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The problem investigated in this paper is einselection, i.e., the selection of mutually exclusive quantum
states with definite probabilities through decoherence. Its study is based on a theory of decoherence resulting
from the projection method in the quantum theory of irreversible processes, which is general enough for giving
reliable predictions. This approach leads to a definifmnredefinition) of the coupling with the environment
involving only fluctuations. The range of application of perturbation calculus is then wide, resulting in a rather
general master equation. Two distinct cases of decoherence are then (iountidegenerate” caséalready
encountered with solvable modeishere decoherence amounts essentially to approximate diagonalizadion;

a general case where the einselected states are essentially classical. They are mixed states. Their density
operators are proportional to microlocal projection operators‘quasiprojectors’) that were previously in-
troduced in the quantum expression of classical properties. It is found at various places that the main limitation

in our understanding of decoherence is the lack of a systematic method for constructing collective observables.
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[. INTRODUCTION the collective subsystem. Its properties are expressed by a
reduced density operatpr, which is obtained from the full
The discovery of decoherence has already much improvedensity operatop through a partial trace on the environment
our understanding of quantum mechanics. The effect has
now been observed experimentally]. Many of its conse-
guences have been obtained theoretically, but its foundation, pr=Trep. (1.2
the range of its validity, and its full meaning are still rather
obscure. This is due most probably to the fact that it deals

with deep aspects of physics, not yet fully investigated.  The time evolution ofp, exhibits the various aspects of de-
The intuitive idea of decoherence is rather clEit The  gherence. It has been investigated mostly by means of more
wave function of & macroscopic system dep.ends on a Very, |ess exactly solvable models. Two models were particu-
large number of variables and its local phase is very Sens'“"%rly important because they were rather close to reality, at
to boundary conditions, coupling_s, and initial ConOIitions'leas’[ in specific circumstances. In one of them the envir,on-
Any phase coherence between different components of the ent is replaced by a collection of harmonic oscillators

wave function is therefore exposed to destruction, afte
P 3-8J. Another model represents decoherence as an accumu-

which macroscopic interferences disappear. It is unfortuI . ¢ . h hif h icles f
nately very difficult to build up a satisfactory theory on this 'ation of scattering phase shiits when particles from an ex-

intuition, because a knowledge of phases remains out dermal atmosphere collide with a macroscopic objedt

reach for theN-body methods at our disposal. Much of what is known about decoherence was learned from
these models and some of their varia[itg].
A. Some questions about decoherence The conclusions have been accurately summarized by

Zurek. He distinguishes three different physical effects re-
esrulting from decoherendd0]. There is first a destruction of
%acroscopic interferences, then some privileged state vectors
become selected as alternative physical events, and finally
these states evolve classically. The privileged states are also
called pointer states in analogy with the position of a pointer
on a dial in a measuring apparafdd]. Most models predict
that these states exist and are orthogonal so that they define a
Biilbert space basis in which the reduced density operator
becomes approximately diagonal after a short while. The ex-
istence of this basis is essential since it defines a unique set
of alternative events with well-defined probabilities. The
name einselectiofi.e., the selection of mutually exclusive

H=H.®l .+ ,®Hq+H;. (1.2) quantum states With definite probabilities throu_gh decoh_er-

ence has been coined by Zurek for the mechanism selecting

Observers are supposed to have only a direct knowledge dfiis basis.

making a few simple and pragmatic assumptions. One a
sumes particularly that a few collectiver relevant observ-
ables can describe the main features d@feanerally macro-
scopig system, and they are knovanpriori. The system is
then split formally into two subsystems: a “collective” one
(which is associated with the relevant observabksd an

two abstract subsystems has its own Hilbert spateor H,

and the Hilbert space of the whole system is the prod@uct
=H.® H.. The Hamiltonian is accordingly split into three
parts, one for each subsystem and one for their coupling,
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These results have so far-reaching consequences for tlie necessary for assessing general properties. The construc-
interpretation of quantum mechanics and other applicationton of such a theory is the fourth problem to be considered
such as quantum computing that one must assess their exdmre.
degree of generality. How much of them is specific to the (5) Finally, one must consider the attractive approach to
models that were used and how much is universal? Thiginselection by Zure§10,17. Einselected states are sup-
guestion raises several problems. posed to be the most predictaljte robusj carriers of infor-

(1) A basic preliminary problem is concerned with the mation. Given a collective stat# (which may be pure or
meaning of collective observables. When an actual physicailot) and the corresponding initial density operajgay(0)
system is given in practice, it is a rather straightforward mat=|W¥)(W¥|, one considers the time-dependent reduced den-
ter to guess what coordinates describe most conveniently itsity operatorp,(t). Its ability to preserve an information
macroscopic dynamidghe choice of these “generalized co- content is characterized by some relevant functionaWof
ordinates” goes back to LagrangeBut the question of de- which may be minus the von Neumann entropy or more
fining correctly the collective observables for an arbitraryconveniently the measure of purity
guantum state of the whole system, i.e., to select what is
collective and what can be considered as an environment, is Cy()=Trpg(t). (1.4

much deeper. It will be seen again and again in this paper ) o . ) .
that it represents the real limit of our understanding. This quantity is then used to construct a “predictability

(2) One may be puzzled by the fact that explicit modelssfieve” dis_,tinguishing among the states: Tht_a largest the quan-
yield einselection somewhat too easily. This is becaus& (1.4) is, the more predictable the stafeis supposed to

most of them rely on a coupling satisfying the commutation®®- Model examples suggest that einselected states do exist
property and are rather insensitive to a change in the coupling or a

redefinition of the environment. A fifth problem consists in
[H,,X®1.]=0 (1.3 evaluating this conjecture in a wider framework.
1 e. 1 .

between the coupling Hamiltonidn, and a collective coor- B. The present results

dinate observabl¥ (which may be supposed unique for sim-  These five problems will not of course be solved here
plicity). It is then found thap, becomes approximately di- completely, but some definite or suggestive answers will be
agonal in the basi$x) of eigenvectors ofX. It is clear, obtained. The most precise results are concerned with einse-
however, than Eq(1.3) is very restrictive, at least from a lection and diagonalization, their meaning and their relation.
mathematical standpoint, and one cannot assume it to holds a preliminary, one needs a sufficiently wide-ranging
universally. What happens then when this condition is notheory of decoherence, as stated in problem 4. The theory to
satisfied? Is there still some sort of diagonalization? If sope used here does not claim to be new. It relies on the famil-
along which basis? To answer this problem will be the mainiar idea that decoherence is a special kind of irreversible
task of this paper. process. This means that one may expect that the most gen-

(3) Problem(2) is made somewhat tricky because thereeral theory of decoherence presently at our disposal would
exists a very large class of systems with collective coordi-derive from the existing quantum theories of irreversible pro-
nates for which conditiorf1.3) holds. They are mechanical cesses. Moreover, the most convenient such theory is the
nonrelativistic systemsgexcluding macroscopic electromag- so-called projection methodl8-21. Its main features are
netic effect$, described by the position coordinates of hydro-recalled in Sec. Il and it is applied to decoherence in Sec. Ill.
dynamics[12-15. These systems, which are exceptionalAlthough this method was previously introduced elsewhere
from a mathematical standpoint, may very well turn to be[15,22,23, some improvements will be required before ap-
universal in measurement theory since a measuring devigalying it for the present purpose. These developments are
involves practically always some mechanical parts entanglechostly given in the appendices and they may be useful for
with the rest of the apparatus. As will be shown in Sec. VII,using the method in other problems.
the property(1.3) results from the form of kinetic energies A very important remark concerning this approach is the
and two-body potentials in nonrelativistic physics. This re-possibility of making a definite choice for the coupling
markable feature “explains” why classical mechanics can beHamiltonianH, from which one can easily derive a master
formulated in ordinary three-dimensional space although thequation forp, . The point is that, givem priori a coupling
wave functions are defined on a configuration sd&s. Hamiltonian, one can construct anotligéme-dependenione

So frequent an occurrence of a very special case may beonsisting only of fluctuations. Standard perturbation meth-
puzzling from an intuitive standpoint. It raises a conflict be-ods can then be applied confidently in most cases. Although
tween what we consider as general, either when speaking diiis procedure is familiar near equilibriuiit is used for
the physical world or of the mathematics of the theory. Thisinstance in the derivation of the fluctuation-dissipation theo-
possible source of confusion will be avoided here by referrem [24]), it works also far from equilibrium as will be
ring explicitly to “mathematical generality” when a “general shown in Sec. IV, providing a strong handle on decoherence.
property” or a “general case” will be mentioned, except The master equation one obtains in this way is probably
when otherwise explicitly stated. the most general one that is accessible with present tech-

