constructive so we can actua
write down the transformation that gives usuf& from uc&.
For pure states of more than two parts no such nice theo
is known. The question of whether two three-qubit pu
states can be transformed into each other with nonzero p
ability by LOCC has been solved by Du¨r et al. @9#, but just
getting a reasonable upper bound on that probability whe
is nonzero is unsolved. In this paper I attempt to make so
progress toward solving this problem for three-qubit pu
states and hopefully shed some light on how we might so
it for larger dimensional spaces and more parts.

One way to findP(uc&→uf&) is to look at the entangle
ment monotonesE(uc&) for the two states. For the duratio
of this paper ‘‘state’’ will refer to a pure state unless expli
itly called a mixed state. An entanglement monotone~EM! is
defined as a function that goes from states to positive
numbers and does not increase under LOCC. As a con
tion the value of any EM for a separable state is 0. For mix
and pure states of any dimension and number of parts
following theorem holds@10#:

P~r→r8!5min
E

E~r!

E~r8!
, ~4!

where the minimization is taken over the set of all EMs@10#.
This can be seen by consideringP(r→r8) as an EM forr.
The problem is that this minimization is difficult to tak
since there is no known way to characterize all the entan
ment monotones for multipartite states. We would like
‘‘minimal set’’ of EMs similar to theEk for the bipartite case
in order to take the minimization.

The situation for three or more parts is somewhat differ
than for bipartite pure states. First, genericM3M bipartite
states have a stabilizer~i.e., the set of unitaries that takes
state to itself! of dimensionM21 isomorphic to U(1)^ M21

while pure states with more parts generically have a disc
stabilizer. States whose parts are not of the same dimen
may have larger stabilizers but bipartite states are the o
ones that always have a continuous stabilizer. Secondly,
generalized Schmidt decomposition, however you choos
generalize it@11,12#, has complex coefficients for pure stat
©2002 The American Physical Society02-1
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R. M. GINGRICH PHYSICAL REVIEW A 65 052302
with three or more parts. This implies that generally the
states are not locally unitarily equivalent to their compl
conjugate states~i.e., the state with each of its coefficien
complex conjugated!. Also, for bipartite pure states all th
local unitary~LU! invariants can be calculated from the e
genvalues of the reduced density matrices but this does
hold for more parts. I will go into more detail about LU
invariants in the next section.

The structure of the paper is as follows. In Sec. II t
interconvertibility, behavior under measurement, symme
properties, parameter ranges, and calculability of two ge
alizations of the Schmidt decomposition of Eq.~1! and the
polynomial invariants~defined below! are looked at. In Sec
III it is shown that the entanglement monotones uniqu
determine the orbit of multipartite pure states and this is u
to show that there must be an EM algebraically independ
of the known EMs. A form for this EM is proposed an
studied. Section IV discusses other monotones that mus
ist and their properties. Lastly, in Sec. V a theorem is prov
that significantly reduces the number of EMs that must
minimized over to getP(r→r8) of Eq. ~4!.

II. DECOMPOSITIONS AND INVARIANTS OF THREE-
QUBIT PURE STATES

Let uc& be a multipartite state inH1^ H2•••^ Hn and let
Ak

( i ) :Hi→Hi8 be Krauss operators for an operation on t
Hilbert spaceHi with (kAk

( i )†Ak
( i )5Ii and Ii the identity

acting onHi . A ~nonincreasing! EM is a real valued function
E(uc&) such that

E~ uc&)>(
k

pkES I 1^ •••^ Ak
( i )

^ •••^ I nuc&

Apk
D ~5!

for any stateuc&, operationAk
( i ) , and spacei where

pk5i I 1^ •••^ Ak
( i )

^ •••^ I nuc&i2. ~6!

This definition for pure states is taken from the definition
a general state in@10#. One can always transform a state in
product states and a product state cannot be transformed
anything but another product state so the value of an EM
a product state is chosen to be zero and all other states
have a non-negative value for the EM. SinceAk

( i ) can be a
unitary operator or the inverse of that operator, Eq.~5! im-
plies that all EMs must be invariant under LU. Hence, a fi
step to understanding the EMs is to look at the LU invaria
that parametrize the set of orbits.

