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Superoscillations and tunneling times
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It is proposed that superoscillations play an important role in the interferences that give rise to superluminal
effects. To exemplify that, we consider a toy model that a wave packet to travel in zero time and negligible
distortion, a distance arbitrarily larger than the width of the wave packet. The peak is shown to result from a
superoscillatory superposition at the tail. Similar reasoning applies to the dwell time.
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I. INTRODUCTION

Superluminal effects have been predicted in conjunct
with various quantum systems propagating in a forbidd
zone. In these regimes, the~semiclassical! kinetic energy is
negative, making the semiclassical tunneling time ill defin
and various operational definitions of the velocity of a wa
packet have been proposed, in many examples, giving di
ing values. In recent years, a number of experiments w
superluminal photons have been performed, reviving inte
in the problem, as well as controversy. The theoretical p
dictions have been verified—in fact, different tunnelin
times have been measured in accordance with the diffe
operational definitions appropriate for the various expe
mental setups. Although there is no longer much controve
over the facts~former claims of breakdown of causality hav
been cleared up!, there is still some disagreement on t
merits of various operational definitions of the time dela
For extensive reviews that cover the experimental situat
as well as the theoretical background and bibliography
Refs.@1–3#. In the present paper, we largely follow the n
tations of Chiao and Steinberg@3#.

Causality is not violated. The signal velocity~the velocity
of propagation of anabrupt disturbance! is always sublumi-
nal. Other ‘‘velocities’’ may well be superluminal, for ex
ample, the group velocity of a wave packet. In the latter ca
the ~local! peak of the packet appears at a point where c
structive interference builds up~this effect is often termed a
‘‘pulse reshaping’’!, much earlier than the arrival of a freel
propagating wave function. Thus the information stored
the tail may be traveling way ahead of the peak and
possibly be used to anticipate it. It is important to note, ho
ever, that the signal velocity is never measured—to mea
it one needs a detector with infinite sensitivity. All the ope
tionally defined velocities can, in principle, become super
minal. In the example dicussed in this paper, both the Wig
time and a clock time~to be defined below! turn out to give
superluminal velocities.

The purpose of this paper is to investigate further
nature of the interferences that give rise to superlumina
@4–10#. It has been noted by Steinberg@11,12# that the su-
perluminality phenomenon is associated with postselect
for instance, from a sample of particles that scatter of
barrier we examine only the subsample that tunnel throu
When a preselected and postselected systems@19,21,22# is
1050-2947/2002/65~5!/052124~5!/$20.00 65 0521
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subjected to a nondisturbing, ‘‘weak’’ measurement, the o
come of the measurement, known as the ‘‘weak value,’’ c
attain values that lie outside the spectrum of eigenvalue
the measured observable@13,20#. Weak values may hence b
naturally related to the superluminal phenomenon, as ind
Steinberg has already argued that the dwell time is a w
value of a projector to the tunneling domain. The appeara
of unusual weak values has been associated with a un
interference structure@14#, for which Berry @15# coined the
term ‘‘superoscillations.’’ As an instructive example of a su
peroscillatory functionF(k) consider

F~k;N,L !5F S 12L/x0

2 Deikx0 /N1S 11L/x0

2 De2 ikx0 /NGN

.

~1!

Here,N.1 is an integer, andL andx0 being the super and
reference shifts. For smallk we expand exp(ikx0 /N) and find

F~k;N,L !5e2 ikLF11
~L22x0

2!k2

2N
1O~N22!G>e2 ikL.

~2!

Although this function is a superposition of waveseikx with
uxu<x0, in the interval uku!AN/AL22x0

2[Dk, F(k) be-
haves nearly as a pure waveeikL with L arbitrarily larger
thanx0. In the regimeuku,Dk the function oscillates rapidly
The number of these ‘‘superoscillations’’ is;AN. This re-
markable feature is derived at the expense of having
function grow exponentially in other regions. In the examp
above, foruku.Dk, we getF;eN.

