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Decoherence, irreversibility, and selection by decoherence of exclusive quantum states
with definite probabilities

Roland Omne`s
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The problem investigated in this paper is einselection, i.e., the selection of mutually exclusive quantum
states with definite probabilities through decoherence. Its study is based on a theory of decoherence resulting
from the projection method in the quantum theory of irreversible processes, which is general enough for giving
reliable predictions. This approach leads to a definition~or redefinition! of the coupling with the environment
involving only fluctuations. The range of application of perturbation calculus is then wide, resulting in a rather
general master equation. Two distinct cases of decoherence are then found:~i! a ‘‘degenerate’’ case~already
encountered with solvable models! where decoherence amounts essentially to approximate diagonalization;~ii !
a general case where the einselected states are essentially classical. They are mixed states. Their density
operators are proportional to microlocal projection operators~or ‘‘quasiprojectors’’! that were previously in-
troduced in the quantum expression of classical properties. It is found at various places that the main limitation
in our understanding of decoherence is the lack of a systematic method for constructing collective observables.

DOI: 10.1103/PhysRevA.65.052119 PACS number~s!: 03.65.Yz, 03.65.Db, 05.40.2a
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I. INTRODUCTION

The discovery of decoherence has already much impro
our understanding of quantum mechanics. The effect
now been observed experimentally@1#. Many of its conse-
quences have been obtained theoretically, but its founda
the range of its validity, and its full meaning are still rath
obscure. This is due most probably to the fact that it de
with deep aspects of physics, not yet fully investigated.

The intuitive idea of decoherence is rather clear@2#. The
wave function of a macroscopic system depends on a v
large number of variables and its local phase is very sens
to boundary conditions, couplings, and initial condition
Any phase coherence between different components of
wave function is therefore exposed to destruction, a
which macroscopic interferences disappear. It is unfo
nately very difficult to build up a satisfactory theory on th
intuition, because a knowledge of phases remains ou
reach for theN-body methods at our disposal.

A. Some questions about decoherence

The problems of decoherence are most often stated
making a few simple and pragmatic assumptions. One
sumes particularly that a few collective~or relevant! observ-
ables can describe the main features of a~generally macro-
scopic! system, and they are knowna priori. The system is
then split formally into two subsystems: a ‘‘collective’’ on
~which is associated with the relevant observables! and an
environment, which can be external or internal. Each of th
two abstract subsystems has its own Hilbert space,Hc or He
and the Hilbert space of the whole system is the producH
5Hc^ He . The Hamiltonian is accordingly split into thre
parts, one for each subsystem and one for their coupling

H5Hc^ I e1I c^ He1H1 . ~1.1!

Observers are supposed to have only a direct knowledg
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the collective subsystem. Its properties are expressed b
reduced density operatorr r , which is obtained from the full
density operatorr through a partial trace on the environme

r r5Tre r. ~1.2!

The time evolution ofr r exhibits the various aspects of de
coherence. It has been investigated mostly by means of m
or less exactly solvable models. Two models were parti
larly important because they were rather close to reality
least in specific circumstances. In one of them the envir
ment is replaced by a collection of harmonic oscillato
@3–8#. Another model represents decoherence as an accu
lation of scattering phase shifts when particles from an
ternal atmosphere collide with a macroscopic object@9#.
Much of what is known about decoherence was learned fr
these models and some of their variants@10#.

The conclusions have been accurately summarized
Zurek. He distinguishes three different physical effects
sulting from decoherence@10#. There is first a destruction o
macroscopic interferences, then some privileged state vec
become selected as alternative physical events, and fin
these states evolve classically. The privileged states are
called pointer states in analogy with the position of a poin
on a dial in a measuring apparatus@11#. Most models predict
that these states exist and are orthogonal so that they defi
Hilbert space basis in which the reduced density opera
becomes approximately diagonal after a short while. The
istence of this basis is essential since it defines a unique
of alternative events with well-defined probabilities. Th
name einselection~i.e., the selection of mutually exclusiv
quantum states with definite probabilities through decoh
ence! has been coined by Zurek for the mechanism selec
this basis.
©2002 The American Physical Society19-1
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These results have so far-reaching consequences fo
interpretation of quantum mechanics and other applicati
such as quantum computing that one must assess their
degree of generality. How much of them is specific to t
models that were used and how much is universal? T
question raises several problems.

~1! A basic preliminary problem is concerned with th
meaning of collective observables. When an actual phys
system is given in practice, it is a rather straightforward m
ter to guess what coordinates describe most convenientl
macroscopic dynamics~the choice of these ‘‘generalized co
ordinates’’ goes back to Lagrange!. But the question of de-
fining correctly the collective observables for an arbitra
quantum state of the whole system, i.e., to select wha
collective and what can be considered as an environmen
much deeper. It will be seen again and again in this pa
that it represents the real limit of our understanding.

~2! One may be puzzled by the fact that explicit mod
yield einselection somewhat too easily. This is beca
most of them rely on a coupling satisfying the commutat
property

@H1 ,X^ I e#50, ~1.3!

between the coupling HamiltonianH1 and a collective coor-
dinate observableX ~which may be supposed unique for sim
plicity!. It is then found thatr r becomes approximately di
agonal in the basisux& of eigenvectors ofX. It is clear,
however, than Eq.~1.3! is very restrictive, at least from a
mathematical standpoint, and one cannot assume it to
universally. What happens then when this condition is
satisfied? Is there still some sort of diagonalization? If
along which basis? To answer this problem will be the m
task of this paper.

~3! Problem~2! is made somewhat tricky because the
exists a very large class of systems with collective coo
nates for which condition~1.3! holds. They are mechanica
nonrelativistic systems~excluding macroscopic electromag
netic effects!, described by the position coordinates of hydr
dynamics @12–15#. These systems, which are exception
from a mathematical standpoint, may very well turn to
universal in measurement theory since a measuring de
involves practically always some mechanical parts entang
with the rest of the apparatus. As will be shown in Sec. V
the property~1.3! results from the form of kinetic energie
and two-body potentials in nonrelativistic physics. This
markable feature ‘‘explains’’ why classical mechanics can
formulated in ordinary three-dimensional space although
wave functions are defined on a configuration space@16#.

So frequent an occurrence of a very special case ma
puzzling from an intuitive standpoint. It raises a conflict b
tween what we consider as general, either when speakin
the physical world or of the mathematics of the theory. T
possible source of confusion will be avoided here by ref
ring explicitly to ‘‘mathematical generality’’ when a ‘‘genera
property’’ or a ‘‘general case’’ will be mentioned, exce
when otherwise explicitly stated.

~4! One might be lured by models into premature conc
sions and a sufficiently wide-ranging theory of decohere
05211
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is necessary for assessing general properties. The cons
tion of such a theory is the fourth problem to be conside
here.

~5! Finally, one must consider the attractive approach
einselection by Zurek@10,17#. Einselected states are su
posed to be the most predictable~or robust! carriers of infor-
mation. Given a collective stateC ~which may be pure or
not! and the corresponding initial density operatorrC(0)
5uC&^Cu, one considers the time-dependent reduced d
sity operatorrc(t). Its ability to preserve an information
content is characterized by some relevant functional ofC,
which may be minus the von Neumann entropy or mo
conveniently the measure of purity

cC~ t !5Tr rC
2 ~ t !. ~1.4!

This quantity is then used to construct a ‘‘predictabili
sieve’’ distinguishing among the states: The largest the qu
tity ~1.4! is, the more predictable the stateC is supposed to
be. Model examples suggest that einselected states do
and are rather insensitive to a change in the coupling o
redefinition of the environment. A fifth problem consists
evaluating this conjecture in a wider framework.

B. The present results

These five problems will not of course be solved he
completely, but some definite or suggestive answers will
obtained. The most precise results are concerned with ei
lection and diagonalization, their meaning and their relati
As a preliminary, one needs a sufficiently wide-rangi
theory of decoherence, as stated in problem 4. The theor
be used here does not claim to be new. It relies on the fa
iar idea that decoherence is a special kind of irrevers
process. This means that one may expect that the most
eral theory of decoherence presently at our disposal wo
derive from the existing quantum theories of irreversible p
cesses. Moreover, the most convenient such theory is
so-called projection method@18–21#. Its main features are
recalled in Sec. II and it is applied to decoherence in Sec.
Although this method was previously introduced elsewh
@15,22,23#, some improvements will be required before a
plying it for the present purpose. These developments
mostly given in the appendices and they may be useful
using the method in other problems.

A very important remark concerning this approach is t
possibility of making a definite choice for the couplin
HamiltonianH1 from which one can easily derive a mast
equation forr r . The point is that, givena priori a coupling
Hamiltonian, one can construct another~time-dependent! one
consisting only of fluctuations. Standard perturbation me
ods can then be applied confidently in most cases. Altho
this procedure is familiar near equilibrium~it is used for
instance in the derivation of the fluctuation-dissipation the
rem @24#!, it works also far from equilibrium as will be
shown in Sec. IV, providing a strong handle on decoheren

The master equation one obtains in this way is proba
the most general one that is accessible with present t
niques and therefore the most appropriate one for investi
ing einselection, as done in Sec. V. One thus finds that, c
9-2
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DECOHERENCE, IRREVERSIBILITY, AND SELECTION . . . PHYSICAL REVIEW A65 052119
trary to current expectations, two different cases
einselection exist. The first one was encountered with s
able models and is well known, although it is far from bei
general in a mathematical sense~in the case of an arbitrary
coupling!. It must be considered on the contrary as a deg
erate case for the following reason. Ifn is the number ofX
observables, decoherence is controlled in the general cas
a differential Laplacian-like operator in the 2n-dimensional
phase space. In the simplest casen51, the decoherence
‘‘Laplacian’’ is associated as usual with a quadratic fo
@like the two-dimensional Laplacian]2/]x21]2/]p2 is asso-
ciated after a Fourier transform (x,p)→(j,h) to the qua-
dratic form (j21h2)]. The decoherence Laplacian is dege
erate when it acts on only one variable~for instance the
coordinatex and not the associated momentump) so that the
corresponding quadratic form is degenerate~having a zero
eigenvalue!. In the degenerate case, to which the usual m
els belong, decoherence essentially amounts to a diago
ization ~in the basis einselected by degeneracy!.