(4) One might be lured by models into premature conclu-niques and therefore the most appropriate one for investigat-
sions and a sufficiently wide-ranging theory of decoherencéng einselection, as done in Sec. V. One thus finds that, con-
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trary to current expectations, two different cases of Appendix A gives a derivation of decoherence theory
einselection exist. The first one was encountered with solvfrom the projection method in irreversible processes. Appen-
able models and is well known, although it is far from beingdix B is concerned with the relation between decoherence
general in a mathematical senge the case of an arbitrary and dissipation coefficients. Appendix C shows how to in-
Coup”n@_ It must be considered on the contrary as a degenC'Ude the insightful Scattering model of decoherence by Joos
erate case for the following reason.rfis the number o)k~ @nd Zeh in the framework of the present theory.
observables, decoherence is controlled in the general case by

a differential Laplacian-like operator in thenlimensional Il. A QUANTUM THEORY OF IRREVERSIBLE

phase space. In the simplest case 1, the decoherence PROCESSES

‘Laplacian” is associated as usual with a quadratic form  one needs a sufficiently wide-ranging theory of decoher-
[like the two-dimensional Laplacia#f/9x*+ 3%/ dp? is @S0~ ence for asserting its general features. Since the loss of phase
ciated after a Fourier transfornx,(p) —(¢,7) to the qua-  coherence through decoherence produces disorder, typical of
dratic form (¢°+ 7%)]. The decoherence Laplacian is degen-an irreversible process, the most general relevant theory is
erate when it acts on only one variall®r instance the the projection method, which is now briefly reviewed
coordinatex and not the associated momentpinso that the [18-21].
corresponding quadratic form is degeneréiaving a zero One considers a system with many degrees of freedom,
eigenvalug In the degenerate case, to which the usual modwhose density operator evolves according to the von
els belong, decoherence essentially amounts to a diagondileumann—Schudinger equation,
ization (in the basis einselected by degenejacy ]

The nondegenerate case is investigated in Sec. VI. The S I—[H ] 2.1)
results are not those expected from Zurek’s predictability p pLopd '
sieve, at least as far as | understand it. There are generally
two distinct times for decoherence. Typically, in conditions ~SOme observables are supposed to be particularly relevant
when these times are very different, decoherence selectsf@ @ given problem and one wants only to know the time
basis of privileged states in whigh begins to become di- evolution of their mean values. These relevant observables

: j i ini
agonal, but then these “einselected” states do not preser\/%re denoted byl. Their set may be finite or not, countable

their probabilities and they begin to share them with neigh—Or not. One usually includes the identity operatem the set

boring states. When the two decoherence times are S|m|la?,nd also th? conger\{ed quqntltles TQ’UCh as tt‘e tOI"’,}I ehtrgy
. . . : although this recipe is not imperative. The “exact” average

not much remains apparently of the idea of einselection. The

. . values of these observables are

final outcome of decoherence is rather a tendency towards

uniformity wherep, becomes as close to the identify matrix al()=THAlp(t)]. 2.2)

as its finite trace can allownore precisely, it corresponds to

a uniform Wigner function over a rather large region of  Thg first step of the method consists in introducing a time-
phase spage Nevertheless, macroscopic interferences ar¢jependent test density operajy(t) satisfying the follow-

still destroyed and classical behavior may follow. _ing two conditions.(i) It gives the exact average values of
The question of the different time scales is discussed iRhe relevant observables

Sec. VIl and a strong connection is found with the special

properties of hydrodynamical variables. The relation be- Tr[Alpo(t)]=Tr{ Alp(t)]=al(t). (2.3
tween decoherence and dissipation coefficients plays an im-

portant role in this discussion. Problef8) then becomes (ji) its information content is minimdwhich means that it

central because decoherence dep_ends most often in p_rz_icyigges not provide anything else than the quantita¢t)}]. It
on the fact that the space coordinates of a nonrelativistigan therefore be written as

piece of matter satisfy the conditidd.4) implying degen-

eracy. One is thus led again to Gell-Mann and Hartle’s ideas po(t)=exp —\;(DA], (2.9
concerning the link between coarse graining and the exis-
tence of a diagonalization bagis2,13. where the number$\;} are Lagrange parameters and the

Finally, the occurrence of classical dynamics after decoEinstein summation convention over repeated indices has
herence is considered in Sec. VIl in both the degenerate angeen used. Since the identitybelongs to the sefAll, the
the nondegenerate cases. In the nondegenerate case, althowuglee ofp, is normalized.
one can still speak of einselected states, they are far from One will use the name “density” in the present paper for
being pure states. They are mixed states whose density ogn operator with a finite trac@lso called a trace-class op-
erator at a definite time is proportional to a “microlocal pro- eratoj. It is neither supposed to have a unit trace nor to be
jection operator,” which is known in mathematics as the beshecessarily positive. One defines a set(tohe dependent
expression of a classical property involving position and modensities
mentum togethef25—27. Finally, the conclusion goes back
to the strong connection between the origin of classicality Sj=dpolda’. (2.5
and problem(1), i.e., the construction of collective coordi-
nates. Some proposals for further research are indicated. They satisfy the important orthogonality properties
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Tr(sAl)= 4§, (2.6)  sured microscopic observable is also relevant although not
- collective.
amounting essentially t6al/da'= 8! in view of Eq. (2.3). The environment can be defined by its observables, which

The theory makes use of “superoperators,” which act lin-commute with the collective ones. The resulting splitting of
early on a density to yield another density. For instance, Egthe system into a collective one and an environment is gen-

(2.1 can be written conventionally as erally time dependent since for instance every new bubble in
_ a bubble chamber or every new spark in a spark chamber
p=Lp, (2.7 generates new collective observables. Decoherence is such a

rapid process, however, that the collective environment split-
whereL is the Liouville superoperator. Another important ting can often be considered as fixed during the very short
superoperator is defined by time of an individual decoherence process, justifying the ex-
P—s @A 2.9 pressi_on(}.l) for the_ Hamiltonian. The pouplingil in this
] ' ' equation is responsible for the interactions between the col-
lective system and the environment, including dissipation
and decoherence.
The set of relevant observables is completed by the iden-
Pu=s; Tr(Alw). (2.9  tity operatorl (insuring normalizationand the environment
HamiltonianH ., or more properly.®H,. The total Hamil-
It is a projection in so far as it satisfies the simple equationtonianH might have been used as relevant in placelgbut
p—p. (2.10 ;tggﬁc.:home would have been inconvenient, as will be seen
Introducing an arbitrary orthonormal baslg in the col-
lective Hilbert space, the séltk)(k’|} provides a linear basis
for the collective operators. A look at the calculations in Sec.
Il shows that they nowhere use the fact that {#d} are

which means that when acting on a dengityit gives (with
the summation convention

resulting from the orthogonality properti€2.6).
One can define a “relevanttime-dependentdensity op-
eratorp, by

p1=Pp. (2.1)  Hermitian so that one may use the set of operators
_ {|k)(k’|} as relevant “observables.” Alternatively, one might
It generates the exact average val{ie§t)} since use the set of Hermitian operators
Tr(Alpy) =Tr(AIPp)=Tr(Als) Tr(A'p) = 5fai=aj(- ) {2 ([K) =K Y (K= (K] (1) ([Ky=i[k'))
21
o . _ X (k| =ik}

(As a matter of fact, it coincides with the test density opera-
tor po.) as relevant with identical results. Anyway, the set of relevant

Denoting byZ the identity superoperator, one also intro- ghservables for a theory of decoherence will be chosen as
ducesQ=7—-P, which satisfies the projection properg?
= Q in view of Eq.(2.10), as well as the orthogonality prop- AR = VK @1 Al=] Ae=| oH 31
erties QP=PQ=0. One defines then another densjty { [}k [@Te, ' «@Heh (31

= Qp (so thatp=p; + py). Applying the two projection®  gjnce none of them connects the collective and the environ-
andQ to the evolution equatio(2.7) and 'gakmg into aCCQU”‘ ment Hilbert spaces, the test density operé2of) is a tensor
the time dependence of these projections, one obtains tWBroduct

coupled evolution equations,

. | . - . 3.2
p1=PLPp,+PPp+PLOp,+PQp,, (213 Po=pc¥Ppe (8.2

- - : i Kk’ -
pp=OLOpy+ POpyt OLPp —PPpy. (2,14 Applying Eq. (2.3 to the operator&\““ , one finds that

A last step would be to eliminate, to obtain a master equa- (K'|pc|k)=Tr(A po)=Tr(A p) = (K'|tr p|k)=(K’ | p,|K),
tion for p, but it will be left for the special case of decoher- (3.3

ence.
so that the collective test densipy, is identical to the con-

ventional reduced densit{l.2). The second equality results

from Eq. (2.1). A convention for traces that will be used
The previous theory can be now applied to decoherenceverywhere has also been introduced, the notation Tr stand-

and some preliminary considerations will make the tasking for a trace on the full Hilbert space and tr for a trace on

clearer. A first problem is to choose the relevant observableshe environment.

If one thinks of macroscopic interferences, it is clear that According to Eq.(2.4), the environment test densipy is

they can involve many different macroscopic observables sgiven by

that every collective observable is relevant. When the collec-

tive observables describe a measuring apparatus, the mea- pe=exp—BH.— ), (3.9

Ill. THE CASE OF DECOHERENCE
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wherec is a Lagrange parameter ensuring normalization and The idea of introducing a purely fluctuating coupling and
B ensures that the energ, of the environment has its true to use perturbation theory for computing its effects is famil-
average valué. This density is the same as if the environ- iar in quantum fluctuation theofy24]. The fact that one can
ment were in thermal equilibrium but it should be stressedstill use it far from equilibrium when dealing with decoher-
that it is only an auxiliary mathematical quantity providing a ence is due to the possibility of representing everything col-
correct (time-dependentvalue for E with no assumption lective by the test density. From there on, the condition

about equilibrium. (3.10 will be assumed.

