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Using the inverse of the Hamiltonian, we introduce the inverse ‘siager equatiorISE) that is equivalent
to the ordinary Schidinger equatio(SE). The ISE has the variational principle and tHesquare group of
equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy
becomes monotonic and we further have the inverse Ritz variational principle and-ssagsre equations.
The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave
function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the
inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction
(ICl) theory is generalized to cover both the SE and ISE concepts and four different computational methods of
calculating the exact wave function are presented in both analytical and matrix representations. The exact
wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the
Hamiltonian. The generalized IClI theory is applied to the hydrogen atom, giving the exact solution without any
singularity problem.
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[. INTRODUCTION Another approach for solving the SE is due to the density-
matrix theory(DMT) [9]. Since all the elementary physical
The basic principles of chemistry are described by theproperties can be calculated from the second-order density
Schralinger equationSE) and the corresponding relativistic matrix '), we may utilize it as a basic variable of quantum
equation[1]. Solving these equations as accurately as posmechanics instead of the wave functioh Calculating
sible is, therefore, the central theme of theoretical chemistnyf(2)  through the variational principle with  some

In this series of paperf2—6], our aim is to formulate a N representability conditiongl0,11] has long been a subject
systematic method of solving the SE, and for this purposeq giscussion[12,13 since a birth of the DMT. Recently, a
we have studied the structure of the exact wave functiongenera| computational method of this density-matrix varia-
e e TSl onyMVT) s been dvelopdt oy using e
one- and two-particle operators su){:h asp ypositive—semidefinite programming algorithm, and a high po-
' tentiality of the DMVT has been demonstratgb].
Another method in the DMT is to first derive the equation
_ 1A that is equivalent to the SE but contains only density matri-
H_Ei 2 Z ; ZA/rAi+i2>j el .3 ces as variables. The density equati®) [16] is such an
equation and, therefore, we call this approach the density

for atomic and molecular systems, we expect that the exa@duation theoryDET). Later, this equation was alternatively
wave function must also have a simple structure, reflecting@/led the contracted Schdinger equatiof17]. 4T0 solve tlh's

the simplicity of the structure of the Hamiltonian. When the €guation, we need relations betweBf), I'®), and '™,
structure of the exact wave function is clarified to be simplel ?). Valdemoro and co-workeifg.8] proposed approximate
we would be able to find an easier way of solving the exactelations, we proposed the improved relations using the
wave function than before. We have proposed the iterativéreen’s function metho@19], and Mazziotti[20] gave the
configuration-interactionICI) [2,3] and extended coupled relations using the cumulant expansion method. We have cal-
cluster(ECC) [4] methods to calculate the exact wave func-culated the ground state of many atoms and molecules to
tion. The methods of calculating excited states based ogood accuracy by the DE[TL9]. Recently, many studies have
these theories are formulat¢d,5], and the applications of been presented for the further development of the science
these theories to some simple systehb] and to the atomic lying here [8,21]. In particular, the cumulant expansion
and molecular systeif6] have been given. Van Voorhis and method[22] has been shown to be useful to systematize the
Head-Gordorj7] have reported that the coupled cluster gen-relations among the density matrices in different orders and
eral singles and doubld€CGSD method, which is a spe- to develop further this theorj23]. Nooijen[24] considered

cial case of the ECC method, has reproduced the full-Ckolving the CCGSD using the DE, which circumvents the
result for Ne and B. We have shown more recently that for N-representability problem.

many atoms and molecules, the ICI method reproduces the Certainly, the DMVT and the DET are very promising. It
full-Cl results with only a few(one to thregvariableg6], in is, however, true that an obstacle in these approaches still lies
contrast to a very large number of variables in the convenin our limited knowledge on th&l-representability condition
tional full-Cl algorithm[8]. [10].
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In this paper, we take the wave-function approach. We A~ lc=Ccg™ L (2.3
first introduce the inverse Schitimger equatioISE) that is
completely equivalent to the SE. The ISE has the same dayamely, the eigenvalue of the inverse matrix is the inverse of
terminative power as the ordinary SE. Further, similar to thehe eigenvalue of the original matrix, and the eigenvector is
ordinary SE, the ISE has the variational principle and thecommon toA andA 1.
H-square[25] group of equations, which are equivalent to  \We apply this relation to the Schiimger equatioSE),
the ISE. The crossl-square equation couples the two worlds
of the SE and the ISE. Based on these observations, we con- Hy=Ey. (2.4
tinuously develop the method of calculating the exact wave
functions[2—-6] for general systems such as atomic and moBased on Eq(2.2), we define the inverse of the Hamiltonian
lecular systems. The ICI and the ECC theories are equally—1 as
defined for the ISE and are generalized to cover both the SE
and ISE concepts. H 'H=HH =1, (2.5
The ICI and the ECC theories utilize the products of the
Hamiltonian or the divided Hamiltonian applied to an appro-then it is easy to show thad ~* satisfies
priate reference function to construct the exact wave func-
tion. However, when the Hamiltonian includes singularities H ly=E"1y, (2.6)
such as those by the nuclear attraction operator and the elec-
tron repulsion operator in the atomic and molecular Hamil-which is called the inverse Schitimger equatiorfISE). Con-
tonian given by Eq(1.1), their higher-order products applied versely, we can obtain SE from ISE by using E2}5). Thus,
to the reference function do not satisfy the quantum-on the assumption that the inverse Hamiltonian extes SE
mechanical condition that the physical wave function mustand the ISE are equivalent
satisfy, i.e., integrable finiteness. The singularity of the Note thatH andH ! commute, as easily seen from Eq.
nuclear attraction operator is too large to be solved by thg2.5). As the Hamiltonian is an operator, including differen-
finite size of the nucleuf26,27. This problem is similar to tial operators, etc., it is not necessarily straightforward to
those encountered in the analytical formulations of thewrite down the analytical form of the inverse Hamiltonian.
t-expansion metho[®8] and the connected-moments methodHowever, quantum mechanically, we can always define the
[29]. This difficulty was also pointed oyi80] to occur in the  matrix form of the HamiltoniarH, and then we can always
application of the surplus function methd81], which is  define its inverséd ~*. H™* may be defined as the analytical
similar to the simplest case of the ICI thed]. correspondence of the inverse mattk 1. In the matrix
However, in such a case, an introduction of the inversdormulation of quantum mechani¢83] H andH ™! are en-
Hamiltonian of the ISE resolves the problem. This is showntirely equivalent.
by taking the Krylov sequenck82] as an example: by ex- Hereafter, we calH as regular Hamiltonian or simply
tending the Krylov sequence into the inverse side of theprdinary Hamiltonian to distinguish it from the inverse
Hamiltonian, we have a sequence that naturally satisfies thgamiltonian.
quantum-mechanical condition. The ICI theory is general- Here, a remark is necessary on the inverse energy. The
ized based on both the SE and ISE concepts and by thenergyE in Eq. (2.4) may be defined by
H-square and the cros$-square group of equations. Four
different formulas of the generalized ICGICI) theory are (y|H—E|y)=0, 2.7
presented, both in the analytical form and in matrix represen-
tation. The generalized ICI theory is useful even for systemsamely, by
that have singularities in the Hamiltonian. Numerical ex-
amples are given by applying the present theory to the hy- E=(H| W) 4). (2.9
drogen atom, which has a Coulombic singularity at the posi-
tion of the nucleus. The concluding remarks are given in SecThe inverse of the energy ! is, therefore,
VII.