In this paper we will suggest that at least for certain cas
the constructive interference giving rise to superluminal
fects, originates from a similar structure of superoscillatio
To exemplify that, we consider a toy model,~which extends
on a previous proposal of Olkhovsky Recami, and Sa
@16#!, which allows for a wave packet to traverse, in a va
ishing time and negligible distortion~the transmitted wave
packet is the first derivative of the incoming packet!, a dis-
tancearbitrarily longer than the original size of the wav
packet. Hence the peak is here reconstructed from the ex
nentially small tail of the wave function. As far as we kno
in the examples discussed to date, the superluminal shi
the wave-packet is restricted. It is comparable to or mu
smaller than the initial wave packet size. We then show t
©2002 The American Physical Society24-1
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the resulting group-delay and dwell times vanish@17#. Fi-
nally, coming back to the role of postselection we provide
rigorous proof for Steinberg’s claim@11,12# that the delay
time is a weak value of a projector operator.

The paper proceeds as follows. In Sec. II we calculate
dwell time and the group-delay time for tunneling throughn-
d-function barriers. In the low-energy limit, both turn out
be zero. We also derive the condition for the calculations
apply for a wave packet. Using this condition, we see that
this system, the~negative! delay can be larger than the un
certainty associated with the length of the wave packet. S
tion III deals with the relation between superluminality a
interference effects in the tail of the wave function, and
peroscillations. The applicability to the example of Sec. II,
the explanations of superluminality given in other cases
discussed. Finally, in Sec. IV we elaborate on Steinbe
claim that the dwell time is a weak value.

II. THE GROUP-DELAY AND DWELL TIME
FOR A PARTICLE TUNNELING THROUGH

AN n-d-FUNCTION POTENTIAL

Olkhovsky Recami and Salesi@16# showed that a Schro¨-
dinger particle tunneling through a double rectangular bar
traversed the distance between the bumps instantaneous
the limit that its kinetic energy was much smaller than t
height of the barrier. Unlike previous examples of super
minal tunneling, the length of the region of superluminal
consists of an arbitrarily long portion with zero potentia
between the bumps. Replacing the rectangular barriers in
example discussed in Ref.@16# by d-function potentials, the
calculations can be made somewhat simpler, and are e
generalized ton arbitrary d-function bumps~still using the
approximation of low kinetic energy!.

In this section we make a direct calculation of the tra
mission coefficient for the stationary scattering of a sca
particle obeying the Schro¨dinger equation, off a multiple
d-function potential. The Schro¨dinger equation is of cours
nonrelativistic and displays an unphysical superluminal d
persion. However, the time-independent equation is the s
as for the scalar relativistic wave equation, and we focus
the Schro¨dinger equation merely for a simple concrete int
pretation. The origin of the superluminality in this case is
reshaping of the tail of the wave function. For a further d
cussion of the justification of using the Schro¨dinger equation
for investigating superluminal tunneling times see the rev
by Chiao and Steinberg@3#.

A. Transmission through a multiple d-function potential

Consider the Schro¨dinger equation with the following po
tential:

V~x!5Sa id~x2Li !, L050. ~3!

The energy eigenfunctions have the form~for x,0 and x
.Ln)

c~x!5H Aeikx1Be2 ikx, x,0

Ceikx1De2 ikx, x.Ln .
~4!
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S A

BD 5M S C

D D , ~5!

M5)
i 51

n Fb i S 1 e22ikLi

2e2ikLi 21 D 1I G , b j5
ma j

ik
. ~6!

In the limit of small kinetic energy (ub i u@1), we can drop
the I matrices, as long asn,b i . It is then straightforward to
prove by induction onn that

M5)
1

n

b iS )
i 52

n

~12zi ! )
i 52

n

~zi
2121!

2)
i 52

n

~12zi ! 2)
i 52

n

~zi
2121!