There are many ways to find LU invariants for three-qu
states@13,12,14,11,6,15,16# some of which can be genera
ized to more parts and larger spaces, but for now I w
concentrate on the three-qubit case. The three sets of in
ants I will look at in this section are the polynomial invar
ants@13#, what I will call the diagonalization decompositio
@12#, and what I will call the maximization decompositio
@11#.
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A. The polynomial invariants

A general polynomial invariantPs,t(uc&) for a three-
qubit state of the form

uc&5 (
i , j ,k50

1

t i jk u i jk & ~7!

is written as

Ps,t~ uc&)5( t i 1 j 1k1
•••t i nj nkn

t̄ i 1 j s(1)kt(1)
••• t̄ i nj s(n)kt(n)

~8!

where s and t are permutations onn elements, repeated
indices are summed, andt̄ stands for the complex conjugat
of t @13#. If one applies a unitary to any of the qubits inuc&
and explicitly writes outPs,t(uc&) again it becomes appar
ent thatPs,t(uc&) is invariant. Of course, any polynomial i
terms of the polynomial invariantsPs,t(uc&) is another poly-
nomial invariant. In fact, it can be shown that all the pol
nomial invariants are of this form.

We know from@11# that the number of independent poly
nomial invariants is given by

dim@C 2
^ C 2

^ C 2#23dim@SU~2!#2dim@U~1!#2155,
~9!

where the last21 is due to the fact that we are using no
malized states. The five independent continuous invaria
are

I 15Pe,(12) ,

I 25P(12),e ,

I 35P(12),(12), ~10!

I 45P(123),(132),

I 55U( t i 1 j 1k1
t i 2 j 2k2

t i 3 j 3k3
t i 4 j 4k4

3e i 1i 2
e i 3i 4

e j 1 j 2
e j 3 j 4

ek1i 3
ek2i 4

U2

,

wheree005e1150, e0152e1051, and again repeated in
dices are summed.I 4 is the Kempe invariant@1#. If one
writes out I 5 and uses the identitye i j e rs5d ir d js2d isd j r it
can be shown thatI 5 is just the sum and difference of 6
polynomials of the form in Eq.~8!. With one more discrete
invariant

I 65sgn@ Im~P(34)(56),(13524)!#, ~11!

the LU orbit of a three-qubit state is determined unique
@12,17#. In this paper I will define sgn@x# as 1 for non-
negative numbers and21 otherwise. The polynomial invari
ants have the advantage of being easy to compute for
state and the four previously known independent EMs@6# are
the following simple functions ofI 1 , I 2 , I 3, andI 5:
2-2
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PROPERTIES OF ENTANGLEMENT MONOTONES FOR . . . PHYSICAL REVIEW A 65 052302
t (AB)C52~12I 1!,

t (AC)B52~12I 2!,
~12!

t (BC)A52~12I 3!,

tABC52AI 5.

B. The diagonalization decomposition

The diagonalization decomposition~DD! introduced by
Acin et al. @12# is accomplished by first defining matrice
(T0) j ,k5t0 jk and (T1) j ,k5t1 jk , where thet i jk are given by
Eq. ~7!. Next find a unitary operation on spaceA that makes
T0 singular and unitaries on spacesB and C that makeT0
diagonal. Use the remaining phase freedom to get rid o
many phases as possible. What is left is a state of the fo

ucDD&5Am0u000&1Am1eifu100&1Am2u101&1Am3u110&

1Am4u111&, ~13!

where m i>0, m01m11m21m31m451, and 0<f<p.
Note that generically there are two unitaries that will ma
T0 singular but it can be shown that only one will lead tof
between 0 andp. If there is another solution, withf be-
tweenp and 2p exclusive, it is referred to as the dual sta
of ucDD&. Some nice properties of DD are that there is a o
to one correspondence with the orbits and there are a s
invertible functions between the parameters of the decom
sition and the set of polynomial invariants given abov
namely,

I 15122m0~m21m4!22D,

I 25122m0~m31m4!22D,

I 35122m0~m21m31m4!,
~14!

I 45123@~m21m3!~m02m4!1m4~12m4!2m2m3m0

1~12m0!~D2m1m4!#,

I 554m0
2m4

2 ,

I 65sgn$sin~f!m0
2Am1m2m3m4

3@D2m4~122m01m1!2m2m3#%,

whereD5m1m41m2m322Am1m2m3m4cos(f). If we define

J15
1

4
~12I 12I 21I 322AI 5!,

J25
1

4
~12I 11I 22I 322AI 5!,

J35
1

4
~11I 12I 22I 322AI 5!, ~15!
05230
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J45AI 5,