The nondegenerate case is investigated in Sec. VI.
results are not those expected from Zurek’s predictab
sieve, at least as far as I understand it. There are gene
two distinct times for decoherence. Typically, in conditio
when these times are very different, decoherence selec
basis of privileged states in whichr r begins to become di
agonal, but then these ‘‘einselected’’ states do not prese
their probabilities and they begin to share them with nei
boring states. When the two decoherence times are sim
not much remains apparently of the idea of einselection.
final outcome of decoherence is rather a tendency tow
uniformity wherer r becomes as close to the identify matr
as its finite trace can allow~more precisely, it corresponds t
a uniform Wigner function over a rather large region
phase space!. Nevertheless, macroscopic interferences
still destroyed and classical behavior may follow.

The question of the different time scales is discussed
Sec. VII and a strong connection is found with the spec
properties of hydrodynamical variables. The relation b
tween decoherence and dissipation coefficients plays an
portant role in this discussion. Problem~3! then becomes
central because decoherence depends most often in pra
on the fact that the space coordinates of a nonrelativi
piece of matter satisfy the condition~1.4! implying degen-
eracy. One is thus led again to Gell-Mann and Hartle’s id
concerning the link between coarse graining and the e
tence of a diagonalization basis@12,13#.

Finally, the occurrence of classical dynamics after de
herence is considered in Sec. VIII in both the degenerate
the nondegenerate cases. In the nondegenerate case, alt
one can still speak of einselected states, they are far f
being pure states. They are mixed states whose density
erator at a definite time is proportional to a ‘‘microlocal pr
jection operator,’’ which is known in mathematics as the b
expression of a classical property involving position and m
mentum together@25–27#. Finally, the conclusion goes bac
to the strong connection between the origin of classica
and problem~1!, i.e., the construction of collective coord
nates. Some proposals for further research are indicated
05211
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Appendix A gives a derivation of decoherence theo
from the projection method in irreversible processes. App
dix B is concerned with the relation between decohere
and dissipation coefficients. Appendix C shows how to
clude the insightful scattering model of decoherence by J
and Zeh in the framework of the present theory.

II. A QUANTUM THEORY OF IRREVERSIBLE
PROCESSES

One needs a sufficiently wide-ranging theory of decoh
ence for asserting its general features. Since the loss of p
coherence through decoherence produces disorder, typic
an irreversible process, the most general relevant theor
the projection method, which is now briefly reviewe
@18–21#.

One considers a system with many degrees of freed
whose density operator evolves according to the v
Neumann–Schro¨dinger equation,

ṙ52
i

\
@H,r#. ~2.1!

Some observables are supposed to be particularly rele
for a given problem and one wants only to know the tim
evolution of their mean values. These relevant observa
are denoted byAj . Their set may be finite or not, countab
or not. One usually includes the identity operatorI in the set
and also the conserved quantities such as the total energH,
although this recipe is not imperative. The ‘‘exact’’ avera
values of these observables are

aj~ t !5Tr@Ajr~ t !#. ~2.2!

The first step of the method consists in introducing a tim
dependent test density operatorr0(t) satisfying the follow-
ing two conditions.~i! It gives the exact average values
the relevant observables,

Tr@Ajr0~ t !#5Tr@Ajr~ t !#[aj~ t !. ~2.3!

~ii ! Its information content is minimal@which means that it
does not provide anything else than the quantities$aj (t)%#. It
can therefore be written as

r0~ t !5exp@2l j~ t !Aj #, ~2.4!

where the numbers$l j% are Lagrange parameters and t
Einstein summation convention over repeated indices
been used. Since the identityI belongs to the set$Aj%, the
trace ofr0 is normalized.

One will use the name ‘‘density’’ in the present paper f
an operator with a finite trace~also called a trace-class op
erator!. It is neither supposed to have a unit trace nor to
necessarily positive. One defines a set of~time dependent!
densities

sj5]r0 /]a8. ~2.5!

They satisfy the important orthogonality properties
9-3
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ROLAND OMNÈS PHYSICAL REVIEW A 65 052119
Tr~siA
j !5d i

j , ~2.6!

amounting essentially to]aj /]ai5d i
j in view of Eq. ~2.3!.

The theory makes use of ‘‘superoperators,’’ which act l
early on a density to yield another density. For instance,
~2.1! can be written conventionally as

ṙ5Lr, ~2.7!

where L is the Liouville superoperator. Another importa
superoperator is defined by

P5sj ^ Aj , ~2.8!

which means that when acting on a densitym, it gives ~with
the summation convention!

Pm5sj Tr~Ajm!. ~2.9!

It is a projection in so far as it satisfies the simple equat

P25P, ~2.10!

resulting from the orthogonality properties~2.6!.
One can define a ‘‘relevant’’~time-dependent! density op-

eratorr1 by

r15Pr. ~2.11!

It generates the exact average values$a(t)% since

Tr~Ajr1!5Tr~Aj Pr!5Tr~Ajsi !Tr~Air!5d i
jai5aj .

~2.12!

~As a matter of fact, it coincides with the test density ope
tor r0.)

Denoting byI the identity superoperator, one also intr
ducesQ5I2P, which satisfies the projection propertyQ 2

5Q in view of Eq.~2.10!, as well as the orthogonality prop
erties QP5PQ50. One defines then another densityr2
5Qr ~so thatr5r11r2). Applying the two projectionsP
andQ to the evolution equation~2.7! and taking into accoun
the time dependence of these projections, one obtains
coupled evolution equations,

ṙ15PLPr11 ṖPr11PLQr21 ṖQr2 , ~2.13!

ṙ25QLQr21 ṖQr21QLPr12 ṖPr1 . ~2.14!

A last step would be to eliminater2 to obtain a master equa
tion for r1 but it will be left for the special case of decohe
ence.

III. THE CASE OF DECOHERENCE

The previous theory can be now applied to decohere
and some preliminary considerations will make the ta
clearer. A first problem is to choose the relevant observab
If one thinks of macroscopic interferences, it is clear th
they can involve many different macroscopic observables
that every collective observable is relevant. When the col
tive observables describe a measuring apparatus, the
05211
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collective.

The environment can be defined by its observables, wh
commute with the collective ones. The resulting splitting
the system into a collective one and an environment is g
erally time dependent since for instance every new bubbl
a bubble chamber or every new spark in a spark cham
generates new collective observables. Decoherence is su
rapid process, however, that the collective environment sp
ting can often be considered as fixed during the very sh
time of an individual decoherence process, justifying the
pression~1.1! for the Hamiltonian. The couplingH1 in this
equation is responsible for the interactions between the
lective system and the environment, including dissipat
and decoherence.

The set of relevant observables is completed by the id
tity operatorI ~insuring normalization! and the environmen
HamiltonianHe , or more properlyI c^ He . The total Hamil-
tonianH might have been used as relevant in place ofHe but
this choice would have been inconvenient, as will be se
later!.

Introducing an arbitrary orthonormal basisuk& in the col-
lective Hilbert space, the set$uk&^k8u% provides a linear basis
for the collective operators. A look at the calculations in S
II shows that they nowhere use the fact that the$Aj% are
Hermitian so that one may use the set of operat
$uk&^k8u% as relevant ‘‘observables.’’Alternatively, one migh
use the set of Hermitian operators

$~1/2!~ uk&6uk8&)~^ku6^k8u!;~1/2!~ uk&6 i uk8&!

3~^ku7 i ^k8u!%

as relevant with identical results. Anyway, the set of relev
observables for a theory of decoherence will be chosen

$Akk85uk&^k8u ^ I e ,A15I , Ae5I c^ He%. ~3.1!

Since none of them connects the collective and the envir
ment Hilbert spaces, the test density operator~2.4! is a tensor
product

r05rc^ re . ~3.2!

Applying Eq. ~2.3! to the operatorsAkk8, one finds that

^k8urcuk&5Tr~Akk8r0![Tr~Akk8r!5^k8utr ruk&5^k8ur r uk&,
~3.3!

so that the collective test densityre is identical to the con-
ventional reduced density~1.2!. The second equality result
from Eq. ~2.1!. A convention for traces that will be use
everywhere has also been introduced, the notation Tr sta
ing for a trace on the full Hilbert space and tr for a trace
the environment.

According to Eq.~2.4!, the environment test densityre is
given by

re5exp~2bHe2a!, ~3.4!
9-4
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DECOHERENCE, IRREVERSIBILITY, AND SELECTION . . . PHYSICAL REVIEW A65 052119
wherea is a Lagrange parameter ensuring normalization
b ensures that the energyHe of the environment has its tru
average valueE. This density is the same as if the enviro
ment were in thermal equilibrium but it should be stress
that it is only an auxiliary mathematical quantity providing
correct ~time-dependent! value for E with no assumption
about equilibrium.

In Appendix A, the auxiliary densitiessj are obtained
from Eq.~2.5!. Denoting, respectively, bys1 ands2 the den-
sities associated withI andHe , one gets

skk85uk8&^ku ^ re , ~3.5!

se5rc^ re~He2E!D22, ~3.6!

s152Erc^ re~He2E!D22, ~3.7!

whereD is the uncertainty in energy

D25tr~He
2re!2E2. ~3.8!

