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Nonlinear coupling mechanism in a quantum system
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Department of Physics, Beijing Normal University, Beijing 100875, China

~Received 6 September 2001; revised manuscript received 10 December 2001; published 8 May 2002!

For a quantum system coupled to a heat bath environment the nonlinear dissipation is studied starting from
imaginary-time path-integral formulation. An effective classical potential~ECP! is obtained in which not only
the frequency of the potential but also the slope of the coupling form factor are treated as trial functions, they
are determined by minimizing the effective classical potential. Further, terms of higher order are also added in
an improved Gaussian measure in order to regularize integrals of fluctuation modes at low temperatures.
Various approximations to thermodynamic functions of a double-well potential are compared with the dissi-
pative path-integral Monte Carlo method. In particular, it occurs for single- or double-well potentials, where
nonlinear dissipation can induce the appearance of multistable states and barrier drift. Nonmonotonic varying
of the barrier height of the ECP with temperature is found in a bistable system.
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I. INTRODUCTION AND MODEL

The system-plus-reservoir model is the most common
proach to the treatment of quantum dissipation. This mo
considers the dissipation in a system to be due to the in
action with a reservoir consisting of a continuum of ha
monic oscillators@1–5#, and the latter is at thermal equilib
rium @6#. By means of the imaginary-time path-integr
technique it is possible to integrate out the bath variables
then to produce a nonlocal influence action. Usually, o
assumes that the coupling between the system and rese
is bilinear in the system and bath coordinates. This is ca
a linear or homogeneous dissipation mechanism, where
friction is equal to a constant.

Dependence of the coupling form factor on the syst
coordinate is often used in the modeling of charge-tran
reactions, in which a nonlinear solute dipole moment fu
tion changes as a function of the reaction coordinate an
coupled to a local solvent-generated electric field exhibit
Gaussian fluctuation@7#. In fact, friction of a system near th
well and that near the barrier may be quite different fro
each other, it has been shown that the introduction
coordinate-dependent friction can lead to qualitatively diff
ent physics@8#. For nuclear fission and fusion dynamics, t
friction depends strongly on the collective coordinates,
instance, the friction along the center-of-mass distance
two fragments varies and reaches a maximum at the scis
point and then vanishes@9#. Indeed, the dynamics near
potential barrier plays an important role in almost all areas
physics and chemistry@10,11#. In the quantum regime, th
height, the position, and the curvature of hindered bar
should have a large deviation from the static potential in
presence of a nonlinear dissipative environment.

The Lagrangian of the whole system under study read

L5
1

2
Mẋ22V~x!

1
1

2 (
a51

N

maH q̇a
22va

2Fqa2
ca

mava
2

f ~x!G 2J . ~1!
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Here the coupling term is written in a form that does not le
to a coupling induced renormalization of the potential. T
dependence of the classical friction on the system-coordin
arises from the nonlinear form factorf (x), namely, the sys-
tem coordinate-dependent classical friction in this mode
given by

gcl~ t;x!5 (
a51

N
f 8~x!2

mava
2

cosvat, ~2!

where f 8(x) is the derivative of the functionf (x) with re-
spect tox. For the case where the derivativef 8(x) is inde-
pendent ofx and equal to a constant, the resulting ‘‘linea
dissipation is characterized by a spectral densityJ(v) such
that the classical friction kernel is given by

gcl~ t !5
2

pE0

`

dv
J~v!

v
cosvt. ~3!

Previous works for the coordinate-dependent friction
tached importance to the classical cases. In the present s
large nonlinear coupling effects are shown to form a pict
of the proposed effective classical potential~ECP! in the
quantum regime. To this end, we choose to periodically c
tinue pathsx(t) andqa(t) in the imaginary timet5 i t ,

$x~t!, f „x~t!…,qa~t!%5 (
n52`

`

$Xn , f n ,qa,n%exp~ iunt!,

~4!

where Xn5X2n* , f n5 f 2n* , qa,n5qa,2n* , and un

52pn/(\b) are the Matsubara frequencies. By integrati
out the environment degrees of freedom, for an open qu
tum system it is still convenient to work with the path
integral representation of the reduced partition function,

Z5E
2`

` dX0

A2p\2b/M
E D@x1~t!#exp$2Se f f

E @x~t!#/\%,

~5!
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where the functional measure is written as

E D@x1~t!#5 )
n51

` F E
2`

` E
2`

` d ReXnd Im Xn

p/~Mbun
2!