J55
1

4 S 5

3
2I 12I 22I 31

4

3
I 422AI 5D ,

then the coefficients are given by

m0
65

J4156AY

2~J11J4!
,

m i
65

Ji

m0
6

, i 52,3,4,

m1
6512m0

62
J21J31J4

m0
6

, ~16!

cos~f6!5
m1

6m4
61m2

6m3
62J1

2Am1
6m2

6m3
6m4

6
,

sgn@~sin~f6!#5I 6 sgn„Am1
6m2

6m3
6m4

6$J12J2J32J4

3@J21J31J42~m0
6!2#%…,

where Y5(J41J5)224(J11J4)(J21J4)(J31J4)>0. The
1 and2 solutions for the coefficients correspond toucDD&
and its dual state. The inversion of the equations forI i was
done independently in@17#. Note that their definition ofI 4 is
different from the one in this paper.

Another nice property of the DD is that we can perfor
an arbitrary measurement on it in spaceA and stay in the DD
form. Since any measurement can be broken into a serie
two outcome measurements@18#, we can look at the two
outcome measurementA1 and A2 where A1

†A11A2
†A25I .

Using the singular value decomposition we can writeAi
5UiDiV where V does not depend oni because the two
positive Hermitian operatorsA1

†A1 and A2
†A2 sum to the

identity and therefore must be simultaneously diagona
able. The diagonal matricesDi can be written as

D15F x 0

0 yG , D25FA12x2 0

0 A12y2G , ~17!

where 0<x,y<1 @9#. Since we are only concerned wit
what orbit the outcomes are in we may choose theUi trans-
formation. Also, matrices of the form

Feic1 0

0 eic2
G , ~18!

where c1 and c2 are real numbers, commute with theDi
matrices so the most generalV can be written as

F a A12a2eiu

2A12a2e2 iu a
G , ~19!

where 0<a<1 andu is real. If we choose
2-3
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U15
1

Ag
F ya 2xA12a2eiu

xA12a2e2 iu ya
G ,

g5y2a21x2~12a2!, ~20!

and similarly for U2 with (x,y) replaced by
(A12x2,A12y2), then in going fromucDD& to A1ucDD& the
DD coefficients undergo the following transformations:

m0→
x2y2m0

g
,

m1→
1

g
ue2 iu~x22y2!aAm0~12a2!1eifgAm1u2,

~21!

m i→m ig, i 52,3,4,

f→arg@e2 iu~x22y2!aAm0~12a2!1eifgAm1#,

and again similarly forA2ucDD&. Things become more com
plicated whenf becomes larger thanp and we have a dua
solution. In this case we need to transform to the dual st
which can be quite tedious. It should also be noted that if
want to put this last form for the DD coefficients into Eq
~14! the normalization must be taken into account. The n
malization will just be the sum of the forms~21! for m0
throughm4.

C. The maximization decomposition

The maximization decomposition~MD! @11# has a some-
what different way of decomposing the three-qubit stat
First we find the statesufA&, ufB&, and ufC&, each defined
up to an overall phase, that maximize

g~ ufA&,ufB&,ufC&)5i^c zfA&ufB& zfC&i2 ~22!

and apply a unitary such thatufA&ufB&ufC& becomesu000&.
Defining u1&, up to an overall phase, as the vector perp
dicular to u0&, then the derivative ofg along u1& at the point
u000&,

lim
e→0

g~ u0&1eu1&,u0&,u0&)2g~ u0&,u0&,u0&)

e

52 Re@^cu100&^000uc&# ~23!

must be zero becauseg(u0&,u0&,u0&) is a maximum. Since
we still have phase freedom inu0& and u1& this implies that
^cu100&50 and similarly for^cu010& and^cu001&. Using
the remaining phase freedom in the choice ofu0& andu1& we
can eliminate all but one phase, leaving us with

ucMD&5aeifu000&1bu011&1cu101&

1du110&1 f u111&, ~24!

wherea21b21c21d21 f 251, 0<f<2p, 0<a,b,c,d, f ,
andb,c,d, f <a. Note thatg(u0A&,u0B&,u0C&)5a2. Unfortu-
05230
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nately, the parameters as they are given above are not in
to one correspondence with the orbits. While the decom
sition is generically unique, there are choices of the para
eters within the given ranges that are not the result of
decomposition. For example, states witha251/51e, b2

5c25d25 f 251/52e/4, and any choice off have

gS 1

A2
(u0&1u1&),

1

A2
(u0&1u1&),

1

A2
(u0&1u1&) D >a2

~25!

for e<0.014. Hence, these choices of the parameters are
a result of the decomposition. The true ranges of the par
eters that would give a one to one correspondence with
orbits are as yet unknown.