In Appendix A, the auxiliary densities; are obtained One may also understand at this point why the choice of
from Eq. (2.5). Denoting, respectively, by, ands, the den- H, as a relevant observable is more convenient than the total
sities associated withandH,, one gets HamiltonianH, which is usually recommendg@1]. This is

because the expressi@d.2) for the test density implies the
Sk = K" )(k|® pe, (3.9  simple rule(3.10 for the coupling, with the benefits just
72 mentioned. Everything would have been more obscure and
Se=pPc®pe(He—E)A ™7, (36 would have implied much heavier calculationgdithad been
5 chosen as a relevant observable.
$1= —Epc®pe(He—E)AT7, 3.7
whereA is the uncertainty in energy B. The evolution equations
A%=tr(HZpe) —E. 3.9 It is easy to write down explicitly the evolution equations

(2.13—(2.149 for the case of decoherence. It is convenient to

When acting on an arbitrary density, the projectiorP is _split Eq.(2.13 for p; into an equation fop, and another for
given according to Eq(2.9 and Egs(2.5—(2.7) by pe (or for the time evolution of the internal eneigyrhis is
_ done by taking, respectively, the traces of E213 on the
_ _ 2 _
Pu=tr u®petpc®ipe(He=E)A"TF(TrHeu—ETru),  gnyironment and the collective Hilbert spaces. As shown in
(3.9  Appendix A, the results are

from which the relation®?=P and p; = p, follow.

. i
Pr=— g([HCJ)r]—’_tr[Hl!pZ])! (311)
A. Specifying the coupling

One may now introduce an important remark that will i
later justify the use of perturbation theory. To begin with, one E+ —Tr(HJHy,p1+p,])=0. (3.12
may notice some arbitrariness in the splitting of the full h
HamiltonianH into three different terms as in E¢L.1). A

simple recipe for fixing them is to impose that As for the second evolution equati¢®.14), it becomes
trH,p.=0. 3.1 - . . :
e (10 =~ (IR)[H pa+ pal + (1) Hy,p2]) @ pe—pr®pe.
The meaning of this condition can be seen in the example of (3.13
a cylinder containing a gas. A collective coordinate is speci-
fied by the positionx of a piston whereas the environment IV. A MASTER EQUATION

consists of the gas and the matter of the piston itself. A ) ) o .
straightforward definition ofH, could be the sum of the The most delicate step in the projection method consists

potential energies between the atoms in the piston and trWays in “solving”the second evolution equatié2. 14 for

gas. This interaction is far from being weak, since the conf2 in terms ofp, before inserting the result into E@.13
finement of a gas is not a weak effect, but a large part of if21]. This is much easier when perturbation theory can be
consists of a collective energy sinceHp, is a collective used. Perturbation calculus has been used already in the

operator. One can then change the definition of the differerRr€Sent framework whei, is knowna priori to be small, as
parts inH by including this operator ifi, and removing it  ©ften happens in quantum optit22,23. It should also pre-

from H, or, more precisely, by introducing sumably be valid in many instances when condit{8ri0 is
applied andH; is a pure fluctuatiofalthough one must ac-
Hi=Hc+tr(Hqpe), knowledge that a purely fluctuating coupling does not ensure
with certainty the validity of perturbation calcujug\nyway,
Hi=H;—tr(Hipe)®l5¢. according to Appendix A, the evolution equatiof&11)—

(3.13 become at leading order id 4,
The quantity tHp, represents in this example the effect of
the gas pressure on the piston. The new expressidh. a§ . i
time dependentlike pressurgbut the new expression f; pr=—7 ([He.pr ]+ tlHy,p2]), (4.7
satisfies the conditiofB.10. It consists only of the pressure
fluctuations resulting from the collisions of the gas mol- )
ecules with the piston. p>=—(i/h)[Hg,po]—(i/h)[Hy,p>]. 4.2
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In the second equatior, denotes the uncoupled Hamil- V. DECOHERENCE VERSUS DIAGONALIZATION

tonian Models have been extremely useful for understanding de-

coherence. When the collective subsystem is described by a
Ho=Hc®lc+1c®He 4.3 few position observableX, decoherence was found to diag-
onalize the reduced density, in the basigx) consisting of
and Eq.(4.1) is exact whereas E@4.2) is valid at first order  eigenvectors ofX. The question to be now considered is

in perturbation theory. therefore: does decoherence always implies some sort of di-
The second equation is easily solved after introducing theagonalization? Is there always a selection of privileged
evolution operator “pointer states,” or einselection as defined by Zufdlk]?
One may first select the equation on which this question
U(t)=exp(—iHgt/%). (4.4  Will be investigated. The idea of diagonalization must be

used with some care because the reduced density operator

Strictly speakingH, is generally time dependent and the never becomes completely diagonal in view of the first term

integrand in Eq.{4.4) should be replaced by an integral of in Eq. (4.6 representing (,:ollective plynamics. For a finite
Ho(t) on time. It is difficult, however, to conceive of a case value of the difference—x" the matrix elements
where this external time dependence is not much slower than (X, X" 1) =(X| p (D)X}, (5.1)
decoherence and the express{di) is therefore most often
valid as it stands. If not, the necessary changes are so trivizanish exponentially with time, whereas microscopic values
that they need not be mentioned here. One thus gets of x—x' are dominated by collective dynamics and they re-
main finite. This is why there is decoherence on large scale
t while atomic physics remains perfectly valid at small scale.
po(t)= —(i/ﬁ)f dt’” U(t—t)[Hy,p(t)JU (t—t"). The question of diagonalization is therefore much clearer if
o one leaves aside the first term in E¢.6) and considers
(4.5 “pure decoherence” as the behavior of a density operator

o . obeying the truncated equation
No effect of the initial value ofp, (at time —«) has been

included in Eq.(4.5). This is justified when the environment
is initially in thermal equilibrium[since thenp,(—«)=0].
More generally, however, it may be expected that an initial
lack of equilibrium does not influence the decoherence ef- X[Hy,pr(t) @ pe(t)JUHt—t")}
fect, so that Eq(4.5) is valid for our present purpose. This

t
pr=—(1/ﬁ2)f dt’ tr{H,,U(t—t")

point was checked in a special case by Paz, Zurek, and co- =D. (5.2
workers[28,29. . . The main task will then consist in an analysis of the right-
~ Inserting Eq.(4.5) into Eq. (4.1), one obtains the follow-  hand side of Eq(5.2), which has been denoted By, It will
ing “master equation” for decoherence: also be useful to introduce the notation

HIi=U(t—t")H,U Y(t—t"), (5.3

: [ t
=— —[Hq, —1/h2J dt’ tr{H,,U(t—t’
pr="7[He.pr]=(1A%) | dU'tr{H,, U(t—t) so that one has

’ ’ —14__ 47 t
X[H1,pr(t') @ pe(t')]U (-1}, (4.6 D:_(W)f 0t t{H L [HT Ut ()
The first term on the right-hand side represents the quantum
evolution of the reduced density operator under the action of XU (t—t)®pe(t)]}, (5.9
the collective HamiltoniarH.. The second term is respon-
sible for decoherence.

This equation is not new but it was derived previously
either under the assumption of a small couplji2g,23, or
as a guesgl5]. It will be used here as a sufficiently general
framework for a study of einselection. One will consider the case when there exists a sat of

The wide range of this master equation is confirmed by itxollective “position” observables, altogether denoted Xy
agreement with previous models. This is easily shown whefThe quantityD is itself a collective operator and it will be
the environment is represented by a collection of harmoniconvenient to describe it by means of a Weyl synil3dl, 25,
oscillators[3—8]. The key experiment by Bruret al. show-  in analogy with the description qf, by a Wigner function
ing the existence of decoherence also belongs to the domajg2]. The standard Weyl calculus can be slightly generalized
of Eq. (4.6) sinceH is small in that cas€1,30]. In the case to include “operator-valued symbols” acting on the environ-
of the collision model by Joos and Zeh the calculations arenent as follows.
less trivial and they are given in Appendix C as a nontrivial Let A denote an arbitrary operator in the full Hilbert space
example of the master equation universality. (such asH; for instance. Introducing the basi§|x)} in the

where U;lpeUe has been replaced by, in view of Eq.
(3.9).

A. Weyl symbols
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collective Hilbert space and an orthonormal bagis)} in
the environment Hilbert space, the matrix elementé afain

PHYSICAL REVIEW A5 052119

The various decoherence coefficients are given by

be expressed through a partial Fourier transform 1 — —
Cxxzitr{(HlpﬁIp+ﬁIp 1p)Pe}v (5.10
—  [x+X
<X!n|A|X’1n,>:f (Zﬂﬁ)indpAﬂn’ Tap)
CXP=— 1tr{(ﬁ Hi,+HIHip) pel (5.1
X explip(x' —x)i}. (5.5 27 P Tl
Every quantityKnn,(x,p) is a function of &,p) and the or- XL _ E — — 7 —
dinary Weyl symbol of the matrix eleme®,,,=(n|A|n"), CP= ztr{(H1XH1p+Hllex)Pe}' (5.12
which is a collective operator. It will be convenient to con-
sider it as the 1f,n’) matrix element of an operator-valued R -
symbolA(x,p), which is a function of X,p) and an operator Cpp:itr{(Hlelx’L HiH 1 per- (5.13

in the Hilbert space of the environment.