G , ~6!

and the effective Euclidean action is given by

Se f f
E @x~t!#5E

0

\b

dtF1

2
Mẋ21V„x~t!…G

1
1

2E0

\b

dtE
0

\b

dt8k~t2t8! f „x~t!…f „x~t8!…,

~7!

with the influence kernelk(t),

k~t2t8!5 (
a51

N S ca
2

mava
2

:d~t2t8!:

2
ca

2

2mava

cosh@va~\b/22ut2t8u!#
sinh~va\b/2! D , ~8!

where :d(t2t8): is a generalizedd function with period
\b.

The quantum statistical properties of an equilibrium s
tem or the decay rate of a metastable state can be comp
directly if the partition function is known. Unfortunately, th
path sum can be performed exactly only when the action
quadratic form in the system coordinate. For a conserva
system, the effective classical partition function has be
evaluated by the variational perturbation path-integral
proach@12–14#. However, only a little work generalized thi
approach to linear@5,15,16# and nonlinear@17,18# dissipative
systems. It is, therefore, important to work out an optim
produce by improving the Gaussian measure including
nonlinear dissipative part of the action.

The rest of this paper is organized as follows. In Sec.
second-order effective classical potential is obtained firs
which we introduce two trial parameters such as the
quency of potential and the slope of the coupling functio
further, an important Gaussian measure is proposed in o
to regularize the divergent integrals of the dangerous mo
of second order. Some applications are addressed in Sec
various approximations to thermodynamic functions of
double-well potential are compared with the dissipative pa
integral Monte Carlo method~DPIMC! @19–21#. Indeed, it is
observed that nonlinear coupling can induce the appear
of multistable states in a harmonic potential; moreover, n
monotonic behavior of the temperature-dependent ba
height of the ECP of a double-well potential is found a
analyzed. Finally, Sec. IV offers some conclusions.
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II. EFFECTIVE CLASSICAL POTENTIAL

A. Second-order Gaussian measure

To perform the analytical integrals over all Fourier com
ponents of environment variables in Eq.~5!, the reduced par-
tition function can be rewritten in a classical form with a
ECPW(x0), i.e.,

Z5E
2`

`

@M /~2p\2b!#1/2dx0exp@2bW~x0!#, ~9!

here x05(\b)21*0
\bx(t)dt is the centroid of the therma

path @22#.
To find an approximation toW(x0), we decompose the

potential and coupling function as follows:

V„x~t!…5
1

2
MV2~x0!@x~t!2x0#21Ṽ„x~t!…,

f „x~t!…5m~x0!@x~t!2x0#1 f̃ „x~t!…; ~10!

also the influence kernel is represented as a Fourier ser

k~t!5~\b!21 (
n52`

`

K~un!exp~ iunt! ~11!

with

K~un!5 (
a51

N ca
2

mava
2

un
2

~un
21va

2 !
. ~12!

Substituting Eqs.~4!, ~10!, and ~11! into the partition
function ~5!, we evaluate exactly the integrals over the qu
dratic part of the fluctuation modes of the system coordina

exp@2bW~x0!#5Z1~x0!K expH 2
1

\E0

\b

dtṼ„x~t!…

2
1

2\E0

\b

dtE
0

\b

dt8k~t2t8!

3 f̃ „x~t!… f̃ „x~t8!…J L
1

, ~13!

where^•••&1 denotes the expecting value calculated by
following Gaussian distribution:

Z1
21~x0!expS 2Mb (

n51

`

AnuXnu2D ~14!

with

An5un
21V2~x0!1

K~un!m2~x0!

M
~15!

and
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Z15 )
n51

`

un
2@un

21V2~x0!1m2~x0!K~un!/M #21. ~16!

Applying the Jensen-Peierls inequality^e2F&>e2^F& to
Eq. ~13!, we give an upperboundW1(x0) for W(x0),

W1~x0!5
1

b (
n51

`

ln~Anun
22!1Va2~x0!2

1

2
MV2~x0!a2~x0!

1
1

2\bE0

\b

dtE
0

\b

dt8k~t2t8!