E-'=1E=(y|p)/{yIH|p). (2.9

On the other hand, from Eq(2.6), we obtain (¢/H !
—E Y ¢)=0, which gives

IIl. INVERSE SCHRO DINGER EQUATION

Suppose that we have an eigenvalue problem
AC=CE, (2.2 _ _
E- = (ulH ) (). (2.10
whereA is a regular Hermitian matrix anel and C are its ] )
eigenvalue and eigenvector. When we introduce the inversgor the exact wave functiog, two expressions, Eq$2.9)

of A, A ! as and(2.10, are equivalent, but for approximate ones, they are
different. For this reason, we introduce the inverse enéegy
A IA=AA"I=1, (2.2)  associated with a wave functiaf as
then it is easy to show that the inverseffsatisfies E[p]=(p|H Y p){ | D). (2.11
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If ¢ is not exact, the inverse enerdiyg[ ¢] is different from
the inverse of the energ§[ ¢], which is defined ag¢|H
—E[¢]|¢)=0 similarly to Eq.(2.7). For the exact wave
function ¢, we have

'E[¢]=E[¢]™" (2.12

IIl. EQUATIONS EQUIVALENT TO SE AND ISE
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the exact wave function. Namely, in this case, the variational
best is the exact wave function. We used this criterion to
investigate the structure of the exact wave funcfi@rj].

We formulate here the equations that are equivalent to the
ISE and therefore to the SE. They are useful not only as they
are, but also for calculating the exact wave function. We first
prove theinverse variational principle _

Theorem When we define the inverse enertly /] by

The equation that is equivalent to the SE is very impor- (Y|H =TE[¢]|¥)=0, (3.10
tant, since it has the same determinative power as the SE.
The variational equation and tHe-square group of equa- then the wave functiony that satisfies
tions[25] are two important equations that are equivalent to .
5'E[¢]=0 (3.11)

the SE. The variational equation is written as

(YIH—E|oy)=0 (3.9
and the Ritz variational principle for the ground state is
given by

E[¢]=Ey, (3.2
whereE[ ¢] is defined by
(YIH=E[4]]4)=0. 3.3
The simplestH-square equation®] are given by
(Yl(H=E)*[y)=0, (3.4
(YI(H=E)H[¢)=0, (3.5
and
(¥IH?=E*y)=0, (3.6

whereE of Egs. (3.5 and(3.6) is defined by Eq(3.3). For

Eq. (3.4), such a definition oE is unnecessary. More general

H-square equations were introduced in PapéRH#f.[3]) as
follows. We define a division of the Hamiltonian intdp
parts as

Np
H:EI H,, (3.7
then theH-square equation is given, in general, by
(W(H=E)(H—E)|¥)=0 (3.9
or
(YI(H=E)H[$)=0 (3.9

for all I (1=1,..Np). In Eq. (3.8), E, is defined by(#|H,
—E[¢)=0.

is exact in the necessary and sufficient sense.
Proof. Taking the derivative of Eq.3.10, we get

(SYIH ="E|p)+ (y|H = "E[8y) — (y] ) SE=0,
(3.12
where 'E representsE[ ¢]. From{y|4)#0 and Eq.(3.1D),
we obtain
(Sy[H™="Ely)+(ylH *—'E|oy)=0, (3.13

which leads td 34] the inverse variational equation

(YH 1="E|sy)=0. (3.14
For arbitrary sy, Eq. (3.14) gives
(H*="B)|[¢)=0, (3.19

where' E=E " for the uniqueness of the ISE. So, the suffi-
ciency is proved. Conversely, when we have the ISE,
=E~! from Eq. (2.10 and we have Eq(3.11) from Eq.
(3.12. Q.E.D.

The Ritz variational principle can be inverted when the
Hamiltonian has only positive eigenvalues. Though the ordi-
nary Hamiltonian may have positive and negative eigenval-
ues, it is easily made a positive operatey,, by shifting the
origin of the Hamiltonian, i.e., by adding some positive con-
stant to the original Hamiltonian as

Hpo=H+ec, (3.19

where g is some positive constant with the dimension of
energy. In the SE oH,,,

The variational equation is a flexible equation and is usegpe energyE, is

to calculate thebest possiblevave function within a given

functional form ofy. The H-square equation is, on the other

hand, a rather strict equation that is vatidly for the exact
wave function. Therefore, if a variation of a given substi-
tuted into the variational equation, leads to tHesquare

Hpo=E ¢, (3.17)
and in the ISE,
-1,_r—-1
Hp " y=E, "4, (3.18
Ep:E+8(:1 (3.19

which is positive by definition. Then, it is easy to show that
for the ground state, the inverse positive enefy[ ¢] as-

equation, then, thay is guaranteed to have the structure of sociated with an approximaig,
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($lH, "= "Ej[41/¢)=0, (320 (YI(H*="E)?¢)=0, (329
gives a lower bound of the inverse of the positive energythen this equation holds if and only # satisfies the ISE.
Epg‘l of the true ground state Proof. When the ISE holdsy is exact and Eq(3.29 is

, valid when'E=E 1. Conversely, when Eq3.25 holds, we
'Epl p]<E,yq- (3.2)  define
We call this relation thénverse Ritz variational principléor A=H1-"E)y, (3.26
a positive Hamiltonian. Note that the subscripmeans the
ground state. and then Eq(3.25 implies (A|A)=0, which is valid only

Proof. We assume that we have the exact wave functionsvhen A =0, namely,
for the positive Hamiltonian as

(H 1=E)y=0. (3.27)
prK:EpK\PKl (322 . . 1
From the uniqueness of the ISEE=E~", namely, Eq.
Hy W =E g . (3.23 (3.2 is the ISE. Q.E.D.

With the definition of E='E[ ¢] given by Eq.(3.10), itis
Since{W} is a complete set, we expamrdof Eq. (3.20 by  easy to show that the following equations:
this set asp=2C ¥ and obtain ,
(YI(HT*="E)H Y y)=0 (3.28

'Efld]—Epg =) ; |Ckl?(Epk— E;gl)] <0, and

3.2 _ i
(329 (Wl(H 12~ (E)2g)=0 (3.29
where the last inequality arises becatﬁg{l is always . -
smaller than or equgl ta y‘l. The equality occurs Wherzlall ar(_elalso equivalent to' the ISE. Note that fo_rl t'he original
Cy=0 except for K:é’g:g namely, when ¢=CoW H~*-square theorem given by E¢(B.25, 'E=E " is auto-
QKE D ’ ’ 070" matic and, therefore, E§3.10 is unnecessary.

e Similarly to Theorem II-1 of Paper I, we can prove the

Thus, in iterative variational calculations of the inversefollowing H-l.square theorem for the partiioned inverse
ositive energy, the inverse energy approaches below o2 ' ) A
P 9y dy app Hamiltonian. Namely, when the inverse Hamiltonian is di-

the exact inverse energy. We further note that if the Hamil- . . S

tonian is not positive, we do not have the inverse Ritz varia—\”ded intoNp (number of division parts,

tional principle given above and, therefore, we cannot expect Np

the above behavior in an iterative process. _ _ H 1= d, 'H,, (3.30
The above argument has clarified the necessity of intro- [

ducing the positive Hamiltonian when we introduce the in-

verse Hamiltonian. The reason is simple. Consider a hydrowhered, is a constant, then the wave functigrthat satisfies

gen atom, then the eigenvalues of the regular Hamiltoniaithe following partitioned inversel-square equation:

range from—0.5 to O for the bound states and Oxtdor the 1 i i _

unbound continuum states. Then, the eigenvalues of the cor- (Yl(H="E)(H = "E)[)=0 (33D