The symbol of the produdAB of two operatorsA andB
can then be expressed as a series in powers iofvolving
their symbolg 31,25,

It is possible in principle to derive the main consequences
of the master equation for decoherence from these equations
by using the powerful methods of microlocal analy€§]. It
will be much simpler, however, to rely on a few usual ap-
proximations. The first one assumes that the coefficients
(5.10—(5.13 vary slowly with (x,p) or, more precisely, one
neglects the collective evolutiod.(t—t") in the factorsU

andU ~* occurring in the expressiais.3) of H; . The physi-

The notation has been S|mpl|f|e_d b_y omitting the arguments,, meaning of this approximation is discussed in Appendix
(x,p) of the symbols and lower indices stand for denvatlvesB where the following expression @°” is obtained:

[for instanceA,,, stands for?A(x,p)/dxap]. Equation(5.6)
is well known in Weyl's calculus when the symbols are or-
dinary functions. It is easily extended to operator-valued
symbols by considering matrix elements and a unique new
rule must be added to the case of functions: the order of the
operators in the produ&B must be respected in the prod-
ucts of symbols and their derivatives. The symbol of the
reduced density operatgr, is the Wigner function, which
will be denoted byW(x,p). It is not operator valued and Where the statefn) are the energy eigenstates l8f with
commutes with other symbols. eigenvalue€,, and one has written

The only further formula one will need from the Weyl
calculus is the expression of a complete trace,

AB=AB— (i#/2)(A,B,—A,B,) — (12/24)

X (Ap2By2+AeBp2—2A,,B,)+O(%%). (5.6

CPP= 2 H1xnnHixnn

nn’
Xexgiwny (t—t")1pnn

X cosi Bhwnn/2), (5.19

Haxnn =(n[dH1(x,p)/oxX|n"),  @np=(En—En)/h,

Pnn' = €Xd — B(Ep+€,/)/12—a]. (5.19

TrA=f dxdp(27h) " trA(X,p). (5.7)

Equation (5.14 suggests that the relevant frequencies
wq in the sum are contained in an interyat Q,Q] char-
acterizing the environment and generally large as compared

It will be convenient to consider from there on the case ofith the rate of collective dynamicgY is typically a Debye
a unique coordinatX (n=1) although the generalization to frequency for an internal environmeéntu, Paz, and Zhang
arbitrary values ofn is trivial. Applying Eq. (5.6) to the  have shown that the master equation is instantanéiis
double commutator in Eq5.4), one obtains the symb@l of involves no retardationin the case an oscillator environ-
the decoherence teri at order#?, as shown in Appendix ment, when the collective Hamiltonian also describes an os-
B, cillator [7]. This is due to the linear character of the equa-

f‘ tions in that casd33]. The resulting master equation has
+3l Ip(CP*Wx +CPPWI)].

B. Calculation of the decoherence ternD

been solved explicitly by Ford and O’Conngfl]. This situ-
ation is, however, exceptional and the neglect of retardation
is almost always an approximation. The question of its jus-
tification is tricky and it would warrant a separate investiga-
tion. When retardation effects are unimportant anyway, the
integration ont’ in Eq. (5.8) is performed as if the integrand
were aéd function in time. The time-delayed functiofV' is
replaced by the ordinary Wigner functiof¥ and Eq.(5.9
becomes

D=

dt'[ 9/ ax(CW, + C*PWp)

(5.9

The functionW'(x,p) is the symbol of the collective opera-
tor
Ug(t=t)p (tHU H(t=t"). (5.9
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— 9 J 1 9 . d
D= (g7 Wy+g™"Wp) + %(gpwﬁgppwp)- AzTgW< Jog' E)’ (6.1)
(5.16

in the case of a metrids’=g;;dxdx (with g;;g'*=5Y).
The factorg is the determinant of the matrix with elements
. gj; or the inverse of detf!). One could use this remark in
gij:f Cl(t—t)dt’ (5.17  principle for a general study of decoherence but it would
— need the full power of microlocal analysis. Rather than en-
tering into such heavy mathematics, it will be convenient to
[with indices ,j) = (x,p)]. Explicit expressions of these co- consider only the case when the coefficiegts are con-
efficients are given in Appendix B, showing that the coeffi- stants. A further simplification is obtained by diagonalizing
cientsg** andgPP are positive symmetrigg*P=gP*, and the  the quadratic forn(5.18. This is done by a change of vari-

The new coefficients are given by

quadratic form ables after introducing scale-invariant parameters.LLie¢ a
unit of “length” (i.e., a scale with the dimensionality 7
g*a?+2g*Pap+gPPp? (5.18  andII a unit of momentum. The transformation
is non-negative. One must then distinguish two significantly X" =IIX cos#+LPsind,
different cases according to whether the fof®l8 is de- )
generate or not, i.e., whether the determinagit'gPP LP’=—1IIXsinf+LP cos, (6.2

—(gP9?2j iti . . .
(g™)" is zero or positive. can be viewed either as an “orthogonal” change of axes in

the (x,p) plane or as a linear canonical transformation. It
C. The degenerate case leaves Weyl's calculus invariap®5], so that if one chooses
The degenerate case was encountered in most models afid0 diagonalize the metric, one obtains a simpler equation
only one coefficient, namelgPP, was different from zero. It for pure decoherence, namelgfter dropping the prime in-
is then convenient to go back to the matrix elementsdices,

p.(X,x";t) by inverting the Fourier transforn6.5) so that IW W W

the pure decoherence master equat®R) becomes — =g —— +gPP——. (6.3
ot X ap
pp ,
Epr(X,X = —?(X—X )pr(X,x";t).  (5.19 A. General decoherence is not a diagonalization process

The general case of decoherence occurs when the qua-
Diagonalization in the basigx)} is then obvious whegP?  dratic form(5.18) is nondegenerate. Does then the effect still
is a constant since the solution of this equation is amount to diagonalization? By looking at the degenerate
case, one sees that diagonalization was due to a specific
property of the collective operatd. There was a specific
‘ orthonormal(“pointer” ) basis{|j)}, such that

gPP
pr(X, X", t)=p,(x,x",0)ex —ﬁ(x—x’)zt

(j|Dlj)=0  for eachj, (6.9

Similarly, when the only nonzero coefficientd$*, one may
use the momentum basjfp)} to obtain Re(j|D|ky<0  for every pair of indiceg#k. (6.5
XX These relations held true for any density majxentering

ipr(p,p';t):_g_(p_p')Zpr(p,p';t), (5.20 in the definition ofD. They must obviously be satisfied if
at h? diagonalization takes place, at least if the basis is indepen-
dent of the preparatiop,(0) and depends only on the deco-

implying again diagonalization. herence coefficients. They do not hold, however, in general
A simple condition for the coupling implying diagonaliza- as shown by the following
tion in the position basis is given by E(..3) [34,15. Using No-go theoremWhatever the state, it is impossible for

coarse graining, Gell-Mann and Hartle have shown that thighe equation
condition is satisfied for mechanical systems when using hy-

drodynamical observables as relevits). (#1D(p)|)=0 (6.6)
to hold for every density matriy, ,
VI. THE NONDEGENERATE CASE Proof. According to Eq.(5.16), one can write
Quite different results are obtained in the general case D(p)=Ap, 6.7)

when there is no degeneracy. One may note first that the
differential operator in the right-hand side of E§.16) is  whereA is understood as a superoperator acting on a collec-
similar to a Laplacian, which is given by tive densityp. One can write
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(Y| Ap| ) =Tr(| )] Ap). were initially distinct become mixed together. If the process
is stopped at some tinteits effect is analogous to an imper-
If this equation is supposed to be valid for any choiceppf fect measurement of the position.
one must havésince the superoperatdr is Hermitian The smoothing effect is most clearly seen by considering
as initial state a superposition of two distinct wave functions,

Aly)(yl=0.
_ o o o _ pe(t=0)=y)(yl, with [)=|p1)+[ih), (6.10
When written explicitly in the position basis, this equation
becomes the two wave functiong/;(x) and,(x) being clearly sepa-
rated with clearly different average values ¥or P or both.
“x 2 DD/ 2 £2 N B One is interested in the interference partmforiginating
g2~ (QPFIRS) & (X + El2) ™ (x— €/2) =0, from | 1) 45| and|¢,) (4| in the initial state operator, but
one must also now consider the probabilistic part originating
from which one gets from | 1) (ib1| and |i,)(ib,|. The first factor on the right-

hand side of Eq(6.9) suppresses very rapidly the interfer-

pp ence terms ip, wheny(x) and,(x) have well-separated
p(x+§&12) zp*(x—§/2)=a(§)exp( j(XE/ﬁ)) mean values of the positio. It also suppresses them, al-
9 though less rapidly when the values ©f) coincide while
pp those of(P) are significantly differenf35]. From the stand-
+ b(f)exp( — A\ /g_xx(xg/ﬁ)) _ point of macroscopic interferences, there is therefore nothing
g new.