3^ f „x~t!…f „x~t8!…&12
1

Mb (
n51

`
K~un!m2~x0!

An
,

~17!

whereVa2(x0) and ^ f „x(t)…f „x(t8)…&1 arise from smearing
them out in the neighborhood of each pointx0 with the dis-
tribution ~14! @13,17,23#,

^V„x~t!…&15E
2`

` dx

A2pa2
V~x!expF2

~x2x0!2

2a2 G ~18!

and

^ f „x~t!…f „x~t8!…&1

5
1

2pAa42b4E2`

` E
2`

`

dx1dx2f ~x1! f ~x2!

3expF2
~x11x222x0!2

4~a21b2!
2

~x12x2!2

4~a22b2!
G ~19!

with

b2~x0 ,t2t8!52~Mb!21(
n51

`

cos@un~t2t8!#An
21

~20!

anda2(x0)5b2(x0,0).
We are in a position to determine the two unknow

x0-dependent trial functionsV2(x0) andm2(x0) by minimiz-
ing W1(x0), i.e.,

~W18!V25
]W1

]V2
1

]W1

]a2

]a2

]V2
1

]W1

]b2

]b2

]V2
50,

~W18!m25
]W1

]m2
1

]W1

]a2

]a2

]m2
1

]W1

]b2

]b2

]m2
50. ~21!

The solutions of the optimalV2(x0) andm2(x0) are given by
05212
V2~x0!

5
2

M H ]Va2

]a2
1

1

2D (
l 51

`

(
n51

`

3
@K2~u l !2K~u l !K~un!#I n

Al
2An

2 J ~22!

and

m2~x0!5
1

D (
l 51

`

(
n51

`
@K~u l !2K~un!#I l

Al
2An

2
, ~23!

where

D5(
l 51

`

(
n51

`
K2~u l !2K~u l !K~un!

Al
2An

2
~24!

and

I n5~\b!21E
0

\b

dtE
0

\b

dt8k~t2t8!

3H ]

]a2
^ f „x~t!…f „x~t8!…&11cosun~t2t8!

3
]

]b2
^ f „x~t!…f „x~t8!…&1J . ~25!

The self-consistent equations~20!–~25! must be solved nu-
merically at each pointx0 by iteration.

B. Important Gaussian measure

When temperature decreases and approaches to the c
over temperatureTc determined fromA1(Tc)50 at the well-
potential top@3–5#, we improve the Gaussian measure~14!
and make the trial action contain as much information
possible. Because the influence action in Eq.~7! is entirely
nonlocal, f (x) needs particularly to be expanded to t
second-order at low temperatures. We split the action i
three parts after decomposing the potential and coup
function as

V„x~t!…5
1

2
MV2~x0!@x~t!2x0#21

1

4
Mc4@x~t!2x0#4

1Ṽ„x~t!…,

f „x~t!…5m~x0!@x~t!2x0#1
1

2
l~x0!@x~t!2x0#21 f̃ „x~t!…,

~26!

so that

Se f f
E 5Squa

E 1Shig
E 1Srem

E . ~27!

In Eq. ~27! the first term is the quadratic part of the action
0-3
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Squa
E 5M\b (

n51

`

AnuXnu2, ~28!

the second term is a part of the fourth-order and cross
plitudes,

Shig
E 5

3

4
M\b (

n52`

` H Fc4~x0!

1
1

2
l2~x0!M 21K~2un!GXn

2X2n
2

12m~x0!l~x0!M 21K~un!X0XnX2nJ , ~29!

and the third term describes all remaining terms,

Srem
E 5E

0

\bFV„x~t!…2
1

2
MV2~x0!„x~t!2x0…

2Gdt

1
1

2E0

\b

dtE
0

\b

dt8k~t2t8!$ f „x~t!…f „x~t8!…

2m2~x0!@x~t!2x0#@x~t8!2x0#%2Shig
E . ~30!

