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Nonlinear coupling mechanism in a quantum system
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For a quantum system coupled to a heat bath environment the nonlinear dissipation is studied starting from
imaginary-time path-integral formulation. An effective classical potefiE&P) is obtained in which not only
the frequency of the potential but also the slope of the coupling form factor are treated as trial functions, they
are determined by minimizing the effective classical potential. Further, terms of higher order are also added in
an improved Gaussian measure in order to regularize integrals of fluctuation modes at low temperatures.
Various approximations to thermodynamic functions of a double-well potential are compared with the dissi-
pative path-integral Monte Carlo method. In particular, it occurs for single- or double-well potentials, where
nonlinear dissipation can induce the appearance of multistable states and barrier drift. Nonmonotonic varying
of the barrier height of the ECP with temperature is found in a bistable system.
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I. INTRODUCTION AND MODEL Here the coupling term is written in a form that does not lead
to a coupling induced renormalization of the potential. The
The system-plus-reservoir model is the most common apdependence of the classical friction on the system-coordinate
proach to the treatment of quantum dissipation. This mode#rises from the nonlinear form factb(x), namely, the sys-
considers the dissipation in a system to be due to the intetem coordinate-dependent classical friction in this model is
action with a reservoir consisting of a continuum of har-given by
monic oscillatord1-5|, and the latter is at thermal equilib-
rium [6]. By means of the imaginary-time path-integral N g/ X)?
technique it is possible to integrate out the bath variables and Yei(t;X)= E >
then to produce a nonlocal influence action. Usually, one «=l Myw,

assumes that the coupling between the system and reservow1 , . I . .
is bilinear in the system and bath coordinates. This is called/heref’(x) is the derivative of the functiofi(x) with re-

a linear or homogeneous dissipation mechanism, where tHPECt (ox. For the case where the derivativ&(x) is inde-

friction is equal to a constant. pgnc_ien; of>§ and equal _to a constant, the resulting “linear
Dependence of the coupling form factor on the systenfliSSipation is characterized by a spectral dend(iy) such

coordinate is often used in the modeling of charge-transfefhat the classical friction kernel is given by

reactions, in which a nonlinear solute dipole moment func-

tion changes as a function of the reaction coordinate and is o (t) = EfmdeCOSwt 3)

coupled to a local solvent-generated electric field exhibiting cl mJo ] '

Gaussian fluctuatiof¥]. In fact, friction of a system near the

well and that near the barrier may be quite different from Previous works for the coordinate-dependent friction at-

each other, it has been shown that the introduction ofached importance to the classical cases. In the present study,

coordinate-dependent friction can lead to qualitatively differ-large nonlinear coupling effects are shown to form a picture

ent physicq8]. For nuclear fission and fusion dynamics, theof the proposed effective classical potenti&@CP in the

friction depends strongly on the collective coordinates, forqguantum regime. To this end, we choose to periodically con-

instance, the friction along the center-of-mass distance ofinue pathsx(7) andq,() in the imaginary timer=it,

two fragments varies and reaches a maximum at the scission

point and then vanishel®]. Indeed, the dynamics near a

potential barrier plays an important role in almost all areas of {X(7),f(x(7),qa(}= 2 {Xn,fn,GanteXlif,7),

physics and chemistr{10,11]. In the quantum regime, the =

height, the position, and the curvature of hindered barrier

should have a large deviation from the static potential in the, X =X* | f=f*

presence of a nonlinear dissipative environment. n
The Lagrangian of the whole system under study reads

COSw,t, (2)

oo

4

ns qa,n:qz,fn’ and On
=2mn/(#B) are the Matsubara frequencies. By integrating
out the environment degrees of freedom, for an open quan-
tum system it is still convenient to work with the path-
integral representation of the reduced partition function,

m,w?