When acting on an arbitrary densitym, the projectionP is
given according to Eq.~2.9! and Eqs.~2.5!–~2.7! by

Pm5tr m ^ re1@rc^ $re~He2E!D22%#~Tr Hem2E Tr m!,

~3.9!

from which the relationsP25P andr15r0 follow.

A. Specifying the coupling

One may now introduce an important remark that w
later justify the use of perturbation theory. To begin with, o
may notice some arbitrariness in the splitting of the f
HamiltonianH into three different terms as in Eq.~1.1!. A
simple recipe for fixing them is to impose that

tr H1re50. ~3.10!

The meaning of this condition can be seen in the exampl
a cylinder containing a gas. A collective coordinate is spe
fied by the positionx of a piston whereas the environme
consists of the gas and the matter of the piston itself
straightforward definition ofH1 could be the sum of the
potential energies between the atoms in the piston and
gas. This interaction is far from being weak, since the c
finement of a gas is not a weak effect, but a large part o
consists of a collective energy since trH1re is a collective
operator. One can then change the definition of the differ
parts inH by including this operator inHc and removing it
from H1 or, more precisely, by introducing

Hc85Hc1tr~H1re!,

H185H12tr~H1re! ^ I e .

The quantity trH1re represents in this example the effect
the gas pressure on the piston. The new expression ofHc is
time dependent~like pressure! but the new expression ofH1
satisfies the condition~3.10!. It consists only of the pressur
fluctuations resulting from the collisions of the gas m
ecules with the piston.
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The idea of introducing a purely fluctuating coupling a
to use perturbation theory for computing its effects is fam
iar in quantum fluctuation theory@24#. The fact that one can
still use it far from equilibrium when dealing with decohe
ence is due to the possibility of representing everything c
lective by the test density. From there on, the condit
~3.10! will be assumed.

One may also understand at this point why the choice
He as a relevant observable is more convenient than the
HamiltonianH, which is usually recommended@21#. This is
because the expression~3.2! for the test density implies the
simple rule ~3.10! for the coupling, with the benefits jus
mentioned. Everything would have been more obscure
would have implied much heavier calculations ifH had been
chosen as a relevant observable.

B. The evolution equations

It is easy to write down explicitly the evolution equation
~2.13!–~2.14! for the case of decoherence. It is convenient
split Eq.~2.13! for ṙ1 into an equation forṙ r and another for
ṙe ~or for the time evolution of the internal energy!. This is
done by taking, respectively, the traces of Eq.~2.13! on the
environment and the collective Hilbert spaces. As shown
Appendix A, the results are

ṙ r52
i

\
~@Hc ,r r #1tr@H1 ,r2# !, ~3.11!

Ė1
i

\
Tr~He@H1 ,r11r2# !50. ~3.12!

As for the second evolution equation~2.14!, it becomes

ṙ252~ i /\!@H,r11r2#1~ i /\!tr~@H1 ,r2# ! ^ re2r r ^ ṙe.

~3.13!

IV. A MASTER EQUATION

The most delicate step in the projection method cons
always in ‘‘solving’’ the second evolution equation~2.14! for
r2 in terms ofr1 before inserting the result into Eq.~2.13!
@21#. This is much easier when perturbation theory can
used. Perturbation calculus has been used already in
present framework whenH1 is knowna priori to be small, as
often happens in quantum optics@22,23#. It should also pre-
sumably be valid in many instances when condition~3.10! is
applied andH1 is a pure fluctuation~although one must ac
knowledge that a purely fluctuating coupling does not ens
with certainty the validity of perturbation calculus!. Anyway,
according to Appendix A, the evolution equations~3.11!–
~3.13! become at leading order inH1,

ṙ r52
i

\
~@Hc ,r r #1tr@H1 ,r2# !, ~4.1!

ṙ252~ i /\!@H0 ,r2#2~ i /\!@H1 ,r2#. ~4.2!
9-5
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ROLAND OMNÈS PHYSICAL REVIEW A 65 052119
In the second equation,H0 denotes the uncoupled Hami
tonian

H05Hc^ I e1I c^ He ~4.3!

and Eq.~4.1! is exact whereas Eq.~4.2! is valid at first order
in perturbation theory.

The second equation is easily solved after introducing
evolution operator

U~ t !5exp~2 iH 0t/\!. ~4.4!

Strictly speaking,H0 is generally time dependent and th
integrand in Eq.~4.4! should be replaced by an integral
H0(t) on time. It is difficult, however, to conceive of a cas
where this external time dependence is not much slower
decoherence and the expression~4.4! is therefore most often
valid as it stands. If not, the necessary changes are so tr
that they need not be mentioned here. One thus gets

r2~ t !52~ i /\!E
2`

t

dt8 U~ t2t8!@H1 ,r1~ t8!#U21~ t2t8!.

~4.5!

No effect of the initial value ofr2 ~at time 2`) has been
included in Eq.~4.5!. This is justified when the environmen
is initially in thermal equilibrium@since thenr2(2`)50#.
More generally, however, it may be expected that an ini
lack of equilibrium does not influence the decoherence
fect, so that Eq.~4.5! is valid for our present purpose. Th
point was checked in a special case by Paz, Zurek, and
workers@28,29#.

Inserting Eq.~4.5! into Eq. ~4.1!, one obtains the follow-
ing ‘‘master equation’’ for decoherence:

ṙ r52
i

\
@Hc ,r r #2~1/\2!E

2`

t

dt8 tr$H1 ,U~ t2t8!

3@H1 ,r r~ t8! ^ re~ t8!#U21~ t2t8!%. ~4.6!

The first term on the right-hand side represents the quan
evolution of the reduced density operator under the actio
the collective HamiltonianHc . The second term is respon
sible for decoherence.

This equation is not new but it was derived previous
either under the assumption of a small coupling@22,23#, or
as a guess@15#. It will be used here as a sufficiently gener
framework for a study of einselection.

The wide range of this master equation is confirmed by
agreement with previous models. This is easily shown w
the environment is represented by a collection of harmo
oscillators@3–8#. The key experiment by Bruneet al. show-
ing the existence of decoherence also belongs to the dom
of Eq. ~4.6! sinceH1 is small in that case@1,30#. In the case
of the collision model by Joos and Zeh the calculations
less trivial and they are given in Appendix C as a nontriv
example of the master equation universality.
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V. DECOHERENCE VERSUS DIAGONALIZATION

Models have been extremely useful for understanding
coherence. When the collective subsystem is described
few position observablesX, decoherence was found to diag
onalize the reduced densityr r , in the basisux& consisting of
eigenvectors ofX. The question to be now considered
therefore: does decoherence always implies some sort o
agonalization? Is there always a selection of privileg
‘‘pointer states,’’ or einselection as defined by Zurek@10#?

One may first select the equation on which this quest
will be investigated. The idea of diagonalization must
used with some care because the reduced density ope
never becomes completely diagonal in view of the first te
in Eq. ~4.6! representing collective dynamics. For a fini
value of the differencex2x8 the matrix elements

r r~x,x8;t !5^xur r~ t !ux8&, ~5.1!

vanish exponentially with time, whereas microscopic valu
of x2x8 are dominated by collective dynamics and they
main finite. This is why there is decoherence on large sc
while atomic physics remains perfectly valid at small sca
The question of diagonalization is therefore much cleare
one leaves aside the first term in Eq.~4.6! and considers
‘‘pure decoherence’’ as the behavior of a density opera
obeying the truncated equation

ṙ r52~1/\2!E
2`

t

dt8 tr$H1 ,U~ t2t8!

3@H1 ,r r~ t8! ^ re~ t8!#U21~ t2t8!%

[D. ~5.2!

The main task will then consist in an analysis of the rig
hand side of Eq.~5.2!, which has been denoted byD. It will
also be useful to introduce the notation

H1
T5U~ t2t8!H1U21~ t2t8!, ~5.3!

so that one has

D52~1/\2!E
2`

t

dt8 tr$H1 ,@H1
T ,Uc~ t2t8!r r~ t8!

3Uc
21~ t2t8! ^ re~ t8!#%, ~5.4!

where Ue
21reUe has been replaced byre in view of Eq.

~3.4!.

A. Weyl symbols

One will consider the case when there exists a set on
collective ‘‘position’’ observables, altogether denoted byX.
The quantityD is itself a collective operator and it will be
convenient to describe it by means of a Weyl symbol@31,25#,
in analogy with the description ofr r by a Wigner function
@32#. The standard Weyl calculus can be slightly generaliz
to include ‘‘operator-valued symbols’’ acting on the enviro
ment as follows.

Let A denote an arbitrary operator in the full Hilbert spa
~such asH1 for instance!. Introducing the basis$ux&% in the
9-6
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collective Hilbert space and an orthonormal basis$un&% in
the environment Hilbert space, the matrix elements ofA can
be expressed through a partial Fourier transform

^x,nuAux8,n8&5E ~2p\!2ndpĀnn8S x1x8

2
,pD

3exp$ ip~x82x!\%. ~5.5!

Every quantityĀnn8(x,p) is a function of (x,p) and the or-
dinary Weyl symbol of the matrix elementAnn85^nuAun8&,
which is a collective operator. It will be convenient to co
sider it as the (n,n8) matrix element of an operator-value
symbolĀ(x,p), which is a function of (x,p) and an operator
in the Hilbert space of the environment.

The symbol of the productAB of two operatorsA andB
can then be expressed as a series in powers of\ involving
their symbols@31,25#,

AB̄5ĀB̄2~ i\/2!~ĀpB̄x2ĀxB̄p!2~\2/24!

3~Āp2B̄x21Āx2B̄p222ĀpxB̄px!1O~\3!. ~5.6!