responding inverse Hamiltonian range fron®.2 to —« for

the bound states and fromie to O for the unbound con-

tinuum states. Thus, the_re exists a large discontinuogs gap (Y|(H 1=TE)'H,|¢)=0 (3.32

from —o to +o in the inverse energy spectrum. This is

undesirable and can be easily avoided by shifting the origifor a1 | (1=1,...Np) with 'E defined by Eq(3.10 and 'E,

of the energy of the regular Hamiltonian into the positive gefined by

region. By shifting the regular Hamiltonian by unity to the

positive side, i.e.g.=1, the eigenvalues of the bound states (YI'H,—'E||p)=0 (3.33

of the positive Hamiltonian range from 0.5 to 1.0 and those

of the unbound states range from 1.0+oc. Then, the ei- is exact in the necessary and sufficient sense. The partitioned

genvalue spectrum of the inverse positive Hamiltonianinverse energyE, satisfies

ranges from 2.0 to 1.0 for the bound states and from 1.0 to

0.0 for the unbound states: they are monotonic and there is S d, 'E,='E (3.34)

no infinite gap. Thus, when we shift the regular Hamiltonian R ' '

into the positive region, we have monotonic descriptions of

the energy eigenvalue spectra for both the regular and in- Proof. When ISE holds, both Eq$3.31) and(3.32 hold,

or

verse Hamiltonians. where 'E is given by Eq.(3.10. Conversely, when Eq.
Next, we prove thénverse H-square theorem (3.3) or EqQ.(3.32 holds, we multiply it byd,, sum up for
Theorem We define the inverséd-square equation or all I, and using Eqs(3.30 and(3.34), we obtain Eq(3.25
H ™~ !-square equation by or Eq.(3.28), so that thisys is exact. Q.E.D.
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Note that in the above division of the inverse Hamiltonian When we divide the positive Hamiltonian and its inverse
given by Eq.(3.30, we have given the coefficienty on  as
each partitioned HamiltoniaiH,. Throughout the proof,

however, we need not to know the actual valuedpf This _§

means that all we must know for the division of the Hamil- Hp= | &Hpr, (3.4
tonian is the individual functional forms of the operators

'H,, and not their coefficients. The same is true for the Np

H-square theorem of the divided Hamiltonian given in Pa- Hglzil: ‘e "Hpr, (3.42

pers | and Il. This relaxes the necessary knowledge on the

regular and inverse Hamiltonians and would be useful Whert1h h - th for the divided

the detailed form of the Hamiltonian is difficult to know. en we have cross-square ineorems for the divide
We now show an importarit-square equation that com- Hamiltonians. First, with Eq(3.40, the following set of

bines the regular and inverse worlds of the Hamiltonian: wetduations:
call it the cross-H-square theorenwhich is valid only for —1_i - -
the positive Hamiltonian. Namely, the following crolss- (P(Hp "~ 'Ep)Hp[) =0 (1=1,..Np) (343
square equation: is equivalent to Eq(3.39. Second, with Eq(3.38), the fol-
_ _ lowing set of equations,
(U(H—Ep(Hp = EpH|w)=0  (3.39 J q
Hy—Ep)'H =0 (I=1,.. 3.4
is equivalent to the SE and ISE in the necessary and suffi- (¥ (Hp=Bp)Hpll¥) ( No) (349
cient sense. is equivalent to Eq(3.37). Further, each of the following two

Proof. When the SE and the ISE of the positive Hamil- sets of equations is equivalent to E§.35),
tonian are satisfied by, Eq. (3.35 holds automatically. So,
the necessity is evident. The sufficiency is as follows. We  (y|(H, '~ E, Y)(Hy—Ep)|#)=0 (1=1,...Np),
expandy by the exact eigenfunctiong/=>¢CxW¥, and (3.4H
insert it into Eq.(3.35 and obtain . _
Yl(Hp—Ep)(Hp—'Ep)|#)=0  (I1=1,..Np),
(Wl (Hp=Ep)(H, =, D) WA NS (3.46

where the partitioned energi&s, and iEp, are defined by

=2 [CulA(Epk—Ep)(Epk—Ep ) e
<$|HpI_EpI|‘/’>=01 <¢||le_lEpl|¢>=01

(3.47)
=—§K‘, |Ck|2(Epk— Ep) Y/ EpkEp=0. (3.3

and they satisfy

Since all elements of the summation are positive, it is valid Np Np
only whenE,=Ek for somt_aK for which Cy is nonzero, Ep:E eEpl, iEp:E ie, iEpl_ (3.48
andCy =0 for all otherK, which means)=CyW¥. So, the [ [
sufficiency is also proved. Q.E.D. _ _ o
The crossH-square equation also has its family. Namely, The proof of these equations is very similar to that for Egs.

the following equation: (3.31) and(3.32 and is, therefore, omitted here.
We will see later in the formulation of the generalized ICI
<¢//|(Hp—Ep)H;1|¢>=O (3.37  theory that these crodd-square equations are important,
connecting the two worlds of the regular and inverse Hamil-
with the definition ofE, as tonians. In this sense, it is natural that this theorem is valid
only for the positively shifted Hamiltonian.
(#[Hp—Eply)=0 (3.39 The inverse Hamiltonian has the ISE, the inverse varia-

éi_onal principle, and théd ~1-square group of equations, just
as the ordinary SE. Therefore, there exists entirely the same
theoretical framework as that of the SE on the inverse side of

is necessary and sufficient for the equivalence to the cros
H-square equation. Also, the following equation,

<¢|(H;1—‘Ep)Hp|¢//):0 (3.39 th_e SE. Further,_ these two sides are connectgd by the cross-

H-square equation. The knowledge on the existence of these
with the definition ofiEp as equivalent sets of equations on both sides of the Hamiltonian
_ would make the physical and chemical imagination more
(H ' ="Eply)=0 (3.40  fertile and would help us to understand Nature more clearly.

On the regular side, we usually have an analytical expres-
is again necessary and sufficient for the equivalence to thsion of the Hamiltonian, but on the inverse side, we do not
crossH-square equation. The proof of these equations isecessarily have a closed analytical expression of the Hamil-
straightforward and so omitted for brevity. Note th&t, in  tonian, though we really require it. However, in the matrix
Eqg.(3.39 is notEgl. form, we can always define the inverse Hamiltonian matrix,
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when we have the regular Hamiltonian matrix. Thus, thequantum-mechanicdQM) condition a physical wave func-
concept combining the SE and ISE may have a larger pradion must satisfy, i.e., integrable finiteness. For example,
tical merit when we formulate our problem in a matrix rep- when the Hamiltonian includes the Coulombic nuclear at-
resentation. traction operator, it has a singularity at the position of the
We study in this series of papdia—6] the structure of the nucleus, and, therefore, the functiét'yy with n=1 does
exact wave function. Now that the exact wave functipis  not satisfy the QM conditiony, is finite butH" becomes
an eigenfunction of not onliA but alsoH ~ 2, the structure of infinite at the nuclear positiofsee Eq.(6.2), for examplé
the exact wave function must depend not onlytbbut also  and this nuclear singularity is too large to be solved with the
onH ! entirely on the same footing. This fact would lead usaid of the fact that the nucleus is a finite-size enf2$,27].
to a deeper understanding of the structure of the exact wavkhis is the difficulty also encountered in theexpansion
function. In the following section, we utilize the concept of method[28] and the connected-moments methad]. Mar-
the regular and inverse Hamiltonians to generalize the Krymorino[30] discussed that this difficulty should also occur in
lov sequence, and in Sec. V, the ICI theory is generalizedhe calculation of the surplus function methf@il]. How-
into four different ones by connecting the regular and inversever, we must also note that whefy, is exact,H "¢, is

sides of the Hamiltonian. simply E"¢,, which implies that a very good reference func-
tion is necessary for the convergence of this procedure.
IV. COMPLETE KRYLOV SEQUENCE In the present formalism of the Krylov sequence, how-
ever, we can use in such a case the inverse Hamiltonian
The Krylov sequence, Krylov sequence, where the Coulombic singularity problem

does not occur since the elements of the sequence are com-
posed of the inverse of the HamiltoniaH, "iq. At the

plays an important role in the eigenvalue problem given byuclear position, for instancéj " becomes zero, and at a