A nice property of the MD is that it is symmetric in pa
ticle exchange. Exchanging the particles is equivalent to
changingb, c, andd. This makes the permutation propertie
of the polynomial invariants easier to see when written
terms of the MD coefficients. They take the following form

I 15122@~a21d2!~b21c2!1a2f 2#,

I 25122@~a21c2!~b21d2!1a2f 2#,

I 35122@~a21b2!~c21d2!1a2f 2#,
~26!

I 45123@a2~12a2!2~b2c21b2d21c2d2!~122a2!

22b2c2d222abcd f2 cos~f!#,

I 55a2ua f214bcdeifu2,

I 65sgn$abcd f2 sin~f!@a2~122a2!~122a22 f 2!

24b2c2d222abcd f2 cos~f!#%.

It is apparent from these equations thatI 1 , I 2, and I 3 are
symmetric in permutations of particlesAB, AC, and BC,
respectively, andI 4 , I 5, andI 6 are symmetric in any permu
tation of the particles. Unfortunately, the equations in~26!
are not as easy to invert as those in~14!. In fact, just calcu-
lating the MD coefficients for an arbitrary state is not an ea
task, as it is in the case of the polynomial invariants and
DD coefficients, since determining the unitaries for the M
involves maximizing over a six-dimensional space with ty
cally many local maxima.

One more interesting fact about the MD is that 12a2 is a
nonincreasing EM. We know this because in@16# it is shown
that a function of the form

EkA ,kB ,kC
~ uc&)5 max

GA ,GB ,GC

iGA^ GB^ GCuc&i2, ~27!

where GX is a kX-dimensional projector on systemX
5A,B,C, is a nondecreasing EM andE1,1,1(uc&)5a2. The
EM 12a2 can be shown to be independent oft from Eq.
~12! by looking at the gradient vectors oft, 12a2 and N
5a21b21c21d21 f 2, at, for instance, the pointa
53, b,c,d, f 51, and f5p/2. Since the gradient vector
2-4
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span a six-dimensional space, 12a2 cannot be written in
terms of thet and N. The problem with using 12a2 as an
EM is that one needs to find the global maximum of a s
dimensional space with many local maxima to calculate
This is a difficult task for most states.

III. FIFTH INDEPENDENT EM

In Sec. II it was shown that all EMs must be invaria
under LU and hence are determined by the orbit of the st
For three-qubit states this means that EMs are a functio
only the polynomial invariants, DD coefficients, or MD co
efficients. In fact, this determination is unique.

Theorem 1. The set of all EMs for any multipartite pur
stateuc& uniquely determines the orbit of the state.

Proof. Suppose two statesuc& and uf& in H1^ H2^ •••

^ Hn have the same values for the EMs but lie in differe
orbits. We know by using Eq.~4! that

P~ uc&→uf&)5P~ uf&→uc&)51, ~28!

so uc& can be transformed touf& ~and vice versa! by n-party
LOCC (n-LOCC), with probability 1. Since EMs are nonin
creasing with anyn-LOCC they must remain constant durin
the entire transformation fromuc& to uf& ~and vice versa!.
Also, we know that any two-party EM (2-EMX) between a
systemX5A,B, . . . and the rest of the systems thought
as one@e.g., betweenB and (ACD . . . )# is also ann-party
EM. This comes from the fact that the set ofn-LOCC is a
subset of the 2-LOCCs for any choice ofX. Since a 2-EMX is
nonincreasing over 2-LOCC for any value ofX then it is also
nonincreasing undern-LOCC and hence it is an EM. In par
ticular, the sum of the lowestk eigenvectors of the reduce
density matrices,

Ek
X~ uc&)5(

i 51

k

l i
↑@rX~ uc&!] ~29!