The notation has been simplified by omitting the argume
(x,p) of the symbols and lower indices stand for derivativ
@for instance,Āxp stands for]2Ā(x,p)/]x]p#. Equation~5.6!
is well known in Weyl’s calculus when the symbols are o
dinary functions. It is easily extended to operator-valu
symbols by considering matrix elements and a unique n
rule must be added to the case of functions: the order of
operators in the productAB must be respected in the prod
ucts of symbols and their derivatives. The symbol of t
reduced density operatorr r is the Wigner function, which
will be denoted byW(x,p). It is not operator valued and
commutes with other symbols.

The only further formula one will need from the We
calculus is the expression of a complete trace,

Tr A5E dxdp~2p\!2n tr Ā~x,p!. ~5.7!

B. Calculation of the decoherence termD

It will be convenient to consider from there on the case
a unique coordinateX (n51) although the generalization t
arbitrary values ofn is trivial. Applying Eq. ~5.6! to the
double commutator in Eq.~5.4!, one obtains the symbolD̄ of
the decoherence termD at order\2, as shown in Appendix
B,

D̄5E
2`

t

dt8@]/]x~CxxWx
T1CxpWp

T!

1]/]p~CpxWx
T1CppWp

T!#. ~5.8!

The functionWT(x,p) is the symbol of the collective opera
tor

Uc~ t2t8!r r~ t8!Uc
21~ t2t8!. ~5.9!
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The various decoherence coefficients are given by

Cxx5
1

2
tr$~H̄1pH̄1p

T 1H̄1p
T H̄1p!re%, ~5.10!

Cxp52
1

2
tr$~H̄1pH̄1x

T 1H̄1x
T H̄1p!re%, ~5.11!

Cpx52
1

2
tr$~H̄1xH̄1p

T 1H̄1p
T H̄1x!re%, ~5.12!

Cpp5
1

2
tr$~H̄1xH̄1x

T 1H̄1x
T H̄1x!re%. ~5.13!

It is possible in principle to derive the main consequen
of the master equation for decoherence from these equa
by using the powerful methods of microlocal analysis@25#. It
will be much simpler, however, to rely on a few usual a
proximations. The first one assumes that the coefficie
~5.10!–~5.13! vary slowly with (x,p) or, more precisely, one
neglects the collective evolutionUc(t2t8) in the factorsU
andU21 occurring in the expression~5.3! of H1

T . The physi-
cal meaning of this approximation is discussed in Appen
B, where the following expression ofCpp is obtained:

Cpp5(
nn8

H̄1xnn8H̄1xn8n

3exp@ ivnn8~ t2t8!#pnn8

3cosh~b\vnn8/2!, ~5.14!

where the statesun& are the energy eigenstates ofHe with
eigenvaluesEn and one has written

H̄1xnn85^nu]H̄1~x,p!/]xun8&, vnn85~En2En8!/\,

pnn85exp@2b~En1en8!/22a#. ~5.15!

Equation ~5.14! suggests that the relevant frequenc
vnn8 in the sum are contained in an interval@2V,V# char-
acterizing the environment and generally large as compa
with the rate of collective dynamics (V is typically a Debye
frequency for an internal environment!. Hu, Paz, and Zhang
have shown that the master equation is instantaneous~i.e.,
involves no retardation! in the case an oscillator environ
ment, when the collective Hamiltonian also describes an
cillator @7#. This is due to the linear character of the equ
tions in that case@33#. The resulting master equation ha
been solved explicitly by Ford and O’Connell@8#. This situ-
ation is, however, exceptional and the neglect of retarda
is almost always an approximation. The question of its j
tification is tricky and it would warrant a separate investig
tion. When retardation effects are unimportant anyway,
integration ont8 in Eq. ~5.8! is performed as if the integran
were ad function in time. The time-delayed functionWr is
replaced by the ordinary Wigner functionW and Eq.~5.8!
becomes
9-7
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D̄5
]

]x
~gxxWx1gxpWp!1

]

]p
~gpWx1gppWp!.

~5.16!

The new coefficients are given by

gi j 5E
2`

t

Ci j ~ t2t8!dt8 ~5.17!

@with indices (i , j )5(x,p)]. Explicit expressions of these co
efficients are given in Appendix B, showing that the coe
cientsgxx andgpp are positive symmetric:gxp5gpx, and the
quadratic form

gxxa212gxpab1gppb2 ~5.18!

is non-negative. One must then distinguish two significan
different cases according to whether the form~5.18! is de-
generate or not, i.e., whether the determinantgxxgpp

2(gpx)2 is zero or positive.

C. The degenerate case

The degenerate case was encountered in most model
only one coefficient, namely,gpp, was different from zero. It
is then convenient to go back to the matrix eleme
r r(x,x8;t) by inverting the Fourier transform~5.5! so that
the pure decoherence master equation~5.2! becomes

]

]t
r r~x,x8;t !52

gpp

\2
~x2x8!2r r~x,x8;t !. ~5.19!

Diagonalization in the basis$ux&% is then obvious whengpp

is a constant since the solution of this equation is

r r~x,x8,t !5r r~x,x8,0!expF2
gpp

\2
~x2x8!2tG .

Similarly, when the only nonzero coefficient isgxx, one may
use the momentum basis$up&% to obtain

]

]t
r r~p,p8;t !52

gxx

\2
~p2p8!2r r~p,p8;t !, ~5.20!

implying again diagonalization.
A simple condition for the coupling implying diagonaliza

tion in the position basis is given by Eq.~1.3! @34,15#. Using
coarse graining, Gell-Mann and Hartle have shown that
condition is satisfied for mechanical systems when using
drodynamical observables as relevant@13#.

VI. THE NONDEGENERATE CASE

Quite different results are obtained in the general c
when there is no degeneracy. One may note first that
differential operator in the right-hand side of Eq.~5.16! is
similar to a Laplacian, which is given by
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D5
1

Ag

]

]xi SAggi j
]

] j D , ~6.1!

in the case of a metricds25gi j dxidxj ~with gi j g
jk5d i

k).
The factorg is the determinant of the matrix with elemen
gi j or the inverse of det(gi j ). One could use this remark in
principle for a general study of decoherence but it wou
need the full power of microlocal analysis. Rather than e
tering into such heavy mathematics, it will be convenient
consider only the case when the coefficientsgi j are con-
stants. A further simplification is obtained by diagonalizin
the quadratic form~5.18!. This is done by a change of var
ables after introducing scale-invariant parameters. LetL be a
unit of ‘‘length’’ ~i.e., a scale with the dimensionality ofX)
andP a unit of momentum. The transformation

PX85PX cosu1LP sinu,

LP852PX sinu1LP cosu, ~6.2!

can be viewed either as an ‘‘orthogonal’’ change of axes
the (x,p) plane or as a linear canonical transformation.
leaves Weyl’s calculus invariant@25#, so that if one chooses
u to diagonalize the metric, one obtains a simpler equat
for pure decoherence, namely~after dropping the prime in-
dices!,

]W

]t
5gxx

]2W

]x2 1gpp
]2W

]p2 . ~6.3!

A. General decoherence is not a diagonalization process

The general case of decoherence occurs when the
dratic form~5.18! is nondegenerate. Does then the effect s
amount to diagonalization? By looking at the degener
case, one sees that diagonalization was due to a spe
property of the collective operatorD. There was a specific
orthonormal~‘‘pointer’’ ! basis$u j &%, such that

^ j uDu j &50 for eachj , ~6.4!

Rê j uDuk&,0 for every pair of indicesj Þk. ~6.5!

These relations held true for any density matrixr r entering
in the definition ofD. They must obviously be satisfied
diagonalization takes place, at least if the basis is indep
dent of the preparationr r(0) and depends only on the dec
herence coefficients. They do not hold, however, in gene
as shown by the following

No-go theorem.Whatever the statec, it is impossible for
the equation

^cuD~r r !uc&50 ~6.6!

to hold for every density matrixr r ,
Proof.According to Eq.~5.16!, one can write

D~r!5Dr, ~6.7!

whereD is understood as a superoperator acting on a col
tive densityr. One can write
9-8
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^cuDruc&5Trc~ uc&^cuDr!.

If this equation is supposed to be valid for any choice ofr,
one must have~since the superoperatorD is Hermitian!

Duc&^cu50.

When written explicitly in the position basis, this equatio
becomes

H gxx
]2

]x2 2~gpp/\2!j2J c~x1j/2!c* ~x2j/2!50,

from which one gets

c~x1j/2!c* ~x2j/2!5a~j!expSAgpp

gxx
~xj/\!D

1b~j!expS 2Agpp

gxx
~xj/\!D .

This is, however, impossible~even if the coefficients are dis
tributions! because it would imply that the wave function
the statec increases exponentially for large values of
argument. j

Note.The present theorem forbids the existence of a u
versal diagonalization basis. The possibility of ar-dependent
basis remains open, although it looks very doubtful.

B. Decoherence in the nondegenerate case

Since decoherence cannot be generally a diagonaliza
process, one must investigate it anew. Its consequence
most easily obtained whenx2x8 is large. It will be more
convenient to use the notation (x8,x9) for the arguments of
the reduced density matrixr r(x8,x9) in the position repre-
sentation and to introduce auxiliary variablesx5(x8
1x9)/2, j5x82x9. This means that we are interested in t
case wherej is large~macroscopic!. After performing a Fou-
rier transform to go back from the variablep to j, the pure
decoherence equation~5.2! becomes

ṙ5gxx
]2r

]x2 2~gppj2/\2!r. ~6.8!

The time evolution of the functionr(x,j)5r r(x1j/2,x
2j/2) is therefore given by

r~x,j,t !5exp~2gppj2t/\2!
1

A4pgxxt

3E dx8exp@2~x2x8!2/4gxxt#r~x8,j,0!. ~6.9!