D 1O~1!,

~7!

wherez151, zi5exp@2ik(Li2Li21)# ( i 52•••n).
As usual, we examine the case of ‘‘stationary scatterin

To get the~amplitude! transmission coefficient for probabil
ity current flowing from the left,t, we put A51, B5r , C
5t, D50 in Eq. ~4!

c~x!5H eikx1re2 ikx x,0

teikx x.Ln ,
~8!

and we see thatt5M11
21 , so

t5M11
21'

b1
21

•••bn
21

)
i 52

n

~12zi !

5b1
21

•••bn
21

)
i 52

n

zi
21/2

)
i 52

n

~zi
21/22zi

1/2!

5
) b i

21

~22i !n21

e2 ikLn

)
i 52

n

sin@k~Li2Li 21!#

. ~9!

The stationary phase formula for the delay timetg

tg[\
]

]E
arg~ t !, ~10!

yields the valuetg52mL/\k52L/v(k) for the delay,
which cancels the time for a free particle, and we get
overall zero time for tunneling. Since this is true for allk, it
should be true for an arbitrary wave packet,as long as the
stationary phase approximation holds.The condition for that
is derived in the following section.

B. The condition for superluminal tunneling of a packet

Restated for wave packets, our results so far can be s
marized as
4-2
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C~x,t !

5H E g~k!@eikx1r ~k!e2 ikx#e2 iv(k)tdk, x,0

E ~2 ik !C~k!g~k!eik(x2Ln)e2 iv(k)tdk, x.Ln ,

~11!

and

C~k!5
) b i

21

2 ik~22i !n21)
i 52

n

sin@k~Li2Li 21!#

. ~12!

When Dk is sufficiently small, the diffusion can be ig
nored andC(k) can be considered constant~as will be shown
shortly!. Then we can again separate out the time dep
dence of the wave function and the spatial part can be wri
as

c~x!5H f~x! x,0

Cf8~x2Ln! x.Ln ,
~13!

where f(x) in the two regions is related through analyt
continuation.

If f(x)5R(x)eiS(x) whereR(x) is large and slowly vary-
ing in the regionux2x0u,Dx andS(x) goes through a few
cycles there, then the time of arrival distribution of the tran
mitted packet will be approximately that of the incomin
one, shifted by2L/^v&. Note also that this is also true for
mixed state that can be decomposed into various pure s
with this property.

Let us now find the explicit condition forC(k) to be
approximately constant, for the case whereL j5( j /n)L, a j
5a, and as before,n,ubu5ma/k. In this case, we have

C~k!5

S ik

ma D n

22ik~2i sinkL/n!n21
. ~14!

Using the fact thatx/sinx511x2/61O(x4), we get

C~k!52
1

ma S n21

2Lma D n21F11
1

6 S kL

An21
D 2

1OS S kl

n21D 3D G . ~15!

Thus, C(k) will be approximately constant if the spec
trum of the wave packet is limited tok such that uku
'An21/L. In other words, Dk'An21/L, or Dx
'L/An21. This means that the length of the barrier can
arbitrarily longer than the ‘‘length’’ of the tunneling packe
as usually defined~standard deviation of thex coordinate!,
the penalty paid being an exponential suppression of the
05212
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plitude. In passing notice the functionF(k) in Eqs. ~1! and
~2! displays a similar behavior.

C. Calculation of the dwell time

It is interesting to compare the ‘‘group delay’’~which is
zero in the lowk limit ! with the dwell time. For the sake o
simplicity, we shall deal with the casen52. A direct calcu-
lation of the dwell time of the transmitted component can
made by calculating the transmission coefficient after add
a potential that is constant over the region between thd
spikes, and vanishing outside it. We get

t.b21
e2 ikL

22i sink8L
,

wherek85A2m(E2V0)/\ andV0 is the value of the poten
tial between thed ’s. Clearly,] arg(t)/]V050, and the~con-
ditional! dwell time is zero as expected.

III. SUPERLUMINALITY AND ITS RELATION TO
INTERFERENCE IN THE TAIL OF THE WAVE FUNCTION

The calculation of the transmission coefficientt can also
be done in a way more suggestive of superoscillations. Le
explain this for the case of 2-d-functions@the n52 case in
Eq. ~3!, ‘‘Fabry Perot interferometer’’#.