@i.e., the 2-EMs in Eq.~2!# must be EMs. So theEk
X(uc&)

must remain unchanged and hence the spectrum ofrX is
unchanged during the transformation fromuc& to uf&. In
particular, an operation on spaceX, given by A1 and A2,
must be such that

rXS Ai uc&

AN
D 5UrX~ uc&)U†, ~30!

whereN is the normalization. This can always be satisfi
with Ai /AN a unitary matrix. Since every operation can
written as a unitary,uc& and uf& are unitarily equivalent.
This contradicts our original supposition. j

Since we know there are five parameters that determ
the orbit of a three-qubit state then by Theorem 1 there m
be five independent, continuous EMs. To the best of the
thor’s knowledge the only four known independent contin
ous EMs that do not require a difficult maximization over
multidimensional space are the fourt EMs defined in Eq.
~12!. Any candidate for the fifth independent EM must d
05230
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pend onI 4 since thet are invertible functions ofI 1 , I 2 , I 3,
and I 5, respectively. The following function fulfills that cri
terion:

sABC532~ I 11I 21I 3!I 4 , ~31!

and numerical results suggest that it is an EM. After gen
ating over 300 000 random states and applying a rand
operation to each of them the inequality in Eq.~5! was never
violated bysABC . Also, note thatsABC is symmetric in par-
ticle permutations as istABC . For the rest of the paper I wil
assume thatsABC is an EM. Indeed, it may be that there is
set of measure zero or perhaps just a very small measur
which sABC is not a monotone and my numerical test did n
explore this space, but there must exist some function of
polynomial invariants which is independent of thet ’s and is
an EM. For it to be useful in improving our upper bound f
P(uc&→uf&) there should be pairs of statesuc& and uf&
such that

sABC~ uc&)

sABC~ uf&)
,min

t

t~ uc&)

t~ uf&)
~32!

and I have found such states numerically. The largest va
of

sABC~ uc&)

sABC~ uf&)
2min

t

tuc&)

t~ uf&)
~33!

that I found in my limited number of examples of was 0.0
I was able to find examples of states for whic
t(uc&)/t(uf&) is greater than 1 for all t and
sABC(uc&)/sABC(uf&) is less than 1.

IV. OTHER EMS AND THE DISCRETE INVARIANT

The five independent continuous EMst (AB)C , t (AC)B ,
t (BC)A , tABC , andsABC can easily be inverted to findI 1–I 5
but to completely determine the orbit of a state we must a
have an EM that will give us the value of the discrete inva
ant I 6. This is equivalent to finding an EM that is not th
same for a state and it complex conjugate state. Note
I 1 , . . . ,I 5 and hencet andsABC do not change when a stat
is conjugated but by looking at any of the sets of LU inva
ants we can see that generically a state is not LU equiva
to its conjugate. By looking at Eq.~4! we can see that this
implies that there must be EMs that are not the same for
generic state and its conjugate. It is also easy to see tha
any operation that takes a stateuc& to its conjugateuc̄& with
probability p there is an operation that takesuc̄& to uc& with
the same probability. So for a generic stateuc& there must be
an EM that goes down for the operationuc&→uc̄& and a
similar one that goes down the same amount foruc̄&→uc&.
Thus EMs of the following form must exist:

y6~ uc&)5H y1y8, 6I 651,

y otherwise,
~34!
2-5
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R. M. GINGRICH PHYSICAL REVIEW A 65 052302
where y and y8 are functions of t (AB)C , t (AC)B ,
t (BC)A , tABC , andsABC .

Also, from @9# we know that there are two classes
three-part entangled states ~i.e., states with
t (AB)C ,t (AC)B ,t (BC)A.0! that can be converted into eac
other with some nonzero probability within the class a
zero probability between the classes; namely, the GHZ c
which contains

uGHZ&[
1

A2
~ u000&1u111&) ~35!

and has nonzerotABC and the W class which contains

uW&[
1

A3
~ u001&1u010&1u100&) ~36!

and hastABC50. Looking again at Eq.~4! we see thattABC
tells us thatP(ucW&→ucGHZ&)50 but none of the previously
defined EMs tell us thatP(ucGHZ&→ucW&)50. Since the
only way to getP(ucGHZ&→ucW&)50 is to have an EM tha
is finite for GHZ-class states and infinite for W-class states
zero for GHZ-class states and nonzero for W-class sta
such an EM must exist.

V. FINDING A MINIMAL SET

Since t (AB)C , t (AC)B , t (BC)A , tABC , sABC , and y6

determine the orbit of the state all other EMs must depend
them. A fairly general way to create further EMs from know
EMs is to use what I will callf-type functions.

Definition 1. A function f :S,Rn→R is anf-type function
if it satisfies the following,~1! f (0W )50; ~2! if xi>yi for all
i 51,2, . . . ,n then f (xW )> f (yW ) for xW ,yWeS; ~3! f „pxW1(1
2p)yW …>p f(xW )1(12p) f (yW ) for any xW ,yWeS and 0<p<1.