Eq. (2.1 [32,35. The Arnoldi method36] and the Lanczos distance apart from the nucleii "y, behaves liker"yyq,
method[37] are related to the Krylov sequence. The Hamil-Which is integrable finite becausg, decays exponentially

{c,Ac,A%c,ASc,.. .}, (4.2

tonian Krylov space like ~exp(—ar) or ~exp(—pAr?). In comparison with the
ordinary Krylov sequence, the dependence of this sequence
{hg, Hipo,H2g H30yg,.. .} (4.20  on the quality of the reference functiaf, would be dull

and, therefore, the convergence would be faster. In general, it
is important for solving the SE: these functions are used ag convenient to use the complete Hamiltonian Krylov se-
basis functions to expand the wave function. As we nowquence given by Eq4.6) and use only such parts that satisfy
know thatA™* plays an equivalent role t& in the eigen-  the QM condition. In this case, we can calculate the ground
value problem, we expect a similar important role of thestate starting from an approximate excited-state reference
inverse Krylovsequence defined by function ¢,. In conclusion, introducing the inverse of the
A2 A3 Hamiltonian, the proposed method is free from the singular-
{c, A7, A"c, AT e, (43 ity problems originating from the nuclear attraction operator
and the electron repulsion operator in the atomic and mo-

Similarly, we define the inverse Hamiltonian Krylov se- lecular Hamiltonian given by Edd.1).

qguence as

-1 -2 -3
{o.H “ho,H “hg,H >4, ...} (4.9 V. GENERALIZED ICI THEORY

Further by combining the two sets of Krylov sequences, we As shown in Sec. lIl, the ISE has the variational principle
obtain thecomplete Krylov sequenaes and theH-square group of equations just as the ordinary SE.
3 o 1 5 3 Therefore, the theoretical framework developed for the ordi-
{--..A7%c,A7°c,A""c,c,Ac,A%C, A} (49 hary SE should also be formulated on the inverse side of the
SE. Further, the regular and inverse sides are connected by
the crosgH-square equation, which turns out to be very im-
(o H 350 H 200, H Yo, tho Hibo H240 H30g,.. ). portant and useful in this section. The ICl and ECC theories
(4.6) developed previously for calculating the exact wave function
are, therefore, generalized to cover both sides of the Hamil-
The Hamiltonian Krylov sequence gives a basis of thetonian. We describe here the GICI theory. The generalized
expansion of the exact wave function. Since the ISE iSECC theory will be given in a forthcoming papg38]. We
equivalent to the SE, the inverse Krylov sequence shouldhow the operator formalism first and then the matrix repre-
also be important in the expansion of the exact wave funcsentation. These formalisms are used in the applications
tion. The complete Krylov sequence given by E4.6) pro-  given in Sec. VI.
vides a wider functional space that is useful for calculating
the exact wave function.
When we use the Hamiltonian Krylov sequence as a basis
of the expansion of a wave function, it sometimes happens In Sec. Ill, we have shown that in order to have a con-
that the element of the Krylov subspace does not satisfy thénuous correspondence between the eigenvalues of the regu-

and the complete Hamiltonian Krylov sequence as

A. Generalized ICI theory in analytical form
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lar and the inverse Hamiltonian, we have to introduce theo the H-square equation given by E¢B.9), which guaran-
positive Hamiltonian, which is easily obtained by shifting the tees that the solution is exact. THsR case is the formula-
origin of the Hamiltonian as in Eq3.16). For the positive tion given in Papers | and II.

Hamiltonian, we have the inverse Ritz variational principle Next is theR-I case, where we use the inverse variational
and the cros$i-square equation, but for nonpositive Hamil- principle given by Eq(3.14) to calculate the unknown vari-
tonian, these useful relations do not hold. Therefore, in thisbles{C,} of the S operator and obtain

section, we limit ourselves to use only the positive Hamil-

tonian. Though we do not use the subscpifiike in H,, for (YnlH 1 ="Ep|hn-1)=0, (5.7
simplicity, all the quantities given in this section are those of '
the positive Hamiltonian. (Yol HT=TEp)H||¢y_1)=0 (1=1,..Np). (5.8

The generalized ICI theory will be grouped into four, de-
pending on how theS operator is defined and what varia- 'E, a@lso satisfies
tional principle is used in calculating the unknown variables Sy
in the S operator. Depending on whether the regular Hamil- (¢nlH™ ="Eq| ) =0. (5.9
tonian or the inverse Hamiltonian is used, we deri®ter |,
respectively, so thaR-R R-l, I-R, and |-l cases occur. We
explain these four cases below.

First are theR-Rand R-I cases, where we start from the
division of the regular Hamiltonian

At convergence,,= ¢,_, and the variational equation
given by Eq. (5.8 becomes equal to the crosssquare
equation given by Eq(3.43, which guarantees that the so-
lution is exact. Since the present Hamiltonian is positive, the
energy converges from below to the exact inverse energy

Np In the above formulation, we defined our variable opera-
H=E dH,. (5.1)  tor Sin terms of the regular Hamiltonian. Next, in théR

! andl-I cases, we define our variable operator in terms of the
inverse Hamiltonian. For doing so, we first define the divi-

We note again that we have assigned the coefficifhisin sion of the inverse Hamiltonian as

front of the divided HamiltoniarH,, differently from the

partitioning of the Hamiltonian given in Paper Il. These co- Np

efficients are introduced just for making it clear that all we Hflzz d, 'H, . (5.10
need to know is the functional form ¢, and we need not [

know the coefficientsl, . In other words, this coefficierd,

was assumed to be unity in the previous formalisa 4). Again, we have introduced the unimportant coefficigia3,
Corresponding to Eg5.1), we define the variable operatdr  which we need not know throughout the calculations. For
by this division of the inverse Hamiltonian, we introduce the

| variable operatofS as
D

S=>, C/H,. (5.2) Np
=1 ‘Slel ic, 'H, (5.11)
We here note that in the definition of tf&operator, we do
not use the coefficientsd;} in Eq. (5.1): we need not know and define the ICI wave function as
the coefficients{d,}. The ICI method is defined by the re-
currence Yo=(1+'S) hp_1. (5.12

Yn=(1+Sy)¢n-1, (33 Now, we calculate the unknown coefficiert€,} in the
'S operator again either by the regular or the inverse varia-

- . tional principle. The former is th&R case and the latter is
Now, to calculate the_ unknown coefﬁmer{t@}_ in the S .the I-I case. When we use the regular variational principle,
operator, we can use either the regular or the inverse vVariadie obtain the secular equation for th& case

tional principle. When we use the regular variational prin-
ciple, it is theR-Rcase, and we obtain the secular equation (Yo H—Ep|thn_1)=0 (5.13

<¢n|H_En|¢n71>:0’ (5.9

(Yl (H=EpHi[¢n-1)=0 (1=1..Np). (5.5

wheren denotes iteration number.