2 = dX, ]
]. o ) ] Do SEx(n)

1 c
+5 2 ma[éﬁ—wi{qa— (%)
®
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where the functional measure is written as Il. EFFECTIVE CLASSICAL POTENTIAL
A. Second-order Gaussian measure

To perform the analytical integrals over all Fourier com-
(6)  ponents of environment variables in E§), the reduced par-
tition function can be rewritten in a classical form with an
ECPW(Xy), i.e.,

[ P11, UJ% ,

and the effective Euclidean action is given by o SR
2= [ NI axext — pWixo) ), @

herex0=(ﬁﬂ)*1f§’3x(7)dr is the centroid of the thermal
path[22].
1 (g > To find an approximation t&V(x), we decompose the
+ Ef dTJ dr' k(7— 7 )f(x(7)f(x(7")), potential and coupling function as follows:

0 0

1 .
EMx2+V(x(T))

hB
SEIx(7)]= fo dr]

1 ~
@ V(7)) =5 MQ2(xo)[X(7) ~ Xo]*+ V(X(7)),
with the influence kernek(7), F(X(7))= p(Xo)[X(7) = Xo] +F(x():; (10)
N ) also the influence kernel is represented as a Fourier series
c
k(T—T’)=E ( az:ﬁ(f—r’): %
a=1
M Kn=(hp) ' 3 K(bexHityr) (1D
c2  cosfw (hBl2—|r—1'])] o
2m,w, sinh( w % B/2) @ with

N 2 02

a n
where 5(7—7'): is a generalized function with period K(O)=2 — 55— (12

a=1 mawi (Bﬁ—i- wi) .

hB.
The quantum statistical properties of an equilibrium sys- dSubstituting Egs.(4), (10), and (11) into the partition

tem or the decay rate of a metastable state can be Comput‘f:’unction (5), we evaluate exactly the integrals over the qua-

directly if the partition function is known. Unfortunately, the ! . .
path s{lm canpbe performed exactly only when the ac'zon is gratlc part of the fluctuation modes of the system coordinate,

qguadratic form in the system coordinate. For a conservative 1 (i

system, the effective classical partition function has been ex;{—BW(xo)]zzl(xo)<exp{ __f d7V(x(7))

evaluated by the variational perturbation path-integral ap- hlo

proach[12—14. However, only a little work generalized this 1 (48 18

approach to lined5,15,14 and nonlineaf17,18 dissipative - de dr'k(r—1")

systems. It is, therefore, important to work out an optimal 2% Jo 0

produce by improving the Gaussian measure including the

nonlinear dissipative part of the action. X?(x(r))?(x(r’))]> ’ (13)
The rest of this paper is organized as follows. In Sec. Il a

second-order effective classical potential is obtained first in

which we introduce two trial parameters such as the freyhere(...); denotes the expecting value calculated by the

quency of potential and the slope of the coupling function;following Gaussian distribution:

further, an important Gaussian measure is proposed in order

to regularize the divergent integrals of the dangerous modes *

of second order. Some applications are addressed in Sec. Ill, Zl‘l(xo)exp< -MB> An|Xn|2) (14

various approximations to thermodynamic functions of a n=1

double-well potential are compared with the dissipative path-

integral Monte Carlo methofDPIMC) [19-21]. Indeed, itis ~ With

observed that nonlinear coupling can induce the appearance

of multistable states in a harmonic potential; moreover, non-

monotonic behavior of the temperature-dependent barrier

height of the ECP of a double-well potential is found and

analyzed. Finally, Sec. IV offers some conclusions. and

1

K( en)lu’z(xo)

An= 05+ Q2(xo) + N

(15

052120-2



NONLINEAR COUPLING MECHANISM IN A QUANTUM SYSTEM

zl=n1]1 020 62+ Q2(x0) + p2(X)K(6,)/M] 2. (16)

Applying the Jensen-Peierls inequali{tg’f)ze*“[> to
Eq. (13), we give an upperbound/;(xg) for W(x,),

1< 1
W (Xo) = i nzl IN(An 6, %) +Va2(Xg) — EMQZ(xo)az(xo)

+_

YR dTJ dr'k(r—17")

X(F(r))FX(7")))1—

ZK(6,) mA(x
2 (),4:(0)

17

whereV2(xg) and{f(x(7))f(x(7"))), arise from smearing

them out in the neighborhood of each poxgtwith the dis-
tribution (14) [13,17,23,

s [ 2 v - 229 g
s _"‘:\/2778z 2a2
and
(FX(T))FX(7)))4
1 v [
:mfocfwdxldxzf(xl)f(xz)
(X1 +X—2X0)?  (Xy—Xy)?
with

o0

b(xp,7=7)=2(MB) "1 X coq fn(7—7")]A, !
(20)

anda?(xo) =b?(xo,0).