Suppose a quasimonochromatic wave packet with w
numberk arrives at the firstd spike. The transmitted compo
nent is the same as the original wave, except for an atten
tion and phase that are independent ofk. At the secondd
spike, the wave splits into a~approximately unattenuated!
reflected wave and a transmitted one, which is apart from
k-independent multiplicative constant the same as the
pinging wave. The reflected component is again reflecte
the first d, and arrives at the secondd with an additional
phase of 2kL, but with approximately the same amplitude
the original transmitted wave. In a similar manner, one g
additional transmitted waves with additional phases
2nkL,n52,3, . . . , andamplitudes that decrease very slowl
Thus we get the following formal sum for the resulting am
plitude of the wave~up to a multiplicative constant!:

(
n

eikx~eik2L!n5
eikx

12e2ikL
5eikx

e2 ikL

22i sinkL
, ~16!

which is in agreement with our previous calculation. This
an example of superoscillations since a sum of positive w
vectors results in a negative one~or, equivalently, a sum of
positive shifts that results in a negative shift! @18#. This is
true in the following sense: foruku!1/L the denominator of
the right-hand side can be considered constant. Howeve
such a small interval the function does not really oscillate,
it really does not have a well-defined frequency. To rea
speak about superoscillations we need to have a large n
ber of d functions. The sum for the casen.2 factors into
n21 sums of the above form, in the low kinetic-energ
limit, since to leading order inb21, the only contributions
are from waves that tunnel through eachd only once, but
may be reflected any number of times between consecu
deltas. We then reproduce the results of Sec. II B, where
had the weaker conditionk,An21/L, allowing the function
4-3
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YAKIR AHARONOV, NOAM EREZ, AND BENNI REZNIK PHYSICAL REVIEW A 65 052124
o complete many oscillations in the region. Note the simil
ity to the situation described by Eqs.~1! and ~2!.

A different calculation of the~conditional! dwell time
than that of Sec. II C assumes a ‘‘clock’’ that is activated
the presence of the particle in the region@0,L#, i.e., a degree
of freedom t with an interaction HamiltonianH Int
5u [0,L] (x)pt , wherept is the canonical momentum conju
gate tot. If the initial state of the clock has small enoug
Dpt , one gets for the final phase oft the same expression a
Eq. ~16!, with x,k replaced by the clock’s coordinates. Th
can be interpreted as the sum appropriate for a weak m
surement ofu [0,L] (x), as shown in the following section
Note that in this case, not only do the dwell and phase tim
coincide, but they are also described by the same me
nism.

The group delay in tunneling through a thick barrier fo
lows from the fact that under the barrier, no phase accu
lates, and the entire phase shift comes from the bounda
and is practically independent of the thickness. For ca
where interference with a delayed wave takes place, a
authors @4–10# have suggested a different mechanism.
Chiao and Steinberg’s words@3#: ‘‘If destructive interference
is set up between part of the wave traveling unimpeded
part that has suffered a delayDt due to multiple reflections
one has Cout(t)5C in(t)2jC(t2Dt)'(12j)C in(t)
1jDtdC in(t)/dt'(12j)C in@ t1jDt/(12j)#, which is al-
ready a linear extrapolation into the future. In cases wh
the dispersion is sufficiently flat, as in a band-gap mediu
the extrapolation is, in fact, surprisingly better than this fir
order approximation. As was suggested by Steinberg@6# and
recently discussed more rigourously by Lee and Lee@8# and
Lee @10#, this implies that even a simple Fabry-Perot int
ferometer exhibits superluminality when excited off res
nance’’@presumably,j!1/DtC8(t)#. Another physical inter-
pretation of the mode reshaping process is also suggest
Ref. @7#. We would like to explain this ‘‘better than first
order’’ approximation. Let us instead look at the momentu
wave function. A spatial shift corresponds to a linear shift
this function. A positive spatial delay would correspond to
linear shift steeper than one, and the converse for a nega
delay. In the Taylor expansion of the transmission coeffici
for the momentum wave function, the zero term is insign
cant, the second corresponds, as just explained, to the sp
shift, and the higher give the distortion. When many wav
with large and evenly distributed shifts interfere, their sum
for a wide range of momenta, zero, and, in particular, m
mentum independent. In other words, the momentum w
function is flat for a wide band of frequencies. This corr
sponds to a much better than first-order approximation of
spatial wave function, as can be seem in the special cas
the system of Sec. III of this paper.