The smoothing integral in Eq6.10 introduces a new

This is, however, impossible@ven if the coefficients are dis- effect. It mixes together the probabilities for different values
tributions because it would imply that the wave function of of (X). If the state(6.10 represents, for instance, the state of
the statey increases exponentially for large values of itsa pointer after a measurement, two results that would be
argument. B distinct for an apparatus with degenerate decoherence can

Note.The present theorem forbids the existence of a unihecome indistinguishable if decoherence is nondegenerate.
versal diagonalization basis. The possibility gf-Blependent  This conclusion does not depend on the specific form of
basis remains open, although it looks very doubtful. #1(X) andy,(x). It also holds for coherent states, which are

not therefore properly einselected.
B. Decoherence in the nondegenerate case

Since decoherence cannot be generally a diagonalization C. A symmetric form of decoherence

process, one must investigate it anew. Its consequences areA convenient expression of nondegenerate decoherence
most easily obtained whex—x" is large. It will be more can be obtained for any numberof collective variables.
convenient to use the notation’(x"”) for the arguments of One denotes altogether '} the set of the & position and
the reduced density matriy (x’,x”) in the position repre- momentum variables and the pure decoherence equation be-

sentation and to introduce auxiliary variables=(x’ comes

+x")12, é&=x"—x". This means that we are interested in the

case wherég is large(macroscopit After performing a Fou- W= _3_< ij M 6.11
rier transform to go back from the variahpeto &, the pure - 9¢ 9 d& )" '

decoherence equatidb.2) becomes L
If the decoherence coefficieng¥ are constants, one may

— ppg2/7;2 introduce the inverse “covariant” coefficienty; satisfying
P=9 W_(g §n%)p. 6.8 the relationsy' g;x= A} . They exist only in the nondegener-
ate case. The solution of E(6.11) is then given by

2

The time evolution of the functiom(x,&) = p,(x+ &/2x
—¢/2) is therefore given by W(ft)=(7rt)’”f \/adZnneXF[_gjk(gj_ )

p(X,£.1) = expl — gPPERH %) e X (£= 714t ]W( 7,0), 6.12
VATg©t : . o .
whereg is the determinant of the matrix with coefficients
, , , gii , inverse of the matrix of the decoherence coefficighits
X f dx’expf — (x=x")?/4g*]p(x',£,0). (6.9 Itjmay be useful to notice that E¢6.12 remains approxi-
mately valid when the decoherence coefficients are not con-
The first factor on the right-hand side shows tiwafx  stants but slowly varying25].
+ &2 x— £/2) tends to become diagonal in the position basis, The effect of decoherence is therefore to smear out the
as in the degenerate case. The heat kernel in the integral ha&figner function in phase space. In this approach, the re-
however, a very different effect since it smoothes off themoval of interference terms is due to the fact that an inter-

reduced density along the diagonal, so that probabilities thakrence term, localized in phase space with a vanishing inte-
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gral, is rapidly reduced to zero under smoothing. One maylccording to Eq.(6.9), the decoherence time characterizing
also notice that the results are unchanged under a linear ctie vanishing of nondiagonal interference terms separated by
nonical transformation in phase space, at least when the ca-distanceAx is given as usual by

efficients are constants. They are only slightly modified

when the coefficients are slowly varying under a smooth ca- - h? 24
nonical transformatiof25]. dec_mTyppAXZ' (7.4
VIl. MORE ABOUT DEGENERACY whereas the characteristic time after which there the prob-

_ ) abilities are mixed up for two different positions on the di-
One may now consider the order of magnitude of theagonal separated by the same distasgeis

decoherence coefficients. It should be stressed first that the

condition(3.1) implying diagonalization was most often im- Maw2Ax2
poseda priori in the construction of models. If one again tmiwaT. (7.5
Y

considers a unique position observalleonly one decoher-
ence coefficientgPP, is different from zero when this condi-
tion is satisfiedias shown in Appendix B Models have re-
vealed a strong connection between the decoheren

For reference, it may be recalled that the time necessary for
C'[Qe spreading of a wave packet on the same distance is

coefficientgPP? and the friction coefficienty?P, which ap- mA x2
pears in the classical limit of the equation of motion when twp= P (7.6
the collective Hamiltonian it .= P2/2m+V(X). Classical
motion is then governed by For not too small values afx, and a generic coupling.e.,
no degeneragyone has for the various rates: decoherence is
@z—BV/&x— pp (7.1) much greater than probability mix up that is much greater
dt P ' than wave packet spreading.

As shown in Appendix B, the spectral densities of the B. On the existence of pointer states
coefficientsgPP and yPP are very similar and, at high enough
temperature, the two coefficients have a simple proportion
ality relation,

_ The main conclusion of the previous sections was that the

existence of an exact diagonalization basis is not essential for

most physical consequences of decoherence. On the other

gPP=mTyPP. (7.2 hand_, it will be now shov_vn that there is.a very large class of
physical systems for which such a basis exists.

What should be considered in that case as a high temperature Corf“”g baclg to the case .WhEX' den.otes a .cla§s Gi

has been discussed by Hu, Paz, and ZHaigThe fact that collective coordinates, there is exact cﬂagonallzatlon in the
gPP enters with a denominatdi? in the expressiori6.9) of ~ basis|x) if the derivatives of the symbdt; with respect to
decoherence implies a strong effect of decoherence as so#€ canonically conjugate variablgsvanish. One has then
as yPP is not very small, i.e., when there is a possibility of according to Eq(5.6) and Eqs(B9)—-(B11)

dissipation. [H,,X]=0, (7.7)

A. Rough orders of magnitude g*P=g**=0. (7.8

Let us consider a model with an environment of oscilla-
tors, the collective system being also an oscillator with fre-
quency w [3—8]. One assumes usually a coupling propor-
tional to the collective positioiX,

Under the same assumptions, according to @&17)-
(B19), the friction coefficientsy* and y** also vanish.

When they do not vanish, the classical equations of mo-
tion become

H1=X2i (Nnal+aray), dx; /dt=p; /m; = v — ¥i%; (7.9
dpi /dt=F;—y—ij"Pp;— ¥x; , (7.10

so that the conditior{1.3) is satisfied. More generally, one
may consider a coupling with the creation and annihilationhereF. denotes a force
i .

operators of the collective oscillator in placeXfi.e., These equations look rather unusual and it is important to
understand why they are exceptiortat unrealisti¢. In the
H1=(X—iP/mw)Z )\iai+(x+iP/mw)E )\i*aiT- case of a mechanical systemith no macroscopic electro-
i i magnetic effectswe are familiar with a unique type of fric-
tion coefficient (/°P) and of decoherence coefficierg”?).
According to Appendix B, one has then typically, The reason was clearly shown by Gell-Mann and HadtR,
who used as position observables the hydrodynamical vari-
g*~gPP/m2w?. (7.3  ables resulting from a coarse graining. The corresponding
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variables can be identified with the center-of-mass positions . i

x; of small pieces of matter, small enough from a macro- pr="7[He.prl. (8.9
scopic standpoint although containing a large number of at-
oms. The key feature is then the nonrelativistic form of the

Hamiltonian for the particles of matter One can write down this equation in terms of the Wigner

function and the Hamilton functioh(x,p), which are, re-
spectively, the symbols gf, and ofH,. It reads to second

H=2) [pa—A(X)1P2Met+ 2 VXe—Xg), order in,
dW  oh aw+ oh aw+ n?[°h *wW °h Pw
where the summations are performed over the partigtes 9D ax " ax oo 241 90° ax®  Caxan2 doax2
dicated by Greek indiceslf there is no macroscopic mag- P ox X P P ox Xop~ opox
netic field(so that one can neglect the magnetic potertjal #h W °h *W
one of the Heisenberg equations of motion, yields the follow- + 3W axap2 ax3 aptl (8.2

ing simple relation between the classical velocity and mo-

mentum(denoted by Latin indicgs One recognizes in the first term on the right-hand side a

) Poisson bracket of the Hamilton function and the probability
Xi=pi/m;. density, in agreement with classical physics. This term gen-
erates a classical evolution of the Wigner function as if its

Comparing this with Eq(7.9), one sees thay’*=y>*=0  arguments X,p) were moving according to the classical

and, from Eq.(B16), one may expect thag*P=g=0. Hamilton equations. o _
Equations(7.9) and(7.10 strongly suggest that this property ~ 1he order of magnitude of th&V derivatives resulting
follows from the Galilean invariance of nonrelativistic me- from Ed. (6.12) imply that higher-order corrections i are
chanics under a change of reference system. negligible so that after some decoherence the evolution be-
Strangely enough, no realistic example of the nondeger0Mes c_Iassu:aI. I_t is somewhat paradoxical that _th_e analysis
erate case has yet been proposed, except tacitly in unpreci§eMore involved in the degenerate c446]. The difficulty
measurements. Examples might be expected, however, R{iS€s from a linear superposition of two initial wave func-
electromagnetic system@vhere the magnetic and electric tions with the same location but different average values of
fields replace position and conjugate momentumat the P- The destruction of interferences must then wait till the
prospect of producing quantum superpositions of fields andotion due to the difference in the values(6f) separates
see their decoherence seems rather remote. One must prdB€ wave functions ix space. A conspiracy of decoherence
ably attribute the rarity of examples to the fact that decoherWith the collective dynamics is therefore necessary for pro-
ence has been mostly studied in the framework of measurélucing finally a classical behavior.
ment theory. There is almost alwaga always in that case
some mechanical part of some apparatus that is entangled B. Classicality and the choice of a collective subsystem
with the measurement result and the rest of the system, and it

enforces its own einselection on them. The previous conclusion of a classical behavior assumed

tacitly that the derivatives of the Hamilton functions are not
large, but one might then get involved in a circular argument.