The first factor on the right-hand side shows thatr r(x
1j/2,x2j/2) tends to become diagonal in the position bas
as in the degenerate case. The heat kernel in the integra
however, a very different effect since it smoothes off t
reduced density along the diagonal, so that probabilities
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were initially distinct become mixed together. If the proce
is stopped at some timet, its effect is analogous to an impe
fect measurement of the position.

The smoothing effect is most clearly seen by consider
as initial state a superposition of two distinct wave functio

r r~ t50!5uc&^cu, with uc&5uc1&1uc2&, ~6.10!

the two wave functionsc1(x) andc2(x) being clearly sepa-
rated with clearly different average values forX or P or both.
One is interested in the interference part ofr r originating
from uc1&^c2u and uc2&^c1u in the initial state operator, bu
one must also now consider the probabilistic part originat
from uc1&^c1u and uc2&^c2u. The first factor on the right-
hand side of Eq.~6.9! suppresses very rapidly the interfe
ence terms inr r whenc1(x) andc2(x) have well-separated
mean values of the positionX. It also suppresses them, a
though less rapidly when the values of^X& coincide while
those of^P& are significantly different@35#. From the stand-
point of macroscopic interferences, there is therefore noth
new.

The smoothing integral in Eq.~6.10! introduces a new
effect. It mixes together the probabilities for different valu
of ^X&. If the state~6.10! represents, for instance, the state
a pointer after a measurement, two results that would
distinct for an apparatus with degenerate decoherence
become indistinguishable if decoherence is nondegene
This conclusion does not depend on the specific form
c1(x) andc2(x). It also holds for coherent states, which a
not therefore properly einselected.

C. A symmetric form of decoherence

A convenient expression of nondegenerate decohere
can be obtained for any numbern of collective variables.
One denotes altogether by$j j% the set of the 2n position and
momentum variables and the pure decoherence equation
comes

Ẇ5
]

]j i S gi j
]W

]j j D . ~6.11!

If the decoherence coefficientsgi j are constants, one ma
introduce the inverse ‘‘covariant’’ coefficientsgi j satisfying
the relationsgi j gjk5Dk

i . They exist only in the nondegene
ate case. The solution of Eq.~6.11! is then given by

W~jt !5~pt !2nE Agd2nh exp@2gjk~j j2h j !

3~jk2hk!/4t#W~h,0!, ~6.12!

where g is the determinant of the matrix with coefficien
gi j , inverse of the matrix of the decoherence coefficientsgi j .
It may be useful to notice that Eq.~6.12! remains approxi-
mately valid when the decoherence coefficients are not c
stants but slowly varying@25#.

The effect of decoherence is therefore to smear out
Wigner function in phase space. In this approach, the
moval of interference terms is due to the fact that an int
ference term, localized in phase space with a vanishing i
9-9
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gral, is rapidly reduced to zero under smoothing. One m
also notice that the results are unchanged under a linea
nonical transformation in phase space, at least when the
efficients are constants. They are only slightly modifi
when the coefficients are slowly varying under a smooth
nonical transformation@25#.

VII. MORE ABOUT DEGENERACY

One may now consider the order of magnitude of
decoherence coefficients. It should be stressed first tha
condition~3.1! implying diagonalization was most often im
poseda priori in the construction of models. If one aga
considers a unique position observableX, only one decoher-
ence coefficient,gpp, is different from zero when this condi
tion is satisfied~as shown in Appendix B!. Models have re-
vealed a strong connection between the decohere
coefficient gpp and the friction coefficientgpp, which ap-
pears in the classical limit of the equation of motion wh
the collective Hamiltonian isHc5P2/2m1V(X). Classical
motion is then governed by

dp

dt
52]V/]x2gppp. ~7.1!

As shown in Appendix B, the spectral densities of t
coefficientsgpp andgpp are very similar and, at high enoug
temperature, the two coefficients have a simple proporti
ality relation,

gpp5mTgpp. ~7.2!

What should be considered in that case as a high temper
has been discussed by Hu, Paz, and Zhang@7#. The fact that
gpp enters with a denominator\2 in the expression~6.9! of
decoherence implies a strong effect of decoherence as
as gpp is not very small, i.e., when there is a possibility
dissipation.

A. Rough orders of magnitude

Let us consider a model with an environment of oscil
tors, the collective system being also an oscillator with f
quencyv @3–8#. One assumes usually a coupling prop
tional to the collective positionX,

H15X(
i

~l iai
†1l i* ai !,

so that the condition~1.3! is satisfied. More generally, on
may consider a coupling with the creation and annihilat
operators of the collective oscillator in place ofX, i.e.,

H15~X2 iP/mv!(
i

l iai1~X1 iP/mv!(
i

l i* ai
† .

According to Appendix B, one has then typically,

gxx'gpp/m2v2. ~7.3!
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According to Eq.~6.9!, the decoherence time characterizin
the vanishing of nondiagonal interference terms separate
a distanceDx is given as usual by

tdec5
\2

mTgppDx2
, ~7.4!

whereas the characteristic time after which there the pr
abilities are mixed up for two different positions on the d
agonal separated by the same distanceDx is

tmix'
mv2Dx2

gppT
. ~7.5!

For reference, it may be recalled that the time necessary
the spreading of a wave packet on the same distance is

twp5
mDx2

\
. ~7.6!

For not too small values ofDx, and a generic coupling~i.e.,
no degeneracy! one has for the various rates: decoherence
much greater than probability mix up that is much grea
than wave packet spreading.

B. On the existence of pointer states

The main conclusion of the previous sections was that
existence of an exact diagonalization basis is not essentia
most physical consequences of decoherence. On the o
hand, it will be now shown that there is a very large class
physical systems for which such a basis exists.

Coming back to the case whenX denotes a class ofn
collective coordinates, there is exact diagonalization in
basisux& if the derivatives of the symbolH̄1 with respect to
the canonically conjugate variablesp vanish. One has then
according to Eq.~5.6! and Eqs.~B9!–~B11!

@H1 ,X#50, ~7.7!

gxp5gxx50. ~7.8!

Under the same assumptions, according to Eq.~B17!–
~B19!, the friction coefficientsgpx andgxx also vanish.

When they do not vanish, the classical equations of m
tion become

dxi /dt5pi /mi2g i j
pxpj2g i j

xxxj , ~7.9!

dpi /dt5Fi2g2 i j pppj2g i j
pxxj , ~7.10!

whereFi denotes a force.
These equations look rather unusual and it is importan

understand why they are exceptional~or unrealistic!. In the
case of a mechanical system~with no macroscopic electro
magnetic effects! we are familiar with a unique type of fric
tion coefficient (gpp) and of decoherence coefficient (gpp).
The reason was clearly shown by Gell-Mann and Hartle@13#,
who used as position observables the hydrodynamical v
ables resulting from a coarse graining. The correspond
9-10
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DECOHERENCE, IRREVERSIBILITY, AND SELECTION . . . PHYSICAL REVIEW A65 052119
variables can be identified with the center-of-mass positi
xi of small pieces of matter, small enough from a mac
scopic standpoint although containing a large number of
oms. The key feature is then the nonrelativistic form of t
Hamiltonian for the particles of matter,

H5( @pa2A~xa!#2/2ma1( V~xa2xb!,

where the summations are performed over the particles~in-
dicated by Greek indices!. If there is no macroscopic mag
netic field~so that one can neglect the magnetic potentialA),
one of the Heisenberg equations of motion, yields the follo
ing simple relation between the classical velocity and m
mentum~denoted by Latin indices!

ẋi5pi /mi .

Comparing this with Eq.~7.9!, one sees thatgpx5gxx50
and, from Eq. ~B16!, one may expect thatgxp5gxx50.
Equations~7.9! and~7.10! strongly suggest that this proper
follows from the Galilean invariance of nonrelativistic m
chanics under a change of reference system.

Strangely enough, no realistic example of the nondeg
erate case has yet been proposed, except tacitly in unpr
measurements. Examples might be expected, howeve
electromagnetic systems~where the magnetic and electr
fields replace position and conjugate momentum! but the
prospect of producing quantum superpositions of fields
see their decoherence seems rather remote. One must
ably attribute the rarity of examples to the fact that decoh
ence has been mostly studied in the framework of meas
ment theory. There is almost always~or always! in that case
some mechanical part of some apparatus that is entan
with the measurement result and the rest of the system, a
enforces its own einselection on them.

VIII. CLASSICAL BEHAVIOR

A. The derivation of classical behavior

Decoherence is in most cases immediately followed b
classical behavior of the collective subsystem@4,10,12,23#.
Although this property will not be analyzed in detail in th
present work, a few points involving again the problem
einselection are worth mentioning.

Decoherence is described in the nondegenerate cas
Eq. ~6.12! involving a smearing effect on the Wigner fun
tion W(x,p). An important consequence is to make this fun
tion non-negative so that its interpretation as a density pr
ability in phase space becomes significant@36#. As far as
orders of magnitude are concerned, one may consider th
derivative operator]/]x acting on W is of the order of
(gxxt)21/2 for t large enough~i.e., when decoherence is e
fective! whereas]/]p is of the order of (gppt)21/2. One may
then consider more carefully the first term in the mas
equation~4.6! giving the following contribution to the maste
equation:
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\
@Hc ,r r #. ~8.1!

One can write down this equation in terms of the Wign
function and the Hamilton functionh(x,p), which are, re-
spectively, the symbols ofr r and ofHc . It reads to second
order in\,

]W

]t
52

]h

]p

]W

]x
1

]h

]x

]W

]p
1

\2

24H ]3h

]p3

]3W

]x3 23
]3h

]x]p2

]3W

]p]x2

13
]3h

]p]x2

]3W

]x]p2 2
]3h

]x3

]3W

]p3 J . ~8.2!

