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Superoscillations and tunneling times
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It is proposed that superoscillations play an important role in the interferences that give rise to superluminal
effects. To exemplify that, we consider a toy model that a wave packet to travel in zero time and negligible
distortion, a distance arbitrarily larger than the width of the wave packet. The peak is shown to result from a
superoscillatory superposition at the tail. Similar reasoning applies to the dwell time.
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[. INTRODUCTION subjected to a nondisturbing, “weak” measurement, the out-
come of the measurement, known as the “weak value,” can
Superluminal effects have been predicted in conjunctiorattain values that lie outside the spectrum of eigenvalues of
with various quantum systems propagating in a forbidderthe measured observalje3,20. Weak values may hence be
zone. In these regimes, tlisemiclassicalkinetic energy is haturally related to the superluminal phenomenon, as indeed,
negative, making the semiclassical tunneling time ill definedSteinberg has already argued that the dwell time is a weak
and various operational definitions of the velocity of a wavevalue of a projector to the tunneling domain. The appearance
packet have been proposed, in many examples, giving diffelof unusual weak values has been associated with a unique
ing values. In recent years, a number of experiments witfinterference structurgl4], for which Berry[15] coined the
superluminal photons have been performed, reviving interederm “superoscillations' As an instructive example of a su-
in the problem, as well as controversy. The theoretical prePeroscillatory functiorf=(k) consider
dictions have been verified—in fact, different tunneling
times have been measured in accordance with the differentF(k.N L):[(l_L/X0>eikxo/N+ 1+L/Xo
operational definitions appropriate for the various experi- Y 2 2
mental setups. Although there is no longer much controversy 1)
over the factgformer claims of breakdown of causality have ) ) )
been cleared Up there is still some disagreement on the Here,N>1 is an integer, and andx, being the super and
merits of various operational definitions of the time delay.eference shifts. For smakiwe expand expkx,/N) and find
For extensive reviews that cover the experimental situation,
as well as the theoretical background and bibliography see . — a—ikL -2
Refs.[1-3]. In the present paper, we largely follow the no- FkiN.L)=e 1+ 2N +OMN™S
tations of Chiao and Steinbefg]. (2
Causality is not violated. The signal velociihe velocity ] o » . ]
of propagation of ambrupt disturbancgis always sublumi- Although this function is a superposition of wavel§* with
nal. Other “velocities” may well be superluminal, for ex- |X|=<Xo, in the interval [k|<N/\L?~xj=Ak, F(k) be-
ample, the group velocity of a wave packet. In the latter casd)aves nearly as a pure wae&"™ with L arbitrarily larger
the (local) peak of the packet appears at a point where conthanx,. In the regimek| <Ak the function oscillates rapidly.
structive interference builds ughis effect is often termed as The number of these “superoscillations” is JN. This re-
“pulse reshaping), much earlier than the arrival of a freely markable feature is derived at the expense of having the
propagating wave function. Thus the information stored infunction grow exponentially in other regions. In the example
the tail may be traveling way ahead of the peak and cambove, for|k|>Ak, we getF~eN.
possibly be used to anticipate it. It is important to note, how- In this paper we will suggest that at least for certain cases,
ever, that the signal velocity is never measured—to measuriae constructive interference giving rise to superluminal ef-
it one needs a detector with infinite sensitivity. All the opera-fects, originates from a similar structure of superoscillations.
tionally defined velocities can, in principle, become superlu-To exemplify that, we consider a toy modélvhich extends
minal. In the example dicussed in this paper, both the Wigneon a previous proposal of Olkhovsky Recami, and Salesi
time and a clock timéto be defined beloywturn out to give  [16]), which allows for a wave packet to traverse, in a van-
superluminal velocities. ishing time and negligible distortiofthe transmitted wave
The purpose of this paper is to investigate further thepacket is the first derivative of the incoming paoket dis-
nature of the interferences that give rise to superluminalityancearbitrarily longer than the original size of the wave
[4-10. It has been noted by Steinberiyl, 17 that the su- packet Hence the peak is here reconstructed from the expo-
perluminality phenomenon is associated with postselectiomentially small tail of the wave function. As far as we know,
for instance, from a sample of particles that scatter off an the examples discussed to date, the superluminal shift of
barrier we examine only the subsample that tunnel througtthe wave-packet is restricted. It is comparable to or much
When a preselected and postselected sys{d®®1,23 is  smaller than the initial wave packet size. We then show that

N

) e ikxg/N

2_ y2\2
(L==xg)k —
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the resulting group-delay and dwell times van[dlY]. Fi-  The coefficients satisfy

nally, coming back to the role of postselection we provide a

rigorous proof for Steinberg’s claifll1,12 that the delay A C

time is a weak value of a projector operator. B/~ M D/’ ®)
The paper proceeds as follows. In Sec. Il we calculate the

dwell time and the group-delay time for tunneling through n 1 o 2ikL; M.