Substituting Eqs.~26! and ~27! into Eq. ~5! and perform-
ing the integrals over the fluctuation modes of the syst
coordinate, we have

exp@2bW2~x0!#5E D@x1~t!#expF2Mb (
n51

`

LnuXnu2G
3expH 2Mb (

n51

`

~An2Ln!uXnu2

2
1

\
~Shig

E 1Srem
E !J

5Z2~x0!K expF2Mb (
n51

`

~An2Ln!uXnu2

2
1

\
~Shig

E 1Srem
E !G L

2

, ~31!

where^•••&2 denotes the expectation value calculated by
improved Gaussian probability distribution

Z2
21~x0!expS 2Mb (

n51

`

LnuXnu2D ~32!

with Z2(x0)5)n51
` un

2Ln
21 . Note thatLn is an effective ei-

genvalue, which consists of the contribution of higher orde
Eq. ~29!, and is evaluated similar to Refs.@3–5# as

Ln5A 2B

pMb
erfc21@An8~Mb/2B!1/2#exp@2~An8!2Mb/2B#,

~33!
05212
-

n

,

where

B53c4~x0!1
3

2
l2~x0!M 21K~u2n!,

An85An13x0m~x0!l~x0!M 21K~un!. ~34!

Applying the Jensen-Peierls inequality to Eq.~31!, we
obtain a more accurate approximationW2(x0) to W(x0), i.e.,

W2~x0!5
1

b (
n51

`

ln~Lnun
22!1

2

b (
n51

`

~An2Ln!/Ln

1Va2~x0!2
1

2
MV2~x0!a2~x0!

1
1

2\bE0

\b

dtE
0

\b

dt8k~t2t8!

3^ f „x~t!…f „x~t8!…&2

2
1

Mb
m2~x0! (

n51

`

K~un!Ln
21 , ~35!

whereVa2(x0) and ^ f „x(t)…f „x(t8)…&2 arise from smearing
them out in the neighborhood of each pointx0 with the dis-
tribution ~32!, and

b2~x0 ,t2t8!52~Mb!21(
n51

`

cos@un~t2t8!#Ln
21

~36!

anda2(x0)5b2(x0,0).
Clearly, Ln.An , the second term on the right-hand sid

of Eq. ~35! is always negative, this may lead to a better res
W2(x0),W1(x0) at each point, moreover,Ln

21 remains fi-
nite whenT→Tc andLn→An8 whenT@Tc . Here, onlyL1

is used instead ofA18 and Ln5An8 (n>2). Equation~35!
involves the four unknownx0-dependent functionsV2(x0),
c4(x0), m(x0), andl(x0), they can be determined by min
mizing W2(x0). Here we consider only the solutions of equ
tions: (W28)V2,m250 @17#, while the higher-order coefficient
c4(x0) andl(x0) are taken to be two adjustable paramet
for giving the best minimum ofW2(x0) at each thermal cen
troid x0.

III. APPLICATION

A. Thermodynamic functions

The typical thermodynamic functions such as the free
ergy F, the inertial energyU, and the entropyS are deter-
mined by

F52b21 ln Z, U52
]

]b
ln Z, S5b~U2F !.

~37!

A Drube model with real-time memory damping is chose
0-4
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NONLINEAR COUPLING MECHANISM IN A QUANTUM SYSTEM PHYSICAL REVIEW A65 052120
g~ t !5
g0

tD
expS 2

t

tD
D , ~38!

whereg0 is the zero-frequency damping constant andtD is
the memory time, thusJ(v)5Mg0v/@11(vtD)2#.

In this paper, we use natural units with\5M51. In Figs.
1–3, various approximations are applied to calculate
above three quantities as functions of the inverse tempera
b, and they are compared with the DPIMC@20,21# results.
Here we consider a double-well potential

V~x!5V1~x!52
1

2
x21

1

4
x4 ~39!

and a corrected linear coupling function@7,24#

f ~x!5 f 1~x!5x$11e@12exp~2hx2!#%. ~40!

FIG. 1. The calculated free energy as a function of the inve
temperature. See text for details.

FIG. 2. The calculated inertial energy as a function of the
verse temperature. See text for details.
05212
e
re

The parameters used aree50.5, h51.0, g051.0, andtD
54.0.