One recognizes in the first term on the right-hand side
Poisson bracket of the Hamilton function and the probabi
density, in agreement with classical physics. This term g
erates a classical evolution of the Wigner function as if
arguments (x,p) were moving according to the classic
Hamilton equations.

The order of magnitude of theW derivatives resulting
from Eq. ~6.12! imply that higher-order corrections in\ are
negligible so that after some decoherence the evolution
comes classical. It is somewhat paradoxical that the anal
is more involved in the degenerate case@10#. The difficulty
arises from a linear superposition of two initial wave fun
tions with the samex location but different average values o
p. The destruction of interferences must then wait till t
motion due to the difference in the values of^P& separates
the wave functions inx space. A conspiracy of decoheren
with the collective dynamics is therefore necessary for p
ducing finally a classical behavior.

B. Classicality and the choice of a collective subsystem

The previous conclusion of a classical behavior assum
tacitly that the derivatives of the Hamilton functions are n
large, but one might then get involved in a circular argume
The collective observables are chosen ordinarily on emp
cal grounds, from a direct knowledge of the system. O
says: ‘‘I look at the system and I clearly see how it can
described by some coordinates, which I replace by quan
observables.’’ Then one concludes after much work: ‘‘S
the description of the system with these variables beco
finally classical.’’ This is certainly not a proof of classicalit
resting on the basic principles of quantum mechanics,
only a check of consistency. Classical behavior can
proved when the convenient variables for describing it ha
been selected by means of one’s classical intuition.

The question ‘‘how does one select a collective su
system?’’ is therefore prior to the question of einselectio
One can then look at Eq.~8.2! from a different standpoint. It
should give a criterion for choosing the collective obse
ables and not provide a proof that they describe a class
motion. This criterion implies that the derivatives]/]x and
]/]p of the classical Hamilton function in the second a
higher terms of Eq.~8.2! are not controlled by factors involv
ing some power of\21.
9-11
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ROLAND OMNÈS PHYSICAL REVIEW A 65 052119
This gross criterion can be presumably much refined
view of Fefferman’s formulation of quantum mechani
through pseudodifferential calculus~microlocal analysis!
@37#. He investigated the eigenstates of the complete Ha
tonian H of an arbitrary quantum system by analyzing

symbolH̄ in the phase space of the constituent particles a
by cutting this space into ‘‘distorted boxes,’’ he was able
diagonalizeH approximately. This is a deep result of abstra
mathematics but there has been no direct application of
physics. Nevertheless, it means that there exists one~or sev-
eral! privileged way of cutting phase space, into well-defin
boxes, according to the possible states of the system.
could then envision that a pair of variables (x,p) is collec-
tive if it defines locally a two-dimensional plane along whi

H̄ varies very slowly. Such a property is strongly sugges
by Feffermann’s construction and it agrees with the sm
derivatives we just found characterizing classical behav
after decoherence. One may also presume the existence
whole hierarchy of collective two directions, which would b
ordered according to the magnitude of the derivatives.

I will not try to elaborate further on this idea, which wa
proposed some years ago, although not much progress
been made since@26#. It represents, however, an alternati
to Zurek’s predictability sieves~with which it may be re-
lated!. In any case, it stresses again that the most impor
problem in a real understanding of decoherence is an exp
construction of the collective observables~with a corre-
sponding explicit definition of the environment!. This is
closely related with a search for a real theory of the Heis
berg frontier, as also noticed by Zurek@10#.

C. Einselection

Zurek’s concept of predictability sieves was applied s
cessfully to the case of an underdamped collective oscill
interacting with an environment of oscillators@17,40–43#. It
was found that Gaussian pure states with various ave
values (x,p) of position and momentum are selected in th
case as the best carriers of information, suggesting more
erally that some sort of coherent states would be einsele
by decoherence just before classical motion. There is so
thing puzzling, however, in the fact that the width of the
Gaussian states is controlled by the parameters (m,v) of the
collective oscillator~it has the same width as the groun
state wave function of the oscillator!. When looking at Eq.
~6.12!, one finds on the contrary that decoherence in the n
degenerate case is insensitive to the characteristics of
collective Hamiltonian and it is completely determined
the coupling Hamiltonian through the decoherence coe
cients.

It may be recalled in this connection that a conveni
family of einselected states was proposed earlier, altho
this name was not used@38,39#. These states are closely r
lated to Hörmander’s notion of microlocal projection oper
tors. The symbolP̄(x,p) of such an operator is zero outsid
a regular cellC in the (x,p) phase space~i.e., a cell whose
volume and boundary shape have large characteristic dim
sions in terms of the Planck constant!. P̄(x,p) is equal to 1
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in C, except near the boundary where it goes smoothly
zero. The corresponding operatorP is practically a projection
@25#.

Consider then the integrand of Eq.~6.12! for definite val-
ues oft , j5(x,p) andh5(x8,p8),

Z̄~j!5~pt !2nAgexp@2gjk~j j2h j !~jk2hk!/4t#.
~8.3!

It can be considered as the symbol of a density operatoZ
originating at a timet large enough through nondegenera
decoherence from an initial state localized in the neighb
hood ofh. Using Eq.~5.6!, one finds thatPZ5Z if the cell
C contains a manifold with equation

gjk~j j2h j !~jk2hk!/4t5a

for a large enough value ofa. ~This property remains valid
when the decoherence coefficientsgi j are not constant bu
smoothly varying.!

This means that the normalized mixed states with den
matrix P/Tr P satisfy the criteria for einselected states. Th
includes their sifting through predictability sieves@10#, since
Tr J2(t)'1 for a reduced density matrixJ such that
J(0)5P/Tr P. The sketch of the proof consists in separ
ing diagonalization and mixing according to Eq.~6.9!
through a canonical transformation maximizing the rate
diagonalization. The sifting property follows whentI is such
that diagonalization has already taken place in the celC
whereas mixing has not spilled outsideC. This is valid for
nondegenerate and degenerate decoherence.

One can then identify einselected states in general w
the classically meaningful states, which are defined eithe
classical properties through the projectionsP @39,44# or as
quantum states by the density operatorsP/Tr P. The predict-
ability sieve criterion is universally valid. Its stability under
change of definition for the collective subsystem and
environment~i.e., under a shift of Heisenberg’s frontier! can-
not be proved, however, along the same lines as long a
objective definition of the collective observables has be
found.

IX. CONCLUSIONS

As suggested by its name, decoherence is a loss of co
lation between local phases of a system involving a la
number of constituents. It may take in principle many diffe
ent aspects because ‘‘in principle’’ the set of states of a qu
tum system is enormous, even much more than its Hilb
space. Empirical physics is, however, interested in the s
tems really occurring in nature or built in the laborator
which can be measured or observed.

A wide gap between theory and practice is our unability
characterize mathematically these ‘‘real’’ systems@12#. There
is a wide agreement that they always involve some ‘‘colle
tive’’ degrees of freedom but the problem of their definitio
from first principles is not yet solved. The study of decoh
ence will probably remain semiempirical as long as the p
gram suggested in Sec. VIII, or an equivalent one, is
completed.
9-12
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DECOHERENCE, IRREVERSIBILITY, AND SELECTION . . . PHYSICAL REVIEW A65 052119
The practical results of the present study were concer
with the three main aspects of decoherence: suppressio
macroscopic interferences, einselection, and later clas
behavior.

The suppression of macroscopic interferences is a gen
feature. The interference terms disappear for two collec
wave functions with a large enough difference in the aver
values of position or momentum~or both!.

Einselection is the election of definite states represen
exclusive events with well-defined probabilities. It is esse
tial in measurement theory and its properties were the m
purpose of this paper. Two different cases had to be dis
guished, which were, respectively, called degenerate
nondegenerate.

There is something puzzling in this dichotomy if one do
not distinguish also between what is most general~or fre-
quent! either from the standpoint of a mathematical theory
of empirical physics. A very large class of physical syste
leads to the degenerate form of einselection, which is p
tically a diagonalization of the reduced density matrix in t
basis originating from the collective position coordinate
These systems are truthfully described by hydrodynam
variables after coarse graining@12,13#. Although this condi-
tion is still restrictive, it turns out in practice that the m
chanical parts of a physical system, which are described
these variables are entangled most often with other deg
of freedom so that degeneracy~with diagonalization! is ex-
tended to them. A simpler way of saying this is that mo
observations and measurements involve or could involv
reading of the position of some mechanical ‘‘pointer,’’ im
posing diagonalization as the outcome of decoherence.

A sufficient condition for degeneracy is given by the w
known Eq.~1.3!, which covers the hydrodynamical case. It
very restrictive, however, from a mathematical standpo
and, in the absence of a criterion defining a realistic syst
one had also to investigate the general case of nondegen
decoherence. The results did not quite agree with the con
ture of predictability sieves@10#. One found a tendency o
decoherence to combine an approximate diagonaliza
with a partial lumping of probabilities rather than a cle
mutual exclusion of events, which is typical of unpreci
measurements.

The situation was clearer when one looked at the class
behavior after decoherence. There is a simple way to rec
cile the present results with the Zurek’s predictability crite
@10#. It consists in identifying the einselected states with
mixed states representing classical properties, which I p
posed earlier@44#. The fact that these states are best defin
by the mathematics of microlocal analysis@25#, as well as
Fefferman’s promising approach to the definition of colle
tive observables@37#, indicate in my opinion that this frame
work is the right one.