PHYSICAL REVIEW A65 052120

Q?(xg)
2 (?Vaz 1 &
- M (7a _Ag Z
[KZ(6) —K(6)K(8)]l,
S } 22
and
1« w [K(O)—K()I
2 —
po=3 2 2 v
where
< w KE6)—K(8)K(6,)
A_Iglngl A,ZAﬁ 29
and

InZ(ﬁ,B)flthdeﬁﬁdT’k(T— 7')
0 0
><|iz(f(x(r))f(x(r’))>1+Cosﬁn(r— 7')
Ja

d
XEG(X(T))f(X(T’))h]- (25)

The self-consistent equatiofi20)—(25) must be solved nu-
merically at each poink, by iteration.

B. Important Gaussian measure

When temperature decreases and approaches to the cross-
over temperaturé . determined fromA(T.) =0 at the well-
potential top[3—5], we improve the Gaussian meastiig)
and make the trial action contain as much information as
possible. Because the influence action in Ef.is entirely
nonlocal f(x) needs particularly to be expanded to the
second-order at low temperatures. We split the action into
three parts after decomposing the potential and coupling
function as

1 1
We are in a position to determine the two unknown V/(x(r ))ZEMQZ(XO)[X(T)—XO]Z-F ZMc4[x(r)—x0]4

Xo-dependent trial function®2(x,) andu?(x,) by minimiz-
ing Wy(xg), i.e.,

OW, oW, ga®> IW, db?
(Wi)o2= + =0,
0%  ga% 90  ob% 902
oW, W, da? W, db?
W)= ¥ o o2 T o029
p dac du ab® du

The solutions of the optimad2?(x,) andu?(x,) are given by

+V(x(7)),

1 ~
f(X(7))= pu(X0)[X(7) —Xo]+ E)\(Xo)[x( 7)=Xo]*+T(x(7)),
(26)
so that
S(Eff qua+ Sh|g+ SIrEem (27)

In Eq. (27) the first term is the quadratic part of the action,
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* where
Squa=MAB 2, AdlX|?, (28)

3
B=3c4(Xo) + E)\Z(XO)M K (6n),
the second term is a part of the fourth-order and cross am-

plitudes, / -1
An=Ant 3Xou(Xo)N(X0)M K (6p). (34

C4(Xp) Applying the Jensen-Peierls inequality to BE&1), we
obtain a more accurate approximatidfi(xy) to W(x,), i.e.,

3 e
Shg=gMiB X [
1
—N2(xo)M 1K (26, }xﬁxz_n
+ 5N (X)) MTK(26y) Wa(x0)= 5 2 (A0 )+ E (An=An)/A,

+21“(X0))\(XO)MlK(an)XOann]v (29) 1 2 2
+Vaa(Xg) — EMQ (Xo)a“(Xo)

and the third term describes all remaining terms,

ip
E
Srem= f
0

+1fﬁﬁd fﬁﬁd "k(7—7"){f f '
3), 97] ATk P HII())

1
258,

X(F(m))EX(77)))2

ip
1 drf dr'k(7—17")
VX(7)) = 5 MOZ(X0) (X(7) =X0)? |d 7

ﬁ 2(x0>2 K(6)ALT, (35)

— 12 (X)[X(7) = Xol[X(7) =Xol} =Sy (30) | _
whereVa2(xg) and{f(x(7))f(x(7"))), arise from smearing
Substituting Egs(26) and (27) into Eq. (5) and perform-  them out in the neighborhood of each pokgtwith the dis-
ing the integrals over the fluctuation modes of the systentribution (32), and
coordinate, we have

b?(x,7— T')=2(Mﬁ)*l§_)1 cog On(7— 7')]A,

exr{—ﬂwz(xc)]:f D[Xl(r)]exr{—l\/lﬁz An|xn|2}
n=1 (36
anda®(xq) = b?(x0,0).
xexr{ - M,G'HZl (An—An)|Xql? Cleérl(;/),An>(A(:1, )the second term on the right-hand side
of Eq. (35) is always negative, this may lead to a better result
1 W,(X) <W;(xo) at each point, moreoven . remains fi-
TR (Sh +Stem) nite whenT—T. andA,— A/ whenT>T,. Here, onlyA,
is used instead oA; and A=A, (n=2). Equation(35)
_ D A ) involves the four unknowmn,-dependent function&2(x,),
=Z5(Xo)| ex _M5n=1 (An=An)[ Xy ca(Xo), m(Xo), and\(X,), they can be determined by mini-
mizing W5 (X,) . Here we consider only the solutions of equa-
tions: (W3) g2 ,2=0 [17], while the higher-order coefficients
31 ca(Xg) and\(xp) are taken to be two adjustable parameters
2 for giving the best minimum o#W,(x,) at each thermal cen-