(bl (H=Ep)'H||$hq-1)=0 (1=1,...Np). (5.19

At convergence, this equation is identical to the crdss-

Note that the energy of theth iterationE,, satisfies square equation given by E(B.44), which guarantees that
the solution is exact. In this case, the enegyconverges to
(lH=E,|n)=0 (5.6)  the exact energy from above. On the other hand, when we

use the inverse variational principle given by E8.14), we
as well as Eq(5.4). Because of the variational nature, the obtain the secular equation for thé case,
energyE,, converges to the exact energy from abdgg At .
convergencey,,= ¢,,_1, and therefore, E¢5.5) is identical (YoH 1=TE | hn_1) =0, (5.15
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(Ul (H ="En)'H\[¢hn-2)=0 (I=1,...Np). H={Hj} ={(xilH|x)}- (5.18
(5.16

For convenience, we assume in this section that we have
shifted our HamiltoniarH to be positive as defined by Eq.
At convergence, this is identical to thé™ *-square equation (3.16), though we do not use the subscripfor simplicity.
given by Eq.(3.32, so that the converged solution is exact. The matrixH is then positive definite. The eigenvalue prob-
In thel-I case, the energy converges from below to the exadem of this Hamiltonian is given by
inverse energy.

Thus, from the SE and ISE, we have four different ICI HA=EN, (5.19
methods for calculating the exact wave function. One would
converge more quickly than others and one would be moré&
easily formulated than others. A criterion for the choice is the H IA=E A (5.20
existence of singularities in the Hamiltonian or in the inverse ' ’
Hamiltonian. For atomic and molecular systems, the largesfhere is an eigenvector anfi and E~%, which are posi-

singularity is due to the nuclear attraction operator. In thisjye, are the eigenvalue and its inverse. The corresponding
case, the integrals involving higher products of the nucleayyayve function is written as

attraction operator may diverge and do not satisfy the QM
condition necessary for physical wave functions, so that the
calculation is problematic. Such a situation may occur when ¢f=xk=2 NiXi» (5.21
we use theS operator defined by using the divided regular
Hamiltonian, Eq.(5.1). Namely, theR-Rand R-I cases are where y is a row vector anck is a column vector. Whepy
problematic. Therefore, we recommend using tB@perator  jnyolves full configurations, as we assume below, this is
defined by Eq(5.11): the variational principle may be either nothing else but the full CI, and whepinvolves only SDTQ
regular or inverse, which is theR or I-l case. functions, it is SDTQ-CI.

It is convenient if we can combine two different defini-  |n the matrix representation of ICI, we have four different
tions of the recurrence formula of the ICI theory, E(B3)  casesR-R R-l, I-R, andl-I, as in the operator formalism. In

and(5.12), into one. This is possible by introducing the com- the R-RandR-I cases, we first divide thid matrix as in Eq.
bined recurrence formula as (5.9,

nd that of the inverse Hamiltonidm™* is given by

Np
Yo=(1+S,+1S) ¢hy_1. (5.17) H=Z diH,, (5.22

. . . and define théS operator as
In using this formula, a remark is necessary. When the QM

condition is not satisfied by the elementsSfand/or'S,, Np

we must omit them from the calculations. When we start Szz C/H,. (5.23
from an approximate higher excited state as an initial guess =1
to calculate the ground state, some deexcitations are done l%

S, or 'S, and, therefore, we need the terms belonging to both en, the ICl is defined by the recurrence

S, and'S,. For the ordinary case, however, using E517) A= (1+SIA 52
is essentially the same as using E§.3) or Eq.(5.12 sepa- 0= (1F S An-a, (5-24
rately. wheren is the iteration number. For the formulations below,

it is convenient to introduce the coefficie@t for the unit

) ) ] . matrix 1 of the above ICI equation, and redefine the ICI as
B. Generalized ICI theory in matrix representation

N
In the above operator formalism of the ICI theory, we S
xn=(|20 CinHi [ N1, (5.29

need an explicit form of the inverse Hamiltonian in tRel,

I-R, andl-I cases, but it is not necessarily given in a closed

analytical form. However, in the matrix formulation of quan- whereH,=1.
tum mechanics, we can always define the inverse of the |ntheR-Rcase, we apply the regular variational principle

Hamiltonian, so that the matrix representation of the IClto this expression and obtain the secular equation of the di-
theory has certainly a merit in actual calculations. mensionNp + 1,

Suppose that we have a set of orthonormal configuration
functions{y;} for the system under consideration. It may be (hp—Ens,)Cr=0, (5.2
a complete configuration space of full CI made of some or-
thonormal set of orbitals such as Hartree-Fock orbitals, owhereC, is a column vector composed of the coefficients
some subspace of this set, such as the singles to quadruples, and the matrix elements ¢k, ands, are given by
(SDTQ configuration space. We define the Hamiltonian ma-
trix defined in these configuration functions as ()1 =A5 - HHH A (5.27
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and ('s)=Ar 1 H HoN, g (5.3
(S)1=N_H HA g (528 | jterations, the energy approaches from above the full-Cl

As we perform iterative calculations, the energy decrease§ o9 . .
' " Next, in thel-l case, we apply the inverse variational

and at convergence the eigenvakeand the eigenvectox, o . ;
. ; . ; . principle to the ICI recurrence given by E&.34) and obtain
E)Se(ig)me identical with the solution of the full CI given by Eq. the secular equation of the dimensibig+ 1 as
In the R-I case, we use the inverse variational principle. ih—1_ i i _
By applying it to the ICI recurrence formula given by Eq. (N " ="En '$)Cn=0, (5.38

(5.29, we obtain the secular equation where the matrixh® is defined by

h,'—'E,s,)Ch=0 5.2 i - i
(Mo = Ea)Cr =0 529 (hphu=Ne HIH UHM, Ly, (539
wheres, is the same as that given by E&.28 and h,;l is

given by and the overlap matrixs, is common to that given by Eq.

(5.37). After iteration, the solution of Eq5.38 should ap-
(oY) =N HEH TH N, (5.39  proach from below the inverse of the full-CI energy.
In the above formulation, we used the matriegH,, etc.
where H™ ! is the inverse of the Hamiltonian matrix. We Of the full-Cl dimension, since we adopted the complete ba-

perform iterative calculations of the small eigenvalue prob-sis functions]y;} for our matrix representation. In actual ICI
lem given by Eq(5.29. The energy approaches from below calculations, it is unnecessary to keep such huge matrices in
the inverse of the full-Cl energy and at convergence, wenemory. On the other hand, the matrices that appear in the
obtain the inverse energy and the eigenvector that are ide#Cl secular equations, such ag ands, of Eq. (5.26), have
tical to the full-Cl values. only Np+1 dimension. Actually, the present matrix repre-
In the above formulation, the variable opera®of the  sentation is equivalent to calculating the necessary integrals
ICI was defined by using the regular Hamiltonian. In tHie by the resolution of identity method using the complete basis
and I-| cases, we define it using the inverse Hamiltonian{x;} [6].
First, we define a partition of the inverse Hamiltonian, In the matrix formulation, the singularity problem is not
so explicit, because all the individual matrices are well de-
. _ fined. For a small basis function space, no problem would
H =Z d 'Hy, (5.3)  occur except that the convergence would be slower in the
problematic case. But, as the basis function space approaches
completeness, the product of the matrices approaches the
matrix of the operator product, so that the same problem as
Np in the analytical procedure would occur in the problematic
is=> ic, 'H,. (5.3)  case even in the matrix formulation. We see below such an
=1 example in the application to hydrogen atom.