APPENDIX A: DECOHERENCE AS AN IRREVERSIBLE
PROCESS

1. Auxiliary densities

The simplest way for computing the quantitiessi for de-
coherence consists in using the observables (uk&^k8u
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1uk8&^ku)^Ie and (1/i )(uk&^k8u2uk8&^ku) ^ I e ~for k5” k8, k
.k8) together with the diagonal termsuk&^ku ^ I e . They will
be denoted altogether byAj and they satisfy the relations

Trc AjAj 85d j j 8 ~ j , j 85” 1,e!. ~A1!

Rather than the exponential form~2.4! for the test density
operator, it is convenient to write it as

r05S (
j Þ1,e

ajAj D ^ re . ~A2!

From Eqs.~A1!, one sees that the coefficientsaj in Eq. ~A2!
are the average values of the observablesAj . Therefore

]r0 /]aj5Aj
^ re ~ j 5” 1,e!. ~A3!

After writing r05exp(2a2bHe), one obtains

]b/]E52D2, ]a/]E5E/D2, ]re /]a52re,

]re /]b52Here ~A4!

@whereD is defined by Eq.~3.8!#. In view of the definition
~2.5! for the auxiliary densities@or equivalently the definition
~2.8! of the projectionP#, their expression~3.5!–~3.9! in
Sec. III follows immediately from Eqs.~A3! and ~A4!.

2. The evolution equations

In the first evolution equation~2.13!, one can compute
PLr1 by applying the expression~3.9! giving P to Lr1
52( i /\)@H,r1#. Two traces tr@H,r1# and Tr(He@H,r1#)
enter in the result. Using cyclic invariance of traces toget
with Eq. ~3.10! specifyingH1 and

r15r r ^ re , ~A5!

one finds that

tr@H,r1#5@Hc ,r r #,

Tr~He@H,r1# !5Tr~@He ,H#,r1!5Tr~@He ,H1#,r1!.

Therefore

PLr15~2 i /\!H @Hc ,r r # ^ re1I c^ re

He2E

D2

3Tr~He@H1 ,r1# !J . ~A6!

In order to computeṖr1, one remarks that although th
quantitiesre , E, andD in Eq. ~3.9! are time dependent, th
quantity Tr(Her1)2E Tr r1 vanishes so that one has

Ṗr15r r ^ ṙe2ĖI c^ re

He2E

D2 . ~A7!

An identical result is obtained forṖr, so that

Ṗr250. ~A8!
9-13
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One thus gets the first evolution equation

ṙ15PLr11 Ṗr11PLr2 , ~A9!

with the expressions~A6! and ~A7! for the first two terms
whereasPLr2 is given by Eq.~3.9!.

It is convenient to split this equation into one forṙ r and
another forṙe ~or equivalently forĖ). This is obtained by
taking, respectively, the trace of Eq.~A9! with respect to the
environment and the collective Hilbert space. The envir
ment trace of the second term on the right-hand side of
~A6! vanishes, as well as trṖr1 ~because trṙe50). Accord-
ing to Eq.~3.9!, the environment trace ofPLr2 reduces to

2
i

\
tr@H,r2#52

i

\
tr@H1 ,r2#,

where the second equality results from the vanishing
tr@He ,r2# ~as the trace of a commutator! and of tr@Hc ,r2#
~because of trr250). One obtains thus the basic equation

ṙ r2
i

\
~@Hc ,r r #1tr@H1 ,r2# !. ~A10!

The trace of Eq.~A9! on the collective Hilbert space reduce
to a ~potentially infinite! term (Trc I c)re(He2E), multiplied
by a number, which must then vanish so that

Ė52
i

\
Tr~He@H1 ,r11r2# !52

i

\
Tr~He@H1 ,r2# !,

~A11!

the last equality resulting from Tr(He@H1 ,r1#)
5Tr(H1@He ,r1#), whereas

@He ,r1#50, ~A12!

sincere is a function ofHe .

3. The second evolution equation

One can now write down the evolution equation~2.14! for
r2, which is formally

ṙ25QLr21QLr12 Ṗr1 ~A13!

@after taking Eq.~A8! into account#. This will be done ac-
cording to Sec. IV by consideringH1 as a perturbation. One
needs only to computer2 at first order inH1 and some terms
in Eq. ~A13! can be therefore immediately neglected. F
instanceṖr1, as given by Eq.~A7!, is negligible becauseĖ
is of second order@according to Eq.~A11!# and furthermore,

ṙe52ḃ~He2E!re5ĖD22~He2E!re ~A14!

is also of second order@the second equality resulting from
Eq. ~A4!#. One can also neglect the commutator@H1 ,r2# in
Lr2 as being of second order.

Let us now consider the quantityQLr15Lr12PLr1.
One has
05211
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Lr152~ i /\!@H,r1#52~ i /\!@Hc1H1 ,r1#, ~A15!

where the second equality results from Eq.~A12!. Then

PLr15tr~Lr1! ^ re1D22~ I c^ He2E!

3r1$tr~ I c^ HeLr1!2E Tr~Lr1!%. ~A16!

The last term Tr(Lr1) vanishes~as a trace of a commutator!.
The preceding term also vanishes since

Tr~ I c^ HeLr1!52~ i /\!Tr~ I c^ He@H,r1# !

5~ i /\!Tr~H@ I c^ He ,r1# !

and the last commutator vanishes. Therefore

PLr15~2 i /\!tr@H,r1# ^ re5~2 i /\!@JHc ,r r # ^ re

5~2 i /\!@Hc^ I e ,r1#,

where the second equality results from Eqs.~3.10! and
~A12!. The first term inLr1 as given by Eq.~A15! is there-
fore cancelled and one is left with the simple equation

ṙ252~ i /\!@H0 ,r2#2~ i /\!@H1 ,r1#, ~A17!

whereH0 is the uncoupled Hamiltonian,

H05Hc^ I e1I c^ He . ~A18!

APPENDIX B: DECOHERENCE AND DISSIPATION

1. Derivation of Eq. „5.8…

According to Eq.~5.2!, one must evaluate at lowest ord
in \ the symbolD̄ of the collective operator

D52~1/\!2 tr$H1 ,@H1
T ,U~ t2t8!r r~ t8! ^ re~ t8!

3U21~ t2t8!#%. ~B1!

Since U(t)5Uc(t) ^ Ue(t) @with Uc(t)5exp(2iHct/\) and
Ue(t)5exp(2iHet/\)], one can slightly simplify the density
operator by writing

U~ t2t8!r r~ t8! ^ re~ t8!U21~ t2t8!

5Uc~ t2t8!r r~ t8!Uc
21~ t2t8! ^ re~ t8!, ~B2!

in view of the equality@resulting from Eq.~A14! and valid
up to orderH1

2#

Ue~ t2t8!re~ t8!Ue
21~ t2t8!'re~ t8!.

Letting A and B be two arbitrary operators,Ā(x,p) and
B̄(x,p) their operator-valued symbols, Eq.~5.5! gives the
symbol of the commutator@A,B#, with the notation of Sec.
V,

~2 i\/2!~ĀpB̄x2ĀxB̄p2B̄pĀx1B̄xĀp!1O~\3!. ~B3!

Equation~B3! can be used twice for obtaining the symbol
the double commutator in Eq.~B1!. The symbol of the op-
9-14
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eratorUc(t2t8)r r(t8)Uc
21(t2t8), which will be denoted by

WT is an ordinary function and it commutes with th
operator-valued symbolsH̄1 ,H̄1

T and their derivatives. After
a straightforward calculation, one gets

D̄5E
2`

t

dt8S ]

]x
~CxxWx

T1CxpWp
T!

1
]

]p
~CpxWx

T1CppWp
T! D . ~B4!

The coefficients are given by

Cxx5
1

2
tr$~H̄pH̄p

T1H̄p
TH̄p!re%, ~B5!

Cxp52
1

2
tr$~H̄pH̄x

T1H̄x
TH̄p!re%, ~B6!

Cpx52
1

2
tr$~H̄xH̄p

T1H̄p
TH̄x!re%, ~B7!

Cpp5
1

2
tr$~H̄xH̄x

T1H̄x
TH̄x!re%. ~B8!

2. Explicit expressions

The decoherence coefficients after neglecting retarda
are obtained by integrating the coefficients~B5!–~B8! on the
time t8. It is convenient to introduce the matrix elements
H̄1,

^nuH̄1i
T un8&5H̄1inn8 exp~2 ivnn8t!,

where the indexi denotes eitherx or p, t5t2t8, and
H̄1inn85^nuH̄1i un8&. One has then

1

2
tr$~5H̄ i H̄ j

T1H̄ j
TH̄ i !re%

5(
nn8

H̄1inn8H̄1 jn8n exp~ ivnn8t!pnn8 cosh~b\vnn8/2!.

The decoherence coefficients

gi j 5E
0

`

dtCi j ~t!

are then given by

gxx5E
0

`

dt(
nn8

H̄1pnn8H̄1pn8n exp~ ivnn8t!pnn8

3cosh~b\vnn8/2!, ~B9!

gpx5gxp52E
0

`

dt(
nn8

H̄1pnn8H̄1xn8n exp~ ivnn8t!pnn8

3cosh~b\vnn8/2!, ~B10!
05211
n

f

gpp5E
0

`

dt(
nn8

H̄1xnn8H̄1xn8n exp~ ivnn8t!pnn8

3cosh~b\vnn8/2!. ~B11!

The quadratic form in two real variables (a,a8) with these
coefficients is given by

gxxa212gxpaa81gppa82

5E
0

`

dt(
nn8

uH̄1xnn8a2H̄1pn8na8u2 cos~vnn8t!pnn8

3cosh~b\vnn8/2! ~B12!

and it is clearly non-negative.

3. Dissipation coefficients

Let now Ak (k51 or 2! denote eitherX or P. The time
derivatives of their average values are given by

d^Ak&
dt

5
i

\
Tr~@H,Ak#r!5

i

\
Trc~@Hc ,Ak#r r !