VIIl. CLASSICAL BEHAVIOR The collective observables are chosen ordinarily on empiri-
cal grounds, from a direct knowledge of the system. One
says: “l look at the system and | clearly see how it can be

Decoherence is in most cases immediately followed by alescribed by some coordinates, which | replace by quantum
classical behavior of the collective subsystpn10,12,23. observables.” Then one concludes after much work: “See,
Although this property will not be analyzed in detail in the the description of the system with these variables becomes
present work, a few points involving again the problem offinally classical.” This is certainly not a proof of classicality
einselection are worth mentioning. resting on the basic principles of quantum mechanics, but

Decoherence is described in the nondegenerate case byly a check of consistency. Classical behavior can be
Eq. (6.12 involving a smearing effect on the Wigner func- proved when the convenient variables for describing it have
tion W(x,p). An important consequence is to make this func-been selected by means of one’s classical intuition.
tion non-negative so that its interpretation as a density prob- The question “how does one select a collective sub-
ability in phase space becomes significi®6]. As far as  system?” is therefore prior to the question of einselection.
orders of magnitude are concerned, one may consider that@ne can then look at E¢8.2) from a different standpoint. It
derivative operatorg/dx acting on W is of the order of should give a criterion for choosing the collective observ-
(gt) Y2 for t large enoughi.e., when decoherence is ef- ables and not provide a proof that they describe a classical
fective) whereasy/ dp is of the order of g°Pt) Y2 One may motion. This criterion implies that the derivativesix and
then consider more carefully the first term in the masterd/dp of the classical Hamilton function in the second and
equation(4.6) giving the following contribution to the master higher terms of Eq(8.2) are not controlled by factors involv-
equation: ing some power of; 1.

A. The derivation of classical behavior
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This gross criterion can be presumably much refined irin C, except near the boundary where it goes smoothly to
view of Fefferman’s formulation of quantum mechanics zero. The corresponding operaf®ris practically a projection
through pseudodifferential calculugmicrolocal analysis  [25].

[37]. He investigated the eigenstates of the complete Hamil- Consider then the integrand of E@.12 for definite val-
tonian H of an arbitrary quantum system by analyzing its ues oft, é=(x,p) and n=(x",p’),

symbolH in the phase space of the constituent particles and, = . n N NP
by cutting this space into “distorted boxes,” he was able to Z(8)=(mt) \/anF{—gjk(gl— 7)) (&~ n")/4t]. 63
diagonalizeH approximately. This is a deep result of abstract '
mathematics but there has been no direct application of it imt can be considered as the symbol of a density opeiator
physics. Nevertheless, it means that there exists(onsev-  originating at a timet large enough through nondegenerate
eral) privileged way of cutting phase space, into well-defineddecoherence from an initial state localized in the neighbor-
boxes, according to the possible states of the system. Or®od of . Using Eq.(5.6), one finds thaPZ=Z if the cell
could then envision that a pair of variables[f) is collec- C contains a manifold with equation
tive if it defines locally a two-dimensional plane along which S

gik(&— ) (&~ n"ldt=a

H varies very slowly. Such a property is strongly suggested
by Feffermann’s construction and it agrees with the smalk,, o large enough value @ (This property remains valid

derivatives we just found characterizing classical behavio{nen the decoherence coefficienf$ are not constant but
after decoherence. One may also presume the existence ogoothly varying.
whole hierarChy of collective two directions, which would be This means that the normalized mixed states with density
ordered according to the magnitude of the derivatives.  matrix P/Tr P satisfy the criteria for einselected states. This
| will not try to elaborate further on this idea, which was includes their sifting through predictability sievi0], since
proposed some years ago, although not much progress hagz?(t)~1 for a reduced density matri¥¥ such that
been made sincg26]. It represents, however, an alternative =(0)=P/Tr P. The sketch of the proof consists in separat-
to Zurek's predictability sievegwith which it may be re- ing diagonalization and mixing according to E¢6.9
lated. In any case, it stresses again that the most importarhrough a canonical transformation maximizing the rate of
problem in a real understanding of decoherence is an expliciiiagonalization. The sifting property follows wheris such
construction of the collective observabléwith a corre- that diagona"zation has a|ready taken p|ace in the €ell

sponding explicit definition of the environmentThis is  whereas mixing has not spilled outsi@e This is valid for
closely related with a search for a real theory of the Heisennondegenerate and degenerate decoherence.

berg frontier, as also noticed by Zurgk0]. One can then identify einselected states in general with
the classically meaningful states, which are defined either as
C. Einselection classical properties through the projectidn$39,44 or as

Zurek’s concept of predictability sieves was applied suc-duantum states by the density operatefsr P. The predict-

cessfully to the case of an underdamped collective oscillatoRP!y Sieve criterion is universally valid. Its stability under a
interacting with an environment of oscillatdrs7,40—-43. It cha_nge of d_ef|n|t|on for th? coIIecyve subsystem. and the
was found that Gaussian pure states with various avera V|tr)onmen(|ae.r,]under asrlnft ofﬁelsenbergsfront)le]an—
values k,p) of position and momentum are selected in that O.t € proved, however, along t € Same lines as ‘ong as no
case as the best carriers of information, suggesting more ge bjective definition of the collective observables has been
erally that some sort of coherent states would be einselectd@und-

by decoherence just before classical motion. There is some-

thing puzzling, however, in the fact that the width of these IX. CONCLUSIONS

Gaussian states is controlied by the parameters,] of the As suggested by its name, decoherence is a loss of corre-

collective oscillat_or(it has the same width as _the ground- lation between local phases of a system involving a large
state wave function of the oscillajotWhen looking at Bq. ,ner of constituents. It may take in principle many differ-

(6.12, one finds on the contrary that decoherence in the nons ¢ aspects because “in principle” the set of states of a quan-

degenerate case is insensitive to the characteristics of thm system is enormous, even much more than its Hilbert
collective Hamiltonian and it is completely determined byspace. Empirical physics,is, however, interested in the sys-

the coupling Hamiltonian through the decoherence CoeﬂE"tems really occurring in nature or built in the laboratory,

C|e|rt1ts. b led in thi tion that . twhich can be measured or observed.
may be recaflied in this connection that a convenient =, ,;qeq gap between theory and practice is our unability to

fa!’“"y of einselected states was proposed earlier, althougQharacterize mathematically these “real” systdrg|. There
this name was not,use{G_B,Bq These states are _cIoser '€ is a wide agreement that they always involve some “collec-
lated to Hamander's notion of microlocal projection opera- o gegrees of freedom but the problem of their definition
tors. The symboP(x,p) of such an operator is zero outside from first principles is not yet solved. The study of decoher-
a regular cellC in the (x,p) phase spacé.e., a cell whose ence will probably remain semiempirical as long as the pro-
volume and boundary shape have large characteristic dimegram suggested in Sec. VIII, or an equivalent one, is not
sions in terms of the Planck constar®(x,p) is equal to 1  completed.
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The practical results of the present study were concerned |k')}K|)®l, and (1i)(|k){(k'|—|k'}(k|)®I (for k#k’, k
with the three main aspects of decoherence: suppression ofk’) together with the diagonal ternis)(k|® . They will
macroscopic interferences, einselection, and later classicake denoted altogether A and they satisfy the relations
behavior.