For a set of EMs,$Ei%, we have

Ei~ uc&)>pEiS A1uc&

Ap
D 1~12p!EiS A2uc&

A12p
D ~37!

for any measurementA1 , A2, and any stateuc&. So we have

f „EW ~ uc&)…> f XpEW S A1uc&

Ap
D 1~12p!EW S A2uc&

A12p
D C

>p fXEW S A1uc&

Ap
D C1~12p! f XEW S A2uc&

A12p
D C, ~38!

where the first inequality comes from property 2 and
second comes from property 3. Hence,f (E1 , . . . ,Em) is
also an EM. We can show that any EMf (E1 , . . . ,Em) that
is an f-type function of monotonesE1 , . . . ,Em does not
modify the upper bound onP(uc&→uf&) given by

P~ uc&→uf&)<min
i

Ei~ uc&)

Ei~ uf&)
; ~39!
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first for the one-dimensional case.
Lemma 1. If f (x) is an f-type function withn51 then

f ~x!

f ~y!
>minH x

y
,1J ~40!

for any x,yeS.
Proof.
Case 1. For x>y from property 2 we knowf (x)> f (y)

and hence

f ~x!

f ~y!
>1. ~41!

Case 2. For x,y if we choosep5(x/y)e@0,1) then we
know from properties 1 and 3 thatf (py)>p f(y) and so

f ~x!

f ~y!
>

x

y
. j ~42!

For n dimensions we have the following theorem.
Theorem 2. If f (x) is an f-type function then

f ~xW !

f ~yW !
>minH xi

yi
,1J , i 51,2, . . . ,n, ~43!

for xW ,yWeS.
Proof. Let

c5minH xi

yi
J . ~44!

Then we have two cases.
Case 1. If c>1 then from property 2f (xW )> f (yW ) and so

f ~xW !

f ~yW !
>1. ~45!

Case 2. If c,1 then define

zi5
xi

c
, i 51,2, . . . ,n, ~46!

andg(r )5 f (rzW). Notice thatg(r ) is an f-type function with
n51 and hence

g~c!

g~1!
>c, ~47!

or substituting inf we have

f ~xW !

f ~zW !
>c. ~48!

Using zi>yi and property 2 we have

f ~xW !

f ~yW !
>c. j ~49!
2-6
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For three-qubit states if we take the minimum
E(uc&)/E(uf&) over E5$t (AB)C ,t (AC)B ,t (BC)A ,tABC ,
sABC ,y6% we are actually taking the minimum over the i
finite set of allf-type functions ofE. Although from Theorem
1 we know that all EMs must be a function ofE it is possible
that there exist EMs that are notf-type functions ofE. These
EMs could causeP(uc&→uf&) to be lower than the mini-
mum of E(uc&)/E(uf&) over E. The EM mentioned at the
end of Sec. IV is an example of such an EM.

VI. CONCLUSIONS AND FURTHER RESEARCH

Theorem 1 along with Theorem 2 implies that the
should be a~not necessarily finite! minimal set of EMsM for
which all EMs for three-qubit states or similarly for any typ
of multipartite state aref-type functions ofM. I conjecture
that such a minimal set should be simple since thef-type
functions seem to be a rather general way of creating E
that are functions of other EMs. The difficult part seems
be finding the EMs that are minimal and showing that th
are minimal. Using numerical results it seems thatt may be
minimal. I looked at functions oft that are almost but no
quite f type such ast1.01 and numerically tested whether the
are EMs or not. None of them were EMs. I cannot say
same forsABC and definitely not fory6 since I do not have
an explicit form fory.

There is further research that may help these problem
one could invert the equations in~26! to write
ev
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If

a, b, c, d, f , and f in terms of I 1 , . . . ,I 6, that would
allow us to calculate the EM 12a2 not to mention find the
ranges for and calculate the values ofa,b,c,d, f , andf. The
EM 12a2 could be used to replacesABC or perhaps as an
addition toE and may prove more useful thansABC . As far
as finding the minimal EMs and showing that they are mi
mal, the arbitrary measurement on the DD at the end of S
II B may be useful since it allows us to look at the value
I 1 , . . . ,I 6 before and after an arbitrary measurement on
arbitrary state with far fewer parameters than if we did n
take out the LU freedom. Also, it may be able to tell us t
maximal probability of transforming the general compl
stateuc& to its conjugate stateuc̄& and this is a crucial piece
of information that is needed to calculatey8 in Eq. ~34!.
Unfortunately, most of these tasks involve trying to sol
nontrivial equations or systems of equations with many va
ables, which can be difficult or even impossible.
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