o-function barriers. In the low-energy limit, both turn out to m=]] 1|8 ( _ +1 /3:._6”‘ (6)

be zero. We also derive the condition for the calculations to = -kt -1 ' ik

apply for a wave packet. Using this condition, we see that for

this system, thénegative delay can be larger than the un- In the limit of small kinetic energy|{;|>1), we can drop
certainty associated with the length of the wave packet. Sedhel matrices, as long as<<g; . It is then straightforward to
tion 11l deals with the relation between superluminality andprove by induction om that

interference effects in the tail of the wave function, and su-

peroscillations. The applicability to the example of Sec. Il, of n 4

the explanations of superluminality given in other cases, is n |:Hz (1-2z) .ljz (z7°=1)

discussed. Finally, in Sec. IV we elaborate on Steinberg’s = H Bi +0(1),

claim that the dwell time is a weak value. . ! 1
-l a-z) -1l @*-v
i= i=
Il. THE GROUP-DELAY AND DWELL TIME (7
FOR A PARTICLE TUNNELING THROUGH
AN n-8-FUNCTION POTENTIAL wherez;=1, z;=exg 2ik(Li—L;_1)] (i=2---n).

As usual, we examine the case of “stationary scattering.”
get the(amplitude transmission coefficient for probabil-
Ity current flowing from the leftt, we putA=1,B=r, C
P(t D=0 in Eq.(4)

Olkhovsky Recami and Salegl6] showed that a Schro To
dinger particle tunneling through a double rectangular barrie
traversed the distance between the bumps instantaneously 1
the limit that its kinetic energy was much smaller than the
height of the barrier. Unlike previous examples of superlu-
minal tunneling, the length of the region of superluminality :,Z/(x)=[
consists of an arbitrarily long portion with zero potential,
between the bumps. Replacing the rectangular barriers in the
example discussed in Réfl6] by 5-function potentials, the and we see that= M, so
calculations can be made somewhat simpler, and are easily N
generalized tan arbitrary §-function bumps(still using the 1—[ ~172
approximation of low kinetic energy 51*1. . .ﬂgl

In this section we make a direct calculation of the trans- t=M'~————=8;" -8, 15
mission coefficient for the stationary scattering of a scalar H (1-2) H —1/2 1/2)
particle obeying the Schdinger equation, off a multiple i=2 ' i=2
S-function potential. The Schdinger equation is of course
nonrelativistic and displays an unphysical superluminal dis- H gt
persion. However, the time-independent equation is the same ! € 9
as for the scalar relativistic wave equation, and we focus on — (_pjyn-1 " ' ©)
the Schrdinger equation merely for a simple concrete inter- H simk(L;—L;i_1)]
pretation. The origin of the superluminality in this case is a =2
reshaping of the tail of the wave function. For a further dis-
cussion of the justification of using the ScHinger equation
for investigating superluminal tunneling times see the review g
by Chiao and Steinberi$]. ngﬁﬁarqu, (10)

el re ik x<0
telkx x>L,,

®

—ikLp

The stationary phase formula for the delay time

A. Transmission through a multiple #-function potential .
g P P yields the valuer,=—mL/ik=—L/v(k) for the delay,

Consider the Schringer equation with the following po-  which cancels the time for a free particle, and we get an
tential: overall zero time for tunneling. Since this is true for lallit
should be true for an arbitrary wave packas, long as the

V(x)=Za;d(x—Li), Lo=0. ) stationary phase approximation holdghe condition for that
The energy eigenfunctions have the foffor x<<0 and x is derived in the following section.
>L,)
" B. The condition for superluminal tunneling of a packet
ikx —ikx
W(x) = Ag +Be o x<0 4) Restated for wave packets, our results so far can be sum-
ceé+De ™ x>L,. marized as
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W (x,t) plitude. In passing notice the functidgf(k) in Egs.(1) and
(2) displays a similar behavior.

j g(k)[e™+r(k)e ke Mgk,  x<0 C. Calculation of the dwell time

- _ _ It is interesting to compare the “group delayWhich is
f (—ik)C(k)g(k)e*ttnleleMidk,  x>Ls,  zero in the lowk limit) with the dwell time. For the sake of
simplicity, we shall deal with the case=2. A direct calcu-
(11 lation of the dwell time of the transmitted component can be
made by calculating the transmission coefficient after adding
and a potential that is constant over the region betweendhe
spikes, and vanishing outside it. We get

II 57" ek

C(k)= (12) t=B""