IV. THE DWELL TIME AS A WEAK VALUE

We would like to calculate the expectation value of t
time measured by a ‘‘clock’’ consisting of an auxiliary sy
tem that interacts weakly with our particle as long as it st
in a given region. Furthermore, we would like to restrict t
calculation only to the subensemble of particles that u
05212
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mately end up on the right of the barrier. The simplest int
action is perhaps the one defined by the Hamiltonian,

H int5PtX(0,L) ,

wheret is the degree of freedom of the clock andPt is its
conjugate momentum, and

X(0,L)~x!5H 1 if 0,x,L

0 otherwise.

This is the effective form, for example, of the potential, se
by a particle in anSz eigenstate, in the Stern-Gerlach expe
ment @t being thez coordinate, and (0,L) the region of the
magnetic field#. Assuming the clock to have at large negati
times the expectation value 0, a perturbation calculat
shows that following the interaction with the particle and t
subsequent postselection of the particle state to beu f &, the
expectation value oft at large positive times is given by th
formula:

E~t,t→`u i , f !5

E
2`

`

dtE
0

L

dxC f* ~x,t !C i~x,t !

È`

dxC f* ~x,0!C i~x,0!

~17!

Steinberg@11,12# has arrived at this formula under simila
assumptions by a somewhat different line of reasoning.
introduced the term conditional~quantum! probability for the
probability distribution of a system following postselectio
and we use the notation of conditional expectation in
formula above, in the same spirit. As noted by Steinberg,
last equation is a special case of a weak value.

This formula is valid whent and pt do not appear in
additional terms in the full Hamiltonian, but the generaliz
tion is straightforward. To prove the formula, let us work
the interaction picture. Denote the initial state oft by
uft(t)& @and the corresponding wave function byf(t,t)#,
and the initial~preselected! and final~postselected! states of
the tunneling particle byu i (t)&,u f (t)& @C i(x,t),C f(x,t)#, re-
spectively. Using the interaction picture and expanding
first order inPt @23#,

uft ,t&u i ~ t !&5T expS 2
i

\E2`

t

HI~ t8!dt8D uft ,t→2`&

3u i ~ t→2`!&.S 12
i

\E2`

t

HI~ t8!dt8D
3uft ,t→2`&u i ~ t→2`!&, ~18!

where

HI~ t !5T expS i

\E2`

t

H0~ t8! DH intexpF2
i

\E2`

t

H0~ t8!G .
After making the postselection of stateu f & for the particle,
the clock is left in the state given by the above expressi
4-4
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multiplied on the left by^ f (t→2`)u/^ f ,2`u i ,2`&. The
expression we get after writing out the explicit form ofHint
is

f~t,t→1`!.exp~2 i ^X(0,L)&WPt /\!f~t,t→2`!

5f~t1^X(0,L)&W ,t→2`!, ~19!

where

^X(0,L)&W5

E
2`

`

dtE
0

L

dxC f* ~x,t !C i~x,t !

È`

dxC f* ~x,0!C i~x,0!

, ~20!
tt.

n
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gy

05212
~the integral in the denominator is evaluated att50 merely
for convenience—it is of course, time invariant!. The wave
functions in the integral in the numerator can be taken in
Schrödinger representation. And the expectation fort at
large positive times is shifted~from its initial value of 0! by
this value, as claimed. In contrast to the familiar eigenva
spectrum of a physical operator, its weak values can take
complex values@24#.
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