In these figures the lines from top to bottom are the res
evaluated, respectively, by~a! the F-K method of the con-
servation system@c45m5l50# @13,14#; ~b! the local linear
approximation to the coupling function@c450, m(x0)
5 f 18(x0), l50#, ~c! the second-order Gaussian measu
method @c45l50# @17#, and ~d! the improved Gaussian
measure method. The open circles are the DPIMC data.
readily seen that the present approach~d! gives the lowest
limits for these quantities. The calculated results of the f
energy by using the methods~c! and~d! are identical, as can
be verified visually. Nevertheless, the numerical error for
internal energy and the entropy increases when the temp
ture decreases. Our approximation is quite reliable up tob
55. WhenT decreases and approaches the crossover
peratureTc , the eigenvalues of the fluctuation modesX1 and
X21 are very small, thus the integrals over amplitud
X1 , X21 become divergent in the methods~a!–~c!. This
problem has been regularized by adding partial fourth-or
terms in the trial function. Approximation~d! may be im-
proved further by using the third-order perturbation@25,26#
under the present important Gaussian distribution~32!.

B. ECP of single-well potential

We calculate now the ECP of a harmonic potentialV2 in
the presence of an inhomogeneous couplingf 2 @2#, i.e.,

V~x!5V2~x!5
1

2
x2 ~41!

and

f ~x!5 f 2~x!5exp@2~x2xb!2/s#. ~42!

In Figs. 4~a! and 4~b!, the ECPW2(x0) is plotted for
various temperatures and damping constants. The com
parameters used aretD50.25, s50.2, andxb50. The ef-

e

-

FIG. 3. The calculated entropy as a function of the inverse te
perature. See text for details.
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JING-DONG BAO PHYSICAL REVIEW A 65 052120
fects of nonlinear quantum dissipation have been show
the shapes of ECP. Two observations can be made: F
quantum effects give rise to a temperature-dependent e
tive classical potential. Second, the position-dependent c
pling induces the appearance of multistable states. Moreo
the energy difference between the grown barrier and the
ground states increases when the temperature decrease
is opposite to the phenomena of quantum fluctuation wip
out a double-well potential in the absence of dissipat
@13,14# or in the presence of a linear dissipation@5#.

As a consequence of Eq.~33!, the higher-order coeffi-
cients c4 and l(x0) play important roles in the improve
Gaussian measure at low temperatures, when the temper
increases,Ln approachesAn8 ~nearx050, m.0, thusLn

.An). The influence of the derivationm(x0) of f 2(x) on
W2(x0) is observably at moderate-to-larger temperatur
The curvature off 2(x0) takes a maximum value and its slop
equals zero at the minimum (x050) of V2(x0), hence the

FIG. 4. The effective classical potential~solid lines! of the har-
monic potential. The dotted line isV2(x0), the dashed line is
f 2(x0). ~a! W2(x0) at fixed g054.0 and for various temperature
T50.2, 0.4, 2.0, and 3.0 from top to bottom;~b! W2(x0) at fixed
T50.3 and for various damping constantsg058.0, 6.0, 3.0, and
0.5 from top to bottom.
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ECP is raised around the original point of the coordinate, a
the nonlocal variance~proportional to the damping constan!
of f 2 increases the effective action andW2(x050) at low
temperatures. Moreover, the maximum value of the deri
tion of f 2(x) is determined byf 29(x)ux5xm

50, i.e., xm5

6As/2; one can see a pair of local maxima ofW2(x0) ~i.e.,
two additional unstable points! appear nearxm at moderate
temperatures.

Starting from a viewpoint of quantum fluctuation, th
above phenomenon is also understood well. Around
minimum of V2(x0), the quantum fluctuation helps the pa
ticle to arrive at a position with high potential energy at lo
temperatures. Since the curvature off 2 is maximum at the
minimum of the potential, the contribution off 2 raises the
top of the ECP barrier when temperature decreases. On
other hand, the quantum fluctuation enhances the width
the harmonic potential; when the thermal centroidx0 departs
from the original point, the contribution of the influence a
tion of f 2 to the ECP decreases and eventually vanish
leading to a decrease in the ECP, so that the double st
states occur. At moderate-to-large temperatures, quan
fluctuation becomes weak and then the value of the influe
action nearx050 is small, thus dissipation will not lead t
an observable increasing of the ECP at the minimum of
potential. However, around the pointxm , where the slope of
f 2(x) is large and, thus, a strong friction raises the ECP
local barrier, therefore, appears.