Np

and define théS operator as

Then, the ICI is given by the recurrence
VI. GENERALIZED ICI THEORY APPLIED

A=(1+'S)N 1. (5.33 TO HYDROGEN ATOM

The hydrogen atom is the simplest basic system that
shows the importance of the ISE concept, because the regular
Hamiltonian has a singularity due to the nuclear attraction
operator. The ordinary ICI theoryGICI in the R-Rcasg is
A1, (5.39 problematic for this singularity, but we show that the gener-
alized ICl theory in thd-R andI-I cases has no problem. The
ECC study will be given in the forthcoming pape&8].

where'Ho=1. o o The Hamiltonian for the radial part with zero angular mo-
We apply first the regular variational principle to the ICI 1 antum is written as

wave function given by Eq(5.34 and obtain the secular

For convenience, we assign the coefficié@ for the unit
matrix 1 of the above ICI equation, and redefine the ICI as

Np
)\n:(zo iCI,n iHI

equation for thd-R case as 1d2 1d 1
, , H=ktv=—z 55— —, (6.2
('hh—Ep '$)C=0, (5.39 2drt rdror
where the matrix elements éhn and isq are given by where the first two terms represent the kinetic Opel’kmmld
the last term represents the nuclear attraction potemntial
(h) =N HHH N, (5.36  This Hamiltonian has a singularity at the origin in the last
two terms, so that the higher elements of the ordinary Krylov
and sequence have a strong singularity at the origin and do not
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satisfy the QM condition. For example, the following inte-  TABLE I. Energy of the hydrogen atom calculated by th
gral diverges even for the exact wave functigr-exp(—r)  type ICI method with increasing accuracy of tf&operator.
[30]:

iSa nb Ec
(Yl(=L)H(=1Ir)|py=—o0, (6.2 's of Eq. (6.7)
0.625
but the next one does not, islﬁol) 4 0.507 054 4
iS(2) 3 0.500 597 4
(Yl(=H(=n)]y)=~-1.0. 6.3 i5(3) 3 0.500042 6
. . I s . iS(4) 3 0.500002 6
aSWe define the positive Hamiltonian by shifting the origin iS(5) 2 0.500 000 1
is(e) 1 0.500 0000
Hp=H+1. (6.4) 'S of Eq. (6.10
o 0.625
We show here the application of the generalized ICI theory :S(l) 4 0.507054 4
to the hydrogen atom first in the analytical form and then in iS(2) 3 0.5004132
the matrix representation. S(3) 2 0.5000207
's(4) 2 0.500001 1
A. Analytical application of the generalized ICI theory S(5) 2 0-5000001
iS(6) 1 0.500 0000

The ordinary ICI method, which is the generalized IClI in
the R-Rcase, is problematic, because of the Coulombic sin2Truncated'S operator.
gularity due to the nuclear attraction operator. Some integral@umber of iterations at which the energy converges by seven deci-
involved are divergent, just like the integral shown in Eq.mal figures.
(6.2). Therefore, the ICI in thi®-Rcase is not applicable, in C°positively shifted by+1.0. The exact energy is 0.5 a.u. for the
its analytical form, even to the hydrogen atom. This problenmpositive Hamiltonian and-0.5 a.u. for the nonpositive Hamil-
is circumvented by using the generalized ICI theory based obnian.
the ISE concept, in particular, the crddssquare theorem.
We show below the use of the generalized ICI theory in the o
I-R case. 's=> C
To utilize the ISE concept, we need an explicit expression =1
of the inverse Hamiltonian. Different from the matrix formu- . L L ) i
lation, this is not necessarily straightforward in the analytic'" this case, the number of divisiohg; is infinity. Using this
treatment. But, we may write the inverse of the HamiltonianoPerator, the generalized ICI wave function is defined by the

I-1

1/ k+1
(— 6.7

14

14

given by Eq.(6.1 as recurrence
T TP . Yn=(1+'S) ¥, (6.9
“krr vty (6.59

wheren is the iteration number.

) 3 We calculate the ICI wave function by successively trun-

Ek) B }k) - (6.50) cating the terms of Eq(6.7): first 'S(1)=C,(1/v), second

v v ’ ' 'S(2)=C4(1/v) — Co(1/v?)(k+1), third 'S(3)=C,(1/v)
—Co()[(k+1)/v]+Ca(Iw)[(k+1)/v][(k+1)/v], and

In Eq. (6.5b, the kinetic operator is not in the inverse form. so on. The initial guess is the Slater-type function

Putting 1= —r, we see no singularity in the inverse Hamil-

tonian. The inverse of the positive Hamiltonian given by Eg. Yo=exp— ar), (6.9

(6.4) is written similarly as

1-—k+
14

with «=1.5 for which the energy expectation value is 0.625
-1 a.u. with the positive Hamiltoniari—0.375 a.u. with the
(6.68  regular Hamiltoniah a=1.0 is the exact wave function with
E,=0.5a.u. forH, (E=—-0.5a.u. for the regulaH). We

Hyte =2 1s
P ktr+l w

k+1

1 Ke1)-1 optimize the unknown variables; by the regular variational
=S 2| - ) (6.6  method for the shifted positive Hamiltonian. This is the GICI
=1V v in thel-R case and the basic secular equation, which is given

by Egs.(5.13 and(5.14), becomes the crods-square equa-
The generalized ICI theory is defined by using the position at convergence.

tive Hamiltonian given by Eqg6.4) and(6.6). Based on the Table | gives the overall result and the convergence pro-
expression of the inverse positive Hamiltonian given by Eq.cess is shown in Table Il foiS(1), 'S(3), and'S(5). When
(6.6b), we define the variable operatt8 as in Eq.(5.11), we use only'S(1), the ICIconverges by four iterations: the
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TABLE II. Convergence process for eac§(l) (1=1,3,5) of We emphasize here that no problem of the Coulombic
Eq. (6.7). singularity has occurred in the above calculations ofltRe
, case of the GICI theory, in contrast to the case of using the
'S Iteration Energ§ ordinary Hamiltonian operator in the ordinary ICI method,

which is theR-R case of the GICI theory. This would also

IS(1 0 0.625 _ :
(1) 1 05089746 have been the case in tli@xpansion metho@28] and the
5 0'507 1126 connected-moments meth¢a9]. Thus, the use of the ISE
3 0'507 056 3 concept given in this paper would overcome a well-known
4 0'507 0544 long-continued difficulty of singularities in the study of ac-
. i curate wave functions.
'S(3) 0 0.625
1 0.5000459 L .
2 0500042 7 B. Appllcqtlon of .the generallz_ed ICI theory
In matrix representatlon
3 0.500042 6
iS(5) 0 0.625 We show here the usage of the present concept of the SE
1 0.500 000 2 and the ISE by applying the matrix representation of the
2 0.500 000 1 generalized ICI theory to the hydrogen atom. This applica-
tion is particularly interesting because we can show all four
2The variable coefficien€, converges toward zero. cases of the generalized ICI theory. Different from the ana-

lytical case given above, we have an explicit form of the
coefficientC, converges toward 0.0 and the converged eninverse Hamiltonian matrix without ambiguity.
ergy is 0.507 054 a.u. which is higher than the exact value, The basis functions of the matrix representation are the
0.5 a.u. This is becaus&(1) is only a part of the inverse STO-NG sets(N=4 and 8 of O-ohata, Taketa, and Huzi-
Hamiltonian. For obtaining the exact solution, ti@opera-  Naga[39]. For the STO-& orbital, we further added two
tor must include all parts of the divided inverse Hamiltonian.GTO’s of very large exponents, 2000 and 10000, to rein-
When we uséS(2), theconverged energy is 0.500 597, be- force the region close to the nucleus. The orthonormal basis
coming closer to 0.5. FotS(3), the convergence is very Orbitals{x;} are made by diagonalizing the overlap matrix
quick as shown in Table Il and the converged energy@nd transforming the basis orbitals in terms of thevtin
0.500043 is closer to 0.5. Witt§(5), theconverged energy Orthogonalization40]. By diagonalizing the positive Hamil-
becomes much closer to 0.5, and wit6(6), the energy tonian matrix defined by E¢6.4), we obtain the energy of
converges to the exact value within seven decimal figureghe ground state as 0.501 009 a.u. and 0.500 004 a.u., respec-
The convergence is good not only for the individual level oftively, by the STO-& and STO-(8 2)G sets. The corre-
'S(1), but also for the overall level. Though tH& operator ~ Sponding inverse energy is 1.995970 a.u. and 1.999 985 a.u.,
is composed of infinite number of terms in the expressiorféspectively. Thus, these energies and inverse energies are
given by Eq.(6.7), only the first six terms are enough to get OUr goal in the matrix representation GICI calculations.
the energy correct to seven decimal figures_ In dOing the GICl, the Hamiltonian and the inverse