1
i

\
Tr~@H1 ,Ak#r2!. ~B13!

The first term is due to collective dynamics and the seco
one represents dissipation effects. Using Eq.~4.5! for r2, this
dissipative term reads

2
i

\2E
0

`

dt Tr$@H1 ,Ak#@H1
T ,U~t!r r ^ reU

21~t!#%.

~B14!

Equation~5.7! can be used to replace the collective trace
an integration over phase space of the operator symbol.
can use

@H1 ,X#̄52 i\H̄1p , @H1 ,P#̄5 i\H̄1x .

When computing the symbol of@H1
T ,U(t)r r ^ reU

21(t)#,
one will retain only the term originating from the Poisso
bracket betweenH1

T and eitherU(t) or U21(t), because it
can be seen that all the other contributions do not contrib
to the phase space integral or are of higher order in\. Fi-
nally, denoting byH̄c(x,p) the symbol ofHc ~which is the
collective Hamilton function!, one gets

@H1
T ,U~t!r r ^ reU

21~t!#

5
i\

2 H ~H̄1p
T re2reH̄1p

T !V8~x!2~H̄1x
T re2reH̄1x

T !
p

mJ tW.

In the semiclassical case, when the Wigner function is slo
varying, Eq.~B13! generates the classical equations of m
tion, which read@after writing (p,x) in place of^P&,^X& and
neglecting retardation!,
9-15
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dp

dt
52H̄cx2gppH̄cp2gpxH̄cx , ~B15!

dx

dt
52H̄cp2gxpH̄cp2gxxH̄cx . ~B16!

The coefficients are explicitly given~after performing a
partial integration over the timet) by

gpp5E
0

`

dtH̄1xnn8H̄1xn8n exp~ ivnn8t!pnn8

3@sinh~b\vnn8/2!/\vnn8#, ~B17!

gpx52E
0

`

dtH̄1xnn8H̄1pn8n exp~ ivnn8t!pnn8

3@sinh~b\vnn8/2!/\vnn8#

5gxp, ~B18!

gxx5E
0

`

dtH̄1pnn8H̄1pn8n exp~ ivnn8t!pnn8

3@sinh~b\vnn8/2!/\vnn8#. ~B19!

Comparing these results with Eqs.~B9!–~B11!, a strong
formal similarity appears between the dissipation and
decoherence coefficients. They are even directly proportio
at high enough temperature@when T@\V so that
cosh(b\vnn8/2)'1 and sinh(b\vnn8/2)'b\vnn8/2],
namely,

g i l 'gi j /T. ~B20!

One may also notice that the dissipation of collective ene
dEc /dt is always negative~or zero!, since the quadratic form
with coefficientsg i j is non-negative for the same reason
in Eq. ~B12!. Finally, the equalitygpx5gxp is a special case
of the Onsager symmetry relations~24!.

APPENDIX C: PREVIOUS MODELS

Much of our knowledge on decoherence was first o
tained from a study of simple models. Since the pres
theory claims a much wider range, it should at least reco
these older results. This will be the topic of the present
pendix.

1. Oscillator bath

A model of environment consisting of a bath of harmon
oscillators has been much investigated. For an atom inter
ing with radiation in a cavity, the model is exact and
results have been successfully compared with experim
@1#. The atom is represented in that case by a two-state
tem. When considering a collective system with positionX,
the coupling Hamiltonian is typically written as
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~l iai1l i* ai
†! D , ~C1!

where the sum is over all the oscillators,l i being a coupling
constant,ai andai

† their annihilation and creation operator
It is easy to use this coupling in the formulas of Append

B and to recover the previously known results. The calcu
tions are essentially trivial and need not be given here
plicitly. Perhaps more interesting is the question of the ran
of this model. In addition to their thorough study of it, Ca
deira and Leggett suggested that it should be considere
very general@5#. They start from the fact that the number
energy eigenstatesun& of the environment is extremely large
They introduce formally an oscillator for each such sta
@i.e., the indexi will stand for n in Eq. ~C1!#. They notice
that a stateun& is either occupied or not, these two possibi
ties being represented by the ground state and the first
cited state of the associated oscillator. Then they argue
higher excited states of the oscillators will play no role b
cause of the smallness of their probability of excitation. Th
conclude that an oscillator bath can represent almost
environment.

The argument is, however, erroneous, because the
pling resulting from their proposal would not have the ve
simple form of Eq.~C1! in general, because transitionsi
→ j with i 5” j are certainly essential and they do not app
in the Hamiltonian~C1!. Moreover, the transitionsi→ i with
a change of occupation number are not correctly represe
in a quantity such as

tr~H1H1re!5(
nn8

^nuH1un8&^n8uH1un&ren .

If the occupied stateun& is considered as the first excite
stateu i ,1& of an oscillator, the contribution ofn8&5u i ,2& can-
not be omitted from the sum if the Hamiltonian~C1! is used.
The interest of a theory ignoring the constraints of the os
lator model cannot therefore be disputed.

2. The scattering model

Joos and Zeh have proposed a beautiful model of de
herence, when an object with positionX interacts with a bath
of particles@9#. Decoherence appeared then as an accum
tion of scattering effects. The resulting master equat
looked very similar to one occurring in the oscillator mod
and this was a very strong hint for some universality in t
mathematical expression of decoherence. This unive
character has been explained in the present paper, but s
thing would still be missing if the scattering model were n
also derived. This derivation is nontrivial so that it will b
given explicitly.

Let us consider for definiteness a spherical solid obj
with centerX. As explained in Sec. III, the pressure exert
on it by the outside gas is included inHc so thatH1 repre-
sents the effect of random collisions of the outside molecu
~or photons! on the sphere. Rather than doing a compl
calculation, it will be sufficient to look at one term in Eq
~5.4!, namely~with \51),
9-16
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D152E
2`

t

dt8 tr$H1Uc~ t2t8!r r~ t8!Uc
21~ t2t8! ^ reH1

T%.

~C2!

One may consider first the case of an environment c
sisting of particles having the same momentum, in a p
stateuk&:re5uk&^ku. The corresponding wave function is
plane wave exp(ikr) and, with this normalization, there is on
particle per unit volume. Their fluxF is the velocityn of the
particle and a sum over one-particle statesuk8& amounts to an
integration overdk/(2p)3.

A few remarks are useful.
~1! One can neglect the time evolution factorsUc(t2t8),

which are slowly varying.
~2! Introducing momentum eigenstatesup& of the object

and the outgoing scattering statesup,k,out& associated with
the plane wavesup,k&5up& ^ uk&, one can write

^p2 ,k2 ,outuH1up1 ,k1&

5^p2 ,k2uTup1 ,k1&d~p11k12p22k2!, ~C3!

whereT is the~off energy-shell! collision matrix for the scat-
tering of a particle on the object.

~3! One can use the invariance of the scatteringT matrix
under a change of reference frame. For nonrelativistic va
of p and taking into account the large mass of the object~as
compared with the particle mass!, a Galilean transformation
with small velocity gives

^p2 ,k2uTup1 ,k1&5^p22p1 ,k2uTu0,k1&^p1 ,k1uTup2 ,k2&

5^0,k1uTup22p1 ,k2&. ~C4!

~4! In view of thed function in Eq.~C3!, it is enough to
know k1 andk2 for fixing p22p1 so that the right-hand sid
of Eq. ~C4! can be written more simplyT(k1 ,k2). Con-
versely, using Fourier transforms, one can introduce
statesux,k& corresponding to a localized object, whereas
statesux,k,out& involve the same value ofx and a scattered
particle. One thus gets

^x8,k2 ,outuH1ux,k1&5T~k1 ,k2!d~x2x8!exp$ i ~k12k2!x%.

~C5!

This result has two important consequences. It shows thaH1
acts like a function ofX, although this property shows u
et

05211
-
e

es

e
t

only when scattering states are used. The imaginary ex
nential in the right-hand side is moreover typical of t
method that was used by Joos and Zeh.

~5! In view of Eqs.~5.3!, and~C3!, one has

^x,k1uH1
Tux8,k2 ,out&

5exp$ iv~ t2t8!%d~x2x8!exp$2 i ~k12k2!x%

3T* ~k1 ,k2!, ~C6!

where

v5E~k2!2E~k1!.

~6! When throwing out retardation, the integral ont8 of
the imaginary exponential in Eq.~C6! gives pd(v)
2 iP(1/v), whereP stands for a Cauchy principal part.
may be shown, however, that another term inD originating
from H1

Tr1H1 cancels the principal part and one must ke
only therefore the delta part.

Finally, the matrix element̂xuD1ux8& can be easily com-
puted if one uses the orthonormal set of outgoing sta
$uk8,out&% when computing the trace tr. One gets

^XuD1ux8&5E @dk/~2p!3#pd~v!uT~k,k8!u2

3exp$ i ~k2k8!~x2x8!%r r~x,x8!. ~C7!

But the quantity dk(2p)23d(v)uT(k,k8)u2 has a very
simple interpretation. It coincides with the productdsF of
the differential cross-sectionds for the scatteringk→k8
times the fluxF of the environment particles having th
given momentumk. One can then replace the trivial densi
matrix uk&^ku by a thermal density and introduce the vario
different particles in the gas, thus obtaining

^xuD1ux8&5E pdsdF exp$ i ~k2k8!~x2x8!%r r~x,x8!.

~C8!

Similar results are obtained for the three other terms inD
but it will not be necessary to push the calculation furth
since, from there on, it becomes identical with the one
Joos and Zeh. Their method was of course simpler than
present one, as one expects from an intuitive approach c
pared to a technical one. The present calculation sho
however, how universal and versatile the fundamental ma
equation~4.6! is.
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