The suppression of macroscopic interferences is a general TreAIA =801 (jj'#1e). (A1)
feature. The interference terms disappear for two collective ] ]
wave functions with a large enough difference in the averag&ather than the exponential for(@.4) for the test density

values of position or momentuir both. operator, it is convenient to write it as

Einselection is the election of definite states representing
exclusive events with well-defined probabilities. It is essen- po= ( 2 alAl | ®p,. (A2)
tial in measurement theory and its properties were the main j#le

purpose of this paper. Two different cases had to be distin-

guished, which were, respectively, called degenerate ang'o™ Eds(Al), one sees that the coefficiertsin Eq. (A2)
nondegenerate. are the average values of the observaldlesTherefore

There is something puzzling in this dichotomy if one does
not distinguish also between what is most genéoalfre-
quen} either from the standpoint of a mathematical theory orafter writing po=exp(—a—H,), one obtains
of empirical physics. A very large class of physical systems
leads to the degenerate form of einselection, which is prac- BIIE=—A? 9alJE=EIA?, dpelda=—pe,
tically a diagonalization of the reduced density matrix in the
basis originating from the collective position coordinates. dpel IB=—Hepe (Ad)
These systems are truthfully described by hydrodynamicaﬂ ) i , L
variables after coarse grainifig2,13. Although this condi- LWhereA is defined by Eq(3.8)]. In view of the definition
tion is still restrictive, it turns out in practice that the me- (2 for the auxiliary densitiegor equivalently the definition
chanical parts of a physical system, which are described b{Z-8 Of the projectionP], their expression3.5—-(3.9) in
these variables are entangled most often with other degre&£C:- Il follows immediately from EqSA3) and (A4).
of freedom so that degeneragwith diagonalization is ex-
tended to them. A simpler way of saying this is that most 2. The evolution equations
observations and measurements involve or could involve a | the first evolution equatiori2.13, one can compute
reading of the position of some mechanical “pointer,” im- p|,, by applying the expressio(3.9) giving P to Lp;
posing diagonalization as the outcome of decoherence.  — _(j/z)[H,p,]. Two traces fiH,p;] and TrHJH,p1])

A sufficient condition for degeneracy is given by the well gnter in the result. Using cyclic invariance of traces together
known Eq.(1.3), which covers the hydrodynamical case. Itis \ith Eq. (3.10 specifyingH, and

very restrictive, however, from a mathematical standpoint
and, in the absence of a criterion defining a realistic system, P1=Pr®pPe, (A5)
one had also to investigate the general case of nondegenerate
decoherence. The results did not quite agree with the conje@ne finds that
ture of predictability sieve$10]. One found a tendency of _
decoherence to combine an approximate diagonalization tH.p1]=[Hc.prl,
with a partial lumping of probabilities rather than a clear _ _
mutual exclusion of events, which is typical of unprecise Tr(He[H.p1]) = Tr([He,H1.p0) =Tr([He Hal.pa)-
measurements. Therefore

The situation was clearer when one looked at the classical
behavior after decoherence. There is a simple way to recon- ) H.—E
cile the present results with the Zurek’s predictability criteria PLpy=(— '/ﬁ)( [He.p®pet|c®pe — o
[10]. It consists in identifying the einselected states with the
mixed states representing classical properties, which | pro-
posed earlief44]. The fact that these states are best defined XTr(He[H1,p1])
by the mathematics of microlocal analy$25], as well as
Fefferman’s promising approach to the definition of collec-  |n order to computeéPp,, one remarks that although the
tive observable$37], indicate in my opinion that this frame- quantitiesp,, E, andA in Eq. (3.9 are time dependent, the
work is the right one. quantity TrHep;) — E Tr p; vanishes so that one has

dpoldal=Al®p, (j#1e). (A3)

. (AB)

APPENDIX A: DECOHERENCE AS AN IRREVERSIBLE

. . He—E
Pp,= —El . — A7
PROCESS P1=Pr®peElc®pe—17 (A7)

1. Auxiliary densities An identical result is obtained fdep, so that
The simplest way for computing the quantitigsfor de-

coherence consists in using the observablék)(k’| Pp,=0. (A8)
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One thus gets the first evolution equation

p1=PLpy+Ppy+PLp,, (A9)

with the expressiongA6) and (A7) for the first two terms
whereasPLp, is given by Eq.(3.9).
It is convenient to split this equation into one for and

another forp, (or equivalently forE). This is obtained by
taking, respectively, the trace of EGA9) with respect to the

PHYSICAL REVIEW A 65 052119

Lpy=—(i/h)[H,p,]=—(i/A)[Hc+Hy,p1], (ALD)
where the second equality results from E412). Then
PLpy=tr(Lp;)®pet A ?(1.@H—E)

X p{tr(lc®Helpy) —ETr(Lpy)}.  (A16)

The last term Tri_p,) vanishegas a trace of a commutajor
The preceding term also vanishes since

environment and the collective Hilbert space. The environ-

ment trace of the second term on the right-hand side of Eq.

(A6) vanishes, as well as frp, (because tho=0). Accord-
ing to Eqg.(3.9), the environment trace d?Lp, reduces to

i i
- %tr[HIPZ]: - gtr[HllPZ]a

where the second equality results from the vanishing of

t[He,p,] (as the trace of a commutajaand of tfH.,p,]
(because of tp,=0). One obtains thus the basic equation

b= (Hep 4 lH o). (ALO

Tr(1.®HeLpy)=—(i/2)Tr(I.@HJH,p1])
=(i/A)Tr(H[Ic®He¢,p1])
and the last commutator vanishes. Therefore
PLpy=(—i/m)tH,p1]®pe=(—1/7)[IHc,pr]® pe
=(—i/h)[He®le,pa],

where the second equality results from E@8.10 and
(A12). The first term inLp, as given by Eq(A15) is there-
fore cancelled and one is left with the simple equation

p2=—(i/f)[Ho,po] = (i/R)[H1,p4], (A17)

The trace of Eq(A9) on the collective Hilbert space reduces whereH,, is the uncoupled Hamiltonian,

to a(potentially infinitg term (Tr, 1) pe(He— E), multiplied
by a number, which must then vanish so that

E=— ;i—Tr(He[Hl,pl-sz]): - ;,L—T"(He[Hlvpz])v

(A11)
the last equality resulting from THJH1,p1])
=Tr(H4[He,p1]), Whereas

[He.p1]=0, (A12)

sincep, is a function ofH,.

3. The second evolution equation

One can now write down the evolution equati@al4) for
p2, Which is formally

p2=QLpo+QLp;—Ppy (A13)

[after taking Eq.(A8) into account This will be done ac-

cording to Sec. IV by considerinig; as a perturbation. One
needs only to compute, at first order inH, and some terms

in Eq. (A13) can be therefore immediately neglected. For

instancePp,, as given by Eq(A7), is negligible becausg

is of second ordefraccording to Eq(A11)] and furthermore,
pe=—B(He—E)pe=EA"*(H.—E)p.  (Al4)

is also of second orddithe second equality resulting from

Eqg. (A4)]. One can also neglect the commutdtbl; ,p,] in

Lp, as being of second order.

Let us now consider the quantitQLp;=Lp;—PLp;.
One has

Ho=H® 1o+ .®H,. (A18)

APPENDIX B: DECOHERENCE AND DISSIPATION
1. Derivation of Eq. (5.8

According to Eq.5.2), one must evaluate at lowest order

in 2 the symbolD of the collective operator
D=—(1/4)%tr{H,[H],U(t—t")p,(t" )@ pg(t’)
XU~ (t—t")]}. (B1)

Since U(t)=U (t)@Ug(t) [with U, (t)=exp(~iHt/A) and
Uc(t) =exp(—iH/4)], one can slightly simplify the density
operator by writing

U(t—t")p,(t")@pe(t)U H(t—t")
=Uc(t—t)p (1)U (t—t" )@ pet’), (B2)

in view of the equality{resulting from Eq.(A14) and valid
up to orderH?]

Ue(t—t")pe(t U Ht—t") ~pe(t').

Letting A and B be two arbitrary operatorsK,(x,p) and
B(x,p) their operator-valued symbols, E¢6.5 gives the
symbol of the commutatdrA,B], with the notation of Sec.
Vy

(—i%/2)(A,By—AB,—B,A+B,A,) +0(%°%). (B3)

Equation(B3) can be used twice for obtaining the symbol of
the double commutator in E¢B1). The symbol of the op-
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eratorUc(t—t’)pr(t’)Ugl(t—t’), which will be denoted by
WT is an ordinary function and it commutes with the

operator-valued symbold; ,H] and their derivatives. After

a straightforward calculation, one gets

— t
5[ a

J pPX\A/T ppw/T
+%(C WS+ CPPW]) |

! i CXXWT+ CXpr)
ax( X P

The coefficients are given by

1
*=Str{(HpH+ HyHp)pel,

CP=— —tl’{ )pe}
OV — (P + AT, o),
Cpp_—tr{( Hopel-

2. Explicit expressions

(B4)

(B5)

(B6)

(B7)

(B8)
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g°P= fo dTE ﬁlxnn’ﬁlxn’nexqiwnn”r)pnn'

nn’
X coSH Bhwnn/2). (B11)

The quadratic form in two real variables(«’) with these
coefficients is given by

g*a?+2g*Paa’ +gPPa’?
—_ ” o u 2
_JO dTE |Hlxnn’0‘_H1pn’n0"| COS Wnp ) Prne
nn’

X cosH Bh w,n/2) (B12)

and it is clearly non-negative.

3. Dissipation coefficients

Let now A, (k=1 or 2 denote eitheiX or P. The time
derivatives of their average values are given by

d(A _

2 LTH(H A= 1T He Adp)

+2THHy Adpo). (B13)

The decoherence coefficients after neglecting retardatiomhe first term is due to collective dynamics and the second

are obtained by integrating the coefficie(®5)—(B8) on the

one represents dissipation effects. Using @) for p,, this

timet’. It is convenient to introduce the matrix elements of dissipative term reads

Hy,

<n|ﬁ1—i|n,>:ﬁlinn’ expl—iwnn 1),

where the indexi denotes eithex or p, 7=t—t’,

ﬁ1inn’:<n|ﬁ1i|n'>. One has then

1 —
St{(=HiH+H[H)pe}

= 2 ﬁlinn’ﬁljn'n ex;ﬂ Wnn! T) Pnan’ COSf(,Bﬁwnn,/Z).
nn’

The decoherence coefficients
giizf drCli(7)
0
are then given by

9= fo dTZ HipnnHipn n €XP @nnr 7) Prns
nn’

X cosi Bhwp12),

(B9)

ngZQXp:_JO de ﬁ1pnn’ﬁ1xn’nexliiwnn’T)pnn’

nn’

X cosh Bhwpn'12),

(B10)

and

i (= i »
_PJ;) dTTr{[HlyAk][H U(7)p,®pU (7')]}
(B14)

Equation(5.7) can be used to replace the collective trace by
an integration over phase space of the operator symbol. One
can use

[Hy,X]=—ikHy,, [Hy,P1=ifHy,.