In the expansion of th&S operator given by Eq6.7), the ~ Hamiltonian are divided as

operator k+1) can be omitted, and we can expand t&e

operator solely by the inverse potential, H=v+(k+1) (6.11
o and
_ 1\
Iszlzl C|<; (61@ H_1:V_l+r, (612

This is possible because the operatir-(L) in Eq. (6.7) respectively, where is the matrix of the potential operator,

gives the terms in lower orders of which already exist in K the matrix of tihe kinetic operator, andis the residual
the individual'S(1) term. In other words, eacts(l) term of matrix. TheSand'S operators are defined, corresponding to

Eq. (6.7) can be rearranged in the form of th&(1) term of ~ (he above equations, as
Eq. (6.10: no new order terms appear in E®.7) in com-

parison with Eq(6.10. Further, we can look at E¢6.10 as S=CvHCilk+1) 613
an expansion of th&S operator by the basic variableof this and

system: for theS state of the hydrogen atom, the basic vari-

able is only one that is and, therefore, theéS operator 's=ic v i+iCr, (6.14
should be able to be expanded by this variable as given by

Eq. (6.10. respectively.

In Table | we also give the converged energy for each Table Ill shows the converging process of the four types
choice of 'S(1) of Eq. (6.10 from I=1 to | =6. The initial ~ of the generalized ICI calculations of the hydrogen atom
energies by the S(1) of Egs. (6.7) and (6.10 were com- based on the STO® basis set. The initial reference func-
pletely the same and the converged energies were also clotien ¢, is the second outermost alin orthogonalized or-
to each other. bital: the first one was too good as the initial guess to show
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TABLE lll. Generalized ICI calculations in matrix form for the TABLE IV. Generalized ICI calculations in matrix form for the
hydrogen atom using a positive Hamiltonian for the STG-dasis  hydrogen atom using the positive Hamiltonian for the STO-(8
set. The correct energy for the positive Hamiltonian of the ST®-4 +2)G basis set. The correct energy for the positive Hamiltonian

basis isE,=0.501 009 a.u. ané, *=1.995970 a.u.’. of the STO-(8-2)G basis is E,=0.500004 a.u. andg,"
=1.999 985 a.u.l. For theR-R and R-I cases, the convergence
Energy was too slow to be realistic.
Interation R-Rcase I-R case R-I case |-l case I-R case I-l case

1 0.554 112 0.827107 1.909 055 1.758 407 Iteration Guess 1 Guess 2 Guess 1 Guess 2

2 0.522819 0.502 693 1.949 066 1.995 881

3 0.507 856 0.501 013 1.975771 1.995 969 1 0.505034 0.973440 1.960 160 1.930675

4 0.503171 0.501 009 1.987 305 1.995970 2 0.500 161 0.502 669 1.999 802 1.998416

5 0.501 761 1.991 964 3 0.500013 0.500287 1.999972  1.999825

6 0.501 103 1.994 120 4 0.500 005 0.500 024 1.999 984 1.999971

7 0.501 043 1.995 084 5 0.500 004 0.500 005 1.999 985 1.999 984

8 0.501 022 1.995 546 6 0.500004 1.999 985

9 0.501014 1.995 763 : —— — _
#The outermost orthogonalized orbital is the initial guess function

10 0.501011 1.995 869

11 0.501 010 1.995921 Yo . N N

e second outermost orthogonalized orbital is the initial guess

12 0.501 010 1.995 946 :Th g d outermost orthogonalized orbital is the initial

13 0501010 1.995 958 unction ¢o.

14 0.501 009 1.995 964 ) o

15 1.995 967 expected since these cases are very problematic in the ana-

16 1.995 969 lytical case because of the existence of the diverging inte-

17 1.995 969 grals. As the basis set is improved, the behavior of the matrix

18 1.995970 formulation would become closer to the analytical one. Thus,

Table IV shows only thé-R and -l cases. For these cases,
however, the convergence was quite fantastic: the energy
converges only with five iterations in both cases. This may
the converging process. With the rather crude ST®basis,  pe expected, since there is no intrinsic theoretical problem in
all four types of the generalized ICI calculations havethese cases, but the performance is much better than ex-
converged. TheR-R and I-R cases converge toE pected. Since the convergence was so beautiful for-Re
=0.501009 a.u. and theR-l and I-I cases toE, andl-l cases, we tried the calculations using a worse initial
=1.995970 a.u. In the analytical case, RdRandR-l cases guess, which is the second outermost orthogonalized orbital.
involve the calculations of the diverging integrals such asAgain, both of thel-R and I-I cases showed quite a nice
that expressed by E¢6.2). However, in the matrix represen- convergence with only six iterations. For thdR case, it
tation with the crude STO-@ basis set, even these problem- converges monotonically from above to the correct value,
atic cases showed no difficulty in the convergence procesand for thel-I case, it converges from below to the correct
On the other hand, theR andl-l cases that have no intrinsic value.

theoretical problem show remarkably good convergence: It is interesting to see the effect of using the positive
they converge with only four iterations, in contrast to 14 andHamiltonian. It has been shown in the previous section that
18 for theR-RandR-I cases. In th&-RandI-R cases, which  without introducing the positive Hamiltonian, a natural con-
use the normal variational principle, the energy convergesection between the regular and the inverse worlds is diffi-
from above, and in th&®-l andI-I cases, which use the in- cult and we cannot obtain the crossquare equations, so
verse variational principle, the energy converges monotonithat the formulation of th&R andR-I cases becomes impos-
cally from below to the correct value. sible.