—2isink’'L’

wherek’ = y2m(E—V,)/A andV, is the value of the poten-

tial between thed's. Clearly, d arg(t)/dV,=0, and thecon-
When Ak is sufficiently small, the diffusion can be ig- dlitional) dwell time is zerg as egl((p)ecte%. o

nored andC(k) can be considered constdas will be shown
shortly). Then we can again separate out the time depen- ||I. SUPERLUMINALITY AND ITS RELATION TO

dence of the wave function and the spatial part can be writteINTERFERENCE IN THE TAIL OF THE WAVE FUNCTION
as

—ik(—zi)“-l_]j2 sink(L;—L;_1)]

The calculation of the transmission coefficiértan also

H(X) x<0 be done in a way more suggestive of superoscillations. Let us
P(X)= ) (13 explain this for the case of 3-functions[then=2 case in
Co'(x—L,) x>L,, Eq. (3), “Fabry Perot interferometer’

) ) ) ] Suppose a quasimonochromatic wave packet with wave
where ¢(x) in the two regions is related through analytic nymbperk arrives at the firs spike. The transmitted compo-
continuation. . nent is the same as the original wave, except for an attenua-

If ¢(x) =R(x)e'S™ whereR(x) is large and slowly vary- tion and phase that are independentkot the seconds
ing in the regionx—xXo| <Ax andS(x) goes through a few spike, the wave splits into éapproximately unattenuated
cycles there, then the time of arrival distribution of the trans-reflected wave and a transmitted one, which is apart from a
mitted packet will be approximately that of the incoming k-independent multiplicative constant the same as the im-
one, shifted by—L/{v). Note also that this is also true for a pinging wave. The reflected component is again reflected at
mixed state that can be decomposed into various pure statdfe first 6, and arrives at the seconsl with an additional
with this property. phase of XL, but with approximately the same amplitude as

Let us now find the explicit condition fo€(k) to be the original transmitted wave. In a similar manner, one gets

approximate|y constant, for the case WhErj@(J/n)L’ @ additional transmitted waves with additional phases of

= a, and as beforen<|B|=malk. In this case, we have ~ 2hkL,n=2.3,..., ancamplitudes that decrease very slowly.
Thus we get the following formal sum for the resulting am-
ik \n plitude of the waveup to a multiplicative constant
cik) (ﬂ) (14 ikx —ikL
= ) ikx( aik2Lyn_ — aikx
~2ik(2i sinkL/n)"" 2 ) = = g (19
Using the fact thak/sinx=1+x%/6+ O(x%), we get which is in agreement with our previous calculation. This is
an example of superoscillations since a sum of positive wave
1 ({n—1\n1 1{ kL \? vectors results in a negative ofer, equivalently, a sum of
C(k)=— m_(m + 3 positive shifts that results in a negative shift8]. This is
@ “« n—-1 true in the following sense: fdk|<1/L the denominator of
Kl |3 the right-hand side can be considered constant. However, in
+0 _) ) (15  such asmall interval the function does not really oscillate, so
n—-1 it really does not have a well-defined frequency. To really

speak about superoscillations we need to have a large num-
Thus, C(k) will be approximately constant if the spec- ber of § functions. The sum for the case>2 factors into
trum of the wave packet is limited té& such that|k|] n—1 sums of the above form, in the low kinetic-energy
~yn—1/L. In other words, Ak~\n—1/L, or Ax limit, since to leading order i~ %, the only contributions
~L/\n—1. This means that the length of the barrier can beare from waves that tunnel through eaélonly once, but
arbitrarily longer than the “length” of the tunneling packet may be reflected any number of times between consecutive
as usually definedstandard deviation of thg coordinate, deltas. We then reproduce the results of Sec. Il B, where we
the penalty paid being an exponential suppression of the anirad the weaker conditiok< \n— 1/L, allowing the function
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o complete many oscillations in the region. Note the similar-mately end up on the right of the barrier. The simplest inter-

ity to the situation described by Egdl) and(2). action is perhaps the one defined by the Hamiltonian,
A different calculation of the(conditiona) dwell time
than that of Sec. Il C assumes a “clock” that is activated by Hine=PX(oL) -

the presence of the particle in the reg[d@hL ], i.e., a degree . o
of freedom 7 with an interaction HamiltonianH,, Whe_rer is the degree of freedom of the clock aRd is its
= 0jo1)(X)P,, wherep, is the canonical momentum conju- Conjugate momentum, and
gate tor. If the initial state of the clock has small enough
Ap,, one gets for the final phase ethe same expression as
Eq. (16), with x,k replaced by the clock’s coordinates. This
can be interpreted as the sum appropriate for a weak mea-
surement offj,;(x), as shown in the following section. This is the effective form, for example, of the potential, seen
Note that in this case, not only do the dwell and phase timeby a particle in ar§, eigenstate, in the Stern-Gerlach experi-
coincide, but they are also described by the same mechanent[ r being thez coordinate, and (Q) the region of the
nism. magnetic field. Assuming the clock to have at large negative
The group delay in tunneling through a thick barrier fol- times the expectation value 0, a perturbation calculation
lows from the fact that under the barrier, no phase accumushows that following the interaction with the particle and the
lates, and the entire phase shift comes from the boundariesibsequent postselection of the particle state t¢fpethe
and is practically independent of the thickness. For casesxpectation value of at large positive times is given by the
where interference with a delayed wave takes place, a fedormula:
authors[4-10] have suggested a different mechanism. In

1 if O<x<L

Xon ()= 0 otherwise.