C. ECP of double-well potential

In the classical cases, the generalized Langevin equa
for the system coordinate usually provides an adequate
scription of the barrier dynamics. Now, we study the fin
temperature regime where the nonlinear quantum dissipa
leads to a large deviation of the barrier from the classi
one, when the couplings between the system and envi
ment are different at the barrier top and at the well minimu
A simple symmetrical double-well potential is

V~x!5V3~x!522x21x4 ~43!

and another form of the coupling form factor@27# is

f ~x!5 f 3~x!5tanh@l~x2xb!#. ~44!

In Figs. 5 and 6, the ECPs are plotted forf 2 and f 3 couplings
at different temperatures. When the temperatures approa
Tc , both anharmonicities of the potential barrier and t
nonlinearity of the coupling are always essential. The co
petition between the quantum fluctuation decreasing the E
and the nonlocal dissipation increasing the ECP leads to
top of the ECP barrier rising as a nonmonotonic function
temperature.

In Fig. 7, we consider that the maximum of curvature
the coupling function is not at the classical potential barr
(xb5” 0). The result shows that the original symmetric
double-well potential is changed into an asymmetrical me
stable potential, and the ECP barrier drifts toward the pea
f 2, where the nonlocal dissipation is the strongest.
0-6
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NONLINEAR COUPLING MECHANISM IN A QUANTUM SYSTEM PHYSICAL REVIEW A65 052120
The barrier heightDW2(x0) of the ECP is shown as
function of temperature in Fig. 8 for different couplin
mechanisms. A nonmonotonic behavior of the barrier is
served in the presence of a nonlinear coupling. Because
dissipations are different at the static barrier and at
minima of the double-well potential, the ECP is risen inh
mogeneously. At moderate-to-large temperatures, thef 3 cou-
pling induced arising of the ECP at the top of the potentia
larger than at the minimum ofV3(x), thus the barrier heigh
of the ECP is larger than the classical one. However, forf 2
coupling, the dissipation at the top of the ECP barrier
weak, and the quantum fluctuation gives rise to the poten
so the barrier height of the ECP in the presence off 2 cou-
pling is less than the classical one.

IV. CONCLUSIONS

The description of nonlinear coupling between the syst
and the reservoir within the framework of the imaginar

FIG. 5. The effective classical potential of the double-well p
tential in the presence off 2 coupling for various temperatures. Th
solid line isV3(x0) and the dotted line isf 2(x0).

FIG. 6. The effective classical potential of the double-well p
tential in the presence off 3 coupling for various temperatures. Th
solid line isV3(x0) and the dotted line isf 3(x0).
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time functional representation has been discussed in the
erature. A variational path-integral technique is applied to
inhomogeneous dissipative system, and then an effec
classical potential is obtained. For a double-well potent
the present improved Gaussian measure approach gives
accurate results for the thermodynamic functions, i.e.,
lowest limits of these quantities. Further, the integrals o
the dangerous modes have been regularized when the
perature decreases and approaches the crossover tem
ture. It is also demonstrated that the nonlinearity of the c
pling function plays an important role in the effectiv
classical potential.

For a quantum system in the absence of dissipation o
the presence of linear dissipation, the ECP barrier o

-

-

FIG. 7. The ECP ofV3 in the presence off 2 coupling ~dotted
line! with the parametersg054.0, tD50.5, xb50.4, s50.1, and
T50.2. The solid line isV3(x0) and the open circles indicat
W2(x0).

FIG. 8. Dependence of the barrier height of ECP of the doub
well potential V3 on temperature for different coupling mech
nisms.
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double-well potential is eliminated, and the ECP width o
single-well potential is enhanced only. However, in the pr
ence of an inhomogeneous dissipation, the present re
show that cooperation and competition between quan
fluctuation and dissipation can induce the appearance of m
tistable states in the effective classical potential, this eff
determines still the behaviors of the temperature-depen
barrier. For a single-well potential, the height of the grow
barrier of the ECP increases when the temperature decre
and the damping constant increases. In a double-well po
tial, the quantum effect depresses the energy barrier, bu
nonlocal dissipative action raises the top of the potential b
rier. It is concluded that the quantum fluctuation and dissi
h
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cs
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tion play opposite roles in the barrier dynamics. Nonline
coupling could either lower or raise the ECP barrier co
pared with the bare potential barrier, thus leading to eit
hindrance or enhancement of the decay rate, dependin
the properties of the coupling form factor. Both cases le
to a nonmonotonic behavior of the temperature-depend
barrier.
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