We next show the GICI calculations for the STO-(8 Table V shows the generalized ICI calculations for the
+2)G basis set. The STOG basis is already a much better STO-4G basis set using a nonpositive Hamiltonian, whose
basis than the STO-@& basis. The energy of the former is energy eigenvalue is-0.498 990 a.u. and-2.004 046 a.u.
0.500 009 a.u. in comparison with that of the latter, 0.501 009or the inverse case. The problemdfeRandR-I cases show
a.u. We further added two large exponent bases in order ta behavior similar to that of Table Ill. TheR case, which
reinforce the inner region of the AO where the divergence ohas no theoretical problem with the positive Hamiltonian,
the integrals such as that given by E.2) is dictated. By shows some problem with the nonpositive Hamiltonian, be-
this addition, the energy decreases slightly to 0.500 004 a.wause the crose-square theorem does not hold in this case.
The initial reference functiony, is the outermost Lwdin Namely, the convergence becomes much worse when we use
orthogonalized orbital. the nonpositive Hamiltoniail3 times in comparison with

For this better basis, the convergences ofRiRand R-I only five timeg. The I-I case shows a good convergence
cases become much worse than for the ST®b&sis: actu-  (only four iteration$ and is insensitive to whether the Hamil-
ally, the convergence was too slow to be realistic. This isonian is positive or not, as seen from the fact that the
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TABLE V. Generalized ICI calculations in matrix form with the parison with Table IV, the effect of taking a positive Hamil-
nonpositive  Hamiltonian for the hydrogen atom with the tonian is remarkable for thé¢-R case. In the nonpositive
STO-4G basis set. The correct energy for the STG-dasis is  Hamiltonian case, which is theoretically bad in thR case,

E=-0.498990 a.u. ané™ = —2.004 046 a.u.". the convergence to the correct value).499 996 a.u., takes
50 iterations in contrast to only fiuguess 1 shown in Table
Energy IV for the positive Hamiltonian case. This is a very natural
lteration  R-Rcase I-R case R-l case Il case consequence, since t.he calculation must be done as the
theory requires. Even in thel case, the convergence for the
1 —0.445888 —0.436302 —1.588918 —1.965856  positive Hamiltonian is better than the nonpositive case.
2 —0.477181 —0.496044 —1.834904 —2.003510  With the nonpositive Hamiltonian, thel case gives the con-
3 —0.492144 —0.498222 —1.940275 —2.004033 vergence from above, different than “from below” seen for
4 —0.496829 —0.498678 —1.980685 —2.004046 the positive Hamiltonian given in Table IV.
5 —0.498239 —0.498842 —1.995473
6 —0.498 729 —0.498920 —2.000914
7 —0.498897 —0.498956 —2.002900 VII. CONCLUSION
8 ~0.498957 ~0.498973 —2.003627 Introducing the inverse of the Hamiltonian, we obtain the
9 ~0.498978 —0.498982 ~2.003893 inverse Schrdinger equatioISE) that is entirely equivalent
10 —0.498986 —0.498986 —2.003990 to the ordinary Schidinger equatio{SE). The ISE has the
11 —0.498989 —0.498988 —2.004025 same determinative power as the regular SE. The inverse
12 -0.498990 -0.498989 —2.004039 forms of the variational principle and thé-square group of
13 —0.498990 —2.004043 equations that are equivalent to the ISE are derived, and by
14 —2.004 045 further shifting our Hamiltonian to be positive, the inverse
15 —2.004 046 Ritz variational principle and the cros$$square equations

are derived. For the positive Hamiltonian, we obtain a mono-
tonic correspondence between the energy eigenvalues of the
H~1-square equation is valid for both nonpositive and posi+egular and inverse Hamiltonians. In the variational process,
tive Hamiltonians. It is noteworthy that both tiel andI-I the inverse energy approaches “from below” the exact en-
cases of the nonpositive Hamiltonian converge from above tergy, in contrast to “from above” in the ordinary case. The
the correct value, as the ordinary variational case, contrary tknowledge on the equivalent sets of equations on the regular
the behavior from below in Table Ill, which is theoretically and inverse sides of the Hamiltonian, including the SE and
correct for the positive Hamiltonian. ISE, not only makes the imaginations on physical and chemi-
Table VI shows a similar convergence process for thecal phenomena fertile and gives a deep insight on the nature
nonpositive Hamiltonian with STO-(82)G basis. In com-  of the quantum-mechanical entities, but also provides an ef-

TABLE VI. Generalized ICI calculations in matrix form with the nonpositive Hamiltonian for the
hydrogen atom with the STO-(82)G basis set. The correct energy for the STO+®G basis is
E=—0.499 996 a.u. anE~1=—2.000015 a.u.! In the R-R case, the convergence was too slow to be
realistic, and in théR-1 case, the calculations were diverging.

I-R case I-I case

Iteration Energy Iteration Energy Iteration Energy Iteration Energy
1 —0.449 651 16 —0.499751 31 —0.499979 1 —1.931726
2 —0.491 420 17 —0.499 791 32 —0.499 982 2 —1.943310
3 —0.497 023 18 —0.499 824 33 —0.499 984 3 —1.989179
4 —0.497 824 19 —0.499 852 34 —0.499 986 4 —1.996 062
5 —0.498 260 20 —0.499 875 35 —0.499 988 5 —1.998 332
6 —0.498 542 21 —0.499 895 36 —0.499 989 6 —1.999 379
7 —0.498 784 22 —0.499912 37 —0.499 990 7 —1.999 758
8 —0.498 981 23 —0.499 925 38 —0.499991 8 —1.999914
9 —0.499 147 24 —0.499 937 39 —0.499 992 9 —1.999975
10 —0.499 285 25 —0.499 946 40,41 —0.499993 10 —1.999999
11 —0.499 400 26 —0.499955  42-44 —0.499994 11 —2.000 009
12 —0.499 497 27 —0.499961  45-49 —0.499995 12 —2.000013
13 —0.499578 28 —0.499 967 50 —0.499 996 13 —2.000014
14 —0.499 646 29 —0.499972 14 —2.000015
15 —0.499 703 30 —0.499976
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fective and powerful method for formulating and calculating particular, when the Hamiltonian of the system has a singu-
the exact wave function. This is the purpose of the preseririty, the integrals involving higher-order products of the
series of studief2—-6,38§. regular Hamiltonian may diverge and, therefore, the method
The Hamiltonian Krylov sequence is extended to includemay be problematic, but even in such a case, when we use
the inverse Hamiltonian, giving the inverse Krylov sequencethe inverse Hamiltonian, we can calculate the exact wave
Since the Hamiltonian often involves Coulombic singulari- function without having such a difficulty.
ties, the element of the ordinary Krylov sequentd&y, with The generalized ICI theory has been applied to the hydro-
n=1, strongly breaks the quantum-mechanical conditior@®n &om. Since the regular Hamiltonian has a Coulombic
(ie., integrable finiteness while the inverse Krylov se- Singularity at the origin, the ordinary ICI theory in thieR

guence does not have such a singularity problem. Combinin ase i? problemati(_:: it invoIves_the integrals that do not con-
the ordinary and inverse Krylov sequences, we obtain th erge in the analytical formulation. Thus, even the hydrogen

complete Krylov sequence, which provides a natural basi tom is a very good system to test the ut|I_|ty of the ISE-
for describing the exact wave function. ased concept. We have performed generalized ICI calcula-

The SE and ISE concepts are combined to generalize thtéOns in both analytical and matrix formulations and we
ICI method for calculating the exact wave function. BasedCOUId calculate the ground state of the hydrogen atom with-

on the variational principles in the regular and inverse forms,oUt the problem of singularity. The matrix formulation

and on theH-square, inverséi-square, and crogd-square Showed some interesting behaviors that are clearly attribut-
equations, we formulated the four different cases of generaf'-iblle to thel SE an?hSE concertJts fgl;/hen in th'ls papzr._
ized ICI theory. They correspond to the two different forma- h conclusion, theé concept of the reguiar and Inverse

tions of the variable operat&@ depending on the use bf or ;amﬂtomanst an_d the .var|0Lth Iqrm_ulﬁtsf orlglnt?]tmg tfr(c;_m
H~!, and to the use of the two different variational prin- €m seem 1o give an important insignt for further studies

ciples, either regular or inverse. They have clear internal rediMing at the exact understanding of atomic and molecular

lations, and all four ICI methods give, in principle, the exactSyStemS'

wave functhn. I|_’1 these formulauons, we used a positively ACKNOWLEDGMENTS
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