1
_ﬁ(sh +Sem)

where(- - -), denotes the expectation value calculated by aﬁro'd Xo-

improved Gaussian probability distribution
[ll. APPLICATION

(32) A. Thermodynamic functions

Z, 1<xo>exp< ~MB2 AgX,|?
n=1 The typical thermodynamic functions such as the free en-

. w0 _ . . . F, the inertial , and th t deter-
with Z,(xo)=117_,02A, 1. Note thatA,, is an effective ei- erg;;d bye inertial energy, and the entropys are deter

genvalue, wh|ch consists of the contribution of higher orders,

Eq. (29), and is evaluated similar to Ref8-5] as
F=-8"'InZ, U=——BInZ S=pB(U—F).

| 2B
= - ! _ ’ (37)
Ay ™MB erfc 1[A! (M B/2B)Y2exd — (A!)2M B/2B],

(33 A Drube model with real-time memory damping is chosen,
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. . FIG. 3. The calculated entropy as a function of the inverse tem-
FIG. 1. The calculated free energy as a function of the 'nvers‘i)erature See text for details

temperature. See text for details.

) The parameters used aee=0.5, h=1.0, y,=1.0, andrp

Yo =4.0.

7= ™ exp< TD) ' (38) In these figures the lines from top to bottom are the results
evaluated, respectively, by the F-K method of the con-

where y, is the zero-frequency damping constant agdis  servation systeric,= u=\=0] [13,14]; (b) the local linear

the memory time, thud(w)=M yow/[1+ (wp)?]. approximation to the coupling functiofic,=0, w(Xg)

In this paper, we use natural units witi=M =1.In Figs. ~ =fj(x,), A=0], (c) the second-order Gaussian measure
1-3, various approximations are applied to calculate thenethod[c,=\=0] [17], and (d) the improved Gaussian
above three quantities as functions of the inverse temperatureasure method. The open circles are the DPIMC data. It is
B, and they are compared with the DPIME0,21] results.  readily seen that the present approadhgives the lowest
Here we consider a double-well potential limits for these quantities. The calculated results of the free
energy by using the methods) and(d) are identical, as can
be verified visually. Nevertheless, the numerical error for the
internal energy and the entropy increases when the tempera-
ture decreases. Our approximation is quite reliable ug to
and a corrected linear coupling functipn,24] =5. WhenT decreases and approaches the crossover tem-

peratureT ., the eigenvalues of the fluctuation modésand
f(x)=f,(x)=x{1+ [ 1—exp(—hx?)]}. (40 X_, are very small, thus the integrals over amplitudes
X1, X_; become divergent in the methoda®—(c). This
1.15 : . . . . . . . problem has been regularized by adding partial fourth-order
terms in the trial function. Approximatiofd) may be im-
proved further by using the third-order perturbati@%,26|
under the present important Gaussian distribu{®®).

1 1
V(x)=V1(x):—§x2nL ZX4 (39

B. ECP of single-well potential

1.05 .
U We calculate now the ECP of a harmonic potentialin
1,00 the presence of an inhomogeneous coupfipg?2], i.e.,
1
V(x)=Vo(x)=5x? (41)
0.95 ] 2
O=Cr ———o—o—o—o—o—o—o—o—o—o(—&—o and
090 n 1 2 1 2 1 2 1 n
1 2 3 4 5 6 f(x)="f(x)=exd — (Xx—x,)?/o]. (42)

P In Figs. 4a) and 4b), the ECPW,(x,) is plotted for
FIG. 2. The calculated inertial energy as a function of the in-various temperatures and damping constants. The common
verse temperature. See text for details. parameters used arg,=0.25, 0=0.2, andx,=0. The ef-
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4.5 ECP is raised around the original point of the coordinate, and
4.0 the nonlocal variancéroportional to the damping constant
of f, increases the effective action aid,(xo=0) at low

e temperatures. Moreover, the maximum value of the deriva-
3.0 tion of fy(x) is determined byf3(x)[x=x =0, i.€., Xy=
25 +a/2; one can see a pair of local maximaw$(xg) (i.e.,

¥ 20 two additional unstable pointappear neak,, at moderate

z temperatures.