When computing the symbol dH],U(7)p,® peU (7],

one will retain only the term originating from the Poisson
bracket betweerHI and eithertU(7) or U~ 1(7), because it
can be seen that all the other contributions do not contribute
to the phase space integral or are of higher ordef .itfri-
nally, denoting byH.(x,p) the symbol ofH. (which is the
collective Hamilton functiol one gets

[HT,U(T)Pr(X)PeU_l(T)]

|h
(Hlppe Pe lp)V (x)— (Hlxpe Pe 1x)

In the semiclassical case, when the Wigner function is slowly
varying, Eq.(B13) generates the classical equations of mo-
tion, which readafter writing (p,x) in place of(P),(X) and
neglecting retardation
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dp — _ _

a:_ch_ 7ppHcp_ Y Hex (B19 Hl:x(zi ()\iai'l')\i*aiT) ’ (C1Y
dx o . . where the sum is over all the oscillatoks,being a coupling
Tl Hep— ¥YPHep— v Hex. (B16) constanta; and a;r their annihilation and creation operators.

It is easy to use this coupling in the formulas of Appendix
B and to recover the previously known results. The calcula-
tions are essentially trivial and need not be given here ex-
plicitly. Perhaps more interesting is the question of the range
. of this model. In addition to their thorough study of it, Cal-
PP— H. H., - ) deira and Leggett suggested that it should be considered as
7 fo A7H sxan Haxnrn @XRT@nn ™) Pan very genera[5]. They start from the fact that the number of
energy eigenstates) of the environment is extremely large.
They introduce formally an oscillator for each such state
[i.e., the indexi will stand forn in Eq. (C1)]. They notice
that a statén) is either occupied or not, these two possibili-
ties being represented by the ground state and the first ex-
cited state of the associated oscillator. Then they argue that
X[sinh( Bhwnnl2)/fiwny ] higher excited states of the oscillators will play no role be-
=P (B18) cause of the smallness of their probability of excitation. They
' conclude that an oscillator bath can represent almost any
environment.
The argument is, however, erroneous, because the cou-
pling resulting from their proposal would not have the very
i simple form of Eq.(C1) in general, because transitions
X[sinN Bl wnn /2)/fiwyy ]. (B19)  _j with i#] are certainly essential and they do not appear
in the Hamiltonian(C1). Moreover, the transitionis—i with

Comparing these results with Eq&89)-(B11), a strong 3 change of occupation number are not correctly represented
formal similarity appears between the dissipation and thgy 3 quantity such as

decoherence coefficients. They are even directly proportional

at high enough temperatur¢gwhen T>#Q so that

cosh@iony/2)~1  and  sinhBhwny/2)~ Bhony /2], tr(HlHlpe)=Z (n[Hy|n"){(n"[Hyn)pen,.
namely, nn

The coefficients are explicitly givefafter performing a
partial integration over the time) by

X[SiN Bl wny2)1 T wn ], (B17)

o JR— —_—
. .
yP __JO dTHlxnn’Hlpn'neXF('wnn’T)pnn’

'}’XX: fo drH lpnn’ H lpn’n eXF(i @np! 7) Pnn’

i If the occupied statén) is considered as the first excited
y'~g'IT. (B20) state|i,1) of an oscillator, the contribution af’)=i,2) can-
not be omitted from the sum if the Hamiltonia@1) is used.
One may also notice that the dissipation of collective energyrhe interest of a theory ignoring the constraints of the oscil-
dE./dt is always negativéor zerg, since the quadratic form |ator model cannot therefore be disputed.
with coefficientsy' is non-negative for the same reason as
in Eq. (B12). Finally, the equalityy?*= y*P is a special case

p 2. The scattering model
of the Onsager symmetry relatio(4). g

Joos and Zeh have proposed a beautiful model of deco-
herence, when an object with positidrinteracts with a bath
of particles[9]. Decoherence appeared then as an accumula-

Much of our knowledge on decoherence was first obdion of scattering effects. The resulting master equation
tained from a study of simple models. Since the presenlpoked very similar to one occurring in the oscillator model
theory claims a much wider range, it should at least recovefnd this was a very strong hint for some universality in the

these older results. This will be the topic of the present apmathematical expression of decoherence. This universal
pendix. character has been explained in the present paper, but some-

thing would still be missing if the scattering model were not
also derived. This derivation is nontrivial so that it will be
given explicitly.

A model of environment consisting of a bath of harmonic  Let us consider for definiteness a spherical solid object
oscillators has been much investigated. For an atom interacwith centerX. As explained in Sec. lll, the pressure exerted
ing with radiation in a cavity, the model is exact and itson it by the outside gas is included k. so thatH, repre-
results have been successfully compared with experimergents the effect of random collisions of the outside molecules
[1]. The atom is represented in that case by a two-state syser photong on the sphere. Rather than doing a complete
tem. When considering a collective system with positign calculation, it will be sufficient to look at one term in Eq.
the coupling Hamiltonian is typically written as (5.4), namely(with #=1),

APPENDIX C: PREVIOUS MODELS

1. Oscillator bath
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t
Dl=—J dt’ tr{HyUe(t—t)p (1)U (t=t )@ peHI}.
(€2

One may consider first the case of an environment con-
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only when scattering states are used. The imaginary expo-
nential in the right-hand side is moreover typical of the
method that was used by Joos and Zeh.

(5) In view of Egs.(5.3), and(C3), one has

(x,kq|H]|x" ky,0ut)

sisting of particles having the same momentum, in a pure

state|k): pe=|k)(k|. The corresponding wave function is a

plane wave expKr) and, with this normalization, there is one
particle per unit volume. Their flusb is the velocityrv of the
particle and a sum over one-particle stdt€$ amounts to an
integration overdk/(27)3.

A few remarks are useful.

(1) One can neglect the time evolution factdfg(t—t'),
which are slowly varying.

(2) Introducing momentum eigenstatgs) of the object
and the outgoing scattering stafgsk,out) associated with
the plane wavefp,k) =|p)®|k), one can write

(P2.,kp,0ut/Hq|pg,kq)
=(P2.ka|T|p1. k1) 8(p1tky—po—kz), (C3)

whereT is the(off energy-shell collision matrix for the scat-
tering of a particle on the object.
(3) One can use the invariance of the scattefingnatrix

under a change of reference frame. For nonrelativistic values

of p and taking into account the large mass of the objast
compared with the particle mass Galilean transformation
with small velocity gives

(P2.ka| T[p1,ke) =(P2—P1.Ko| T|OK1)(P1,Ke| T|p2.k2)
=(0k4q|T|p2—p1.k2). (C4

(4) In view of the 6 function in Eq.(C3), it is enough to
know k; andk, for fixing p,—p; so that the right-hand side
of Eg. (C4) can be written more simplyf(k;,k;). Con-

versely, using Fourier transforms, one can introduce the
statesx,k) corresponding to a localized object, whereas out

stategx,k,out) involve the same value of and a scattered

particle. One thus gets

(X", kg, 0ut/Ha[x, k) =T(ky k) 8(x—x")expli (ky—kz)x}.
(CH

This result has two important consequences. It showdHhat
acts like a function ofX, although this property shows up

=explio(t—t")}s(x—x")exp{—i(k—k,)x}
XT*(kq,ks), (C6)
where
w=E(ky) —E(ky).

(6) When throwing out retardation, the integral thof
the imaginary exponential in Eq(C6) gives wd(w)
—iP(1l/w), whereP stands for a Cauchy principal part. It
may be shown, however, that another ternDiroriginating
from HIlel cancels the principal part and one must keep
only therefore the delta part.

Finally, the matrix elementx|D,|x’) can be easily com-
puted if one uses the orthonormal set of outgoing states
{|k’,out)} when computing the trace tr. One gets

(X|Dyfx")= f [dk/(2m)*]md(w)[T(k,K")|?

xexpli(k—k")(x=x")}p,(x,x"). (C7)

But the quantity dk(27) 38(w)|T(k,k')|> has a very
simple interpretation. It coincides with the produki® of
the differential cross-sectiodo for the scatteringk—k’
times the flux® of the environment particles having the
given momenturrk. One can then replace the trivial density
matrix |k)(k| by a thermal density and introduce the various
different particles in the gas, thus obtaining

<x|D1|x’>=J mdod® expli(k—k')(x—x")}p(x,X").
(&)

Similar results are obtained for the three other termB in
but it will not be necessary to push the calculation further
since, from there on, it becomes identical with the one by
Joos and Zeh. Their method was of course simpler than the
present one, as one expects from an intuitive approach com-
pared to a technical one. The present calculation shows,
however, how universal and versatile the fundamental master
equation(4.6) is.
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