Chiao and Steinberg’s word8]: “If destructive interference > L

is set up between part of the wave traveling unimpeded and f_mdtfo dxWF (%, Wi(x,t)

part that has suffered a delayt due to multiple reflections, E(7,t—o|i,f)= ~ (17)
one  has W, (t)=W(t) - E¥(t—At)~(1—&)Wn(t) j XV (x,0)W,(x,0)

+ EALAW,, (1)/dt=(1— &)V, [t + EAL/(1— &) ], which is al- o

ready a linear extrapolation into the future. In cases where

the dispersion is sufficiently flat, as in a band-gap medium, Steinberd11,12 has arrived at this formula under similar
the extrapolation is, in fact, surprisingly better than this first-assumptions by a somewhat different line of reasoning. He
order approximation. As was suggested by Steinp@fgnd  introduced the term conditionéjuantum probability for the
recently discussed more rigourously by Lee and [8eand ~ probability distribution of a system following postselection,
Lee[10], this implies that even a simple Fabry-Perot inter-and we use the notation of conditional expectation in the
ferometer exhibits superluminality when excited off reso-formula above, in the same spirit. As noted by Steinberg, the
nance”[presumablyg<1/AtW’(t)]. Another physical inter- last equation is a special case of a weak value.

pretation of the mode reshaping process is also suggested in This formula is valid whenr and p, do not appear in
Ref. [7]. We would like to explain this “better than first- additional terms in the full Hamiltonian, but the generaliza-
order” approximation. Let us instead look at the momentumtion is straightforward. To prove the formula, let us work in
wave function. A spatial shift corresponds to a linear shift inthe interaction picture. Denote the initial state of by
this function. A positive spatial delay would correspond to al ¢.(t)) [and the corresponding wave function ig(,t)],
linear shift steeper than one, and the converse for a negativand the initial(preselectedand final(postselectedstates of
delay. In the Taylor expansion of the transmission coefficienthe tunneling particle bi(t)),|f(t)) [¥i(x,t),¥(x,t)], re-

for the momentum wave function, the zero term is insignifi-spectively. Using the interaction picture and expanding to
cant, the second corresponds, as just explained, to the spatfist order inP . [23],

shift, and the higher give the distortion. When many waves )

with large and evenly distributed shifts interfere, their sum is . _ It N s

for a wide range of momenta, zero, and, in particular, mo- |¢T’t>|'(t)>_T8Xp( B %f_xH'(t dt )|¢T’t_>_m>
mentum independent. In other words, the momentum wave

function is flat for a wide band of frequencies. This corre- it o)y | 1 it H. (1) dt

sponds to a much better than first-order approximation of the X[i(t——e))=| 1~ . ()

spatial wave function, as can be seem in the special case of

the system of Sec. Il of this paper. X[, ,t—=—0)i(t——=)), (18
where

IV. THE DWELL TIME AS A WEAK VALUE

We would like to calculate the expectation value of the | ) =T ex '_ft Ha(t)) | Hoex _i_ft Ha(t’
time measured by a “clock” consisting of an auxiliary sys- 1 hl)-w ot") | Hin hl)_w o).

tem that interacts weakly with our particle as long as it stays
in a given region. Furthermore, we would like to restrict the After making the postselection of state) for the particle,
calculation only to the subensemble of particles that ulti-the clock is left in the state given by the above expression,
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multiplied on the left by(f(t— —)|/(f,—=]i,—«). The
expression we get after writing out the explicit formlaf,;
is

d(71,t—+o)=exp —i(Xo)wP-/f) p(7,t——=)
= (7 (XoL)w,t——=), (19

where

f:dtf:dx\l’?(x,t)\[fi(x,t)

(Xouw= . (20)

dex\lf?(x,O)\Ifi(x,O)

PHYSICAL REVIEW A65 052124

(the integral in the denominator is evaluatedat) merely

for convenience—it is of course, time invarianthe wave
functions in the integral in the numerator can be taken in the
Schralinger representation. And the expectation forat
large positive times is shiftefrom its initial value of ( by

this value, as claimed. In contrast to the familiar eigenvalue
spectrum of a physical operator, its weak values can take any
complex value$24].
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