13 Starting from a viewpoint of quantum fluctuation, the

above phenomenon is also understood well. Around the
minimum of V,(Xg), the quantum fluctuation helps the par-
ticle to arrive at a position with high potential energy at low
temperatures. Since the curvaturefgfis maximum at the
minimum of the potential, the contribution ¢f raises the

top of the ECP barrier when temperature decreases. On the
(@) X other hand, the quantum fluctuation enhances the width of
the harmonic potential; when the thermal centnajdieparts
from the original point, the contribution of the influence ac-
tion of f, to the ECP decreases and eventually vanishes,
leading to a decrease in the ECP, so that the double stable
states occur. At moderate-to-large temperatures, quantum
fluctuation becomes weak and then the value of the influence
action nearxy=0 is small, thus dissipation will not lead to

an observable increasing of the ECP at the minimum of the
potential. However, around the poixy,, where the slope of
f,(x) is large and, thus, a strong friction raises the ECP, a
local barrier, therefore, appears.

1.0
0.5

0.0

-0.5 1 1 1 1 1

5.5 T T T T T

05} ]
00k s ] C. ECP of double-well potential

A P 4 g " 5 s In the classical cases, the generalized Langevin equation
for the system coordinate usually provides an adequate de-

0 scription of the barrier dynamics. Now, we study the finite
temperature regime where the nonlinear quantum dissipation

FIG. 4. The effective classical potentiabolid lineg of the har-  |eads to a large deviation of the barrier from the classical
monic potential. The dotted line i¥5(Xo), the dashed line is one, when the couplings between the system and environ-

Fa(xo). (@) Wy(xo) at fixed yo=4.0 and for various temperatures ment are different at the barrier top and at the well minimum.
T=0.2, 0.4, 2.0, and 3.0 from top to bottortly) Wy(xo) at fixed 5 simple symmetrical double-well potential is
T=0.3 and for various damping constants=38.0, 6.0, 3.0, and

0.5 from top to bottom. V(X)=V3(x)=—2x2+x* (43)

(b) X

fects of nonlinear quantum dissipation have been shown iand another form of the coupling form fact®7] is

the shapes of ECP. Two observations can be made: First,

guantum effects give rise to a temperature-dependent effec- f(x)="f3(x)=tanf N(X—X;)]. (44)

tive classical potential. Second, the position-dependent cou-

pling induces the appearance of multistable states. Moreoveliy Figs. 5 and 6, the ECPs are plotted fgrandf 3 couplings

the energy difference between the grown barrier and the newt different temperatures. When the temperatures approach to

ground states increases when the temperature decreases, this both anharmonicities of the potential barrier and the

is opposite to the phenomena of quantum fluctuation wipinghonlinearity of the coupling are always essential. The com-

out a double-well potential in the absence of dissipatiorpetition between the quantum fluctuation decreasing the ECP

[13,14 or in the presence of a linear dissipatidj. and the nonlocal dissipation increasing the ECP leads to the
As a consequence of E@33), the higher-order coeffi- top of the ECP barrier rising as a nonmonotonic function of

cientsc, and A (Xp) play important roles in the improved temperature.

Gaussian measure at low temperatures, when the temperaturein Fig. 7, we consider that the maximum of curvature of

increasesA,, approached\; (nearxo=0, u=0, thusA, the coupling function is not at the classical potential barrier

=A,). The influence of the derivatiom(xy) of fo(X) on  (x,#0). The result shows that the original symmetrical

W,(Xo) is observably at moderate-to-larger temperaturesdouble-well potential is changed into an asymmetrical meta-

The curvature of ,(Xq) takes a maximum value and its slope stable potential, and the ECP barrier drifts toward the peak of

equals zero at the minimunx{=0) of V,(Xy), hence the f,, where the nonlocal dissipation is the strongest.
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3.0 3.0
2.5 25
20 S 2.0
15 1.5
x
3 I
2 o5 0.5
0.0 0.0
05 05
1.0 -1.0
I 1 1.5 N 1 N 1 . 1 N 1 N 1 N 1 N 1 N
sl 20 -15 -10 05 00 05 10 15 20
20 15 10 05 00 05 10 15 20
X %

] . ) FIG. 7. The ECP ol/; in the presence of, coupling (dotted
FIG. 5. The effective classical potential of the double-well po-|ine) with the parameters,=4.0, 75=0.5, x,=0.4, c=0.1, and

tential in the presence df, coupling for various temperatures. The T—=0.2. The solid line isVs(x,) and the open circles indicate
solid line isV3(Xg) and the dotted line i$,(Xg). Wa(Xo).

The barrier heightAW,(x,) of the ECP is shown as a
function of temperature in Fig. 8 for different coupling time functional representation has been discussed in the lit-
mechanisms. A nonmonotonic behavior of the barrier is oberature. A variational path-integral technique is applied to an
served in the presence of a nonlinear coupling. Because thghomogeneous dissipative system, and then an effective
dissipations are different at the static barrier and at thejassical potential is obtained. For a double-well potential,
minima of the double-well potential, the ECP is risen inho-the present improved Gaussian measure approach gives more
mogeneously. At moderate-to-large temperaturesf{l@u-  accurate results for the thermodynamic functions, i.e., the
pling induced arising of the ECP at the top of the potential isjgyyest limits of these quantities. Further, the integrals over
larger than at the minimum 6&f5(x), thus the barrier height  the dangerous modes have been regularized when the tem-
of the ECP is larger than the classical one. Howeverffor nerature decreases and approaches the crossover tempera-
coupling, the dissipation at the top of the ECP barrier isyre. It is also demonstrated that the nonlinearity of the cou-
weak, and the quantum fluctuation gives rise to the potentiab”ng function plays an important role in the effective
so the barrier height of the ECP in the presencéotou-  ¢jassical potential.
pling is less than the classical one. For a quantum system in the absence of dissipation or in

the presence of linear dissipation, the ECP barrier of a
IV. CONCLUSIONS

The description of nonlinear coupling between the system 18 . . . . . . . . . .
and the reservoir within the framework of the imaginary-
1.6
3-0 T T T T T T T
—#—(T=0.2) 1.4
2.5 —0— (T=0.6)
—A— (T=1.0)
2.0 ‘ —0—(T=5.0) 1.2
| -t
15L8Yy 0 T X 1.0
? AW
= 10P 2
= 1 0.8
0.5 0.6 —O— [f(x)=tanh(4x)]
0.0 —0— [f{(x)=exp(-5x")]
0.4 —2—[f(x)=x] 4
-0.5 —O0—[f(x)=0] ]
--------- classical barrier
1.0 0.2 [ x
-1.5 1 Il 1 1 1 1 1 0.0 k& 1 1 1 1 1 1 1 1 1 1
20 15 10 05 00 05 10 15 20 0 1 2 3 4 5 6 7 8 9 10
X, T

FIG. 6. The effective classical potential of the double-well po- FIG. 8. Dependence of the barrier height of ECP of the double-
tential in the presence df coupling for various temperatures. The well potential V3 on temperature for different coupling mecha-
solid line isV3(Xg) and the dotted line i$3(Xo). nisms.
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double-well potential is eliminated, and the ECP width of ation play opposite roles in the barrier dynamics. Nonlinear
single-well potential is enhanced only. However, in the prescoupling could either lower or raise the ECP barrier com-
ence of an inhomogeneous dissipation, the present resulggared with the bare potential barrier, thus leading to either
show that cooperation and competition between quanturhindrance or enhancement of the decay rate, depending on
fluctuation and dissipation can induce the appearance of muthe properties of the coupling form factor. Both cases lead
tistable states in the effective classical potential, this effecto a honmonotonic behavior of the temperature-dependent
determines still the behaviors of the temperature-dependetarrier.
barrier. For a single-well potential, the height of the grown
barrier of the ECP increases when the temperature decreases
and the damping constant increases. In a double-well poten-

tial, the quantum effect depresses the energy barrier, but the This work was supported by the National Natural Science
nonlocal dissipative action raises the top of the potential barFoundation of China under Grant No. 10075007 and the
rier. It is concluded that the quantum fluctuation and dissipafoundation of the Ministry of Education, China.
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